JP2005049832A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
JP2005049832A
JP2005049832A JP2004182073A JP2004182073A JP2005049832A JP 2005049832 A JP2005049832 A JP 2005049832A JP 2004182073 A JP2004182073 A JP 2004182073A JP 2004182073 A JP2004182073 A JP 2004182073A JP 2005049832 A JP2005049832 A JP 2005049832A
Authority
JP
Japan
Prior art keywords
liquid crystal
tft
semiconductor
film
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004182073A
Other languages
Japanese (ja)
Other versions
JP2005049832A5 (en
JP4748954B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2004182073A priority Critical patent/JP4748954B2/en
Publication of JP2005049832A publication Critical patent/JP2005049832A/en
Publication of JP2005049832A5 publication Critical patent/JP2005049832A5/ja
Application granted granted Critical
Publication of JP4748954B2 publication Critical patent/JP4748954B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display device which is made in system-on-panel structure without complicating processes for TFTs and further can inhibit cost increase. <P>SOLUTION: The liquid crystal display is characterized in that: a pixel part is provided with a liquid crystal element and a pixel having a TFT controlling a voltage applied to the liquid crystal element; a TFT that a driving circuit has and the TFT controlling the voltage applied to the liquid crystal element have a gate electrode, a gate insulating film formed on the gate electrode, a 1st semiconductor film overlapping with the gate electrode across the gate insulating film, and a couple of 2nd semiconductor films formed on the 1st semiconductor film; impurities which impart a one-conductivity type are added to the couple of 2nd semiconductor films; and the 1st semiconductor film is formed of a semiamorphous semiconductor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、薄膜トランジスタを駆動回路及び画素部に用いた液晶表示装置に関する。   The present invention relates to a liquid crystal display device using a thin film transistor in a driver circuit and a pixel portion.

安価なガラス基板を用いて形成される液晶表示装置は、解像度が高くなるにつれて、実装に用いる画素部周辺の領域(額縁領域)の基板に占める割合が増大し、小型化が妨げられる傾向がある。そのため、単結晶のシリコンウェハを用いて形成されたICをガラス基板に実装する方式には限界があると考えられており、駆動回路を含む集積回路を画素部と同じガラス基板上に一体形成する技術、所謂システムオンパネル化が重要視されている。   In a liquid crystal display device formed using an inexpensive glass substrate, as the resolution increases, the ratio of the area around the pixel portion used for mounting (frame area) to the substrate tends to increase, and miniaturization tends to be hindered. . Therefore, it is considered that there is a limit to a method for mounting an IC formed using a single crystal silicon wafer on a glass substrate, and an integrated circuit including a driver circuit is integrally formed on the same glass substrate as a pixel portion. Technology, so-called system-on-panel construction, is regarded as important.

多結晶半導体膜を用いた薄膜トランジスタ(多結晶TFT)は、非晶質半導体膜を用いたTFTに比べて移動度が2桁以上高く、液晶表示装置の画素部とその周辺の駆動回路を同一基板上に一体形成できるという利点を有している。しかし非晶質半導体膜を用いた場合に比べて、半導体膜の結晶化のために工程が複雑化するため、その分歩留まりが低減し、コストが高まるという難点がある。   A thin film transistor using a polycrystalline semiconductor film (polycrystalline TFT) has a mobility that is two orders of magnitude higher than that of a TFT using an amorphous semiconductor film, and a pixel portion of a liquid crystal display device and its peripheral drive circuit are formed on the same substrate It has the advantage that it can be integrally formed on top. However, as compared with the case where an amorphous semiconductor film is used, the process is complicated for crystallization of the semiconductor film, so that there is a problem that the yield is reduced and the cost is increased accordingly.

例えば、多結晶半導体膜の形成に一般的に用いられているレーザアニール法の場合、結晶性を高めるのに必要なエネルギー密度を確保する必要がある。そのため、レーザビームの長軸の長さに限界があり、結晶化の工程におけるスループットを低下させたり、レーザビームのエッジ近傍において結晶性にばらつきが生じたりするため、基板の寸法に制限が生じている。また、レーザ光のエネルギー自体がばらつくことで、半導体膜の結晶性にばらつきが生じ、被処理物への処理を均一に行なうことが難しいという欠点を有している。   For example, in the case of a laser annealing method generally used for forming a polycrystalline semiconductor film, it is necessary to secure an energy density necessary for enhancing crystallinity. For this reason, there is a limit to the length of the long axis of the laser beam, which reduces the throughput in the crystallization process and causes variations in crystallinity in the vicinity of the edge of the laser beam. Yes. Further, since the energy of the laser beam itself varies, there is a disadvantage that the crystallinity of the semiconductor film varies and it is difficult to uniformly process the object to be processed.

しかしながら、非晶質半導体膜でチャネル形成領域を形成したTFTの電界効果移動度は大きくても0.4〜0.8cm2/V・sec程度しか得ることができない。それゆえ、画素部にスイッチング素子として用いることはできるが、画素を選択するための走査線駆動回路や、該選択された画素にビデオ信号を供給するための信号線駆動回路など、高速動作が要求される駆動回路には不向きであると考えられている。 However, the field effect mobility of a TFT in which a channel formation region is formed of an amorphous semiconductor film can be obtained only about 0.4 to 0.8 cm 2 / V · sec at most. Therefore, although it can be used as a switching element in the pixel portion, high-speed operation is required such as a scanning line driving circuit for selecting a pixel and a signal line driving circuit for supplying a video signal to the selected pixel. It is considered that it is not suitable for a drive circuit.

本発明は上述した問題に鑑み、TFTの工程を複雑化させることなくシステムオンパネル化を実現し、なおかつコストを抑えることができる液晶表示装置の提案を課題とする。   In view of the above-described problems, an object of the present invention is to propose a liquid crystal display device that can realize system-on-panel without complicating the TFT process and can reduce costs.

本発明は、非晶質半導体膜の中に結晶粒が分散するように存在しているセミアモルファス半導体膜を用い、薄膜トランジスタ(TFT)を作製し、該TFTを画素部または駆動回路に用いて液晶表示装置を作製する。セミアモルファス半導体膜を用いたTFTは、その移動度が2〜10cm2/V・secと、非晶質半導体膜を用いたTFTの2〜20倍の移動度を有しているので、駆動回路の一部または全体を、画素部と同じ基板上に一体形成することができる。 In the present invention, a thin film transistor (TFT) is manufactured using a semi-amorphous semiconductor film in which crystal grains are dispersed in an amorphous semiconductor film, and the TFT is used in a pixel portion or a driver circuit to form a liquid crystal. A display device is manufactured. A TFT using a semi-amorphous semiconductor film has a mobility of 2 to 10 cm 2 / V · sec, which is 2 to 20 times the mobility of a TFT using an amorphous semiconductor film. A part or the whole of the pixel portion can be integrally formed on the same substrate as the pixel portion.

そしてセミアモルファス半導体膜は、多結晶半導体膜と異なり、セミアモルファス半導体膜として直接基板上に成膜することができる。具体的には、SiH4をH2で流量比2〜1000倍、好ましくは10〜100倍に希釈して、プラズマCVD法を用いて成膜することができる。上記方法を用いて作製されたセミアモルファス半導体膜は、0.5nm〜20nmの結晶粒を非晶質半導体中に含む微結晶半導体膜も含んでいる。よって、多結晶半導体膜を用いる場合と異なり、半導体膜の成膜後に結晶化の工程を設ける必要がない。そして、レーザ光を用いた結晶化のように、レーザビームの長軸の長さに限界があるために、基板の寸法に制限が生じるようなことがない。また、TFTの作製における工程数を削減することができ、その分、液晶表示装置の歩留まりを高め、コストを抑えることができる。 Unlike the polycrystalline semiconductor film, the semi-amorphous semiconductor film can be directly formed on the substrate as a semi-amorphous semiconductor film. Specifically, SiH 4 can be formed into a film by using a plasma CVD method by diluting SiH 4 with H 2 at a flow rate ratio of 2 to 1000 times, preferably 10 to 100 times. The semi-amorphous semiconductor film manufactured using the above method also includes a microcrystalline semiconductor film including crystal grains of 0.5 nm to 20 nm in an amorphous semiconductor. Therefore, unlike the case of using a polycrystalline semiconductor film, it is not necessary to provide a crystallization step after the semiconductor film is formed. And since the length of the long axis of a laser beam has a limit like crystallization using a laser beam, the dimension of a board | substrate does not produce a restriction | limiting. Further, the number of steps in manufacturing the TFT can be reduced, and accordingly, the yield of the liquid crystal display device can be increased and the cost can be reduced.

なお本発明では、セミアモルファス半導体膜を少なくともチャネル形成領域に用いていれば良い。またチャネル形成領域は、その膜厚方向において全てセミアモルファス半導体である必要はなく、少なくとも一部にセミアモルファス半導体を含んでいれば良い。   In the present invention, a semi-amorphous semiconductor film may be used at least in the channel formation region. In addition, the channel formation region does not necessarily have to be a semi-amorphous semiconductor in the film thickness direction, and it is sufficient that at least a part of the channel formation region includes a semi-amorphous semiconductor.

また液晶表示装置は、液晶素子が設けられたパネルと、該パネルにコントローラを含むIC等を実装した状態にあるモジュールとを含む。なお液晶素子は、画素電極と、対向電極と、画素電極と対向電極の間に設けられた液晶とを有する。さらに本発明は、該液晶表示装置を作製する過程における、液晶素子が完成する前の一形態に相当する素子基板に関し、該素子基板は、ビデオ信号の電位が液晶素子の画素電極に与えられるのを制御するための手段を、複数の各画素に備える。素子基板は、具体的には、液晶素子の画素電極のみが形成された状態であっても良いし、画素電極となる導電膜を成膜した後であって、パターニングして画素電極を形成する前の状態であっても良いし、あらゆる形態があてはまる。   The liquid crystal display device includes a panel provided with a liquid crystal element and a module in which an IC including a controller is mounted on the panel. Note that the liquid crystal element includes a pixel electrode, a counter electrode, and a liquid crystal provided between the pixel electrode and the counter electrode. Furthermore, the present invention relates to an element substrate corresponding to one mode before the liquid crystal element is completed in the process of manufacturing the liquid crystal display device, in which the potential of the video signal is applied to the pixel electrode of the liquid crystal element. Means for controlling are provided for each of the plurality of pixels. Specifically, the element substrate may be in a state where only the pixel electrode of the liquid crystal element is formed, or after the conductive film to be the pixel electrode is formed, the pixel electrode is formed by patterning. The previous state may be used, and all forms are applicable.

本発明は、成膜後における半導体膜の結晶化の工程を削減することができ、TFTの工程を複雑化させることなく、液晶表示装置のシステムオンパネル化を実現することができる。   The present invention can reduce the crystallization process of the semiconductor film after the film formation, and can realize the system-on-panel of the liquid crystal display device without complicating the TFT process.

以下、本発明の実施の形態について図面を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention can be implemented in many different modes, and those skilled in the art can easily understand that the modes and details can be variously changed without departing from the spirit and scope of the present invention. Is done. Therefore, the present invention is not construed as being limited to the description of this embodiment mode.

次に、本発明の液晶表示装置に用いられるTFTの構成について説明する。図1に、駆動回路に用いられるTFTの断面図と、画素部に用いられるTFTの断面図を示す。101は駆動回路に用いられるTFTの断面図に相当し、102は画素部に用いられるTFTに断面図に相当し、103は該TFT102によって電流が供給される液晶素子の断面図に相当する。TFT101、102は逆スタガ型(ボトムゲート型)である。なおセミアモルファスTFTはp型よりもn型の方が、移動度が高いので駆動回路に用いるのにより適しているが、本発明ではTFTはn型であってもp型であってもどちらでも良い。いずれの極性のTFTを用いる場合でも、同一の基板上に形成するTFTを全て同じ極性にそろえておくことが、工程数を抑えるためにも望ましい。   Next, the structure of the TFT used in the liquid crystal display device of the present invention will be described. FIG. 1 shows a cross-sectional view of a TFT used in a driver circuit and a cross-sectional view of a TFT used in a pixel portion. 101 corresponds to a cross-sectional view of a TFT used in a driver circuit, 102 corresponds to a cross-sectional view of a TFT used in a pixel portion, and 103 corresponds to a cross-sectional view of a liquid crystal element to which current is supplied by the TFT 102. The TFTs 101 and 102 are of an inverted stagger type (bottom gate type). Semi-amorphous TFTs are more suitable for use in a drive circuit because n-type TFTs are higher in mobility than p-type, but in the present invention, TFTs may be either n-type or p-type. good. Regardless of which polarity TFT is used, it is desirable that all TFTs formed on the same substrate have the same polarity in order to reduce the number of steps.

駆動回路のTFT101は、第1の基板100上に形成されたゲート電極110と、ゲート電極110を覆っているゲート絶縁膜111と、ゲート絶縁膜111を間に挟んでゲート電極110と重なっている、セミアモルファス半導体膜で形成された第1の半導体膜112とを有している。さらにTFT101は、ソース領域またはドレイン領域として機能する一対の第2の半導体膜113と、第1の半導体膜112と第2の半導体膜113の間に設けられた第3の半導体膜114とを有している。   The TFT 101 of the driver circuit overlaps with the gate electrode 110 formed on the first substrate 100, the gate insulating film 111 covering the gate electrode 110, and the gate electrode 110 with the gate insulating film 111 interposed therebetween. And a first semiconductor film 112 formed of a semi-amorphous semiconductor film. Further, the TFT 101 includes a pair of second semiconductor films 113 functioning as a source region or a drain region, and a third semiconductor film 114 provided between the first semiconductor film 112 and the second semiconductor film 113. is doing.

図1では、ゲート絶縁膜111が2層の絶縁膜で形成されているが、本発明はこの構成に限定されない。ゲート絶縁膜111が単層または3層以上の絶縁膜で形成されていても良い。   In FIG. 1, the gate insulating film 111 is formed of two layers of insulating films, but the present invention is not limited to this structure. The gate insulating film 111 may be formed of a single layer or three or more layers of insulating films.

また第2の半導体膜113は、非晶質半導体膜またはセミアモルファス半導体膜で形成されており、該半導体膜に一導電型を付与する不純物が添加されている。そして一対の第2の半導体膜113は、第1の半導体膜112のチャネルが形成される領域を間に挟んで、向かい合っている。   The second semiconductor film 113 is formed using an amorphous semiconductor film or a semi-amorphous semiconductor film, and an impurity imparting one conductivity type is added to the semiconductor film. The pair of second semiconductor films 113 are opposed to each other with a region where the channel of the first semiconductor film 112 is formed therebetween.

また第3の半導体膜114は、非晶質半導体膜またはセミアモルファス半導体膜で形成されており、第2の半導体膜113と同じ導電型を有し、なおかつ第2の半導体膜113よりも導電性が低くなるような特性を有している。第3の半導体膜114はLDD領域として機能するので、ドレイン領域として機能する第2の半導体膜113の端部に集中する電界を緩和し、ホットキャリア効果を防ぐことができる。第3の半導体膜114は必ずしも設ける必要はないが、設けることでTFTの耐圧性を高め、信頼性を向上させることができる。なお、TFT101がn型である場合、第3の半導体膜114を形成する際に特にn型を付与する不純物を添加せずとも、n型の導電型が得られる。よって、TFT101がn型の場合、必ずしも第3の半導体膜114にn型の不純物を添加する必要はない。ただし、チャネルが形成される第1の半導体膜には、p型の導電性を付与する不純物を添加し、極力I型に近づくようにその導電型を制御しておく。   The third semiconductor film 114 is formed using an amorphous semiconductor film or a semi-amorphous semiconductor film, has the same conductivity type as the second semiconductor film 113, and is more conductive than the second semiconductor film 113. Has a characteristic of lowering. Since the third semiconductor film 114 functions as an LDD region, an electric field concentrated on the end portion of the second semiconductor film 113 functioning as a drain region can be relaxed and the hot carrier effect can be prevented. The third semiconductor film 114 is not necessarily provided, but the provision of the third semiconductor film 114 can increase the withstand voltage of the TFT and improve the reliability. Note that in the case where the TFT 101 is n-type, an n-type conductivity type can be obtained without adding an impurity imparting n-type in particular when the third semiconductor film 114 is formed. Therefore, when the TFT 101 is n-type, it is not always necessary to add n-type impurities to the third semiconductor film 114. However, an impurity imparting p-type conductivity is added to the first semiconductor film in which the channel is formed, and the conductivity type is controlled so as to be as close to the I-type as possible.

また、一対の第3の半導体膜114に接するように、配線115が形成されている。   A wiring 115 is formed so as to be in contact with the pair of third semiconductor films 114.

