JP2005064392A - METHOD OF MANUFACTURING SiC SINGLE-CRYSTAL SUBSTRATE - Google Patents

METHOD OF MANUFACTURING SiC SINGLE-CRYSTAL SUBSTRATE Download PDF

Info

Publication number
JP2005064392A
JP2005064392A JP2003295589A JP2003295589A JP2005064392A JP 2005064392 A JP2005064392 A JP 2005064392A JP 2003295589 A JP2003295589 A JP 2003295589A JP 2003295589 A JP2003295589 A JP 2003295589A JP 2005064392 A JP2005064392 A JP 2005064392A
Authority
JP
Japan
Prior art keywords
single crystal
sic single
crystal substrate
sic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003295589A
Other languages
Japanese (ja)
Other versions
JP3761546B2 (en
Inventor
Taisuke Hirooka
泰典 廣岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP2003295589A priority Critical patent/JP3761546B2/en
Publication of JP2005064392A publication Critical patent/JP2005064392A/en
Application granted granted Critical
Publication of JP3761546B2 publication Critical patent/JP3761546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a SiC substrate having a flat surface. <P>SOLUTION: The method of manufacturing a SiC single-crystal substrate includes steps: (a) preparing a SiC single-crystal substrate 10 having a surface to which a mirror polishing has been applied; (b) forming an oxide layer 12 on the surface of the SiC single-crystal substrate 10 by oxidizing the surface of the SiC single-crystal substrate by plasma, and (c) removing at least a part of the oxide layer 12 by reactive ion etching, wherein preferably the surface is smoothed by repeating the steps (b) and (c). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はSiC単結晶基板の製造方法に関する。   The present invention relates to a method for manufacturing a SiC single crystal substrate.

SiC単結晶は、Si単結晶やGaAs単結晶に比べて、バンドギャップが広く、絶縁破壊電界および熱伝導率が大きい。このような特性は、高温で動作する半導体素子や高耐圧のパワー半導体素子に適しており、従来のSi半導体では得られない特性を備えた半導体素子が実現できるものとして、SiC単結晶を用いた半導体素子の研究が進められている。従来技術によって作製されるSiC単結晶は結晶品質が高くないため、SiC単結晶を用いた基板上にSiCエピタキシャル層を形成させて半導体素子を作製していた。しかし、近年良好な特性を有するSiC単結晶も得られるようになってきており、SiC単結晶基板中に半導体素子を作製することも研究されている。   The SiC single crystal has a wider band gap, a higher dielectric breakdown electric field and higher thermal conductivity than the Si single crystal and GaAs single crystal. Such characteristics are suitable for semiconductor elements operating at high temperatures and power semiconductor elements having a high withstand voltage, and SiC single crystals are used as semiconductor elements having characteristics that cannot be obtained with conventional Si semiconductors. Research on semiconductor devices is underway. Since the SiC single crystal produced by the prior art is not high in crystal quality, a semiconductor element is produced by forming a SiC epitaxial layer on a substrate using the SiC single crystal. However, in recent years, SiC single crystals having good characteristics have been obtained, and the production of semiconductor elements in SiC single crystal substrates has also been studied.

また、近年、光学的記録媒体を用いて高記録密度で情報を記録・再生するための光源や画像表示用および照明用光源として、紫外領域や青色の光を出射するGaN系半導体素子の研究が進められている。GaN系半導体は、一般に結晶欠陥の少ない大きな単結晶インゴットの形状に成長させることが難しいため、SiC単結晶基板上に、GaN系半導体層をエピタキシャル成長させる技術が注目されている。   In recent years, research has been conducted on GaN-based semiconductor elements that emit ultraviolet light and blue light as light sources for recording / reproducing information at a high recording density using optical recording media and light sources for image display and illumination. It is being advanced. Since a GaN-based semiconductor is generally difficult to grow into a large single-crystal ingot shape with few crystal defects, a technique for epitaxially growing a GaN-based semiconductor layer on a SiC single crystal substrate has attracted attention.

このため、傷などがなく、平滑で反りなどのない表面を有するSiC単結晶基板が求められている。本願発明者は、未公開特許出願において、加工応力を除去することによって平坦なSiC基板を得る技術を提案している。   For this reason, a SiC single crystal substrate having a smooth surface free from warpage and the like is desired. The inventor of the present application has proposed a technique for obtaining a flat SiC substrate by removing processing stress in an unpublished patent application.

一方、SiC基板の表面を平滑にする技術としては、CMP(化学的機械研磨)が従来より一般に用いられている。しかし、SiCはダイヤモンドに次ぐ硬度を備えるため、CMPでは十分な研磨速度が得られず、加工効率が非常に悪い。研磨速度を上げるために、SiC基板に高い圧力をかけながらCMPを行う方法が知られているが、この場合、加工変質層がSiC基板の内部深くに入りやすいという問題が生じる。   On the other hand, CMP (Chemical Mechanical Polishing) has been generally used as a technique for smoothing the surface of the SiC substrate. However, since SiC has hardness next to diamond, CMP cannot provide a sufficient polishing rate, and processing efficiency is very poor. In order to increase the polishing rate, a method of performing CMP while applying a high pressure to the SiC substrate is known, but in this case, there is a problem that the work-affected layer easily enters deep inside the SiC substrate.

これらの問題を解決するために特許文献1は、反応性エッチングと水蒸気酸化を用いてSiCの表面を平滑にする方法を開示している。具体的には、SiC基板の表面を機械的に鏡面研磨し、有機および無機洗浄を行ったあと、SiC基板の表面に反応性エッチングを施すことにより、表面の平坦性を保ったまま、均一なダメージ層を除去する。その後、水蒸気により、基板の表面を酸化させた後、フッ化水素酸により酸化層を除去する。   In order to solve these problems, Patent Document 1 discloses a method of smoothing the surface of SiC using reactive etching and steam oxidation. Specifically, the surface of the SiC substrate is mechanically mirror-polished, subjected to organic and inorganic cleaning, and then subjected to reactive etching on the surface of the SiC substrate to maintain a uniform surface while maintaining the flatness of the surface. Remove the damage layer. Then, after oxidizing the surface of the substrate with water vapor, the oxide layer is removed with hydrofluoric acid.

特許文献2は、Arなどを用いた第1の反応性エッチングによって、SiC基板表面の加工変質層を除去し、第1の反応性エッチングによって基板の表面領域に生じたイオン照射損傷層をCF4およびO2などを用いる反応性エッチングによって除去する技術を開示している。 In Patent Document 2, the work-affected layer on the surface of the SiC substrate is removed by first reactive etching using Ar or the like, and an ion irradiation damaged layer generated in the surface region of the substrate by the first reactive etching is CF 4. And a technique of removing by reactive etching using O 2 or the like.

また、非特許文献1は、SiC基板の表面を水蒸気酸化し、その後CMPを施すことにより、加工効率を改善できると報告している。   Non-Patent Document 1 reports that the processing efficiency can be improved by subjecting the surface of the SiC substrate to steam oxidation and then performing CMP.

しかしながら、これらの従来技術の方法において用いられる反応性イオンエッチングでは、表面の形状をほぼ反映してエッチングが行われる。このため、基板の表面に傷が生じている場合、反応性エッチングを施しても傷を完全に除去することはできない。また、反応性イオンエッチングでは、ラジカル種を加速させて基板に衝突させるため、基板に生じるダメージを完全に除去することは難しい。水蒸気酸化により酸化層を形成し、酸化層除去する方法はSiC基板を高温に保持しながら長時間水蒸気にさらす必要があり、実用的ではない。   However, in reactive ion etching used in these prior art methods, etching is performed almost reflecting the shape of the surface. For this reason, when the surface of the substrate is scratched, the scratch cannot be completely removed even if reactive etching is performed. In reactive ion etching, radical species are accelerated and collide with the substrate, so that it is difficult to completely remove the damage caused on the substrate. The method of forming an oxide layer by steam oxidation and removing the oxide layer is not practical because it requires exposure to steam for a long time while maintaining the SiC substrate at a high temperature.

このため、特許文献1および特許文献2に開示された方法では、基板の表面を完全に平滑にし、基板表面に生じたダメージ層を完全に除去することは難しい。また、非特許文献1による方法は、CMPのみによってSiC基板の表面を平坦化する方法に比べれば短い時間で研磨が完了する。しかし、それでもなお、酸化工程に約3時間要し、研磨工程に約2時間要するため、非特許文献1による方法は実用的ではない。また、基板表面の傷を完全に除去するのは難しい。
特開平6−188163号公報 特開平9−183700号公報 新日鉄技報 第374号、32〜36ページ
For this reason, it is difficult for the methods disclosed in Patent Document 1 and Patent Document 2 to completely smooth the surface of the substrate and completely remove the damaged layer generated on the substrate surface. Further, the method according to Non-Patent Document 1 completes the polishing in a shorter time than the method of planarizing the surface of the SiC substrate only by CMP. However, since the oxidation process still takes about 3 hours and the polishing process takes about 2 hours, the method according to Non-Patent Document 1 is not practical. Moreover, it is difficult to completely remove scratches on the substrate surface.
JP-A-6-188163 JP-A-9-183700 Nippon Steel Technical Report No. 374, pages 32-36

本発明は上記従来技術の問題を解決し、表面が平滑なSiC基板を製造する実用的な方法を提供することを目的とする。   The object of the present invention is to solve the above-mentioned problems of the prior art and to provide a practical method for producing a SiC substrate having a smooth surface.

本発明のSiC単結晶基板の製造方法は、鏡面研磨が施された表面を有するSiC単結晶基板を用意する工程(a)と、前記SiC単結晶基板の表面をプラズマにより酸化し、酸化層を前記SiC単結晶基板の表面に形成する工程(b)と、前記酸化層の少なくとも一部を反応性イオンエッチングにより除去する工程(c)とを包含する。   The method for producing a SiC single crystal substrate according to the present invention includes a step (a) of preparing a SiC single crystal substrate having a mirror-polished surface, oxidizing the surface of the SiC single crystal substrate with plasma, and forming an oxide layer. A step (b) of forming on the surface of the SiC single crystal substrate; and a step (c) of removing at least a part of the oxide layer by reactive ion etching.

ある好ましい実施形態において、前記工程(b)および(c)をそれぞれ複数回繰り返して行う。   In a preferred embodiment, the steps (b) and (c) are each repeated a plurality of times.

ある好ましい実施形態において、前記工程(b)および(c)において酸化およびエッチングをそれぞれ1分から10分の間の時間で行う。   In a preferred embodiment, in steps (b) and (c), the oxidation and etching are performed for a time period of 1 to 10 minutes, respectively.

ある好ましい実施形態において、前記工程(b)および(c)をそれぞれ複数回繰り返し、前記工程(b)を行った後、前記SiC単結晶基板の表面を化学的機械研磨法により研磨する工程(d)をさらに包含する。   In a preferred embodiment, the steps (b) and (c) are repeated a plurality of times, and after the step (b) is performed, the surface of the SiC single crystal substrate is polished by a chemical mechanical polishing method (d) ).

ある好ましい実施形態において、前記工程(b)において、酸素または酸素および不活性ガスの混合ガスを用いる。   In a preferred embodiment, oxygen or a mixed gas of oxygen and an inert gas is used in the step (b).

ある好ましい実施形態において、 前記工程(c)において、Fを含むガスを用いる。   In a preferred embodiment, a gas containing F is used in the step (c).

ある好ましい実施形態において、前記工程(c)において、SiCおよび前記酸化層のエッチング速度が等しくなるよう、反応性エッチングの条件が設定されている。   In a preferred embodiment, in the step (c), the reactive etching conditions are set so that the etching rates of SiC and the oxide layer are equal.

ある好ましい実施形態において、前記工程(a)において、前記SiC単結晶基板のC軸に対するオフセット角がほぼゼロになっている。   In a preferred embodiment, in the step (a), an offset angle with respect to the C axis of the SiC single crystal substrate is substantially zero.

ある好ましい実施形態において、前記工程(b)および工程(c)を同じ装置内でガスを置換することにより行う。   In a preferred embodiment, the steps (b) and (c) are performed by replacing a gas in the same apparatus.

ある好ましい実施形態において、SiC単結晶基板の表面を酸化し、酸化により生成した酸化層をエッチングにより除去する工程を複数回繰り返すことにより、前記SiC単結晶基板の表面を平滑化する。   In a preferred embodiment, the surface of the SiC single crystal substrate is smoothed by repeating the step of oxidizing the surface of the SiC single crystal substrate and removing the oxide layer formed by the oxidation by etching a plurality of times.

ある好ましい実施形態において、前記繰り返しの回数は5以上である。   In a preferred embodiment, the number of repetitions is 5 or more.

本発明のSiC単結晶基板は上記いずれかの方法により製造される。   The SiC single crystal substrate of the present invention is manufactured by any of the above methods.

また、本発明のSiC単結晶基板は、表面粗さRaが0.2nm以下であり、表面にステップ構造を有する。   The SiC single crystal substrate of the present invention has a surface roughness Ra of 0.2 nm or less and has a step structure on the surface.

本発明によれば、SiC表面をプラズマ酸化し、酸化により生じた酸化層を反応性エッチングによって除去することにより、実用的な速度で酸化層の形成・除去が可能となり、表面に存在するスクラッチが除去された平滑なSiC単結晶基板を得ることができる。   According to the present invention, plasma oxidation of the SiC surface and removal of the oxide layer generated by oxidation by reactive etching enables formation and removal of the oxide layer at a practical speed, and scratches present on the surface are eliminated. The removed smooth SiC single crystal substrate can be obtained.

また、SiC表面の酸化および酸化により生じた酸化層の除去を繰り返すことにより、平滑なSiC単結晶基板を得ることができる。   Further, by repeating the oxidation of the SiC surface and the removal of the oxide layer generated by the oxidation, a smooth SiC single crystal substrate can be obtained.

CMPは半導体基板の研磨や形成した半導体構造の平坦化等に広く用いられ、優れた研磨方法の1つである。しかし、本願発明者が、鏡面研磨されたSiC単結晶基板を加圧しながらCMP法により研磨したところ、局所的には平滑な表面が得られるが、同時に深さ10〜20nm程度のスクラッチが基板全体に発生した。   CMP is widely used for polishing a semiconductor substrate, planarizing a formed semiconductor structure, and the like, and is one of excellent polishing methods. However, when the present inventor polished the mirror-polished SiC single crystal substrate by CMP while applying pressure, a locally smooth surface was obtained, but at the same time, a scratch having a depth of about 10 to 20 nm was formed on the entire substrate. Occurred.

これは、SiCが高硬度で、対薬品性も高い反面、脆く、傷が入りやすいという物性を備えていることに由来していると考えられる。このため、CMPによって研磨を行う限り、研磨によってSiC基板の表面にあった傷は削り取られるが、新たな傷が削った後の表面に生成してしまう。   This is considered to be derived from the fact that SiC has high physical properties and high chemical resistance, but is brittle and easily damaged. Therefore, as long as polishing is performed by CMP, scratches on the surface of the SiC substrate are removed by polishing, but new scratches are generated on the surface after cutting.