駆動回路のTFT102は、第1の基板100上に形成されたゲート電極120と、ゲート電極120を覆っているゲート絶縁膜111と、ゲート絶縁膜111を間に挟んでゲート電極120と重なっている、セミアモルファス半導体膜で形成された第1の半導体膜122とを有している。さらにTFT102は、ソース領域またはドレイン領域として機能する一対の第2の半導体膜123と、第1の半導体膜122と第2の半導体膜123の間に設けられた第3の半導体膜124とを有している。   The TFT 102 of the driver circuit overlaps with the gate electrode 120 formed on the first substrate 100, the gate insulating film 111 covering the gate electrode 120, and the gate electrode 120 with the gate insulating film 111 interposed therebetween. And a first semiconductor film 122 formed of a semi-amorphous semiconductor film. Further, the TFT 102 includes a pair of second semiconductor films 123 functioning as a source region or a drain region, and a third semiconductor film 124 provided between the first semiconductor film 122 and the second semiconductor film 123. is doing.

また第2の半導体膜123は、非晶質半導体膜またはセミアモルファス半導体膜で形成されており、該半導体膜に一導電型を付与する不純物が添加されている。そして一対の第2の半導体膜123は、第1の半導体膜122のチャネルが形成される領域を間に挟んで、向かい合っている。   The second semiconductor film 123 is formed using an amorphous semiconductor film or a semi-amorphous semiconductor film, and an impurity imparting one conductivity type is added to the semiconductor film. The pair of second semiconductor films 123 face each other with a region where the channel of the first semiconductor film 122 is formed therebetween.

また第3の半導体膜124は、非晶質半導体膜またはセミアモルファス半導体膜で形成されており、第2の半導体膜123と同じ導電型を有し、なおかつ第2の半導体膜123よりも導電性が低くなるような特性を有している。第3の半導体膜124はLDD領域として機能するので、ドレイン領域として機能する第2の半導体膜123の端部に集中する電界を緩和し、ホットキャリア効果を防ぐことができる。第3の半導体膜124は必ずしも設ける必要はないが、設けることでTFTの耐圧性を高め、信頼性を向上させることができる。なお、TFT102がn型である場合、第3の半導体膜124を形成する際に特にn型を付与する不純物を添加せずとも、n型の導電型が得られる。よって、TFT102がn型の場合、必ずしも第3の半導体膜124にn型の不純物を添加する必要はない。ただし、チャネルが形成される第1の半導体膜には、p型の導電性を付与する不純物を添加し、極力I型に近づくようにその導電型を制御しておく。   The third semiconductor film 124 is formed using an amorphous semiconductor film or a semi-amorphous semiconductor film, has the same conductivity type as the second semiconductor film 123, and is more conductive than the second semiconductor film 123. Has a characteristic of lowering. Since the third semiconductor film 124 functions as an LDD region, an electric field concentrated on the end portion of the second semiconductor film 123 functioning as a drain region can be relaxed and the hot carrier effect can be prevented. The third semiconductor film 124 is not necessarily provided, but the provision of the third semiconductor film 124 can increase the withstand voltage of the TFT and improve the reliability. Note that in the case where the TFT 102 is n-type, an n-type conductivity type can be obtained without adding an impurity imparting n-type in particular when the third semiconductor film 124 is formed. Therefore, when the TFT 102 is n-type, it is not always necessary to add an n-type impurity to the third semiconductor film 124. However, an impurity imparting p-type conductivity is added to the first semiconductor film in which the channel is formed, and the conductivity type is controlled so as to be as close to the I-type as possible.

また、一対の第3の半導体膜124に接するように、配線125が形成されている。   A wiring 125 is formed so as to be in contact with the pair of third semiconductor films 124.

また、TFT101、102及び配線115、125を覆うように、絶縁膜からなる第1のパッシベーション膜140、第2のパッシベーション膜141が形成されている。TFT101、102を覆うパッシベーション膜は2層に限らず、単層であっても良いし、3層以上であっても良い。例えば第1のパッシベーション膜140を窒化珪素、第2のパッシベーション膜141を酸化珪素で形成することができる。窒化珪素または窒化酸化珪素でパッシベーション膜を形成することで、TFT101、102が水分や酸素などの影響により、劣化するのを防ぐことができる。   A first passivation film 140 and a second passivation film 141 made of an insulating film are formed so as to cover the TFTs 101 and 102 and the wirings 115 and 125. The passivation film covering the TFTs 101 and 102 is not limited to two layers, but may be a single layer or three or more layers. For example, the first passivation film 140 can be formed using silicon nitride, and the second passivation film 141 can be formed using silicon oxide. By forming the passivation film using silicon nitride or silicon nitride oxide, it is possible to prevent the TFTs 101 and 102 from being deteriorated by the influence of moisture, oxygen, or the like.

そして、配線125の一方は、配線160を介して液晶素子103の画素電極130に接続されている。また画素電極130上に接するように、配向膜131が形成されている。一方、画素電極130を間に挟んで第1の基板100と向かい合っている第2の基板170上には、対向電極171と、配向膜142が順に積層されている。そして、画素電極130及び配向膜131と、対向電極171及び配向膜142との間に液晶143が設けられており、画素電極130と液晶143と対向電極171とが重なり合っている部分が液晶素子103に相当する。なお、画素電極130と対向電極171との距離(セルギャップ)は、スペーサ161によって制御されている。図1では、絶縁膜をパターニングすることでスペーサ161を形成しているが、別途用意した球状のスペーサを、配向膜131上に分散して、セルギャップの制御を行なうようにしても良い。162はシール材に相当し、シール材162によって、液晶143を第1の基板100と第2の基板170の間に封止することができる。   One of the wirings 125 is connected to the pixel electrode 130 of the liquid crystal element 103 through the wiring 160. An alignment film 131 is formed so as to be in contact with the pixel electrode 130. On the other hand, a counter electrode 171 and an alignment film 142 are sequentially stacked on a second substrate 170 facing the first substrate 100 with the pixel electrode 130 interposed therebetween. A liquid crystal 143 is provided between the pixel electrode 130 and the alignment film 131 and the counter electrode 171 and the alignment film 142, and a portion where the pixel electrode 130, the liquid crystal 143, and the counter electrode 171 overlap is the liquid crystal element 103. It corresponds to. Note that the distance (cell gap) between the pixel electrode 130 and the counter electrode 171 is controlled by the spacer 161. In FIG. 1, the spacer 161 is formed by patterning the insulating film. However, a separately prepared spherical spacer may be dispersed on the alignment film 131 to control the cell gap. 162 corresponds to a sealant, and the liquid crystal 143 can be sealed between the first substrate 100 and the second substrate 170 by the sealant 162.

また第1の基板100の、TFT101及びTFT102が形成されている面とは逆の面に、偏光板150が設けられている。また、第2の基板170の、対向電極171が形成されている面とは逆の面に、偏光板151が設けられている。なお本発明の液晶表示装置は、配向膜及び偏光板の数及び設ける位置については、図1に示す構成に限定されない。   A polarizing plate 150 is provided on the surface of the first substrate 100 opposite to the surface on which the TFT 101 and the TFT 102 are formed. A polarizing plate 151 is provided on the surface of the second substrate 170 opposite to the surface on which the counter electrode 171 is formed. The liquid crystal display device of the present invention is not limited to the configuration shown in FIG.

本発明では、チャネル形成領域を含んでいる第3の半導体膜が、セミアモルファス半導体で形成されているので、非晶質半導体膜を用いたTFTに比べて高い移動度のTFTを得ることができ、よって駆動回路と画素部を同一の基板に形成することができる。   In the present invention, since the third semiconductor film including the channel formation region is formed using a semi-amorphous semiconductor, a TFT having higher mobility than a TFT using an amorphous semiconductor film can be obtained. Therefore, the driver circuit and the pixel portion can be formed over the same substrate.

次に、本発明の液晶表示装置が有する画素の別の構成について説明する。図2(A)に、画素の回路図の一形態を、図2(B)に図2(A)に対応する画素の断面構造の一形態を示す。   Next, another structure of the pixel included in the liquid crystal display device of the present invention will be described. FIG. 2A illustrates one mode of a pixel circuit diagram, and FIG. 2B illustrates one mode of a cross-sectional structure of a pixel corresponding to FIG.

図2(A)、図2(B)において、201は画素へのビデオ信号の入力を制御するためのスイッチング用TFTに相当し、202は液晶素子に相当する。具体的には、スイッチング用TFT201を介して画素に入力されたビデオ信号の電位が、液晶素子202の画素電極に供給される。なお203は、スイッチング用TFT201がオフのときに液晶素子202の画素電極と対向電極の間の電圧を保持するための容量素子に相当する。   2A and 2B, 201 corresponds to a switching TFT for controlling input of a video signal to a pixel, and 202 corresponds to a liquid crystal element. Specifically, the potential of the video signal input to the pixel through the switching TFT 201 is supplied to the pixel electrode of the liquid crystal element 202. Note that reference numeral 203 corresponds to a capacitor for holding a voltage between the pixel electrode and the counter electrode of the liquid crystal element 202 when the switching TFT 201 is off.

具体的には、スイッチング用TFT201は、ゲート電極が走査線Gに接続されており、ソース領域とドレイン領域が、一方は信号線Sに、他方は液晶素子202の画素電極204に接続されている。容量素子203が有する2つの電極は、一方が液晶素子202の画素電極204に接続され、他方に一定の電位、望ましくは対向電極と同じ高さの電位が供給されている。   Specifically, the switching TFT 201 has a gate electrode connected to the scanning line G, one of the source region and the drain region connected to the signal line S, and the other connected to the pixel electrode 204 of the liquid crystal element 202. . One of two electrodes of the capacitor 203 is connected to the pixel electrode 204 of the liquid crystal element 202, and the other is supplied with a constant potential, preferably the same height as the counter electrode.

なお図2(A)、図2(B)では、スイッチング用TFT201が、直列に接続され、なおかつゲート電極が接続された複数のTFTが、第1の半導体膜を共有しているような構成を有する、マルチゲート構造となっている。マルチゲート構造とすることで、スイッチング用TFT201のオフ電流を低減させることができる。具体的に図2(A)、図2(B)ではスイッチング用TFT201が2つのTFTが直列に接続されたような構成を有しているが、3つ以上のTFTが直列に接続され、なおかつゲート電極が接続されたようなマルチゲート構造であっても良い。また、スイッチング用TFTは必ずしもマルチゲート構造である必要はなく、ゲート電極とチャネル形成領域が単数である通常のシングルゲート構造のTFTであっても良い。   2A and 2B, the switching TFT 201 is connected in series, and a plurality of TFTs to which the gate electrode is connected share the first semiconductor film. It has a multi-gate structure. With the multi-gate structure, the off-state current of the switching TFT 201 can be reduced. Specifically, in FIGS. 2A and 2B, the switching TFT 201 has a configuration in which two TFTs are connected in series, but three or more TFTs are connected in series, and A multi-gate structure in which gate electrodes are connected may be used. The switching TFT does not necessarily have a multi-gate structure, and may be a normal single-gate TFT having a single gate electrode and channel formation region.

次に、本発明の液晶表示装置が有するTFTの、図1、図2とは異なる形態について説明する。図3に、駆動回路に用いられるTFTの断面図と、画素部に用いられるTFTの断面図を示す。301は駆動回路に用いられるTFTの断面図に相当し、302は画素部に用いられるスイッチング用TFTの断面図に相当し、303は液晶素子の断面図に相当する。   Next, a mode of the TFT included in the liquid crystal display device of the present invention, which is different from that in FIGS. FIG. 3 shows a cross-sectional view of a TFT used in a driver circuit and a cross-sectional view of a TFT used in a pixel portion. 301 corresponds to a cross-sectional view of a TFT used in a driver circuit, 302 corresponds to a cross-sectional view of a switching TFT used in a pixel portion, and 303 corresponds to a cross-sectional view of a liquid crystal element.

駆動回路のTFT301と画素部のTFT302は、基板300上に形成されたゲート電極310、320と、ゲート電極310、320を覆っているゲート絶縁膜311と、ゲート絶縁膜311を間に挟んでゲート電極310、320と重なっている、セミアモルファス半導体膜で形成された第1の半導体膜312、322とをそれぞれ有している。そして、第1の半導体膜312、322のチャネル形成領域を覆うように、絶縁膜で形成されたチャネル保護膜330、331が形成されている。チャネル保護膜330、331は、TFT301、302の作製工程において、第1の半導体膜312、322のチャネル形成領域がエッチングされてしまうのを防ぐために設ける。さらにTFT301、302は、ソース領域またはドレイン領域として機能する一対の第2の半導体膜313、323と、第1の半導体膜312と第2の半導体膜313の間に設けられた第3の半導体膜314、324とをそれぞれ有している。   The TFT 301 of the driver circuit and the TFT 302 of the pixel portion are gate electrodes 310 and 320 formed on the substrate 300, a gate insulating film 311 covering the gate electrodes 310 and 320, and a gate insulating film 311 interposed therebetween. First semiconductor films 312, 322 formed of semi-amorphous semiconductor films, which overlap with the electrodes 310, 320, are provided. Then, channel protective films 330 and 331 made of an insulating film are formed so as to cover the channel formation regions of the first semiconductor films 312 and 322. The channel protective films 330 and 331 are provided in order to prevent the channel formation regions of the first semiconductor films 312 and 322 from being etched in the manufacturing process of the TFTs 301 and 302. Further, the TFTs 301 and 302 include a pair of second semiconductor films 313 and 323 that function as a source region or a drain region, and a third semiconductor film provided between the first semiconductor film 312 and the second semiconductor film 313. 314 and 324, respectively.

図3では、ゲート絶縁膜311が2層の絶縁膜で形成されているが、本発明はこの構成に限定されない。ゲート絶縁膜311が単層または3層以上の絶縁膜で形成されていても良い。   In FIG. 3, the gate insulating film 311 is formed of two insulating films, but the present invention is not limited to this structure. The gate insulating film 311 may be formed of a single layer or three or more layers of insulating films.

また第2の半導体膜313、323は、非晶質半導体膜またはセミアモルファス半導体膜で形成されており、該半導体膜に一導電型を付与する不純物が添加されている。そして一対の第2の半導体膜313、323は、第1の半導体膜312のチャネルが形成される領域を間に挟んで、向かい合っている。   The second semiconductor films 313 and 323 are formed using an amorphous semiconductor film or a semi-amorphous semiconductor film, and an impurity imparting one conductivity type is added to the semiconductor film. The pair of second semiconductor films 313 and 323 face each other with a region where the channel of the first semiconductor film 312 is formed therebetween.

また第3の半導体膜314、324は、非晶質半導体膜またはセミアモルファス半導体膜で形成されており、第2の半導体膜313、323と同じ導電型を有し、なおかつ第2の半導体膜313、323よりも導電性が低くなるような特性を有している。第3の半導体膜314、324はLDD領域として機能するので、ドレイン領域として機能する第2の半導体膜313、323の端部に集中する電界を緩和し、ホットキャリア効果を防ぐことができる。第3の半導体膜314、324は必ずしも設ける必要はないが、設けることでTFTの耐圧性を高め、信頼性を向上させることができる。なお、TFT301、302がn型である場合、第3の半導体膜314、324を形成する際に特にn型を付与する不純物を添加せずとも、n型の導電型が得られる。よって、TFT301、302がn型の場合、必ずしも第3の半導体膜314、324にn型の不純物を添加する必要はない。ただし、チャネルが形成される第1の半導体膜には、p型の導電性を付与する不純物を添加し、極力I型に近づくようにその導電型を制御しておく。   In addition, the third semiconductor films 314 and 324 are formed of an amorphous semiconductor film or a semi-amorphous semiconductor film, have the same conductivity type as the second semiconductor films 313 and 323, and the second semiconductor film 313. 323 has a characteristic that the conductivity is lower than that of H.323. Since the third semiconductor films 314 and 324 function as LDD regions, an electric field concentrated on the end portions of the second semiconductor films 313 and 323 functioning as drain regions can be relaxed and the hot carrier effect can be prevented. The third semiconductor films 314 and 324 are not necessarily provided, but the provision of the third semiconductor films 314 and 324 can increase the pressure resistance of the TFT and improve the reliability. Note that in the case where the TFTs 301 and 302 are n-type, an n-type conductivity type can be obtained without adding an impurity imparting n-type in particular when the third semiconductor films 314 and 324 are formed. Therefore, when the TFTs 301 and 302 are n-type, it is not always necessary to add n-type impurities to the third semiconductor films 314 and 324. However, an impurity imparting p-type conductivity is added to the first semiconductor film in which the channel is formed, and the conductivity type is controlled so as to be as close to the I-type as possible.

また、一対の第3の半導体膜314、324に接するように、配線315、325が形成されている。   In addition, wirings 315 and 325 are formed so as to be in contact with the pair of third semiconductor films 314 and 324.

また、TFT301、302及び配線315、325を覆うように、絶縁膜からなる第1のパッシベーション膜340、第2のパッシベーション膜341が形成されている。TFT301、302を覆うパッシベーション膜は2層に限らず、単層であっても良いし、3層以上であっても良い。例えば第1のパッシベーション膜340を窒化珪素、第2のパッシベーション膜341を酸化珪素で形成することができる。窒化珪素または窒化酸化珪素でパッシベーション膜を形成することで、TFT301、302が水分や酸素などの影響により、劣化するのを防ぐことができる。   A first passivation film 340 and a second passivation film 341 made of an insulating film are formed so as to cover the TFTs 301 and 302 and the wirings 315 and 325. The passivation film that covers the TFTs 301 and 302 is not limited to two layers, and may be a single layer or three or more layers. For example, the first passivation film 340 can be formed using silicon nitride, and the second passivation film 341 can be formed using silicon oxide. By forming the passivation film using silicon nitride or silicon nitride oxide, it is possible to prevent the TFTs 301 and 302 from being deteriorated by the influence of moisture, oxygen, or the like.