そこで、研磨以外の方法によってSiC基板の表面の平滑化を検討したところ、SiC基板の表面を酸化させたあと、酸化により形成した酸化層をエッチングにより除去することにより、基板表面を平滑化できることを見出した。以下において詳細に説明するように、特に、酸化および酸化層の除去を繰り返すことによって、表面形状のプロファイルを鈍らせて傷やスクラッチによる溝を徐々に浅くし、基板の表面が平滑になる。   Therefore, when the smoothing of the surface of the SiC substrate was examined by a method other than polishing, it was found that the surface of the SiC substrate could be smoothed by oxidizing the surface of the SiC substrate and then removing the oxidized layer formed by oxidation. I found it. As will be described in detail below, in particular, by repeating oxidation and removal of the oxide layer, the profile of the surface shape is dulled and the grooves due to scratches and scratches are gradually shallowed, and the surface of the substrate becomes smooth.

以下、本発明によるSiC単結晶基板の製造方法を具体的に説明する。   Hereinafter, a method for producing a SiC single crystal substrate according to the present invention will be described in detail.

まず、SiCの単結晶からなるSiC単結晶基板を用意する。好ましくはSiCの単結晶は、ヘキサゴナル構造を備え、4H−SiCまたは6H−SiCであることがより好ましい。図1に示すように、SiC単結晶基板10の平滑化を行う表面10aは(0001)面であり、基板のオフセット角が結晶軸であるC軸に対しておおよそゼロ度(ジャスト基板とも呼ばれる)となっていることが好ましい。言い換えれば、表面10aに対してC軸が垂直になっていることが好ましい。図1に示すように、オフセット角がゼロ度である場合、理想的には、C層およびSi層が表面10aに対して、平行でかつ交合に積層される。このような基板では、表面全体がSiまたはCで均一に構成されるため、表面の物理的および化学的安定性が高く、研磨が一般に難しい。本発明のSiC単結晶基板の製造方法はこのような基板を好適に平滑化することができる。   First, a SiC single crystal substrate made of a SiC single crystal is prepared. Preferably, the SiC single crystal has a hexagonal structure, and is more preferably 4H—SiC or 6H—SiC. As shown in FIG. 1, the surface 10a for smoothing the SiC single crystal substrate 10 is a (0001) plane, and the offset angle of the substrate is approximately zero degrees with respect to the C axis which is the crystal axis (also called a just substrate). It is preferable that In other words, the C axis is preferably perpendicular to the surface 10a. As shown in FIG. 1, when the offset angle is zero degrees, ideally, the C layer and the Si layer are stacked parallel to and intersecting with the surface 10a. In such a substrate, since the entire surface is uniformly composed of Si or C, the physical and chemical stability of the surface is high, and polishing is generally difficult. The method for producing a SiC single crystal substrate of the present invention can suitably smooth such a substrate.

図2に示すように、4H−SiCまたは6H−SiCの単結晶からなるSiC単結晶基板50であっても、C軸に対するオフセット角θがゼロ度以外である場合、基板の表面50aには、常にSiとCとが表れる。このような表面は一般的に加工が容易であるため、従来の研磨方法や平滑化方法によっても比較的容易に平坦な表面を得ることができる。しかし、本発明の方法を図2に示すようなオフセット角θがゼロ度以外の基板に適用しても効率的に平滑な表面を得ることができる。   As shown in FIG. 2, even if the SiC single crystal substrate 50 is made of 4H—SiC or 6H—SiC single crystal, when the offset angle θ with respect to the C axis is other than zero degrees, Si and C always appear. Since such a surface is generally easy to process, a flat surface can be obtained relatively easily by a conventional polishing method or smoothing method. However, even if the method of the present invention is applied to a substrate having an offset angle θ other than zero degrees as shown in FIG. 2, a smooth surface can be obtained efficiently.

SiC単結晶基板10の平滑化を行う面は、あらかじめ、鏡面加工が施されており、鏡面加工仕上げされていることが好ましく、表面10aの面粗度Raが0.2nm〜2nmであることがより好ましい。ここで、面粗度Raは、原子間力顕微鏡(AFM)にて試料の5μmエリアを測定した値をいう。また、SiC単結晶基板10がたとえば直径2インチである場合、平滑化を行う面はおよそ±20μm以下の平面度となるよう基板の反りが調整されていることが好ましい。しかし、平面度が±20μm以上ある場合には、以下で説明するSiC単結晶基板の製造工程中に、基板の反りを補正することが可能である。   The surface on which the SiC single crystal substrate 10 is smoothed is preliminarily mirror-finished and preferably mirror-finished, and the surface roughness Ra of the surface 10a is 0.2 nm to 2 nm. More preferred. Here, the surface roughness Ra is a value obtained by measuring a 5 μm area of a sample with an atomic force microscope (AFM). When SiC single crystal substrate 10 has a diameter of 2 inches, for example, it is preferable that the warpage of the substrate is adjusted so that the surface to be smoothed has a flatness of about ± 20 μm or less. However, when the flatness is ± 20 μm or more, the warpage of the substrate can be corrected during the manufacturing process of the SiC single crystal substrate described below.

図3に示すように、SiC単結晶基板10は、たとえば、公知の方法を用いて単結晶SiCの塊体20から切り出される。SiCの塊体20の切断には、外周刃または内周刃のカッティングブレードや、ワイヤーソーなどを用いることができる。SiCの塊体20は、SiおよびC以外のP型あるいはN型不純物となる元素を含んでいてもよい。また、置換元素としてGeなどの他のIV族元素を含んでいてもよい。本願明細書では、これら、不純物元素や置換元素を含むSiCを総称して、SiCと呼ぶ。SiC基板10の外形に特に制限はなく、種々の大きさ、厚さおよび平面形状のものを本発明に用いることができる。たとえば、2インチの直径および500μm程度の厚さを備えた円板状のSiC単結晶基板10を用意する。   As shown in FIG. 3, SiC single crystal substrate 10 is cut out from single crystal SiC lump 20 using, for example, a known method. For cutting the SiC mass 20, a cutting blade of an outer peripheral blade or an inner peripheral blade, a wire saw, or the like can be used. The SiC mass 20 may contain an element that becomes a P-type or N-type impurity other than Si and C. Moreover, other IV group elements, such as Ge, may be included as a substitution element. In the present specification, SiC including the impurity element and the substitution element is collectively referred to as SiC. There is no particular limitation on the outer shape of SiC substrate 10, and various sizes, thicknesses, and planar shapes can be used in the present invention. For example, a disc-shaped SiC single crystal substrate 10 having a diameter of 2 inches and a thickness of about 500 μm is prepared.

塊体20から切り出されたSiC単結晶基板10は、公知の手順によって、表面に生じた加工変質層が除去され、基板表面10a及び裏面10bの表面粗さが所定の値になるまで研磨が施される。また、このとき、SiC単結晶基板10に反りが生じている場合には、所定の平面度以下となるよう合わせて平面加工を行う。   The SiC single crystal substrate 10 cut out from the lump 20 is polished by a known procedure until the work-affected layer generated on the surface is removed and the surface roughness of the substrate surface 10a and the back surface 10b becomes a predetermined value. Is done. At this time, if the SiC single crystal substrate 10 is warped, planar processing is performed so as to be equal to or less than a predetermined flatness.

図4(a)は、SiC単結晶基板10の表面10a近傍を模式的に示している。SiC単結晶基板10の表面10aは、ナノメートルオーダーの面粗度であり、加工傷11が表面10aに生じていたり、加工変質層17が表面近傍に残留している。このため、このようにして用意したSiC単結晶基板10の表面10aをまずエッチングし、加工変質層を除去することが好ましい。エッチングは後の酸化層除去工程で行う反応性イオンエッチングが好ましく、エッチング条件もそれに準ずる。続いて、表面10aを酸化する。酸化は種々の公知の方法を用いることができる。しかし、SiC単結晶基板10としてオフセット角がゼロ度のものを用いる場合には、水蒸気酸化では酸化層の生成速度が遅く、エッチング液による酸化ではエッチングが進行しにくいので効率が悪いという理由から、好ましくない。表面10aに対して平行にかつ交互にSi層およびC層が積層しており、表面10aの化学的反応性が乏しいからである。このため、プラズマによる酸化を用いることが好ましい。酸化は、酸素雰囲気または酸素およびArなどの不活性ガスを含む雰囲気で行うことが好ましく、たとえば、10-1〜102Pa程度の圧力で、0.01〜2W/cm2のパワーを投入して行う。この工程は、続いて行う反応性イオンエッチングと同じ装置で行うことが好ましい。SiC単結晶基板10の移送等を行う必要がなく、ガスの入れ換えのみによって2つの工程を連続して行うことができるからである。酸化により、図4(b)に示すように、表面に酸化層12が形成される。 FIG. 4A schematically shows the vicinity of the surface 10 a of the SiC single crystal substrate 10. The surface 10a of the SiC single crystal substrate 10 has a surface roughness on the order of nanometers, and the processing flaw 11 is generated on the surface 10a or the work-affected layer 17 remains in the vicinity of the surface. For this reason, it is preferable that the surface 10a of the SiC single crystal substrate 10 thus prepared is first etched to remove the work-affected layer. Etching is preferably reactive ion etching performed in the subsequent oxide layer removing step, and the etching conditions are also in accordance with it. Subsequently, the surface 10a is oxidized. Various known methods can be used for the oxidation. However, when the SiC single crystal substrate 10 having an offset angle of zero degree is used, the generation rate of the oxide layer is slow in the steam oxidation, and the etching is difficult to proceed in the oxidation with the etchant, so the efficiency is low. It is not preferable. This is because Si layers and C layers are alternately laminated in parallel to the surface 10a, and the chemical reactivity of the surface 10a is poor. For this reason, it is preferable to use oxidation by plasma. The oxidation is preferably performed in an oxygen atmosphere or an atmosphere containing an inert gas such as oxygen and Ar. For example, a power of 0.01 to 2 W / cm 2 is applied at a pressure of about 10 −1 to 10 2 Pa. Do it. This step is preferably performed in the same apparatus as the subsequent reactive ion etching. This is because there is no need to transfer the SiC single crystal substrate 10 or the like, and the two steps can be performed in succession only by gas exchange. Oxidation forms an oxide layer 12 on the surface as shown in FIG.

次に酸化層12を除去する。酸化層12を除去する方法には公知の化学的および機械的除去方法を用いることができるが、加圧しながらCMP法により酸化層12を除去することは好ましくない。上述したように酸化層12を除去する過程で、新たなスクラッチが生成するからである。新たな加工変質層やスクラッチが生成しないよう、化学的方法によって酸化層12を除去することが好ましく、反応性イオンエッチングにより酸化層12を除去することがより好ましい。反応性イオンエッチングに用いるガスとしては、Fを含むものが好ましく、CF4を用いることがより好ましい。酸化層12はおおよそ全体にわたって完全に除去されていることが好ましい。また、酸化層12およびSiC基板10を構成しているSiCに対するエッチング速度が等しくなるような反応条件で酸化層12を除去することが好ましい。これにより、特に酸化層12の平坦な部分が加工傷11の近傍に比べて、反応性イオンエッチングの異方性によって早く削れ、SiC単結晶基板10表面が露出した後、SiC単結晶基板10もエッチングされる。このため、図4(b)に示すように、酸化層12を除去した跡に残る加工傷11’は酸化層12が形成される前の加工傷11に比べて浅くなり、SiC単結晶基板10の表面10a’の平坦性が改善される。 Next, the oxide layer 12 is removed. As a method for removing the oxide layer 12, known chemical and mechanical removal methods can be used, but it is not preferable to remove the oxide layer 12 by CMP while applying pressure. This is because new scratches are generated in the process of removing the oxide layer 12 as described above. It is preferable to remove the oxide layer 12 by a chemical method so that a new work-affected layer or scratch is not generated, and it is more preferable to remove the oxide layer 12 by reactive ion etching. The gas used for reactive ion etching is preferably one containing F, and more preferably CF 4 . It is preferable that the oxide layer 12 is completely removed substantially throughout. In addition, it is preferable to remove oxide layer 12 under reaction conditions such that the etching rates for oxide layer 12 and SiC constituting SiC substrate 10 are equal. As a result, the flat portion of the oxide layer 12 is scraped faster due to the anisotropy of the reactive ion etching than the vicinity of the processing flaw 11, and the SiC single crystal substrate 10 is also exposed after the surface of the SiC single crystal substrate 10 is exposed. Etched. For this reason, as shown in FIG. 4B, the processing flaw 11 ′ remaining in the trace after the oxide layer 12 is removed becomes shallower than the processing flaw 11 before the oxide layer 12 is formed, and the SiC single crystal substrate 10 The flatness of the surface 10a 'is improved.

酸化層12を除去する工程におけるエッチング時間は生成している酸化層12の厚さや、エッチング用いるガスの種類に依存するが、典型的には1分〜10分である。   The etching time in the step of removing the oxide layer 12 is typically 1 minute to 10 minutes, although it depends on the thickness of the generated oxide layer 12 and the type of gas used for etching.

本発明では上述した酸化工程および除去工程を繰り返すことが好ましい。図4(d)に示すように、上述した酸化方法によって、SiC単結晶基板10の表面10a’に酸化層12’を形成し、その後酸化層12’を上述したエッチング法により除去する。これにより、図4(e)に示すように、更に平坦性が改善された表面10a’’を有するSiC単結晶基板10が得られる。表面10a’’に残る加工傷11’’の深さは酸化層12’を形成・除去する前の加工傷11’の深さに比べて小さくなっている。   In the present invention, it is preferable to repeat the oxidation step and the removal step described above. As shown in FIG. 4D, an oxide layer 12 'is formed on the surface 10a' of the SiC single crystal substrate 10 by the oxidation method described above, and then the oxide layer 12 'is removed by the etching method described above. As a result, as shown in FIG. 4E, the SiC single crystal substrate 10 having the surface 10 a ″ with further improved flatness is obtained. The depth of the processing flaw 11 ″ remaining on the surface 10 a ″ is smaller than the depth of the processing flaw 11 ′ before forming / removing the oxide layer 12 ′.