そして、配線325の一方は、配線360を介して液晶素子303の画素電極370に接続されている。また画素電極370上に接するように、配向膜371が形成されている。一方、画素電極370を間に挟んで第1の基板300と向かい合っている第2の基板372上には、対向電極373と、配向膜342が順に積層されている。そして、画素電極370及び配向膜371と、対向電極373及び配向膜342との間に液晶343が設けられており、画素電極370と液晶343と対向電極373とが重なり合っている部分が液晶素子303に相当する。なお、画素電極370と対向電極373との距離(セルギャップ)は、スペーサ361によって制御されている。図3では、絶縁膜をパターニングすることでスペーサ361を形成しているが、別途用意した球状のスペーサを、配向膜371上に分散して、セルギャップの制御を行なうようにしても良い。362はシール材に相当し、シール材362によって、液晶343を第1の基板300と第2の基板372の間に封止することができる。   One of the wirings 325 is connected to the pixel electrode 370 of the liquid crystal element 303 through the wiring 360. An alignment film 371 is formed so as to be in contact with the pixel electrode 370. On the other hand, a counter electrode 373 and an alignment film 342 are sequentially stacked on a second substrate 372 facing the first substrate 300 with the pixel electrode 370 interposed therebetween. A liquid crystal 343 is provided between the pixel electrode 370 and the alignment film 371 and the counter electrode 373 and the alignment film 342, and a portion where the pixel electrode 370, the liquid crystal 343, and the counter electrode 373 overlap is a liquid crystal element 303. It corresponds to. Note that the distance (cell gap) between the pixel electrode 370 and the counter electrode 373 is controlled by the spacer 361. In FIG. 3, the spacer 361 is formed by patterning the insulating film. However, a separately prepared spherical spacer may be dispersed on the alignment film 371 to control the cell gap. 362 corresponds to a sealant, and the liquid crystal 343 can be sealed between the first substrate 300 and the second substrate 372 by the sealant 362.

また第1の基板300の、TFT301及びTFT302が形成されている面とは逆の面に、偏光板が設けられていても良い。また、第2の基板372の、対向電極373が形成されている面とは逆の面に、偏光板が設けられていても良い。なお本発明の液晶表示装置は、配向膜及び偏光板の数及び設ける位置については、図3に示す構成に限定されない。   A polarizing plate may be provided on the surface of the first substrate 300 opposite to the surface on which the TFT 301 and the TFT 302 are formed. In addition, a polarizing plate may be provided on a surface of the second substrate 372 opposite to the surface on which the counter electrode 373 is formed. Note that the liquid crystal display device of the present invention is not limited to the structure shown in FIG.

次に、本発明の液晶表示装置に用いられる素子基板の構成を示す。   Next, the structure of the element substrate used for the liquid crystal display device of the present invention is shown.

図4に、信号線駆動回路6013のみを別途形成し、第1の基板6011上に形成された画素部6012と接続している素子基板の形態を示す。画素部6012及び走査線駆動回路6014は、セミアモルファスTFTを用いて形成する。セミアモルファスTFTよりも高い移動度が得られるトランジスタで信号線駆動回路を形成することで、走査線駆動回路よりも高い駆動周波数が要求される信号線駆動回路の動作を安定させることができる。なお、信号線駆動回路6013は、単結晶の半導体を用いたトランジスタ、多結晶の半導体を用いたTFT、またはSOIを用いたトランジスタであっても良い。画素部6012と、信号線駆動回路6013と、走査線駆動回路6014とに、それぞれ電源の電位、各種信号等が、FPC6015を介して供給される。   FIG. 4 illustrates a mode of an element substrate in which only the signal line driver circuit 6013 is separately formed and connected to the pixel portion 6012 formed over the first substrate 6011. The pixel portion 6012 and the scan line driver circuit 6014 are formed using semi-amorphous TFTs. By forming the signal line driver circuit using a transistor that can obtain higher mobility than a semi-amorphous TFT, the operation of the signal line driver circuit that requires a higher driving frequency than the scanning line driver circuit can be stabilized. Note that the signal line driver circuit 6013 may be a transistor using a single crystal semiconductor, a TFT using a polycrystalline semiconductor, or a transistor using SOI. The pixel portion 6012, the signal line driver circuit 6013, and the scan line driver circuit 6014 are supplied with a potential of a power source, various signals, and the like through the FPC 6015, respectively.

なお、信号線駆動回路及び走査線駆動回路を、共に画素部と同じ基板上に形成しても良い。   Note that both the signal line driver circuit and the scan line driver circuit may be formed over the same substrate as the pixel portion.

また、駆動回路を別途形成する場合、必ずしも駆動回路が形成された基板を、画素部が形成された基板上に張り合わせる必要はなく、例えばFPC上に張り合わせるようにしても良い。図5(A)に、信号線駆動回路6023のみを別途形成し、第1の基板6021上に形成された画素部6022及び走査線駆動回路6024と接続している素子基板の形態を示す。画素部6022及び走査線駆動回路6024は、セミアモルファスTFTを用いて形成する。信号線駆動回路6023は、FPC6025を介して画素部6022と接続されている。画素部6022と、信号線駆動回路6023と、走査線駆動回路6024とに、それぞれ電源の電位、各種信号等が、FPC6025を介して供給される。   In the case where the driver circuit is separately formed, the substrate on which the driver circuit is formed is not necessarily attached to the substrate on which the pixel portion is formed, and may be attached to, for example, an FPC. FIG. 5A illustrates a mode of an element substrate in which only the signal line driver circuit 6023 is separately formed and connected to the pixel portion 6022 and the scan line driver circuit 6024 which are formed over the first substrate 6021. The pixel portion 6022 and the scan line driver circuit 6024 are formed using semi-amorphous TFTs. The signal line driver circuit 6023 is connected to the pixel portion 6022 through the FPC 6025. The pixel portion 6022, the signal line driver circuit 6023, and the scan line driver circuit 6024 are supplied with power supply potential, various signals, and the like through the FPC 6025.

また、信号線駆動回路の一部または走査線駆動回路の一部のみを、セミアモルファスTFTを用いて画素部と同じ基板上に形成し、残りを別途形成して画素部と電気的に接続するようにしても良い。図5(B)に、信号線駆動回路が有するアナログスイッチ6033aを、画素部6032、走査線駆動回路6034と同じ第1の基板6031上に形成し、信号線駆動回路が有するシフトレジスタ6033bを別途異なる基板に形成して貼り合わせる素子基板の形態を示す。画素部6032及び走査線駆動回路6034は、セミアモルファスTFTを用いて形成する。信号線駆動回路が有するシフトレジスタ6033bは、FPC6035を介して画素部6032と接続されている。画素部6032と、信号線駆動回路と、走査線駆動回路6034とに、それぞれ電源の電位、各種信号等が、FPC6035を介して供給される。   Further, only a part of the signal line driver circuit or a part of the scanning line driver circuit is formed on the same substrate as the pixel portion using a semi-amorphous TFT, and the rest is separately formed and electrically connected to the pixel portion. You may do it. In FIG. 5B, an analog switch 6033a included in the signal line driver circuit is formed over the same first substrate 6031 as the pixel portion 6032 and the scan line driver circuit 6034, and a shift register 6033b included in the signal line driver circuit is separately provided. The form of the element substrate formed and bonded to a different substrate is shown. The pixel portion 6032 and the scan line driver circuit 6034 are formed using semi-amorphous TFTs. A shift register 6033 b included in the signal line driver circuit is connected to the pixel portion 6032 through the FPC 6035. A potential of a power source, various signals, and the like are supplied to the pixel portion 6032, the signal line driver circuit, and the scan line driver circuit 6034 through the FPC 6035, respectively.

図4、図5に示すように、本発明の液晶表示装置は、駆動回路の一部または全部を、画素部と同じ基板上に、セミアモルファスTFTを用いて形成することができる。   As shown in FIGS. 4 and 5, in the liquid crystal display device of the present invention, part or all of the driver circuit can be formed on the same substrate as the pixel portion using a semi-amorphous TFT.

なお、別途形成した基板の接続方法は、特に限定されるものではなく、公知のCOG方法やワイヤボンディング方法、或いはTAB方法などを用いることができる。また接続する位置は、電気的な接続が可能であるならば、図6に示した位置に限定されない。また、コントローラ、CPU、メモリ等を別途形成し、接続するようにしても良い。   Note that a method for connecting a separately formed substrate is not particularly limited, and a known COG method, wire bonding method, TAB method, or the like can be used. Further, the connection position is not limited to the position illustrated in FIG. 6 as long as electrical connection is possible. In addition, a controller, a CPU, a memory, and the like may be separately formed and connected.

なお本発明で用いる信号線駆動回路は、シフトレジスタとアナログスイッチのみを有する形態に限定されない。シフトレジスタとアナログスイッチに加え、バッファ、レベルシフタ、ソースフォロワ等、他の回路を有していても良い。また、シフトレジスタとアナログスイッチは必ずしも設ける必要はなく、例えばシフトレジスタの代わりにデコーダ回路のような信号線の選択ができる別の回路を用いても良いし、アナログスイッチの代わりにラッチ等を用いても良い。   Note that the signal line driver circuit used in the present invention is not limited to a mode having only a shift register and an analog switch. In addition to the shift register and the analog switch, other circuits such as a buffer, a level shifter, and a source follower may be included. The shift register and the analog switch are not necessarily provided. For example, another circuit that can select a signal line such as a decoder circuit may be used instead of the shift register, or a latch or the like may be used instead of the analog switch. May be.

図6(A)に本発明の液晶表示装置のブロック図を示す。図6(A)に示す液晶表示装置は、液晶素子を備えた画素を複数有する画素部701と、各画素を選択する走査線駆動回路702と、選択された画素へのビデオ信号の入力を制御する信号線駆動回路703とを有する。   FIG. 6A is a block diagram of the liquid crystal display device of the present invention. A liquid crystal display device illustrated in FIG. 6A controls a pixel portion 701 including a plurality of pixels each including a liquid crystal element, a scanning line driver circuit 702 that selects each pixel, and input of a video signal to the selected pixel. And a signal line driver circuit 703.

図6(A)において信号線駆動回路703は、シフトレジスタ704、アナログスイッチ705を有している。シフトレジスタ704には、クロック信号(CLK)、スタートパルス信号(SP)が入力されている。クロック信号(CLK)とスタートパルス信号(SP)が入力されると、シフトレジスタ704においてタイミング信号が生成され、アナログスイッチ705に入力される。   In FIG. 6A, the signal line driver circuit 703 includes a shift register 704 and an analog switch 705. A clock signal (CLK) and a start pulse signal (SP) are input to the shift register 704. When the clock signal (CLK) and the start pulse signal (SP) are input, a timing signal is generated in the shift register 704 and input to the analog switch 705.

またアナログスイッチ705には、ビデオ信号(video signal)が与えられている。アナログスイッチ705は入力されるタイミング信号に従ってビデオ信号をサンプリングし、後段の信号線に供給する。   A video signal (video signal) is supplied to the analog switch 705. The analog switch 705 samples the video signal in accordance with the input timing signal and supplies it to the subsequent signal line.

次に、走査線駆動回路702の構成について説明する。走査線駆動回路702は、シフトレジスタ706、バッファ707を有している。また場合によってはレベルシフタを有していても良い。走査線駆動回路702において、シフトレジスタ706にクロック信号(CLK)及びスタートパルス信号(SP)が入力されることによって、選択信号が生成される。生成された選択信号はバッファ707において緩衝増幅され、対応する走査線に供給される。走査線には、1ライン分の画素のトランジスタのゲートが接続されている。そして、1ライン分の画素のトランジスタを一斉にONにしなくてはならないので、バッファ707は大きな電流を流すことが可能なものが用いられる。   Next, the configuration of the scan line driver circuit 702 is described. The scan line driver circuit 702 includes a shift register 706 and a buffer 707. In some cases, a level shifter may be provided. In the scan line driver circuit 702, a selection signal is generated by inputting a clock signal (CLK) and a start pulse signal (SP) to the shift register 706. The generated selection signal is buffered and amplified in the buffer 707 and supplied to the corresponding scanning line. The gate of the transistor of the pixel for one line is connected to the scanning line. Since the transistors of pixels for one line must be turned on all at once, a buffer 707 that can flow a large current is used.

フルカラーの液晶表示装置で、R(赤)、G(緑)、B(青)に対応するビデオ信号を、順にサンプリングして対応する信号線に供給している場合、シフトレジスタ704とアナログスイッチ705とを接続するための端子数が、アナログスイッチ705と画素部701の信号線を接続するための端子数の1/3程度に相当する。よって、アナログスイッチ705を画素部701と同じ基板上に形成することで、アナログスイッチ705を画素部701と異なる基板上に形成した場合に比べて、別途形成した基板の接続に用いる端子の数を抑えることができ、接続不良の発生確率を抑え、歩留まりを高めることができる。   In a full-color liquid crystal display device, when video signals corresponding to R (red), G (green), and B (blue) are sequentially sampled and supplied to corresponding signal lines, a shift register 704 and an analog switch 705 are provided. The number of terminals for connecting the analog switch 705 and the signal line of the pixel portion 701 corresponds to about one third of the number of terminals for connecting the two. Therefore, by forming the analog switch 705 over the same substrate as the pixel portion 701, the number of terminals used for connecting a separately formed substrate can be reduced as compared with the case where the analog switch 705 is formed over a different substrate from the pixel portion 701. Thus, the probability of occurrence of connection failure can be suppressed, and the yield can be increased.

図6(B)に、図6(A)とは異なる、本発明の液晶表示装置のブロック図を示す。図6(B)において信号線駆動回路713は、シフトレジスタ714、ラッチA715、ラッチB716、D/A変換回路(DAC)717を有している。走査線駆動回路712は、図6(A)の場合と同じ構成を有しているものとする。   FIG. 6B is a block diagram of a liquid crystal display device of the present invention, which is different from FIG. In FIG. 6B, the signal line driver circuit 713 includes a shift register 714, a latch A 715, a latch B 716, and a D / A conversion circuit (DAC) 717. The scan line driver circuit 712 has the same structure as that in FIG.

シフトレジスタ714には、クロック信号(CLK)、スタートパルス信号(SP)が入力されている。クロック信号(CLK)とスタートパルス信号(SP)が入力されると、シフトレジスタ714においてタイミング信号が生成され、一段目のラッチA715に順に入力される。ラッチA715にタイミング信号が入力されると、該タイミング信号に同期して、ビデオ信号が順にラッチA715に書き込まれ、保持される。なお、図6(B)ではラッチA715に順にビデオ信号を書き込んでいると仮定するが、本発明はこの構成に限定されない。複数のステージのラッチA715をいくつかのグループに分け、各グループごとに並行してビデオ信号を入力する、いわゆる分割駆動を行っても良い。なおこのときのグループの数を分割数と呼ぶ。例えば4つのステージごとにラッチをグループに分けた場合、4分割で分割駆動すると言う。   A clock signal (CLK) and a start pulse signal (SP) are input to the shift register 714. When the clock signal (CLK) and the start pulse signal (SP) are input, a timing signal is generated in the shift register 714 and sequentially input to the first-stage latch A715. When a timing signal is input to the latch A715, video signals are sequentially written and held in the latch A715 in synchronization with the timing signal. In FIG. 6B, it is assumed that video signals are sequentially written in the latch A 715, but the present invention is not limited to this structure. A plurality of stages of latches A715 may be divided into several groups, and so-called divided driving may be performed in which video signals are input in parallel for each group. Note that the number of groups at this time is called the number of divisions. For example, when the latches are divided into groups for every four stages, it is said that the driving is divided into four.

ラッチA715の全てのステージのラッチへの、ビデオ信号の書き込みが一通り終了するまでの時間を、ライン期間と呼ぶ。実際には、上記ライン期間に水平帰線期間が加えられた期間をライン期間に含むことがある。   The time until video signal writing to all the latches of the latch A 715 is completed is called a line period. Actually, the line period may include a period in which a horizontal blanking period is added to the line period.

1ライン期間が終了すると、2段目のラッチB716にラッチ信号(Latch Signal)が供給され、該ラッチ信号に同期してラッチA715に保持されているビデオ信号が、ラッチB716に一斉に書き込まれ、保持される。ビデオ信号をラッチB716に送出し終えたラッチA715には、再びシフトレジスタ714からのタイミング信号に同期して、次のビデオ信号の書き込みが順次行われる。この2順目の1ライン期間中には、ラッチB716に書き込まれ、保持されているビデオ信号が、DAC717に入力される。   When one line period ends, a latch signal (Latch Signal) is supplied to the second-stage latch B 716, and the video signal held in the latch A 715 is simultaneously written to the latch B 716 in synchronization with the latch signal, Retained. In the latch A 715 that has finished sending the video signal to the latch B 716, the next video signal is sequentially written in synchronization with the timing signal from the shift register 714 again. During the second line period, the video signal written and held in the latch B 716 is input to the DAC 717.