さらに、酸化工程および除去工程を複数回繰り返すことにより、SiC単結晶基板10の表面に生じていた加工傷の深さが小さくなり平滑性が高くなっていく。酸化および除去を交互に2回以上繰り返すことが好ましく、5回以上繰り返すことがより好ましい。酸化工程および除去工程を10回程度繰り返すと、ほぼ完全な平滑性が得られる。一方、15回よりも繰り返しの回数が多くなっても表面の平滑性は十分良好であるが、これらの工程の繰り返しに要する時間が長くなってしまい、効率的ではない。したがって、酸化工程および除去工程を5回〜15回繰り返すことが最も好ましい。本発明による方法によれば、酸化と酸化により生じた酸化層のエッチングを同じ装置内で行うことができるので、短時間の酸化とエッチングとを複数回繰り返しても、異なる装置にSiC単結晶基板10を入れ替える手間およびそれに要する時間がかからない。このため、従来の水蒸気酸化や化学エッチングを用いる方法に比べて格段に効率よくこれらの工程を繰り返すことができる。このように酸化工程および除去工程を複数回繰り返すことにより、図4(f)に示すように、加工傷11が除去された平滑な表面13aを有するSiC単結晶基板10が得られる。   Furthermore, by repeating the oxidation step and the removal step a plurality of times, the depth of the processing scratches that have occurred on the surface of SiC single crystal substrate 10 is reduced, and the smoothness is increased. Oxidation and removal are preferably repeated twice or more, more preferably 5 or more times. When the oxidation step and the removal step are repeated about 10 times, almost perfect smoothness is obtained. On the other hand, the smoothness of the surface is sufficiently good even if the number of repetitions is greater than 15. However, the time required to repeat these steps becomes longer and is not efficient. Therefore, it is most preferable to repeat the oxidation step and the removal step 5 to 15 times. According to the method of the present invention, the oxidation and etching of the oxide layer caused by the oxidation can be performed in the same apparatus. Therefore, even if the short-time oxidation and etching are repeated a plurality of times, the SiC single crystal substrate can be applied to different apparatuses. Time and effort required to replace 10 are not required. For this reason, these steps can be remarkably repeated as compared with the conventional method using water vapor oxidation or chemical etching. By repeating the oxidation step and the removal step a plurality of times as described above, SiC single crystal substrate 10 having smooth surface 13a from which processing flaw 11 has been removed is obtained as shown in FIG.

上述の工程によって得られるSiC単結晶基板10は、Ra<0.4nm程度の面粗度を有しており、平滑性は高い。しかし、除去工程の反応性エッチング中に衝突したイオンによるダメージがSiC単結晶基板10の最表面に生じており、このダメージを除去することが好ましい。このため、酸化、除去の繰り返しの最後に上述の酸化工程を行い、図5(a)に示すように、SiC単結晶基板10の表面13aを酸化し、酸化層14を形成する。そして、生成した酸化層14を低加圧によるCMPで除去する。CMPには、たとえば、コロイダルシリカおよび不織布を用いる。酸化層14は、一般的なCMPを用いても実用的な研磨速度で除去可能であり、低い加圧力でCMPを行うため、新たなスクラッチや加工変質層を表面に発生させる恐れがない。これにより、平滑で傷がなく、表面近傍のダメージ層や加工変質層が除去され格子配列の整った表面15aを有するSiC単結晶基板15が得られる。   The SiC single crystal substrate 10 obtained by the above process has a surface roughness of about Ra <0.4 nm, and has high smoothness. However, damage caused by ions colliding during the reactive etching in the removing process occurs on the outermost surface of the SiC single crystal substrate 10, and it is preferable to remove this damage. For this reason, at the end of the repetition of oxidation and removal, the above-described oxidation step is performed to oxidize the surface 13a of the SiC single crystal substrate 10 to form an oxide layer 14, as shown in FIG. Then, the generated oxide layer 14 is removed by CMP with low pressure. For CMP, for example, colloidal silica and non-woven fabric are used. The oxide layer 14 can be removed at a practical polishing rate even by using general CMP, and since CMP is performed with a low pressure, there is no possibility of generating new scratches or work-affected layers on the surface. As a result, a SiC single crystal substrate 15 having a surface 15a that is smooth and free of scratches, is removed from the damaged layer and the work-affected layer in the vicinity of the surface, and has a uniform lattice arrangement is obtained.

図6は本実施形態の方法によって得られたSiC単結晶基板15の表面を模式的に示している。SiC単結晶基板15の表面15aは面粗度Raが0.2nmより小さくなっている。ただし、SiC単結晶基板15を切り出したときのオフセット角を理想的なゼロとすることは困難であるため、SiC単結晶基板15の表面15aには、単原子層の高さを有するステップ構造18が見られる。   FIG. 6 schematically shows the surface of the SiC single crystal substrate 15 obtained by the method of the present embodiment. Surface 15a of SiC single crystal substrate 15 has a surface roughness Ra of less than 0.2 nm. However, since it is difficult to set the offset angle when the SiC single crystal substrate 15 is cut out to an ideal zero, the step structure 18 having the height of the monoatomic layer is formed on the surface 15a of the SiC single crystal substrate 15. Is seen.

このように本発明によれば、酸化および酸化により形成した酸化層の除去を複数回繰り返すことにより表面の平滑性が高いSiC単結晶基板を得ることができる。特に、プラズマ酸化および反応性エッチングを用いることにより、実用的な加工時間で表面を仕上げることが可能となる。また、SiC単結晶基板の表面近傍はダメージ層や加工変質層が除去されているので、表面近傍の半導体特性も優れている。   Thus, according to the present invention, an SiC single crystal substrate with high surface smoothness can be obtained by repeating oxidation and removal of the oxide layer formed by oxidation a plurality of times. In particular, by using plasma oxidation and reactive etching, the surface can be finished in a practical processing time. In addition, since the damaged layer and the work-affected layer are removed near the surface of the SiC single crystal substrate, the semiconductor characteristics near the surface are also excellent.

以下、具体的な実験例を説明する。
(第1の実験例)
SiC単結晶基板として、直径2インチ、厚さ350μmの4H(0001)ジャスト基板を用意した。基板の表面の面粗度Raは1.0nmに仕上げられている。
Hereinafter, specific experimental examples will be described.
(First Experiment Example)
A 4H (0001) just substrate having a diameter of 2 inches and a thickness of 350 μm was prepared as a SiC single crystal substrate. The surface roughness Ra of the surface of the substrate is finished to 1.0 nm.

この基板を、平行平板型反応性エッチング装置のチャンバー内に保持した。100sccmの流量でチャンバー内に酸素を導入し、チャンバー内を0.7Paの圧力に保ちながら、0.2W/cm2のパワーを投入してプラズマを生成し、5分間基板をプラズマに晒すことによって、基板表面を酸化した。 This substrate was held in a chamber of a parallel plate type reactive etching apparatus. By introducing oxygen into the chamber at a flow rate of 100 sccm, generating a plasma by applying a power of 0.2 W / cm 2 while maintaining a pressure of 0.7 Pa in the chamber, and exposing the substrate to the plasma for 5 minutes The substrate surface was oxidized.

その後、基板をチャンバーに保持したまま、反応性ガスとしてCF4を100sccmの流量でチャンバーに導入し、チャンバー内を0.7Paの圧力に保ちながら、0.2W/cm2のパワーを投入して5分間基板表面をエッチングした。 Thereafter, CF4 as a reactive gas was introduced into the chamber at a flow rate of 100 sccm while holding the substrate in the chamber, and a power of 0.2 W / cm 2 was applied while maintaining the pressure in the chamber at 0.7 Pa. The substrate surface was etched for a minute.

酸化およびエッチングを交互に10回ずつ行ったあと、再度酸化を行った。その後、基板を取り出し、コロイダルシリカを用いたCMPによりSiC単結晶基板の表面を研磨した。   Oxidation and etching were alternately performed 10 times, and then oxidation was performed again. Thereafter, the substrate was taken out, and the surface of the SiC single crystal substrate was polished by CMP using colloidal silica.

得られたSiC単結晶基板をAFM(原子間力顕微鏡)によって、評価した。5μm×5μmの領域内における段差を求めたところ面粗度Raは0.17nmであった。また、その表面には直線状のステップ構造が観察された。   The obtained SiC single crystal substrate was evaluated by AFM (atomic force microscope). When the step in the 5 μm × 5 μm region was determined, the surface roughness Ra was 0.17 nm. A linear step structure was observed on the surface.

(第2の実験例)
SiC単結晶基板として、直径2インチ、厚さ350μmの6H(0001)ジャスト基板を用意し、第1の実験例と同様の手順および同様の条件により、SiC単結晶基板を得た。
(Second experiment example)
As the SiC single crystal substrate, a 6H (0001) just substrate having a diameter of 2 inches and a thickness of 350 μm was prepared, and an SiC single crystal substrate was obtained by the same procedure and the same conditions as in the first experimental example.

得られた基板の面粗度Raは0.13nmであった。また、その表面には、直線状のステップ構造が観察された。   The surface roughness Ra of the obtained substrate was 0.13 nm. A linear step structure was observed on the surface.

これらの実験例から、4H−SiC単結晶基板であっても6H−SiCであっても、ダメージ層や加工変質層が除去され、格子配列の整った非常に平滑な表面に加工することができることがわかる。   From these experimental examples, the damage layer and the work-affected layer can be removed and processed into a very smooth surface with an aligned lattice, regardless of whether it is a 4H-SiC single crystal substrate or 6H-SiC. I understand.

本発明によれば、表面が極めて平滑なSiC単結晶基板が得られる。このSiC基板上に良好な特性を有するGaN系半導体層やSiC系半導体層をエピタキシャル成長させ、優れた特性のGaN系半導体素子やSiC系半導体素子を作製することが可能となる。また、SiC単結晶基板中に半導体素子を形成する場合も表面近傍領域の半導体特性が良好であるため優れた特性のSiC系半導体素子を作製することが可能となる。   According to the present invention, a SiC single crystal substrate having an extremely smooth surface can be obtained. It is possible to epitaxially grow a GaN-based semiconductor layer or a SiC-based semiconductor layer having good characteristics on this SiC substrate to produce a GaN-based semiconductor element or a SiC-based semiconductor element having excellent characteristics. In addition, when a semiconductor element is formed in a SiC single crystal substrate, it is possible to manufacture a SiC-based semiconductor element having excellent characteristics because the semiconductor characteristics in the region near the surface are good.

本発明で好適に用いられるSiC基板の面方位およびオフセット角を説明する断面図である。It is sectional drawing explaining the surface orientation and offset angle of a SiC substrate used suitably by this invention. SiC基板の他の面方位およびオフセット角を説明する断面図である。It is sectional drawing explaining the other surface orientation and offset angle of a SiC substrate. SiC基板を塊体から切り出す工程を説明する図である。It is a figure explaining the process of cutting out a SiC substrate from a lump. (a)から(f)は本発明によるSiC基板の製造方法の各工程でのSiC基板の表面近傍の断面を模式的に示している。(A)-(f) has shown typically the cross section of the surface vicinity of the SiC substrate in each process of the manufacturing method of the SiC substrate by this invention. (a)および(b)は本発明によるSiC基板の製造方法の他の工程でのSiC基板の表面近傍の断面を模式的に示している。(A) And (b) has shown typically the cross section of the surface vicinity of the SiC substrate in the other process of the manufacturing method of the SiC substrate by this invention. 本発明によるSiC基板の表面近傍の断面構造を模式的に示している。1 schematically shows a cross-sectional structure near the surface of a SiC substrate according to the present invention.

符号の説明Explanation of symbols

10、15 SiC単結晶基板
11,11’、11’’ 加工傷
12、12’14 酸化層
10, 15 SiC single crystal substrate 11, 11 ′, 11 ″ processing scratches 12, 12′14 oxide layer

Claims (13)

鏡面研磨が施された表面を有するSiC単結晶基板を用意する工程(a)と、
前記SiC単結晶基板の表面をプラズマにより酸化し、酸化層を前記SiC単結晶基板の表面に形成する工程(b)と、
前記酸化層の少なくとも一部を反応性イオンエッチングにより除去する工程(c)と、
を包含するSiC単結晶基板の製造方法。
A step (a) of preparing a SiC single crystal substrate having a mirror-polished surface;
Oxidizing the surface of the SiC single crystal substrate with plasma and forming an oxide layer on the surface of the SiC single crystal substrate;
Removing at least a portion of the oxide layer by reactive ion etching; and
Of manufacturing a SiC single crystal substrate including
前記工程(b)および(c)をそれぞれ複数回繰り返して行う、請求項1に記載のSiC単結晶基板の製造方法。   The method for producing an SiC single crystal substrate according to claim 1, wherein the steps (b) and (c) are repeated a plurality of times. 前記工程(b)および(c)における酸化およびエッチングをそれぞれ1分から10分の間の時間で行う請求項2に記載のSiC単結晶基板の製造方法。   The method for producing a SiC single crystal substrate according to claim 2, wherein the oxidation and etching in the steps (b) and (c) are each performed in a time period of 1 minute to 10 minutes. 前記工程(b)および(c)をそれぞれ複数回繰り返し、前記工程(b)を行った後、前記SiC単結晶基板の表面を化学的機械研磨法により研磨する工程(d)をさらに包含する請求項2または3に記載のSiC単結晶基板の製造方法。   The method further includes a step (d) of repeating the steps (b) and (c) a plurality of times and performing the step (b), and then polishing the surface of the SiC single crystal substrate by a chemical mechanical polishing method. Item 4. A method for producing an SiC single crystal substrate according to Item 2 or 3. 前記工程(b)において、酸素または酸素および不活性ガスの混合ガスを用いる請求項1から4のいずれかに記載のSiC単結晶基板の製造方法。   The method for producing a SiC single crystal substrate according to any one of claims 1 to 4, wherein oxygen or a mixed gas of oxygen and an inert gas is used in the step (b). 前記工程(c)において、Fを含むガスを用いる請求項1から5のいずれかに記載のSiC単結晶基板の製造方法。   The method for producing a SiC single crystal substrate according to claim 1, wherein a gas containing F is used in the step (c). 前記工程(c)において、SiCおよび前記酸化層のエッチング速度が等しくなるよう、反応性エッチングの条件が設定されている請求項1から6のいずれかに記載のSiC単結晶基板の製造方法。   The method for producing a SiC single crystal substrate according to any one of claims 1 to 6, wherein in the step (c), the conditions for reactive etching are set so that the etching rates of SiC and the oxide layer are equal. 前記工程(a)において、前記SiC単結晶基板のC軸に対するオフセット角がほぼゼロになっている請求項1から7のいずれかに記載のSiC単結晶基板の製造方法。   The method for producing a SiC single crystal substrate according to any one of claims 1 to 7, wherein an offset angle with respect to a C axis of the SiC single crystal substrate is substantially zero in the step (a). 前記工程(b)および工程(c)を同じ装置内でガスを置換することにより行う請求項1から8のいずれかに記載のSiC単結晶基板の製造方法。   The method for producing a SiC single crystal substrate according to any one of claims 1 to 8, wherein the step (b) and the step (c) are performed by replacing a gas in the same apparatus. SiC単結晶基板の表面を酸化し、酸化により生成した酸化層をエッチングにより除去する工程を複数回繰り返すことにより、前記SiC単結晶基板の表面を平滑化する、SiC単結晶基板の製造方法。   A method for producing a SiC single crystal substrate, wherein the surface of the SiC single crystal substrate is smoothed by repeating the step of oxidizing the surface of the SiC single crystal substrate and removing the oxide layer generated by the oxidation by etching a plurality of times. 前記繰り返しの回数が5以上である請求項2、4および10のいずれかに記載のSiC単結晶基板の製造方法。   The method for producing a SiC single crystal substrate according to any one of claims 2, 4, and 10, wherein the number of repetitions is 5 or more. 請求項1から11のいずれかの方法により製造されたSiC単結晶基板。   A SiC single crystal substrate manufactured by the method according to claim 1. 表面粗さRaが0.2nm以下であり、表面にステップ構造を有するSiC単結晶基板。   A SiC single crystal substrate having a surface roughness Ra of 0.2 nm or less and having a step structure on the surface.
JP2003295589A 2003-08-19 2003-08-19 Method for manufacturing SiC single crystal substrate Expired - Lifetime JP3761546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295589A JP3761546B2 (en) 2003-08-19 2003-08-19 Method for manufacturing SiC single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295589A JP3761546B2 (en) 2003-08-19 2003-08-19 Method for manufacturing SiC single crystal substrate