DAC717では、入力されたビデオ信号をデジタルからアナログに変換し、対応する信号線に供給する。   The DAC 717 converts the input video signal from digital to analog and supplies it to the corresponding signal line.

なお、図6(A)、図6(B)に示す構成は、本発明の液晶表示装置の一形態を示したに過ぎず、信号線駆動回路と走査線駆動回路の構成はこれに限定されない。   Note that the structures illustrated in FIGS. 6A and 6B are merely examples of the liquid crystal display device of the present invention, and the structures of the signal line driver circuit and the scan line driver circuit are not limited thereto. .

次に、本発明の液晶表示装置の、具体的な作製方法について説明する。   Next, a specific manufacturing method of the liquid crystal display device of the present invention will be described.

第1の基板10はガラスや石英などの他に、プラスチック材料を用いることができる。また、ステンレスやアルミニウムなどの金属材料の上に絶縁膜を形成したものを用いても良い。この第1の基板10上にゲート電極及びゲート配線(走査線)を形成するための導電膜11を形成する。第1導電膜11にはクロム、モリブデン、チタン、タンタル、タングステン、アルミニウムなどの金属材料またはその合金材料を用いる。この導電膜11はスパッタリング法や真空蒸着法で形成することができる。(図7(A))   The first substrate 10 can be made of a plastic material other than glass or quartz. Further, an insulating film formed on a metal material such as stainless steel or aluminum may be used. A conductive film 11 for forming a gate electrode and a gate wiring (scanning line) is formed on the first substrate 10. For the first conductive film 11, a metal material such as chromium, molybdenum, titanium, tantalum, tungsten, aluminum, or an alloy material thereof is used. The conductive film 11 can be formed by a sputtering method or a vacuum evaporation method. (Fig. 7 (A))

導電膜11をエッチング加工してゲート電極12、13を形成する。ゲート電極上には第1の半導体膜や配線層を形成するので、その端部がテーパー状になるように加工することが望ましい。また導電膜11を、アルミニウムを主成分とする材料で形成する場合には、エッチング加工後に陽極酸化処理などをして表面を絶縁化しておくと良い。また、図示しないがこの工程でゲート電極に接続する配線も同時に形成することができる。(図7(B))   The conductive film 11 is etched to form gate electrodes 12 and 13. Since the first semiconductor film and the wiring layer are formed over the gate electrode, it is desirable to process the end portion of the gate electrode into a tapered shape. In the case where the conductive film 11 is formed using a material containing aluminum as a main component, it is preferable to insulate the surface by performing anodization after etching. Although not shown, a wiring connected to the gate electrode can be formed at the same time in this step. (Fig. 7 (B))

次に、図7(C)に示すように、第1絶縁膜14と第2絶縁膜15は、ゲート電極12、13の上層に形成することでゲート絶縁膜として機能させることができる。この場合、第1絶縁膜14として酸化珪素膜、第2絶縁膜15として窒化珪素膜を形成することが好ましい。これらの絶縁膜はグロー放電分解法やスパッタリング法で形成することができる。特に、低い成膜温度でゲートリーク電流が少ない緻密な絶縁膜を形成するには、アルゴンなどの希ガス元素を反応ガスに含ませ、形成される絶縁膜中に混入させると良い。   Next, as shown in FIG. 7C, the first insulating film 14 and the second insulating film 15 can be made to function as gate insulating films by being formed over the gate electrodes 12 and 13. In this case, it is preferable to form a silicon oxide film as the first insulating film 14 and a silicon nitride film as the second insulating film 15. These insulating films can be formed by a glow discharge decomposition method or a sputtering method. In particular, in order to form a dense insulating film with low gate leakage current at a low deposition temperature, a rare gas element such as argon is preferably contained in a reaction gas and mixed into the formed insulating film.

そして、このような第1絶縁膜14、第2絶縁膜15上に、第1の半導体膜16を形成する。第1の半導体膜16は、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造の半導体を含む膜で形成する。この半導体は、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質なものであり、その粒径を0.5〜20nmとして非単結晶半導体中に分散させて存在せしめることが可能である。また、未結合手(ダングリングボンド)の中和剤として水素またはハロゲンを少なくとも1原子%またはそれ以上含ませている。ここでは便宜上、このような半導体をセミアモルファス半導体(SAS)と呼ぶ。さらに、ヘリウム、アルゴン、クリプトン、ネオンなどの希ガス元素を含ませて格子歪みをさらに助長させることで安定性が増し良好なSASが得られる。このようなSAS半導体に関する記述は、例えば、米国特許4,409,134号で開示されている。   Then, the first semiconductor film 16 is formed on the first insulating film 14 and the second insulating film 15. The first semiconductor film 16 is formed of a film including a semiconductor having an intermediate structure between amorphous and crystalline structures (including single crystal and polycrystal). This semiconductor is a semiconductor having a third state which is stable in terms of free energy, and is a crystalline material having a short-range order and lattice strain, and having a grain size of 0.5 to 20 nm. It can be dispersed in a semiconductor. Further, hydrogen or halogen is contained at least 1 atomic% or more as a neutralizing agent for dangling bonds. Here, for convenience, such a semiconductor is referred to as a semi-amorphous semiconductor (SAS). Further, by adding a rare gas element such as helium, argon, krypton, or neon to further promote lattice distortion, stability is improved and a favorable SAS can be obtained. Such a SAS semiconductor description is disclosed, for example, in US Pat. No. 4,409,134.

このSASは珪化物気体をグロー放電分解することにより得ることができる。代表的な珪化物気体としては、SiH4であり、その他にもSi26、SiH2Cl2、SiHCl3、SiCl4、SiF4などを用いることができる。この珪化物気体を水素、水素とヘリウム、アルゴン、クリプトン、ネオンから選ばれた一種または複数種の希ガス元素で希釈して用いることでSASの形成を容易なものとすることができる。希釈率は10倍〜1000倍の範囲で珪化物気体を希釈することが好ましい。勿論、グロー放電分解による被膜の反応生成は減圧下で行なうが、圧力は概略0.1Pa〜133Paの範囲で行なえば良い。グロー放電を形成するための電力は1MHz〜120MHz、好ましくは13MHz〜60MHzの高周波電力を供給すれば良い。基板加熱温度は300度以下が好ましく、100〜200度の基板加熱温度が推奨される。 This SAS can be obtained by glow discharge decomposition of a silicide gas. A typical silicide gas is SiH 4 , and in addition, Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , SiCl 4 , SiF 4 and the like can be used. The formation of the SAS can be facilitated by diluting the silicide gas with one or plural kinds of rare gas elements selected from hydrogen, hydrogen and helium, argon, krypton, and neon. It is preferable to dilute the silicide gas at a dilution ratio in the range of 10 times to 1000 times. Of course, the reaction of the coating by glow discharge decomposition is performed under reduced pressure, but the pressure may be in the range of about 0.1 Pa to 133 Pa. The power for forming the glow discharge may be high frequency power of 1 MHz to 120 MHz, preferably 13 MHz to 60 MHz. The substrate heating temperature is preferably 300 ° C. or less, and a substrate heating temperature of 100 to 200 ° C. is recommended.

また、珪化物気体中に、CH4、C26などの炭化物気体、GeH4、GeF4などのゲルマニウム化気体を混入させて、エネルギーバンド幅を1.5〜2.4eV、若しくは0.9〜1.1eVに調節しても良い。 Further, a carbide gas such as CH 4 and C 2 H 6 and a germanium gas such as GeH 4 and GeF 4 are mixed in the silicide gas, and the energy band width is 1.5 to 2.4 eV, or 0.8. You may adjust to 9-1.1 eV.

また、SASは、価電子制御を目的とした不純物元素を意図的に添加しないときに弱いn型の電気伝導性を示すので、TFTのチャネル形成領域を設ける第1の半導体膜に対しては、p型を付与する不純物元素を、この成膜と同時に、或いは成膜後に添加することで、しきい値制御をすることが可能となる。p型を付与する不純物元素としては、代表的には硼素であり、B26、BF3などの不純物気体を1ppm〜1000ppmの割合で珪化物気体に混入させると良い。そしてボロンの濃度を、例えば1×1014〜6×1016atoms/cm3とすると良い。 In addition, since SAS exhibits weak n-type conductivity when an impurity element for the purpose of valence electron control is not intentionally added, the first semiconductor film provided with a TFT channel formation region is The threshold value can be controlled by adding an impurity element imparting p-type simultaneously with or after the film formation. The impurity element imparting p-type is typically boron, and an impurity gas such as B 2 H 6 or BF 3 may be mixed into the silicide gas at a rate of 1 ppm to 1000 ppm. The boron concentration is preferably 1 × 10 14 to 6 × 10 16 atoms / cm 3 , for example.

次に、図8(A)に示すように第2の半導体膜17を形成する。第2の半導体膜17は、価電子制御を目的とした不純物元素を意図的に添加しないで形成したものであり、第1の半導体膜16と同様にSASで形成することが好ましい。この第2の半導体膜17は、ソース及びドレインを形成する一導電型を有する第3の半導体膜18と第1の半導体膜16との間に形成することで、バッファ層(緩衝層)的な働きを持っている。従って、弱n型の電気伝導性を持って第1の半導体膜16に対して、同じ導電型で一導電型を有する第3の半導体膜18を形成する場合には必ずしも必要ない。しきい値制御をする目的において、p型を付与する不純物元素を添加する場合には、第2の半導体膜17は段階的に不純物濃度を変化させる効果を持ち、接合形成を良好にする上で好ましい形態となる。すなわち、形成されるTFTにおいては、チャネル形成領域とソースまたはドレイン領域の間に形成される低濃度不純物領域(LDD領域)としての機能を持たせることが可能となる。   Next, as shown in FIG. 8A, a second semiconductor film 17 is formed. The second semiconductor film 17 is formed without intentionally adding an impurity element for the purpose of valence electron control, and is preferably formed of SAS like the first semiconductor film 16. The second semiconductor film 17 is formed between the first semiconductor film 16 and the third semiconductor film 18 having one conductivity type that forms the source and the drain, thereby forming a buffer layer (buffer layer). Have work. Therefore, it is not always necessary to form the third semiconductor film 18 having the same conductivity type and one conductivity type with respect to the first semiconductor film 16 having weak n-type conductivity. For the purpose of threshold control, when an impurity element imparting p-type is added, the second semiconductor film 17 has an effect of changing the impurity concentration stepwise, and in order to improve the junction formation. This is a preferred form. That is, the formed TFT can have a function as a low concentration impurity region (LDD region) formed between the channel formation region and the source or drain region.

一導電型を有する第3の半導体膜18はnチャネル型のTFTを形成する場合には、代表的な不純物元素としてリンを添加すれば良く、珪化物気体にPH3などの不純物気体を加えれば良い。一導電型を有する第3の半導体膜18は、価電子制御がされていることを除けば、SASのような半導体、非晶質半導体、または微結晶半導体で形成されるものである。 The third semiconductor film 18 having one conductivity type may be formed by adding phosphorus as a typical impurity element when an n-channel TFT is formed, and by adding an impurity gas such as PH 3 to a silicide gas. good. The third semiconductor film 18 having one conductivity type is formed of a semiconductor such as SAS, an amorphous semiconductor, or a microcrystalline semiconductor except that valence electron control is performed.

以上、第1絶縁膜14から一導電型を有する第3の半導体膜18までは大気に触れさせることなく連続して形成することが可能である。すなわち、大気成分や大気中に浮遊する汚染不純物元素に汚染されることなく各積層界面を形成することができるので、TFT特性のばらつきを低減することができる。   As described above, the first insulating film 14 to the third semiconductor film 18 having one conductivity type can be continuously formed without being exposed to the atmosphere. That is, each stacked interface can be formed without being contaminated by atmospheric components or contaminating impurity elements floating in the atmosphere, so that variations in TFT characteristics can be reduced.

次に、フォトレジストを用いてマスク19を形成し、第1の半導体膜16、第2の半導体膜17、一導電型を有する第3の半導体膜18をエッチングして島状に分離形成する。(図8(B))   Next, a mask 19 is formed using a photoresist, and the first semiconductor film 16, the second semiconductor film 17, and the third semiconductor film 18 having one conductivity type are etched and separated into island shapes. (Fig. 8 (B))

その後、ソース及びドレインに接続する配線を形成するための第2導電膜20を形成する。第2導電膜20はアルミニウム、またはアルミニウムを主成分とする導電性材料で形成するが、半導体膜と接する側の層をチタン、タンタル、モリブデンまたはこれらの元素の窒化物で形成した積層構造としても良い。アルミニウムには耐熱性を向上させるためにチタン、シリコン、スカンジウム、ネオジウム、銅などの元素を0.5〜5原子%添加させても良い(図8(C))。   Thereafter, a second conductive film 20 for forming wirings connected to the source and drain is formed. The second conductive film 20 is formed of aluminum or a conductive material containing aluminum as a main component, but the layer on the side in contact with the semiconductor film may be formed of titanium, tantalum, molybdenum, or a nitride of these elements. good. In order to improve heat resistance, aluminum such as titanium, silicon, scandium, neodymium, or copper may be added to aluminum in an amount of 0.5 to 5 atomic% (FIG. 8C).

次にマスク21を形成する。マスク21はソースおよびドレインと接続する配線を形成するためにパターン形成されたマスクであり、同時に第2の半導体膜17及び一導電型を有する第3の半導体膜18を取り除きチャネル形成領域を形成するためのエッチングマスクとして併用されるものである。アルミニウムまたはこれを主成分とする導電膜のエッチングはBCl3、Cl2などの塩化物気体を用いて行なえば良い。このエッチング加工で配線23〜26を形成する。また、チャネル形成領域を形成するためのエッチングにはSF6、NF3、CF4などのフッ化物気体を用いてエッチングを行なうが、この場合には下地となる第1の半導体膜16とのエッチング選択比をとれないので、処理時間を適宜調整して行なうこととなる。以上のようにして、チャネルエッチ型のTFTの構造を形成することができる。(図9(A)) Next, a mask 21 is formed. The mask 21 is a mask formed in order to form wirings connected to the source and drain, and at the same time, the second semiconductor film 17 and the third semiconductor film 18 having one conductivity type are removed to form a channel formation region. It is used together as an etching mask. Etching of aluminum or a conductive film containing this as a main component may be performed using a chloride gas such as BCl 3 or Cl 2 . Wirings 23 to 26 are formed by this etching process. Etching for forming a channel formation region is performed using a fluoride gas such as SF 6 , NF 3 , CF 4, etc. In this case, etching with the first semiconductor film 16 serving as a base is performed. Since the selection ratio cannot be taken, the processing time is appropriately adjusted. As described above, a channel-etch TFT structure can be formed. (Fig. 9 (A))

次に、チャネル形成領域の保護を目的とした第3絶縁膜27を、窒化珪素膜で形成する。この窒化珪素膜はスパッタリング法やグロー放電分解法で形成可能であるが、大気中に浮遊する有機物や金属物、水蒸気などの汚染不純物の侵入を防ぐためのものであり、緻密な膜であることが要求される。第3絶縁膜27に窒化珪素膜を用いることで、第1の半導体膜16中の酸素濃度を5×1019atoms/cm3以下、好ましくは1×1019atoms/cm3以下とすることができる。この目的において、珪素をターゲットとして、窒素とアルゴンなどの希ガス元素を混合させたスパッタガスで高周波スパッタリングされた窒化珪素膜で、膜中に希ガス元素を含ませることにより緻密化が促進されることとなる。また、グロー放電分解法においても、珪化物気体をアルゴンなどの希ガスで100倍〜500倍に希釈して形成された窒化珪素膜は、100度以下の低温においても緻密な膜を形成可能であり好ましい。さらに必要があれば第4絶縁膜28を酸化珪素膜で積層形成しても良い。第3絶縁膜27と第4絶縁膜28はパッシベーション膜に相当する。 Next, a third insulating film 27 for the purpose of protecting the channel formation region is formed using a silicon nitride film. This silicon nitride film can be formed by sputtering or glow discharge decomposition, but it is intended to prevent the entry of contaminants such as organic substances, metal substances, and water vapor floating in the atmosphere, and it must be a dense film. Is required. By using a silicon nitride film for the third insulating film 27, the oxygen concentration in the first semiconductor film 16 is set to 5 × 10 19 atoms / cm 3 or less, preferably 1 × 10 19 atoms / cm 3 or less. it can. For this purpose, silicon nitride is a high-frequency sputtered silicon nitride film using silicon as a target and mixed with a rare gas element such as nitrogen and argon, and densification is promoted by including the rare gas element in the film. It will be. Also in the glow discharge decomposition method, a silicon nitride film formed by diluting a silicide gas with a rare gas such as argon 100 to 500 times can form a dense film even at a low temperature of 100 degrees or less. It is preferable. Further, if necessary, the fourth insulating film 28 may be laminated with a silicon oxide film. The third insulating film 27 and the fourth insulating film 28 correspond to a passivation film.

次に、第3絶縁膜27および/または第4絶縁膜28上に、平坦化膜29を形成する。平坦化膜29は、アクリル、ポリイミド、ポリアミドなどの有機樹脂、またはシロキサン系材料を出発材料として形成されたSi−O結合とSi−CHx結晶手を含む絶縁膜で形成することが好ましい。次に、第3絶縁膜27、第4絶縁膜28、平坦化膜29にコンタクトホールを形成し、平坦化膜29上に、各配線23〜26と接続される配線30〜33を形成する。(図9(B))   Next, a planarizing film 29 is formed on the third insulating film 27 and / or the fourth insulating film 28. The planarizing film 29 is preferably formed of an insulating film including Si—O bonds and Si—CHx crystal hands formed using an organic resin such as acrylic, polyimide, or polyamide, or a siloxane-based material as a starting material. Next, contact holes are formed in the third insulating film 27, the fourth insulating film 28, and the planarizing film 29, and wirings 30 to 33 connected to the wirings 23 to 26 are formed on the planarizing film 29. (Fig. 9 (B))

配線30〜33は、Ta、W、Ti、Mo、Al、Cuから選ばれた元素、または前記元素を主成分とする合金もしくは化合物で形成することができる。またこれらの導電膜を積層して用いても良い。例えば1層目がTaで2層目がW、1層目がTaNで2層目がAl、1層目がTaNで2層目がCu、1層目がTiで2層目がAlで3層目がTiといった組み合わせも考えられる。また1層目と2層目のいずれか一方にAgPdCu合金を用いても良い。W、AlとSiの合金(Al−Si)、TiNを順次積層した3層構造としてもよい。Wの代わりに窒化タングステンを用いてもよいし、AlとSiの合金(Al−Si)に代えてAlとTiの合金膜(Al−Ti)を用いてもよいし、TiNに代えてTiを用いてもよい。   The wirings 30 to 33 can be formed of an element selected from Ta, W, Ti, Mo, Al, and Cu, or an alloy or compound containing the element as a main component. Alternatively, these conductive films may be stacked. For example, the first layer is Ta, the second layer is W, the first layer is TaN, the second layer is Al, the first layer is TaN, the second layer is Cu, the first layer is Ti, and the second layer is Al. A combination in which the layer is Ti is also conceivable. Further, an AgPdCu alloy may be used for either the first layer or the second layer. A three-layer structure in which W, an alloy of Al and Si (Al-Si), and TiN are sequentially stacked may be employed. Tungsten nitride may be used instead of W, an alloy film of Al and Ti (Al—Ti) may be used instead of an alloy of Al and Si (Al—Si), and Ti may be used instead of TiN. It may be used.

次に図10(A)に示すように、配線33に接するように、平坦化膜29上画素電極35を形成する。図10では、画素電極35を透明導電膜で形成し、透過型の液晶表示装置を作製する例を示すが、本発明の液晶表示装置はこの構成に限定されない。光を反射しやすい導電膜を用いて画素電極を形成することで、反射型の液晶表示装置を形成することができる。この場合、配線33の一部を画素電極として用いることができる。   Next, as shown in FIG. 10A, the pixel electrode 35 on the planarizing film 29 is formed so as to be in contact with the wiring 33. Although FIG. 10 shows an example in which the pixel electrode 35 is formed of a transparent conductive film and a transmissive liquid crystal display device is manufactured, the liquid crystal display device of the present invention is not limited to this structure. By forming the pixel electrode using a conductive film that easily reflects light, a reflective liquid crystal display device can be formed. In this case, a part of the wiring 33 can be used as a pixel electrode.

以上のようにして形成されたチャネルエッチ型のTFTは、SASでチャネル形成領域を構成することにより2〜10cm2/V・secの電界効果移動度を得ることができる。従って、このTFTを画素のスイッチング用素子として、さらに走査線(ゲート線)側の駆動回路を形成する素子として利用することができる。 The channel-etched TFT formed as described above can obtain a field effect mobility of 2 to 10 cm 2 / V · sec by forming a channel formation region with SAS. Therefore, the TFT can be used as a pixel switching element and an element for forming a driving circuit on the scanning line (gate line) side.

このような、画素のスイッチング素子と走査線側の駆動回路を同じTFTで素子基板は、ゲート電極形成用マスク、半導体領域形成用マスク、配線形成用マスク、コンタクトホール形成用マスク、画素電極形成用マスクの合計5枚のマスクで形成することができる。   The pixel switching element and the scanning line side drive circuit are the same TFT, and the element substrate is a gate electrode forming mask, a semiconductor region forming mask, a wiring forming mask, a contact hole forming mask, and a pixel electrode forming mask. A total of five masks can be formed.

次に、配線32または配線33上に、スペーサ36を絶縁膜で形成する。なお図10(A)では、配線32上にスペーサ36を、酸化珪素を用いて形成した例を示している。画素電極35とスペーサ36は、いずれを先に形成しても良い。   Next, a spacer 36 is formed of an insulating film on the wiring 32 or the wiring 33. Note that FIG. 10A shows an example in which the spacer 36 is formed using silicon oxide over the wiring 32. Either the pixel electrode 35 or the spacer 36 may be formed first.

そして、配線30〜33、スペーサ36、画素電極35を覆うように、配向膜37を成膜し、ラビング処理を施す。   Then, an alignment film 37 is formed so as to cover the wirings 30 to 33, the spacer 36, and the pixel electrode 35, and a rubbing process is performed.

次に図10(B)に示すように、液晶を封止するためのシール材40を形成する。一方、透明導電膜を用いた対向電極43と、ラビング処理が施された配向膜44とが形成された第2の基板42を用意する。そして、シール材40で囲まれた領域に液晶41を滴下し、別途用意しておいた第2の基板42を、対向電極43と画素電極35とが向かい合うように、シール材40を用いて貼り合わせる。なおシール材40にはフィラーが混入されていても良い。   Next, as shown in FIG. 10B, a sealing material 40 for sealing the liquid crystal is formed. On the other hand, a second substrate 42 on which a counter electrode 43 using a transparent conductive film and an alignment film 44 subjected to rubbing treatment are prepared. Then, the liquid crystal 41 is dropped on the region surrounded by the sealing material 40, and a separately prepared second substrate 42 is attached using the sealing material 40 so that the counter electrode 43 and the pixel electrode 35 face each other. Match. The sealing material 40 may be mixed with a filler.

なお、カラーフィルタや、ディスクリネーションを防ぐための遮蔽膜(ブラックマトリクス)などが形成されていても良い。また、偏光板51を、第1の基板10のTFTが形成されている面とは逆の面に貼り合わせ、また第2の基板42の対向電極43が形成されている面とは逆の面に、偏光板52を貼り合わせておく。   Note that a color filter, a shielding film (black matrix) for preventing disclination, or the like may be formed. Further, the polarizing plate 51 is bonded to the surface opposite to the surface of the first substrate 10 on which the TFT is formed, and the surface opposite to the surface on which the counter electrode 43 of the second substrate 42 is formed. The polarizing plate 52 is pasted together.

画素電極35または対向電極43に用いられる透明導電膜は、ITO、IZO、ITSOの他、酸化インジウムに2〜20%の酸化亜鉛(ZnO)を混合した材料を用いることができる。画素電極35と液晶41と対向電極43が重なり合うことで、液晶素子55が形成されている。   The transparent conductive film used for the pixel electrode 35 or the counter electrode 43 may be made of a material in which indium oxide is mixed with 2 to 20% zinc oxide (ZnO) in addition to ITO, IZO, and ITSO. A liquid crystal element 55 is formed by overlapping the pixel electrode 35, the liquid crystal 41, and the counter electrode 43.

上述した液晶の注入は、ディスペンサ式(滴下式)を用いているが、本発明はこれに限定されない。第2の基板を貼り合わせてから毛細管現象を用いて液晶を注入するディップ式(汲み上げ式)を用いていても良い。   The liquid crystal injection described above uses a dispenser type (dropping type), but the present invention is not limited to this. A dip type (pumping type) in which liquid crystal is injected using a capillary phenomenon after the second substrate is bonded may be used.

なお、図7〜図10は、図1に示した構成を有するTFTの作製方法について示したが、図3に示した構成を有するTFTも同様に作製することができる。ただし、図3に示したTFTの場合は、ゲート電極310、320に重畳させて、SASで形成された第1の半導体膜312、322上にチャネル保護膜330、331を形成する点で、図7〜図10と異なっている。   7 to 10 show the manufacturing method of the TFT having the structure shown in FIG. 1, the TFT having the structure shown in FIG. 3 can be similarly manufactured. However, in the case of the TFT shown in FIG. 3, channel protective films 330 and 331 are formed on the first semiconductor films 312 and 322 made of SAS so as to overlap with the gate electrodes 310 and 320, respectively. 7 to 10 are different.

本実施例では、本発明の液晶表示装置が有するセミアモルファスTFTの、一形態について説明する。   In this embodiment, one mode of a semi-amorphous TFT included in the liquid crystal display device of the present invention will be described.

図11(A)に、本実施例のセミアモルファスTFTの上面図を、図11(B)に、図11(A)のA−A’における断面図を示す。1301は、その一部がゲート電極として機能するゲート配線であり、ゲート絶縁膜を1302間に挟んで、セミアモルファス半導体で形成された第1の半導体膜1303と重なっている。また、第1の半導体膜1303と接するように、LDD領域として機能する第2の半導体膜1304a、1304bが形成されており、第2の半導体膜1304a、1304bに接するように、一導電型を有する第3の半導体膜1305a、1305bが形成されている。また1306、1307は、第3の半導体膜1305a、1305bとそれぞれ接する配線に相当する。   FIG. 11A is a top view of the semi-amorphous TFT of this example, and FIG. 11B is a cross-sectional view taken along line A-A ′ of FIG. A part 1301 is a gate wiring functioning as a gate electrode, and overlaps a first semiconductor film 1303 formed of a semi-amorphous semiconductor with a gate insulating film 1302 interposed therebetween. In addition, second semiconductor films 1304a and 1304b functioning as LDD regions are formed so as to be in contact with the first semiconductor film 1303, and have one conductivity type so as to be in contact with the second semiconductor films 1304a and 1304b. Third semiconductor films 1305a and 1305b are formed. Reference numerals 1306 and 1307 correspond to wirings in contact with the third semiconductor films 1305a and 1305b, respectively.

図11に示すセミアモルファスTFTにおいて、第3の半導体膜1305aと第3の半導体膜1305bの間隔を一定にすることで、チャネル長を一定に保つことができる。また、第3の半導体膜1305bの端部を第3の半導体膜1305aで囲むようにレイアウトすることで、チャネル形成領域のドレイン領域側において、電界が集中するのを緩和することができる。さらに、チャネル長に対するチャネル幅の比を高くすることができるので、オン電流を高めることができる。   In the semi-amorphous TFT shown in FIG. 11, the channel length can be kept constant by keeping the distance between the third semiconductor film 1305a and the third semiconductor film 1305b constant. Further, by laying out the end portion of the third semiconductor film 1305b so as to be surrounded by the third semiconductor film 1305a, concentration of an electric field on the drain region side of the channel formation region can be reduced. Furthermore, since the ratio of the channel width to the channel length can be increased, the on-state current can be increased.

本実施例では、極性が全て同一のセミアモルファスTFTを用いた、シフトレジスタの一形態について説明する。図12(A)に、本実施例のシフトレジスタの構成を示す。図12(A)に示すシフトレジスタは、第1のクロック信号CLK、第2のクロック信号CLKb、スタートパルス信号SPを用いて動作する。1401はパルス出力回路であり、その具体的な構成を、図12(B)に示す。   In this embodiment, an example of a shift register using semi-amorphous TFTs having the same polarity will be described. FIG. 12A shows the structure of the shift register of this embodiment. The shift register illustrated in FIG. 12A operates using the first clock signal CLK, the second clock signal CLKb, and the start pulse signal SP. Reference numeral 1401 denotes a pulse output circuit, and its specific structure is shown in FIG.

パルス出力回路1401は、TFT801〜806と、容量素子807を有する。TFT801は、ゲートがノード2に、ソースがTFT805のゲートに接続されており、ドレインに電位Vddが与えられている。TFT802は、ゲートがTFT806のゲートに、ドレインがTFT805のゲートに接続されており、ソースに電位Vssが与えられている。TFT803は、ゲートがノード3に、ソースがTFT806のゲートに接続されており、ドレインに電位Vddが与えられている。TFT804は、ゲートがノード2に、ドレインがTFT805のゲートに接続されており、ソースに電位Vssが与えられている。TFT805は、ゲートが容量素子807の一方の電極に、ドレインがノード1に、ソースが容量素子807の他方の電極及びノード4に接続されている。またTFT806は、ゲートが容量素子807の一方の電極に、ドレインがノード4に接続されており、ソースに電位Vssが与えられている。   The pulse output circuit 1401 includes TFTs 801 to 806 and a capacitor 807. The TFT 801 has a gate connected to the node 2, a source connected to the gate of the TFT 805, and a potential Vdd applied to the drain. The TFT 802 has a gate connected to the gate of the TFT 806, a drain connected to the gate of the TFT 805, and a potential Vss applied to the source. The TFT 803 has a gate connected to the node 3, a source connected to the gate of the TFT 806, and a potential Vdd applied to the drain. The TFT 804 has a gate connected to the node 2, a drain connected to the gate of the TFT 805, and a potential Vss applied to the source. The TFT 805 has a gate connected to one electrode of the capacitor 807, a drain connected to the node 1, and a source connected to the other electrode of the capacitor 807 and the node 4. The TFT 806 has a gate connected to one electrode of the capacitor 807, a drain connected to the node 4, and a potential Vss applied to the source.

次に、図12(B)に示すパルス出力回路1401の動作について説明する。ただし、CLK、CLKb、SPは、HレベルのときVdd、LレベルのときVssとし、さらに説明を簡単にするためVss=0と仮定する。   Next, operation of the pulse output circuit 1401 illustrated in FIG. However, it is assumed that CLK, CLKb, and SP are Vdd when the signal is at the H level and Vss when the signal is at the L level, and Vss = 0 for simplifying the description.

SPがHレベルになると、TFT801がオンになるため、TFT805のゲートの電位が上昇していく。そして最終的には、TFT805のゲートの電位がVdd−Vth(VthはTFT801〜806のしきい値とする)となったところで、TFT801がオフし、浮遊状態となる。一方、SPがHレベルになるとTFT804がオンになるため、TFT802、806のゲートの電位は下降し、最終的にはVssとなり、TFT802、806はオフになる。TFT803のゲートは、このときLレベルとなっており、オフしている。   When SP becomes H level, the TFT 801 is turned on, so that the gate potential of the TFT 805 rises. Finally, when the gate potential of the TFT 805 becomes Vdd-Vth (Vth is a threshold value of the TFTs 801 to 806), the TFT 801 is turned off and enters a floating state. On the other hand, when SP becomes H level, the TFT 804 is turned on, so that the gate potentials of the TFTs 802 and 806 are lowered to finally Vss, and the TFTs 802 and 806 are turned off. At this time, the gate of the TFT 803 is at the L level and is turned off.

次にSPはLレベルとなり、TFT801、804がオフし、TFT805のゲートの電位がVdd−Vthで保持される。ここで、TFT805のゲート・ソース間電圧がそのしきい値Vthを上回っていれば、TFT805がオンする。   Next, SP becomes L level, the TFTs 801 and 804 are turned off, and the gate potential of the TFT 805 is held at Vdd−Vth. Here, if the gate-source voltage of the TFT 805 exceeds the threshold value Vth, the TFT 805 is turned on.

次に、ノード1に与えられているCLKがLレベルからHレベルに変わると、TFT805がオンしているので、ノード4、すなわちTFT805のソースの電位が上昇を始める。そしてTFT805のゲート・ソース間には容量素子807による容量結合が存在しているため、ノード4の電位上昇に伴い、浮遊状態となっているTFT805のゲートの電位が再び上昇する。最終的には、TFT805のゲートの電位は、Vdd+Vthよりも高くなり、ノード4の電位はVddに等しくなる。そして、上述の動作を2段目以降のパルス出力回路1401において同様行なわれ、順にパルスが出力される。   Next, when the CLK applied to the node 1 changes from the L level to the H level, the TFT 805 is turned on, so that the potential of the node 4, that is, the source of the TFT 805 starts to rise. Since capacitive coupling due to the capacitive element 807 exists between the gate and the source of the TFT 805, the potential of the gate of the TFT 805 in a floating state rises again as the potential of the node 4 rises. Eventually, the potential of the gate of the TFT 805 becomes higher than Vdd + Vth, and the potential of the node 4 becomes equal to Vdd. Then, the above-described operation is similarly performed in the pulse output circuit 1401 in the second and subsequent stages, and pulses are output in order.

本実施例では、本発明の液晶表示装置の一形態に相当するパネルの外観について、図13を用いて説明する。図13は、第1の基板4001上に形成されたセミアモルファスTFT4010及び液晶素子4011を、第2の基板4006との間にシール材4005によって封止した、パネルの上面図であり、図13(B)は、図13(A)のA−A’における断面図に相当する。   In this embodiment, the appearance of a panel corresponding to one embodiment of the liquid crystal display device of the present invention will be described with reference to FIG. FIG. 13 is a top view of a panel in which a semi-amorphous TFT 4010 and a liquid crystal element 4011 formed over the first substrate 4001 are sealed with a sealant 4005 between the second substrate 4006 and FIG. FIG. 13B corresponds to a cross-sectional view taken along line AA ′ of FIG.