Publications (2)

Publication Number Publication Date
JP2005064392A true JP2005064392A (en) 2005-03-10
JP3761546B2 JP3761546B2 (en) 2006-03-29

Family

ID=34371780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295589A Expired - Lifetime JP3761546B2 (en) 2003-08-19 2003-08-19 Method for manufacturing SiC single crystal substrate

Country Status (1)

Country Link
JP (1) JP3761546B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164445A (en) * 2008-01-09 2009-07-23 Mitsubishi Electric Corp Etching processing method and method of manufacturing silicon carbide semiconductor device
US7641736B2 (en) 2005-02-22 2010-01-05 Hitachi Metals, Ltd. Method of manufacturing SiC single crystal wafer
US7722441B2 (en) 2005-10-07 2010-05-25 Rohm And Haas Electronic Materials Llc Semiconductor processing
WO2010090024A1 (en) * 2009-02-04 2010-08-12 日立金属株式会社 Silicon carbide monocrystal substrate and manufacturing method therefor
WO2011158557A1 (en) * 2010-06-16 2011-12-22 住友電気工業株式会社 Method for cleaning silicon carbide semiconductor and apparatus for cleaning silicon carbide semiconductor
WO2011158558A1 (en) * 2010-06-16 2011-12-22 住友電気工業株式会社 Method for cleaning silicon carbide semiconductor and apparatus for cleaning silicon carbide semiconductor
WO2012008409A1 (en) * 2010-07-12 2012-01-19 住友精密工業株式会社 Etching method
WO2012070368A1 (en) * 2010-11-24 2012-05-31 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device and apparatus for manufacturing silicon carbide semiconductor device
CN102934210A (en) * 2010-06-16 2013-02-13 住友电气工业株式会社 Silicon carbide semiconductor device manufacturing method
JP2013063891A (en) * 2011-08-31 2013-04-11 Rohm Co Ltd SiC EPITAXIAL WAFER AND SiC SEMICONDUCTOR ELEMENT USING THE SAME
CN103098177A (en) * 2010-08-04 2013-05-08 应用材料公司 Method of removing contaminants and native oxides from a substrate surface
JP2013529389A (en) * 2010-05-27 2013-07-18 クリー インコーポレイテッド Smoothing method for semiconductor material and wafer produced thereby
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
JP2015002218A (en) * 2013-06-13 2015-01-05 学校法人関西学院 Method for processing surface of sic substrate
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
CN105710082A (en) * 2014-12-02 2016-06-29 中国科学院上海硅酸盐研究所 Method for removing organic matter and oxidation layer on surface of metal nanowire
JP2016139685A (en) * 2015-01-27 2016-08-04 日立金属株式会社 Single crystal silicon carbide substrate, method of manufacturing single crystal silicon carbide substrate, and inspection method of single crystal silicon carbide substrate
CN106024586A (en) * 2016-06-23 2016-10-12 扬州扬杰电子科技股份有限公司 Cleaning method for silicon carbide surface
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
CN110106544A (en) * 2019-04-17 2019-08-09 西安理工大学 A kind of plasma electrochemical polishing method of SiC single crystal nanoscale

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5061506B2 (en) 2006-06-05 2012-10-31 富士電機株式会社 Method for manufacturing silicon carbide semiconductor device
JP6106419B2 (en) * 2012-12-12 2017-03-29 昭和電工株式会社 Method for manufacturing SiC substrate
US10079153B2 (en) 2016-02-25 2018-09-18 Toshiba Memory Corporation Semiconductor storage device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213824A (en) * 1990-12-10 1992-08-04 Nippon Telegr & Teleph Corp <Ntt> Plasma polymerized film and method of removing heavy metal contamination
JPH05226324A (en) * 1992-02-12 1993-09-03 Seiko Epson Corp Manufacture of semiconductor device
JPH06188163A (en) * 1992-12-21 1994-07-08 Toyota Central Res & Dev Lab Inc Sic single-crystal substrate for manufacturing semiconductor device and its manufacture
JPH09183700A (en) * 1995-12-28 1997-07-15 Nippon Steel Corp Production of silicon carbide single crystal substrate
JPH10223498A (en) * 1997-02-03 1998-08-21 Sanken Electric Co Ltd Method for smoothing surface of semiconductor substrate and manufacture of semiconductor substrate and semiconductor device
JPH10261615A (en) * 1997-03-17 1998-09-29 Fuji Electric Co Ltd Surface morphology control method of sic semiconductor and growing method of sic semiconductor thin film
JPH11111674A (en) * 1997-09-30 1999-04-23 Shin Etsu Handotai Co Ltd Method for improving surface roughness of silicon wafer and silicon wafer having improved surface roughness
JPH11297712A (en) * 1998-04-10 1999-10-29 Sanyo Electric Co Ltd Formation method for compound film and manufacture of semiconductor element
JP2000319099A (en) * 1999-05-07 2000-11-21 Hiroyuki Matsunami SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER
WO2001018872A1 (en) * 1999-09-07 2001-03-15 Sixon Inc. SiC WAFER, SiC SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SiC WAFER
JP2001210627A (en) * 1999-11-16 2001-08-03 Matsushita Electric Ind Co Ltd Etching method, semiconductor device and manufacturing method therefor
JP2001294499A (en) * 2000-04-06 2001-10-23 Nippon Steel Corp Small silicon carbide single crystal wafer having mosaic property
JP2002289611A (en) * 2001-03-26 2002-10-04 Toshiba Corp Manufacturing method and manufacturing apparatus of semiconductor device
JP2003179048A (en) * 2001-12-10 2003-06-27 Japan Atom Energy Res Inst Preparing method of silicon carbide single crystal surface oxide film using ultra-high temperature water vapor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213824A (en) * 1990-12-10 1992-08-04 Nippon Telegr & Teleph Corp <Ntt> Plasma polymerized film and method of removing heavy metal contamination
JPH05226324A (en) * 1992-02-12 1993-09-03 Seiko Epson Corp Manufacture of semiconductor device
JPH06188163A (en) * 1992-12-21 1994-07-08 Toyota Central Res & Dev Lab Inc Sic single-crystal substrate for manufacturing semiconductor device and its manufacture
JPH09183700A (en) * 1995-12-28 1997-07-15 Nippon Steel Corp Production of silicon carbide single crystal substrate
JPH10223498A (en) * 1997-02-03 1998-08-21 Sanken Electric Co Ltd Method for smoothing surface of semiconductor substrate and manufacture of semiconductor substrate and semiconductor device
JPH10261615A (en) * 1997-03-17 1998-09-29 Fuji Electric Co Ltd Surface morphology control method of sic semiconductor and growing method of sic semiconductor thin film
JPH11111674A (en) * 1997-09-30 1999-04-23 Shin Etsu Handotai Co Ltd Method for improving surface roughness of silicon wafer and silicon wafer having improved surface roughness
JPH11297712A (en) * 1998-04-10 1999-10-29 Sanyo Electric Co Ltd Formation method for compound film and manufacture of semiconductor element
JP2000319099A (en) * 1999-05-07 2000-11-21 Hiroyuki Matsunami SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER
WO2001018872A1 (en) * 1999-09-07 2001-03-15 Sixon Inc. SiC WAFER, SiC SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SiC WAFER
JP2001210627A (en) * 1999-11-16 2001-08-03 Matsushita Electric Ind Co Ltd Etching method, semiconductor device and manufacturing method therefor
JP2001294499A (en) * 2000-04-06 2001-10-23 Nippon Steel Corp Small silicon carbide single crystal wafer having mosaic property
JP2002289611A (en) * 2001-03-26 2002-10-04 Toshiba Corp Manufacturing method and manufacturing apparatus of semiconductor device
JP2003179048A (en) * 2001-12-10 2003-06-27 Japan Atom Energy Res Inst Preparing method of silicon carbide single crystal surface oxide film using ultra-high temperature water vapor