第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲むようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006とによって、液晶4007と共に封止されている。また第1の基板4001上のシール材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に多結晶半導体膜で形成された信号線駆動回路4003が実装されている。なお本実施例では、多結晶半導体膜を用いたTFTを有する信号線駆動回路を、第1の基板4001に貼り合わせる例について説明するが、単結晶半導体を用いたトランジスタで信号線駆動回路を形成し、貼り合わせるようにしても良い。図13では、信号線駆動回路4003に含まれる、多結晶半導体膜で形成されたTFT4009を例示する。   A sealant 4005 is provided so as to surround the pixel portion 4002 provided over the first substrate 4001 and the scan line driver circuit 4004. A second substrate 4006 is provided over the pixel portion 4002 and the scan line driver circuit 4004. Therefore, the pixel portion 4002 and the scan line driver circuit 4004 are sealed together with the liquid crystal 4007 by the first substrate 4001, the sealant 4005, and the second substrate 4006. In addition, a signal line driver circuit 4003 formed using a polycrystalline semiconductor film is mounted over a separately prepared substrate in a region different from the region surrounded by the sealant 4005 over the first substrate 4001. Note that in this embodiment, an example in which a signal line driver circuit including a TFT using a polycrystalline semiconductor film is attached to the first substrate 4001 is described; however, the signal line driver circuit is formed using a transistor using a single crystal semiconductor. However, they may be bonded together. FIG. 13 illustrates a TFT 4009 formed of a polycrystalline semiconductor film that is included in the signal line driver circuit 4003.

また第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、TFTを複数有しており、図13(B)では、画素部4002に含まれるTFT4010とを例示している。TFT4010はセミアモルファス半導体を用いたTFTに相当する。   In addition, the pixel portion 4002 provided over the first substrate 4001 and the scan line driver circuit 4004 each include a plurality of TFTs. FIG. 13B illustrates the TFT 4010 included in the pixel portion 4002 as an example. Yes. The TFT 4010 corresponds to a TFT using a semi-amorphous semiconductor.

また4011は液晶素子に相当し、液晶素子4011が有する画素電極4030は、TFT4010と配線4040、配線4041を介して電気的に接続されている。そして液晶素子4011の対向電極4031は第2の基板4006上に形成されている。画素電極4030と対向電極4031と液晶4007とが重なっている部分が、液晶素子4011に相当する。   Reference numeral 4011 corresponds to a liquid crystal element, and a pixel electrode 4030 included in the liquid crystal element 4011 is electrically connected to the TFT 4010 through a wiring 4040 and a wiring 4041. The counter electrode 4031 of the liquid crystal element 4011 is formed over the second substrate 4006. A portion where the pixel electrode 4030, the counter electrode 4031, and the liquid crystal 4007 overlap corresponds to the liquid crystal element 4011.

また4035は球状のスペーサであり、画素電極4030と対向電極4031との間の距離(セルギャップ)を制御するために設けられている。なお絶縁膜をパターニングすることで得られるスペーサを用いていても良い。   Reference numeral 4035 denotes a spherical spacer, which is provided to control the distance (cell gap) between the pixel electrode 4030 and the counter electrode 4031. Note that a spacer obtained by patterning the insulating film may be used.

また別途形成された信号線駆動回路4003と、走査線駆動回路4004または画素部4002に与えられる各種信号及び電位は、図13(B)に示す断面図では図示されていないが、引き回し配線4014及び4015を介して、接続端子4016から供給されている。   Further, a variety of signals and potentials are supplied to the signal line driver circuit 4003 which is formed separately, the scan line driver circuit 4004, or the pixel portion 4002, although they are not shown in the cross-sectional view in FIG. It is supplied from the connection terminal 4016 via 4015.

本実施例では、接続端子4016が、液晶素子4011が有する画素電極4030と同じ導電膜から形成されている。また、引き回し配線4014は、配線4041と同じ導電膜で形成されている。また引き回し配線4015は、配線4040と同じ導電膜で形成されている。   In this embodiment, the connection terminal 4016 is formed using the same conductive film as the pixel electrode 4030 included in the liquid crystal element 4011. In addition, the lead wiring 4014 is formed using the same conductive film as the wiring 4041. The lead wiring 4015 is formed using the same conductive film as the wiring 4040.

接続端子4016は、FPC4018が有する端子と、異方性導電膜4019を介して電気的に接続されている。   The connection terminal 4016 is electrically connected to a terminal included in the FPC 4018 through an anisotropic conductive film 4019.

なお、第1の基板4001、第2の基板4006としては、ガラス、セラミックス、プラスチックを用いることができる。プラスチックとしては、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、マイラーフィルム、ポリエステルフィルムまたはアクリル樹脂フィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやマイラーフィルムで挟んだ構造のシートを用いることもできる。   Note that as the first substrate 4001 and the second substrate 4006, glass, ceramics, or plastic can be used. As the plastic, an FRP (Fiberglass-Reinforced Plastics) plate, a PVF (polyvinyl fluoride) film, a mylar film, a polyester film, or an acrylic resin film can be used. A sheet having a structure in which an aluminum foil is sandwiched between PVF films or mylar films can also be used.

但し、液晶素子4011からの光の取り出し方向に位置する基板には、第2の基板は透明でなければならない。その場合には、ガラス板、プラスチック、ポリエステルフィルムまたはアクリルフィルムのような透光性を有する材料を用いる。   However, the second substrate must be transparent to the substrate located in the direction in which light is extracted from the liquid crystal element 4011. In that case, a light-transmitting material such as a glass plate, a plastic, a polyester film, or an acrylic film is used.

なお図示していないが、本実施例に示した液晶表示装置は配向膜、偏光板を有し、更にカラーフィルタや遮蔽膜を有していても良い。   Although not shown, the liquid crystal display device described in this embodiment includes an alignment film and a polarizing plate, and may further include a color filter and a shielding film.

また図13では、信号線駆動回路4003を別途形成し、第1の基板4001に実装している例を示しているが、本実施例はこの構成に限定されない。走査線駆動回路を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部のみを別途形成して実装しても良い。   FIG. 13 illustrates an example in which the signal line driver circuit 4003 is separately formed and mounted on the first substrate 4001; however, this embodiment is not limited to this structure. The scan line driver circuit may be separately formed and then mounted, or only part of the signal line driver circuit or part of the scan line driver circuit may be separately formed and then mounted.

本実施例は、他の実施例に記載した構成と組み合わせて実施することが可能である。   This embodiment can be implemented in combination with the structure described in other embodiments.

本発明の液晶表示装置を用いた電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、ノート型パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDVD:Digital Versatile Disc)等の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。本発明では、半導体膜の成膜後に結晶化の工程を設ける必要がないので、比較的パネルの大型化が容易であるため、10〜50インチの大型のパネルを用いた電子機器に非常に有用である。それら電子機器の具体例を図14に示す。   As an electronic device using the liquid crystal display device of the present invention, a video camera, a digital camera, a goggle type display (head mounted display), a navigation system, a sound reproduction device (car audio, audio component, etc.), a notebook type personal computer, a game device A portable information terminal (mobile computer, cellular phone, portable game machine, electronic book or the like), an image reproducing device (specifically, a DVD: Digital Versatile Disc) equipped with a recording medium, and the like And the like). In the present invention, since it is not necessary to provide a crystallization step after the formation of the semiconductor film, it is relatively easy to increase the size of the panel. Therefore, the present invention is very useful for an electronic device using a large panel of 10 to 50 inches. It is. Specific examples of these electronic devices are shown in FIGS.

図14(A)は表示装置であり、筐体2001、支持台2002、表示部2003、スピーカー部2004、ビデオ入力端子2005等を含む。本発明の液晶表示装置を表示部2003に用いることで、本発明の表示装置が完成する。液晶表示装置は自発光型であるためバックライトが必要なく、液晶ディスプレイよりも薄い表示部とすることができる。なお、液晶素子表示装置は、パーソナルコンピュータ用、TV放送受信用、広告表示用などの全ての情報表示用表示装置が含まれる。   FIG. 14A illustrates a display device, which includes a housing 2001, a support base 2002, a display portion 2003, a speaker portion 2004, a video input terminal 2005, and the like. By using the liquid crystal display device of the present invention for the display portion 2003, the display device of the present invention is completed. Since the liquid crystal display device is a self-luminous type, a backlight is not required and a display portion thinner than a liquid crystal display can be obtained. The liquid crystal element display device includes all information display devices for personal computers, TV broadcast reception, advertisement display, and the like.

図14(B)はノート型パーソナルコンピュータであり、本体2201、筐体2202、表示部2203、キーボード2204、外部接続ポート2205、ポインティングマウス2206等を含む。本発明の液晶表示装置を表示部2203に用いることで、本発明のノート型パーソナルコンピュータが完成する。   FIG. 14B shows a laptop personal computer, which includes a main body 2201, a housing 2202, a display portion 2203, a keyboard 2204, an external connection port 2205, a pointing mouse 2206, and the like. The notebook personal computer of the present invention is completed by using the liquid crystal display device of the present invention for the display portion 2203.

図14(C)は記録媒体を備えた携帯型の画像再生装置(具体的にはDVD再生装置)であり、本体2401、筐体2402、表示部A2403、表示部B2404、記録媒体(DVD等)読み込み部2405、操作キー2406、スピーカー部2407等を含む。表示部A2403は主として画像情報を表示し、表示部B2404は主として文字情報を表示する。なお、記録媒体を備えた画像再生装置には家庭用ゲーム機器なども含まれる。本発明の液晶表示装置を表示部A2403、B2404に用いることで、本発明の画像再生装置が完成する。   FIG. 14C illustrates a portable image reproducing device (specifically, a DVD reproducing device) provided with a recording medium, which includes a main body 2401, a housing 2402, a display portion A2403, a display portion B2404, and a recording medium (DVD or the like). A reading unit 2405, operation keys 2406, a speaker unit 2407, and the like are included. A display portion A2403 mainly displays image information, and a display portion B2404 mainly displays character information. Note that an image reproducing device provided with a recording medium includes a home game machine and the like. By using the liquid crystal display device of the present invention for the display portions A2403 and B2404, the image reproducing device of the present invention is completed.

以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に用いることが可能である。また、本実施例の電子機器は、実施例1〜3に示したいずれの構成の液晶表示装置を用いても良い。   As described above, the applicable range of the present invention is so wide that it can be used for electronic devices in various fields. Further, the electronic apparatus of this embodiment may use the liquid crystal display device having any configuration shown in the first to third embodiments.

本発明の液晶表示装置の断面図。Sectional drawing of the liquid crystal display device of this invention. 本発明の液晶表示装置における画素の回路図及び断面図。4A is a circuit diagram and a cross-sectional view of a pixel in a liquid crystal display device of the present invention; 本発明の液晶表示装置の断面図。Sectional drawing of the liquid crystal display device of this invention. 本発明の液晶表示装置における、素子基板の一形態を示す図。FIG. 4 is a diagram showing one embodiment of an element substrate in the liquid crystal display device of the present invention. 本発明の液晶表示装置における、素子基板の一形態を示す図。FIG. 4 is a diagram showing one embodiment of an element substrate in the liquid crystal display device of the present invention. 本発明の液晶表示装置の構成を示すブロック図。1 is a block diagram illustrating a configuration of a liquid crystal display device of the present invention. 本発明の液晶表示装置の作製工程を示す図。4A and 4B illustrate a manufacturing process of a liquid crystal display device of the present invention. 本発明の液晶表示装置の作製工程を示す図。4A and 4B illustrate a manufacturing process of a liquid crystal display device of the present invention. 本発明の液晶表示装置の作製工程を示す図。4A and 4B illustrate a manufacturing process of a liquid crystal display device of the present invention. 本発明の液晶表示装置の作製工程を示す図。4A and 4B illustrate a manufacturing process of a liquid crystal display device of the present invention. 本発明の液晶表示装置におけるセミアモルファスTFTの一形態を示す図。FIG. 3 is a diagram showing one mode of a semi-amorphous TFT in a liquid crystal display device of the present invention. 本発明の液晶表示装置に用いられる、シフトレジスタの一形態を示す図。FIG. 14 illustrates one mode of a shift register used in the liquid crystal display device of the present invention. 本発明の液晶表示装置の上面図及び断面図。2A and 2B are a top view and a cross-sectional view of a liquid crystal display device of the present invention. 本発明の液晶表示装置を用いた電子機器の図。FIG. 11 is a diagram of an electronic device using the liquid crystal display device of the present invention.

符号の説明Explanation of symbols

100 基板
101 TFT
102 TFT
103 液晶素子
110 ゲート電極
111 ゲート絶縁膜
112 半導体膜
113 半導体膜
114 半導体膜
115 配線
120 ゲート電極
122 半導体膜
123 半導体膜
124 半導体膜
125 配線
130 画素電極
131 配向膜
140 パッシベーション膜
141 パッシベーション膜
142 配向膜
143 液晶
150 偏光板
151 偏光板
160 配線
161 スペーサ
162 シール材
170 基板
171 対向電極
201 スイッチング用TFT
202 液晶素子
203 容量素子
204 画素電極
300 基板
301 TFT
302 TFT
303 液晶素子
310 ゲート電極
311 ゲート絶縁膜
312 半導体膜
313 半導体膜
314 半導体膜
315 配線
325 配線
330 チャネル保護膜
340 パッシベーション膜
341 パッシベーション膜
342 配向膜
343 液晶
360 配線
361 スペーサ
362 シール材
370 画素電極
371 配向膜
372 基板
373 対向電極
100 Substrate 101 TFT
102 TFT
103 Liquid crystal element 110 Gate electrode 111 Gate insulating film 112 Semiconductor film 113 Semiconductor film 114 Semiconductor film 115 Wiring 120 Gate electrode 122 Semiconductor film 123 Semiconductor film 124 Semiconductor film 125 Wiring 130 Pixel electrode 131 Alignment film 140 Passivation film 141 Passivation film 142 Alignment film 143 Liquid crystal 150 Polarizing plate 151 Polarizing plate 160 Wiring 161 Spacer 162 Sealing material 170 Substrate 171 Counter electrode 201 Switching TFT
202 Liquid crystal element 203 Capacitor element 204 Pixel electrode 300 Substrate 301 TFT
302 TFT
303 Liquid crystal element 310 Gate electrode 311 Gate insulating film 312 Semiconductor film 313 Semiconductor film 314 Semiconductor film 315 Wiring 325 Wiring 330 Channel protection film 340 Passivation film 341 Passivation film 342 Alignment film 343 Liquid crystal 360 Wiring 361 Spacer 362 Sealing material 370 Pixel electrode 371 Alignment Film 372 Substrate 373 Counter electrode

Claims (9)