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7641736B2 (en) 2005-02-22 2010-01-05 Hitachi Metals, Ltd. Method of manufacturing SiC single crystal wafer
US7722441B2 (en) 2005-10-07 2010-05-25 Rohm And Haas Electronic Materials Llc Semiconductor processing
US9490157B2 (en) 2005-10-07 2016-11-08 Tokai Carbon Co., Ltd. Semiconductor processing
JP2009164445A (en) * 2008-01-09 2009-07-23 Mitsubishi Electric Corp Etching processing method and method of manufacturing silicon carbide semiconductor device
WO2010090024A1 (en) * 2009-02-04 2010-08-12 日立金属株式会社 Silicon carbide monocrystal substrate and manufacturing method therefor
EP2394787A4 (en) * 2009-02-04 2017-06-14 Hitachi Metals, Ltd. Silicon carbide monocrystal substrate and manufacturing method therefor
JP5516424B2 (en) * 2009-02-04 2014-06-11 日立金属株式会社 Method for manufacturing silicon carbide single crystal substrate for epitaxial growth
JP2013529389A (en) * 2010-05-27 2013-07-18 クリー インコーポレイテッド Smoothing method for semiconductor material and wafer produced thereby
US9070654B2 (en) 2010-05-27 2015-06-30 Cree, Inc. Smoothing method for semiconductor material and wafers produced by same
WO2011158557A1 (en) * 2010-06-16 2011-12-22 住友電気工業株式会社 Method for cleaning silicon carbide semiconductor and apparatus for cleaning silicon carbide semiconductor
WO2011158558A1 (en) * 2010-06-16 2011-12-22 住友電気工業株式会社 Method for cleaning silicon carbide semiconductor and apparatus for cleaning silicon carbide semiconductor
CN102934210A (en) * 2010-06-16 2013-02-13 住友电气工业株式会社 Silicon carbide semiconductor device manufacturing method
WO2012008409A1 (en) * 2010-07-12 2012-01-19 住友精密工業株式会社 Etching method
US8859434B2 (en) 2010-07-12 2014-10-14 Spp Technologies Co., Ltd. Etching method
CN103098177A (en) * 2010-08-04 2013-05-08 应用材料公司 Method of removing contaminants and native oxides from a substrate surface
JP2012114210A (en) * 2010-11-24 2012-06-14 Sumitomo Electric Ind Ltd Method of manufacturing silicon carbide semiconductor device and manufacturing apparatus for silicon carbide semiconductor device
WO2012070368A1 (en) * 2010-11-24 2012-05-31 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device and apparatus for manufacturing silicon carbide semiconductor device
JP2013063891A (en) * 2011-08-31 2013-04-11 Rohm Co Ltd SiC EPITAXIAL WAFER AND SiC SEMICONDUCTOR ELEMENT USING THE SAME
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9337277B2 (en) 2012-09-11 2016-05-10 Dow Corning Corporation High voltage power semiconductor device on SiC
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9165779B2 (en) 2012-10-26 2015-10-20 Dow Corning Corporation Flat SiC semiconductor substrate
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
JP2015002218A (en) * 2013-06-13 2015-01-05 学校法人関西学院 Method for processing surface of sic substrate
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
US10002760B2 (en) 2014-07-29 2018-06-19 Dow Silicones Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
CN105710082A (en) * 2014-12-02 2016-06-29 中国科学院上海硅酸盐研究所 Method for removing organic matter and oxidation layer on surface of metal nanowire
JP2016139685A (en) * 2015-01-27 2016-08-04 日立金属株式会社 Single crystal silicon carbide substrate, method of manufacturing single crystal silicon carbide substrate, and inspection method of single crystal silicon carbide substrate
US10283351B2 (en) 2015-01-27 2019-05-07 Hitachi Metals, Ltd. Single-crystal silicon carbide substrate, method for producing single-crystal silicon carbide substrate, and method for inspecting single-crystal silicon carbide substrate
CN106024586A (en) * 2016-06-23 2016-10-12 扬州扬杰电子科技股份有限公司 Cleaning method for silicon carbide surface
CN110106544A (en) * 2019-04-17 2019-08-09 西安理工大学 A kind of plasma electrochemical polishing method of SiC single crystal nanoscale

Also Published As

Publication number Publication date
JP3761546B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP3761546B2 (en) Method for manufacturing SiC single crystal substrate
WO2006090432A1 (en) PROCESS FOR PRODUCING SiC SINGLE-CRYSTAL SUBSTRATE
JP4678039B2 (en) SiC substrate
KR101654440B1 (en) Sic epitaxial wafer and method for manufacturing same
JP6122704B2 (en) SiC epitaxial wafer and manufacturing method thereof
JP4148105B2 (en) Method for manufacturing SiC substrate
JP5516424B2 (en) Method for manufacturing silicon carbide single crystal substrate for epitaxial growth
JP5014737B2 (en) Method for manufacturing SiC single crystal substrate
JP6048581B2 (en) Method for manufacturing silicon carbide single crystal substrate for epitaxial silicon carbide wafer
WO2015199180A1 (en) Process for producing diamond substrate, diamond substrate, and diamond composite substrate
JP2006327931A (en) Semiconductor layer structure and method for producing semiconductor layer structure
JP7008063B2 (en) Method for manufacturing modified SiC wafer and method for manufacturing SiC wafer with epitaxial layer
JP2009218575A (en) Method of manufacturing semiconductor substrate
JP2003095798A (en) Method of producing single crystal substrate
JP2005047792A (en) Microstructure, especially heteroepitaxial microstructure, and method therefor
WO2015046294A1 (en) Diamond substrate and diamond substrate manufacturing method
WO2017164233A1 (en) Manufacturing method for aluminum nitride single-crystal substrate
JP6361747B2 (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
JP4803464B2 (en) Method for removing surface damage of single crystal diamond
JP2004131328A (en) Method of manufacturing silicon carbide single crystal wafer and silicon carbide single crystal wafer
JP2006528423A (en) Pre-epi surface treatment method for SiC thin film
JP2010171330A (en) Method of manufacturing epitaxial wafer, defect removing method, and the epitaxial wafer
JPH03165509A (en) Silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050701

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3761546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

EXPY Cancellation because of completion of term