画素部と、前記画素部の動作を制御するための駆動回路とを有し
前記画素部には、液晶素子と、前記液晶素子に印加される電圧を制御するTFTとを有する画素が設けられており、
前記駆動回路が有するTFTと、前記液晶素子に印加される電圧を制御するTFTとは、チャネル形成領域にセミアモルファス半導体が用いられていることを特徴とする液晶表示装置。
And a drive circuit for controlling the pixel unit, the operation of the pixel portion,
In the pixel portion, a pixel having a liquid crystal element and a TFT for controlling a voltage applied to the liquid crystal element is provided,
A liquid crystal display device characterized in that a semi-amorphous semiconductor is used in a channel formation region of the TFT included in the driver circuit and the TFT that controls a voltage applied to the liquid crystal element.
画素部と、前記画素部の動作を制御するための駆動回路とを有し
前記画素部には、液晶素子と、前記液晶素子に印加される電圧を制御するTFTとを有する画素が設けられており、
前記駆動回路が有するTFTと、前記液晶素子に印加される電圧を制御するTFTとは、ゲート電極と前記ゲート電極上に形成されたゲート絶縁膜と、前記ゲート絶縁膜を間に挟んで前記ゲート電極と重なっている第1の半導体膜と、前記第1の半導体膜上に形成された一対の第2の半導体膜とを有し、
前記一対の第2の半導体膜には一導電型を付与する不純物が添加されており、
前記第1の半導体膜はセミアモルファス半導体で形成されていることを特徴とする液晶表示装置。
And a drive circuit for controlling the pixel unit, the operation of the pixel portion,
In the pixel portion, a pixel having a liquid crystal element and a TFT for controlling a voltage applied to the liquid crystal element is provided,
The TFT included in the driving circuit and the TFT for controlling the voltage applied to the liquid crystal element include a gate electrode, a gate insulating film formed on the gate electrode, and the gate sandwiching the gate insulating film therebetween. A first semiconductor film overlapping the electrode, and a pair of second semiconductor films formed on the first semiconductor film,
An impurity imparting one conductivity type is added to the pair of second semiconductor films,
The liquid crystal display device, wherein the first semiconductor film is formed of a semi-amorphous semiconductor.
画素部と、前記画素部の動作を制御するための駆動回路とを有し
前記画素部には、液晶素子と、前記液晶素子に印加される電圧を制御するTFTとを有する画素が設けられており、
前記駆動回路が有するTFTと、前記液晶素子に印加される電圧を制御するTFTとは、ゲート電極と前記ゲート電極上に形成されたゲート絶縁膜と、前記ゲート絶縁膜を間に挟んで前記ゲート電極と重なっている第1の半導体膜と、前記第1の半導体膜上に形成された一対の第2の半導体膜と、前記第1の半導体膜と前記一対の第2の半導体膜の間に、前記一対の第2の半導体膜と重なるように設けられた一対の第3の半導体膜とを有し、
前記一対の第2の半導体膜には一導電型を付与する不純物が添加されており、
前記第1の半導体膜には、前記一導電型を付与する不純物とは逆の導電型を付与する不純物が添加されており、
前記第1の半導体膜はセミアモルファス半導体で形成されていることを特徴とする液晶表示装置。
And a drive circuit for controlling the pixel unit, the operation of the pixel portion,
In the pixel portion, a pixel having a liquid crystal element and a TFT for controlling a voltage applied to the liquid crystal element is provided,
The TFT included in the driving circuit and the TFT for controlling the voltage applied to the liquid crystal element include a gate electrode, a gate insulating film formed on the gate electrode, and the gate sandwiching the gate insulating film therebetween. A first semiconductor film overlapping with the electrode; a pair of second semiconductor films formed on the first semiconductor film; and between the first semiconductor film and the pair of second semiconductor films. A pair of third semiconductor films provided so as to overlap with the pair of second semiconductor films,
An impurity imparting one conductivity type is added to the pair of second semiconductor films,
An impurity imparting a conductivity type opposite to the impurity imparting the one conductivity type is added to the first semiconductor film,
The liquid crystal display device, wherein the first semiconductor film is formed of a semi-amorphous semiconductor.
画素部と、前記画素部の動作を制御するための駆動回路とを有し
前記画素部には、液晶素子と、前記液晶素子に印加される電圧を制御するTFTとを有する画素が設けられており、
前記駆動回路が有するTFTと、前記液晶素子に印加される電圧を制御するTFTとは、ゲート電極と前記ゲート電極上に形成されたゲート絶縁膜と、前記ゲート絶縁膜を間に挟んで前記ゲート電極と重なっている第1の半導体膜と、前記ゲート絶縁膜及び前記第1の半導体膜を間に挟んで前記ゲート電極と重なっているチャネル保護膜と、前記第1の半導体膜上に形成された一対の第2の半導体膜とを有し、
前記一対の第2の半導体膜の間に前記チャネル保護膜が位置しており、
前記一対の第2の半導体膜には一導電型を付与する不純物が添加されており、
前記第1の半導体膜はセミアモルファス半導体で形成されていることを特徴とする液晶表示装置。
And a drive circuit for controlling the pixel unit, the operation of the pixel portion,
In the pixel portion, a pixel having a liquid crystal element and a TFT for controlling a voltage applied to the liquid crystal element is provided,
The TFT included in the driving circuit and the TFT for controlling the voltage applied to the liquid crystal element include a gate electrode, a gate insulating film formed on the gate electrode, and the gate sandwiching the gate insulating film therebetween. A first semiconductor film overlapping the electrode; a channel protective film overlapping the gate electrode with the gate insulating film and the first semiconductor film interposed therebetween; and a first semiconductor film formed on the first semiconductor film. A pair of second semiconductor films,
The channel protective film is located between the pair of second semiconductor films;
An impurity imparting one conductivity type is added to the pair of second semiconductor films,
The liquid crystal display device, wherein the first semiconductor film is formed of a semi-amorphous semiconductor.
画素部と、前記画素部の動作を制御するための駆動回路とを有し
前記画素部には、液晶素子と、前記液晶素子に印加される電圧を制御するTFTとを有する画素が設けられており、
前記駆動回路が有するTFTと、前記液晶素子に印加される電圧を制御するTFTとは、ゲート電極と前記ゲート電極上に形成されたゲート絶縁膜と、前記ゲート絶縁膜を間に挟んで前記ゲート電極と重なっている第1の半導体膜と、前記ゲート絶縁膜及び前記第1の半導体膜を間に挟んで前記ゲート電極と重なっているチャネル保護膜と、前記第1の半導体膜上に形成された一対の第2の半導体膜と、前記第1の半導体膜と前記一対の第2の半導体膜の間に、前記一対の第2の半導体膜と重なるように設けられた一対の第3の半導体膜とを有し、
前記一対の第2の半導体膜には一導電型を付与する不純物が添加されており、
前記第1の半導体膜には、前記一導電型を付与する不純物とは逆の導電型を付与する不純物が添加されており、
前記第1の半導体膜はセミアモルファス半導体で形成されていることを特徴とする液晶表示装置。
And a drive circuit for controlling the pixel unit, the operation of the pixel portion,
In the pixel portion, a pixel having a liquid crystal element and a TFT for controlling a voltage applied to the liquid crystal element is provided,
The TFT included in the driving circuit and the TFT for controlling the voltage applied to the liquid crystal element include a gate electrode, a gate insulating film formed on the gate electrode, and the gate sandwiching the gate insulating film therebetween. A first semiconductor film overlapping the electrode; a channel protective film overlapping the gate electrode with the gate insulating film and the first semiconductor film interposed therebetween; and a first semiconductor film formed on the first semiconductor film. A pair of second semiconductor films, and a pair of third semiconductors provided between the first semiconductor film and the pair of second semiconductor films so as to overlap the pair of second semiconductor films And having a membrane
An impurity imparting one conductivity type is added to the pair of second semiconductor films,
An impurity imparting a conductivity type opposite to the impurity imparting the one conductivity type is added to the first semiconductor film,
The liquid crystal display device, wherein the first semiconductor film is formed of a semi-amorphous semiconductor.
請求項2乃至請求項5のいずれか1項において、前記一導電型はn型であることを特徴とする液晶表示装置。   6. The liquid crystal display device according to claim 2, wherein the one conductivity type is an n-type. 請求項1乃至請求項6のいずれか1項において、前記駆動回路が有するTFTと、前記液晶素子に印加される電圧を制御するTFTとは、窒化膜または窒化酸化ケイ素膜で覆われていることを特徴とする液晶表示装置。   7. The TFT included in the driving circuit and the TFT that controls a voltage applied to the liquid crystal element are covered with a nitride film or a silicon nitride oxide film according to claim 1. A liquid crystal display device. 請求項1乃至請求項7のいずれか1項において、前記液晶素子に印加される電圧を制御するTFTはマルチゲート構造を有することを特徴とする液晶表示装置。   8. The liquid crystal display device according to claim 1, wherein the TFT that controls a voltage applied to the liquid crystal element has a multi-gate structure. 請求項1乃至請求項8のいずれか1項において、前記駆動回路はアナログスイッチを含むことを特徴とする液晶表示装置。
9. The liquid crystal display device according to claim 1, wherein the driving circuit includes an analog switch.
JP2004182073A 2003-07-14 2004-06-21 Liquid crystal display Expired - Fee Related JP4748954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182073A JP4748954B2 (en) 2003-07-14 2004-06-21 Liquid crystal display

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003273869 2003-07-14
JP2003273869 2003-07-14
JP2004182073A JP4748954B2 (en) 2003-07-14 2004-06-21 Liquid crystal display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010135678A Division JP2010250341A (en) 2003-07-14 2010-06-15 Liquid crystal display device and electronic device

Publications (3)

Publication Number Publication Date
JP2005049832A true JP2005049832A (en) 2005-02-24
JP2005049832A5 JP2005049832A5 (en) 2007-06-21
JP4748954B2 JP4748954B2 (en) 2011-08-17

Family

ID=34277498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182073A Expired - Fee Related JP4748954B2 (en) 2003-07-14 2004-06-21 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP4748954B2 (en)

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221137A (en) * 2006-02-17 2007-08-30 Samsung Electronics Co Ltd Method of forming silicon layer, and method of manufacturing display substrate using same
JP2009111365A (en) * 2007-10-05 2009-05-21 Semiconductor Energy Lab Co Ltd Thin film transistor, display device having thin film transistor, and method of manufacturing the same
EP2073255A2 (en) 2007-12-21 2009-06-24 Semiconductor Energy Laboratory Co., Ltd. Diode and display device comprising diode
US7611930B2 (en) 2007-08-17 2009-11-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing display device
JP2009278082A (en) * 2008-04-18 2009-11-26 Semiconductor Energy Lab Co Ltd Thin film transistor and manufacturing method thereof
US7633089B2 (en) 2007-07-26 2009-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device provided with the same
US7738050B2 (en) 2007-07-06 2010-06-15 Semiconductor Energy Laboratory Co., Ltd Liquid crystal display device
US7736933B2 (en) 2007-07-27 2010-06-15 Semiconductor Energy Laboratory Co., Ltd Method for manufacturing photoelectric conversion device
US7768009B2 (en) 2007-08-31 2010-08-03 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same
US7786485B2 (en) 2008-02-29 2010-08-31 Semicondutor Energy Laboratory Co., Ltd. Thin-film transistor and display device
US7791075B2 (en) 2007-09-07 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US7808000B2 (en) 2007-10-05 2010-10-05 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
US7812348B2 (en) 2008-02-29 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and display device
US7821012B2 (en) 2008-03-18 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US7842586B2 (en) 2007-08-17 2010-11-30 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus, method for manufacturing microcrystalline semiconductor layer, and method for manufacturing thin film transistor
US7897971B2 (en) 2007-07-26 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device
KR20110023888A (en) 2008-06-27 2011-03-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor, semiconductor device and electronic device
US7910929B2 (en) 2007-12-18 2011-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7923730B2 (en) 2007-12-03 2011-04-12 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and semiconductor device
US7940345B2 (en) 2007-07-20 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2011100994A (en) * 2009-10-09 2011-05-19 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
US7968885B2 (en) 2007-08-07 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US7968879B2 (en) 2007-12-28 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including the same
US7968880B2 (en) 2008-03-01 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device
US7994502B2 (en) 2007-12-03 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7998800B2 (en) 2007-07-06 2011-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7998801B2 (en) 2008-04-25 2011-08-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor having altered semiconductor layer
US8008169B2 (en) 2007-12-28 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US8017946B2 (en) 2007-08-17 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having microcrystalline semiconductor layer and amorphous semiconductor layer
US8022405B2 (en) 2007-07-20 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US8030147B2 (en) 2007-09-14 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor and display device including the thin film transistor
US8030655B2 (en) 2007-12-03 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor
JP2011205077A (en) * 2010-03-02 2011-10-13 Semiconductor Energy Lab Co Ltd Method of forming microcrystalline semiconductor film and method of manufacturing semiconductor device
US8039842B2 (en) 2008-05-22 2011-10-18 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including thin film transistor
US8049215B2 (en) 2008-04-25 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8053294B2 (en) 2008-04-21 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor by controlling generation of crystal nuclei of microcrystalline semiconductor film
KR20110126745A (en) 2009-03-09 2011-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor
JP2011258937A (en) * 2010-05-14 2011-12-22 Semiconductor Energy Lab Co Ltd Microcrystalline silicon film and method of depositing the same, and semiconductor device
US8093112B2 (en) 2007-07-20 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US8101444B2 (en) 2007-08-17 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8106398B2 (en) 2007-10-23 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline semiconductor film, thin film transistor, and display device including thin film transistor
US8114760B2 (en) 2009-10-23 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor and thin film transistor
US8119468B2 (en) 2008-04-18 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method for manufacturing the same
US8120030B2 (en) 2008-12-11 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device
US8124972B2 (en) 2008-04-25 2012-02-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8168973B2 (en) 2008-05-16 2012-05-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8178398B2 (en) 2007-07-27 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of display device
US8187956B2 (en) 2007-12-03 2012-05-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor film, thin film transistor having microcrystalline semiconductor film, and photoelectric conversion device having microcrystalline semiconductor film
US8207010B2 (en) 2007-06-05 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US8222640B2 (en) 2007-08-07 2012-07-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device having the display device, and method for manufacturing thereof
US8227278B2 (en) 2008-09-05 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8247315B2 (en) 2008-03-17 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method for manufacturing semiconductor device
US8253138B2 (en) 2007-11-05 2012-08-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device having the thin film transistor
US8258025B2 (en) 2009-08-07 2012-09-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and thin film transistor
US8283667B2 (en) 2008-09-05 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8284142B2 (en) 2008-09-30 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Display device
US8299467B2 (en) 2009-12-28 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and fabrication method thereof
US8300168B2 (en) 2007-06-15 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Display device comprising an antioxidant film formed on a microcrystalline semiconductor film wherein the antioxidant film has a recessed portion overlapping a channel region
US8304779B2 (en) 2007-11-01 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, and display device having the thin film transistor
US8330887B2 (en) 2007-07-27 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US8334537B2 (en) 2007-07-06 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US8338240B2 (en) 2010-10-01 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing transistor
US8343857B2 (en) 2010-04-27 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of microcrystalline semiconductor film and manufacturing method of semiconductor device
US8344380B2 (en) 2008-12-11 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device
US8349671B2 (en) 2007-09-03 2013-01-08 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8383434B2 (en) 2010-02-22 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and manufacturing method thereof
US8394685B2 (en) 2010-12-06 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Etching method and manufacturing method of thin film transistor
US8395156B2 (en) 2009-11-24 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Display device
US8410486B2 (en) 2010-05-14 2013-04-02 Semiconductor Energy Labortory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device
US8426295B2 (en) 2010-10-20 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of microcrystalline silicon film and manufacturing method of semiconductor device
US8436353B2 (en) 2008-09-16 2013-05-07 Sharp Kabushiki Kaisha Thin film transistor with recess
US8450158B2 (en) 2010-11-04 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8486773B2 (en) 2010-07-02 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8518762B2 (en) 2010-07-02 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8519394B2 (en) 2010-03-15 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8525170B2 (en) 2008-04-18 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and manufacturing method thereof
US8530897B2 (en) 2008-12-11 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Display device including an inverter circuit having a microcrystalline layer
US8541785B2 (en) 2008-02-15 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Display device
US8546810B2 (en) 2009-05-28 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device, and electronic appliance
US8569120B2 (en) 2008-11-17 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor
US8575608B2 (en) 2009-12-21 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and manufacturing method thereof
US8591650B2 (en) 2007-12-03 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for forming crystalline semiconductor film, method for manufacturing thin film transistor, and method for manufacturing display device
US8598586B2 (en) 2009-12-21 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and manufacturing method thereof
US8624254B2 (en) 2010-09-14 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8624321B2 (en) 2008-03-18 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor including a microcrystalline semiconductor layer and amorphous semiconductor layer and display device including the same
US8637866B2 (en) 2008-06-27 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8643812B2 (en) 2009-10-19 2014-02-04 Samsung Display Co., Ltd. Display substrate, method of manufacturing the same and display device having the same
US8647933B2 (en) 2007-06-01 2014-02-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and display device
US8704230B2 (en) 2010-08-26 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8735897B2 (en) 2010-03-15 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8778745B2 (en) 2010-06-29 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8786793B2 (en) 2007-07-27 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8822997B2 (en) 2007-09-21 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Electrophoretic display device and method for manufacturing thereof
US8828859B2 (en) 2011-02-11 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Method for forming semiconductor film and method for manufacturing semiconductor device
US8829522B2 (en) 2009-12-21 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8859404B2 (en) 2010-08-25 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
KR101457656B1 (en) 2007-05-17 2014-11-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor device, manufacturing method of display device, semiconductor device, display device, and electronic device
US8916425B2 (en) 2010-07-26 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8921858B2 (en) 2007-06-29 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9048327B2 (en) 2011-01-25 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline semiconductor film, method for manufacturing the same, and method for manufacturing semiconductor device
US9054206B2 (en) 2007-08-17 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2015111680A (en) * 2005-09-29 2015-06-18 株式会社半導体エネルギー研究所 Semiconductor device
JP2015179881A (en) * 2007-05-18 2015-10-08 株式会社半導体エネルギー研究所 semiconductor device
US9176353B2 (en) 2007-06-29 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9177761B2 (en) 2009-08-25 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus, method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US9230826B2 (en) 2010-08-26 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Etching method using mixed gas and method for manufacturing semiconductor device
US9343517B2 (en) 2008-09-19 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2016119482A (en) * 2010-09-15 2016-06-30 株式会社半導体エネルギー研究所 Semiconductor device
US9401396B2 (en) 2011-04-19 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and plasma oxidation treatment method
US9525023B2 (en) 2011-05-24 2016-12-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2018191008A (en) * 2010-06-10 2018-11-29 株式会社半導体エネルギー研究所 Semiconductor device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122123A (en) * 1980-03-03 1981-09-25 Shunpei Yamazaki Semiamorphous semiconductor
JPS57115868A (en) * 1981-01-09 1982-07-19 Semiconductor Energy Lab Co Ltd Insulated gate type semiconductor device and manufacture thereof
JPS57115856A (en) * 1981-01-09 1982-07-19 Semiconductor Energy Lab Co Ltd Compound semiconductor device
JPS5874067A (en) * 1981-10-29 1983-05-04 Semiconductor Energy Lab Co Ltd Semiconductor device
JPH04177736A (en) * 1990-11-09 1992-06-24 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate type semiconductor device
JPH04242725A (en) * 1990-12-25 1992-08-31 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JPH0786604A (en) * 1993-09-17 1995-03-31 Mitsubishi Electric Corp Thin-film transistor and manufacture thereof
JPH10256554A (en) * 1997-03-13 1998-09-25 Toshiba Corp Thin film transistor and manufacture thereof
JPH11103067A (en) * 1997-09-29 1999-04-13 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
JP2001007342A (en) * 1999-04-20 2001-01-12 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
JP2005051211A (en) * 2003-07-14 2005-02-24 Semiconductor Energy Lab Co Ltd Light emitting device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122123A (en) * 1980-03-03 1981-09-25 Shunpei Yamazaki Semiamorphous semiconductor
JPS57115868A (en) * 1981-01-09 1982-07-19 Semiconductor Energy Lab Co Ltd Insulated gate type semiconductor device and manufacture thereof
JPS57115856A (en) * 1981-01-09 1982-07-19 Semiconductor Energy Lab Co Ltd Compound semiconductor device
JPS5874067A (en) * 1981-10-29 1983-05-04 Semiconductor Energy Lab Co Ltd Semiconductor device
JPH04177736A (en) * 1990-11-09 1992-06-24 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate type semiconductor device
JPH04242725A (en) * 1990-12-25 1992-08-31 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JPH0786604A (en) * 1993-09-17 1995-03-31 Mitsubishi Electric Corp Thin-film transistor and manufacture thereof
JPH10256554A (en) * 1997-03-13 1998-09-25 Toshiba Corp Thin film transistor and manufacture thereof
JPH11103067A (en) * 1997-09-29 1999-04-13 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
JP2001007342A (en) * 1999-04-20 2001-01-12 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
JP2005051211A (en) * 2003-07-14 2005-02-24 Semiconductor Energy Lab Co Ltd Light emitting device

Cited By (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111680A (en) * 2005-09-29 2015-06-18 株式会社半導体エネルギー研究所 Semiconductor device
US10304962B2 (en) 2005-09-29 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2007221137A (en) * 2006-02-17 2007-08-30 Samsung Electronics Co Ltd Method of forming silicon layer, and method of manufacturing display substrate using same
KR101457656B1 (en) 2007-05-17 2014-11-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor device, manufacturing method of display device, semiconductor device, display device, and electronic device
JP2015179881A (en) * 2007-05-18 2015-10-08 株式会社半導体エネルギー研究所 semiconductor device
US8647933B2 (en) 2007-06-01 2014-02-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and display device
US8207010B2 (en) 2007-06-05 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US8300168B2 (en) 2007-06-15 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Display device comprising an antioxidant film formed on a microcrystalline semiconductor film wherein the antioxidant film has a recessed portion overlapping a channel region
US8921858B2 (en) 2007-06-29 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9176353B2 (en) 2007-06-29 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR101152949B1 (en) * 2007-07-06 2012-06-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
US7998800B2 (en) 2007-07-06 2011-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8325285B2 (en) 2007-07-06 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10338447B2 (en) 2007-07-06 2019-07-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8334537B2 (en) 2007-07-06 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9766526B2 (en) 2007-07-06 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2016167077A (en) * 2007-07-06 2016-09-15 株式会社半導体エネルギー研究所 Liquid crystal display device
US9188825B2 (en) 2007-07-06 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8389343B2 (en) 2007-07-06 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10678107B2 (en) 2007-07-06 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8842230B2 (en) 2007-07-06 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US7738050B2 (en) 2007-07-06 2010-06-15 Semiconductor Energy Laboratory Co., Ltd Liquid crystal display device
US11726378B2 (en) 2007-07-06 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10712625B2 (en) 2007-07-06 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8111362B2 (en) 2007-07-06 2012-02-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2021009407A (en) * 2007-07-06 2021-01-28 株式会社半導体エネルギー研究所 Liquid crystal display device
US11194207B2 (en) 2007-07-06 2021-12-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8462286B2 (en) 2007-07-06 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8680528B2 (en) 2007-07-20 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9142632B2 (en) 2007-07-20 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8022405B2 (en) 2007-07-20 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US7940345B2 (en) 2007-07-20 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8093112B2 (en) 2007-07-20 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US8896778B2 (en) 2007-07-20 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US7897971B2 (en) 2007-07-26 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device
CN101354514B (en) * 2007-07-26 2012-04-25 株式会社半导体能源研究所 Liquid crystal display device and electronic device provided with the same
KR101493300B1 (en) 2007-07-26 2015-02-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US8044407B2 (en) 2007-07-26 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device provided with the same
US7633089B2 (en) 2007-07-26 2009-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device provided with the same
US7736933B2 (en) 2007-07-27 2010-06-15 Semiconductor Energy Laboratory Co., Ltd Method for manufacturing photoelectric conversion device
US8330887B2 (en) 2007-07-27 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US8178398B2 (en) 2007-07-27 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of display device
US8786793B2 (en) 2007-07-27 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8222640B2 (en) 2007-08-07 2012-07-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device having the display device, and method for manufacturing thereof
US7968885B2 (en) 2007-08-07 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8633485B2 (en) 2007-08-07 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8309406B2 (en) 2007-08-17 2012-11-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7842586B2 (en) 2007-08-17 2010-11-30 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus, method for manufacturing microcrystalline semiconductor layer, and method for manufacturing thin film transistor
US8395158B2 (en) 2007-08-17 2013-03-12 Semiconductor Energy Labortory Co., Ltd. Thin film transistor having microcrystalline semiconductor layer
US8101444B2 (en) 2007-08-17 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7611930B2 (en) 2007-08-17 2009-11-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing display device
US8368075B2 (en) 2007-08-17 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus
US9054206B2 (en) 2007-08-17 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8017946B2 (en) 2007-08-17 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having microcrystalline semiconductor layer and amorphous semiconductor layer
US7768009B2 (en) 2007-08-31 2010-08-03 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same
US8389993B2 (en) 2007-08-31 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Display device having a buffer layer formed over a channel protective layer
US8133771B2 (en) 2007-08-31 2012-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same
US8703560B2 (en) 2007-09-03 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor
US8501554B2 (en) 2007-09-03 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8349671B2 (en) 2007-09-03 2013-01-08 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8420462B2 (en) 2007-09-07 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US7791075B2 (en) 2007-09-07 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8030147B2 (en) 2007-09-14 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor and display device including the thin film transistor
US8822997B2 (en) 2007-09-21 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Electrophoretic display device and method for manufacturing thereof
US7989332B2 (en) 2007-10-05 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
JP2009111365A (en) * 2007-10-05 2009-05-21 Semiconductor Energy Lab Co Ltd Thin film transistor, display device having thin film transistor, and method of manufacturing the same
US8294155B2 (en) 2007-10-05 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
US8945962B2 (en) 2007-10-05 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
US7808000B2 (en) 2007-10-05 2010-10-05 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
US8106398B2 (en) 2007-10-23 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline semiconductor film, thin film transistor, and display device including thin film transistor
US8304779B2 (en) 2007-11-01 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, and display device having the thin film transistor
US8253138B2 (en) 2007-11-05 2012-08-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device having the thin film transistor
US8591650B2 (en) 2007-12-03 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for forming crystalline semiconductor film, method for manufacturing thin film transistor, and method for manufacturing display device
US8187956B2 (en) 2007-12-03 2012-05-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor film, thin film transistor having microcrystalline semiconductor film, and photoelectric conversion device having microcrystalline semiconductor film
US7994502B2 (en) 2007-12-03 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8558236B2 (en) 2007-12-03 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8063403B2 (en) 2007-12-03 2011-11-22 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and semiconductor device
US7923730B2 (en) 2007-12-03 2011-04-12 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and semiconductor device
US8343821B2 (en) 2007-12-03 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film transistor
US8030655B2 (en) 2007-12-03 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor
US8951849B2 (en) 2007-12-18 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including layer containing yttria-stabilized zirconia
US7910929B2 (en) 2007-12-18 2011-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
EP2073255A2 (en) 2007-12-21 2009-06-24 Semiconductor Energy Laboratory Co., Ltd. Diode and display device comprising diode
US7786482B2 (en) 2007-12-21 2010-08-31 Semiconductor Energy Laboratory Co., Ltd. Diode and display device including diode
US7968879B2 (en) 2007-12-28 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including the same
US8860030B2 (en) 2007-12-28 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including the same
US8008169B2 (en) 2007-12-28 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US8541785B2 (en) 2008-02-15 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Display device
US7786485B2 (en) 2008-02-29 2010-08-31 Semicondutor Energy Laboratory Co., Ltd. Thin-film transistor and display device
US7812348B2 (en) 2008-02-29 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and display device
US7968880B2 (en) 2008-03-01 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device
US8618544B2 (en) 2008-03-01 2013-12-31 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device
US8247315B2 (en) 2008-03-17 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method for manufacturing semiconductor device
US7821012B2 (en) 2008-03-18 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8624321B2 (en) 2008-03-18 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor including a microcrystalline semiconductor layer and amorphous semiconductor layer and display device including the same
US8207538B2 (en) 2008-03-18 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
JP2009278082A (en) * 2008-04-18 2009-11-26 Semiconductor Energy Lab Co Ltd Thin film transistor and manufacturing method thereof
KR20100135885A (en) * 2008-04-18 2010-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor and method for manufacturing the same
KR101635625B1 (en) * 2008-04-18 2016-07-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor and method for manufacturing the same
US8525170B2 (en) 2008-04-18 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and manufacturing method thereof
US8138032B2 (en) 2008-04-18 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor having microcrystalline semiconductor film
US8119468B2 (en) 2008-04-18 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method for manufacturing the same
US8053294B2 (en) 2008-04-21 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor by controlling generation of crystal nuclei of microcrystalline semiconductor film
US8124972B2 (en) 2008-04-25 2012-02-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US7998801B2 (en) 2008-04-25 2011-08-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor having altered semiconductor layer
US8049215B2 (en) 2008-04-25 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8168973B2 (en) 2008-05-16 2012-05-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8039842B2 (en) 2008-05-22 2011-10-18 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device including thin film transistor
KR20110023888A (en) 2008-06-27 2011-03-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor, semiconductor device and electronic device
US8513664B2 (en) 2008-06-27 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, semiconductor device and electronic device
US8637866B2 (en) 2008-06-27 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8227278B2 (en) 2008-09-05 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
US8283667B2 (en) 2008-09-05 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8436353B2 (en) 2008-09-16 2013-05-07 Sharp Kabushiki Kaisha Thin film transistor with recess
US11610918B2 (en) 2008-09-19 2023-03-21 Semiconductor Energy Laboratory Co., Ltd. Display device
US9343517B2 (en) 2008-09-19 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Display device
US10559599B2 (en) 2008-09-19 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Display device
US10032796B2 (en) 2008-09-19 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Display device
US9048147B2 (en) 2008-09-30 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2018022185A (en) * 2008-09-30 2018-02-08 株式会社半導体エネルギー研究所 Display device
US8284142B2 (en) 2008-09-30 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2019124944A (en) * 2008-09-30 2019-07-25 株式会社半導体エネルギー研究所 Semiconductor device and display device
JP2019200431A (en) * 2008-09-30 2019-11-21 株式会社半導体エネルギー研究所 Display device
US9563094B2 (en) 2008-09-30 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Display device
US8569120B2 (en) 2008-11-17 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor
US8120030B2 (en) 2008-12-11 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device
US8530897B2 (en) 2008-12-11 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Display device including an inverter circuit having a microcrystalline layer
US8344380B2 (en) 2008-12-11 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and display device
US8304775B2 (en) 2009-03-09 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8604481B2 (en) 2009-03-09 2013-12-10 Semiconductor Energy Co., Ltd. Thin film transistor
KR20110126745A (en) 2009-03-09 2011-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor
US8546810B2 (en) 2009-05-28 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device, and electronic appliance
US8258025B2 (en) 2009-08-07 2012-09-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and thin film transistor
US9177761B2 (en) 2009-08-25 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus, method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US9601635B2 (en) 2009-10-09 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2018101792A (en) * 2009-10-09 2018-06-28 株式会社半導体エネルギー研究所 Semiconductor device
US10770596B2 (en) 2009-10-09 2020-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11367793B2 (en) 2009-10-09 2022-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9177855B2 (en) 2009-10-09 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10043915B2 (en) 2009-10-09 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10446693B2 (en) 2009-10-09 2019-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11695080B2 (en) 2009-10-09 2023-07-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2011100994A (en) * 2009-10-09 2011-05-19 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
US10459261B2 (en) 2009-10-19 2019-10-29 Samsung Display Co., Ltd. Display substrate, method of manufacturing the same and display device having the same
US11803073B2 (en) 2009-10-19 2023-10-31 Samsung Display Co., Ltd. Display substrate, method of manufacturing the same and display device having the same
US10871667B2 (en) 2009-10-19 2020-12-22 Samsung Display Co., Ltd. Display substrate, method of manufacturing the same and display device having the same
US11353730B2 (en) 2009-10-19 2022-06-07 Samsung Display Co., Ltd. Display substrate, method of manufacturing the same and display device having the same
US8643812B2 (en) 2009-10-19 2014-02-04 Samsung Display Co., Ltd. Display substrate, method of manufacturing the same and display device having the same
US9494811B2 (en) 2009-10-19 2016-11-15 Samsung Display Co., Ltd. Display substrate, method of manufacturing the same and display device having the same
US8114760B2 (en) 2009-10-23 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor and thin film transistor
US8486777B2 (en) 2009-10-23 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor and thin film transistor
US8395156B2 (en) 2009-11-24 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Display device
US8575608B2 (en) 2009-12-21 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and manufacturing method thereof
US8829522B2 (en) 2009-12-21 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US8598586B2 (en) 2009-12-21 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and manufacturing method thereof
US8299467B2 (en) 2009-12-28 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and fabrication method thereof
US8383434B2 (en) 2010-02-22 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and manufacturing method thereof
JP2011205077A (en) * 2010-03-02 2011-10-13 Semiconductor Energy Lab Co Ltd Method of forming microcrystalline semiconductor film and method of manufacturing semiconductor device
US8343858B2 (en) 2010-03-02 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device
US8519394B2 (en) 2010-03-15 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8735897B2 (en) 2010-03-15 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8343857B2 (en) 2010-04-27 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of microcrystalline semiconductor film and manufacturing method of semiconductor device
US8410486B2 (en) 2010-05-14 2013-04-02 Semiconductor Energy Labortory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device
US8884297B2 (en) 2010-05-14 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline silicon film, manufacturing method thereof, semiconductor device, and manufacturing method thereof
JP2011258937A (en) * 2010-05-14 2011-12-22 Semiconductor Energy Lab Co Ltd Microcrystalline silicon film and method of depositing the same, and semiconductor device
JP2018191008A (en) * 2010-06-10 2018-11-29 株式会社半導体エネルギー研究所 Semiconductor device
US8778745B2 (en) 2010-06-29 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8486773B2 (en) 2010-07-02 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9153537B2 (en) 2010-07-02 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8518762B2 (en) 2010-07-02 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI562201B (en) * 2010-07-26 2016-12-11 Semiconductor Energy Lab Co Ltd Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8916425B2 (en) 2010-07-26 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8859404B2 (en) 2010-08-25 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8704230B2 (en) 2010-08-26 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9257561B2 (en) 2010-08-26 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9230826B2 (en) 2010-08-26 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Etching method using mixed gas and method for manufacturing semiconductor device
US8624254B2 (en) 2010-09-14 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
JP2016119482A (en) * 2010-09-15 2016-06-30 株式会社半導体エネルギー研究所 Semiconductor device
US8338240B2 (en) 2010-10-01 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing transistor
US8426295B2 (en) 2010-10-20 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of microcrystalline silicon film and manufacturing method of semiconductor device
US8450158B2 (en) 2010-11-04 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8394685B2 (en) 2010-12-06 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Etching method and manufacturing method of thin film transistor
US9048327B2 (en) 2011-01-25 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline semiconductor film, method for manufacturing the same, and method for manufacturing semiconductor device
US8828859B2 (en) 2011-02-11 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Method for forming semiconductor film and method for manufacturing semiconductor device
US9401396B2 (en) 2011-04-19 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and plasma oxidation treatment method
US9525023B2 (en) 2011-05-24 2016-12-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP4748954B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4748954B2 (en) Liquid crystal display
JP5288666B2 (en) Display device
JP4480968B2 (en) Display device
JP5143255B2 (en) Light emitting device
JP6167125B2 (en) Display device, display module, and electronic device
JP4393812B2 (en) Display device and electronic device
US7800114B2 (en) Semiconductor device and manufacturing method thereof
JP4112527B2 (en) Method for manufacturing light emitting device of system on panel type
JP4939737B2 (en) Light emitting device
JP5366458B2 (en) Active matrix display device and electronic device using the same
JP4906106B2 (en) Light emitting device
JP2000259111A (en) Semiconductor display device and its driving circuit
JP4850763B2 (en) Method for manufacturing semiconductor device
JP2003303833A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees