JP2005048350A - Biodegradable nonwoven fabric and sanitary material, wrapping material and agricultural material using the same - Google Patents

Biodegradable nonwoven fabric and sanitary material, wrapping material and agricultural material using the same Download PDF

Info

Publication number
JP2005048350A
JP2005048350A JP2004189882A JP2004189882A JP2005048350A JP 2005048350 A JP2005048350 A JP 2005048350A JP 2004189882 A JP2004189882 A JP 2004189882A JP 2004189882 A JP2004189882 A JP 2004189882A JP 2005048350 A JP2005048350 A JP 2005048350A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
biodegradable
fabric
fiber diameter
woven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004189882A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Horiguchi
泰義 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004189882A priority Critical patent/JP2005048350A/en
Publication of JP2005048350A publication Critical patent/JP2005048350A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably provide a nonwoven fabric having biodegradable property and soft feeling and good character, especially to provide a sanitary material, a wrapping material and an agricultural material. <P>SOLUTION: The nonwoven fabric comprises at least two accumulated layers of a biodegradable filament nonwoven fabric A having fiber diameter of 8-15μm and 6-10 g/m<SP>2</SP>of basis weight and a biodegradable filament nonwoven fabric B having fiber diameter of 2-8μm and 2-6 g/m<SP>2</SP>of basis weight. The nonwoven fabric has 12-30% of the weight ratio of the nonwoven fabric B, and is partially thermo-compression bonded and if necessary, is subjected to a softening treatment such as mechanical rubbing process, etc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、生分解性を有し、かつ優れた機械強度と柔軟性、良好な品位と風合いを有する使い捨ておむつ、生理用ナプキン、手術着などの各種の医療衛生材料、包装材料および農業材料に好適な不織布に関するものであり、さらにまた、それを用いてなる医療衛生材料、包装材料および農業材料に関するものである。   The present invention is applied to various medical hygiene materials, packaging materials and agricultural materials such as disposable diapers, sanitary napkins, and surgical clothes having biodegradability and excellent mechanical strength and flexibility, and good quality and texture. The present invention relates to a suitable non-woven fabric, and further relates to a medical hygiene material, a packaging material and an agricultural material using the same.

従来から医療衛生材料用、包装材料用または農業材料用不織布には、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミドなどの樹脂が使用されているが、これら樹脂から得られた不織布は自己分解性がなく自然環境化では極めて安定なものである。   Conventionally, resins such as polyethylene, polypropylene, polyester, and polyamide have been used for nonwoven fabrics for medical hygiene materials, packaging materials, and agricultural materials. However, nonwoven fabrics obtained from these resins are not self-degradable and have a natural environment. It is extremely stable.

このため使用済みの医療衛生材料等は、焼却炉で焼却、あるいは埋め立て処理がなされているが、焼却処理には費用が高くつくばかりか焼却時の大気への影響など環境上の問題が発生する可能性がある。また、埋め立て処理についても、自然環境破壊の点から大きな社会問題になりつつあり、自然にやさしい医療衛生材料等の早期開発が望まれている。   For this reason, used medical hygiene materials are incinerated or landfilled in an incinerator, but incineration is not only expensive, but also causes environmental problems such as impact on the atmosphere during incineration. there is a possibility. In addition, landfill processing is becoming a major social problem from the viewpoint of the destruction of the natural environment, and the early development of naturally-friendly medical hygiene materials and the like is desired.

これらに対応するには、乾式あるいは溶液浸漬法などにより得られるビスコースレーヨン短繊維を用いた不織布、湿式スパンボンド法により得られるレーヨン長繊維不織布や、キチンやアテロコラーゲンなどの天然繊維や天然由来の化学繊維からなる不織布、あるいはコットンからなるスパンレース不織布など種々の生分解不織布を用いることが知られている。   In order to cope with these, non-woven fabrics using viscose rayon short fibers obtained by a dry or solution dipping method, rayon long fiber nonwoven fabrics obtained by a wet spunbond method, natural fibers such as chitin and atelocollagen, and natural origins It is known to use various biodegradable nonwoven fabrics such as a nonwoven fabric made of chemical fibers or a spunlace nonwoven fabric made of cotton.

しかしながら、これら従来の生分解性不織布は、不織布を構成する繊維の機械的強度が低く、また親水性があるために、吸水時・湿潤時の強度低下が著しく、湿潤、乾燥時の収縮が大きく素材の寸法安定性に欠ける問題があり、更に素材自体が非熱可塑性樹脂であるため熱接着性を有していないなどの問題もあり、製布加工時にヒートシール性を利用することが不可能であり、実用上採用できないという問題がある。   However, these conventional biodegradable non-woven fabrics have low mechanical strength of fibers constituting the non-woven fabric and are hydrophilic, so that the strength is greatly reduced during water absorption and wetting, and the shrinkage during wetting and drying is large. There is a problem of lack of dimensional stability of the material, and there is also a problem that the material itself is a non-thermoplastic resin, so it does not have thermal adhesiveness, so it is impossible to use heat sealability during fabric processing Therefore, there is a problem that it cannot be employed practically.

これら課題を改善するため、熱可塑性を有し、微生物によって分解可能な脂肪族ポリエステル樹脂を溶融紡糸した多数の長繊維からなり、脂肪族ポリエステル樹脂がグリコールと脂肪族ジカルボン酸またはその誘導体成分を構成単位として含む、繊度が1〜10デニールの生分解性不織布及びその製造方法が開示されている(特許文献1)。   In order to improve these problems, it consists of a large number of long fibers melt-spun with an aliphatic polyester resin that is thermoplastic and can be decomposed by microorganisms, and the aliphatic polyester resin constitutes a glycol and an aliphatic dicarboxylic acid or a derivative component thereof. A biodegradable nonwoven fabric having a fineness of 1 to 10 denier and a method for producing the same are disclosed (Patent Document 1).

しかし、この不織布は実用上、紡糸性と生分解性をともに満足できるまでに到達するに至っていない。すなわち、溶融紡糸に適し長繊維不織布に使用できる脂肪族ポリエステルとしては1,4−ブタジオールとコハク酸から合成されるポリブチレンサクシネート重合物の場合、溶融紡糸性良好で、強度と風合いの優れた生分解性長繊維不織布が得られるが、生分解速度が遅いなど難点があった。   However, this non-woven fabric has not yet reached a point where both spinnability and biodegradability can be satisfied in practice. That is, as an aliphatic polyester suitable for melt spinning and usable for a long-fiber nonwoven fabric, a polybutylene succinate polymer synthesized from 1,4-butadiol and succinic acid has good melt spinnability and excellent strength and texture. A biodegradable long-fiber nonwoven fabric can be obtained, but there are problems such as a slow biodegradation rate.

また、かかる状況を改善し、優れた生分解性を有しながら、衛生材料用不織布として必要な特性である透液性を柔軟性や風合いをバランス良く不織布に付与する手段が提案されている(特許文献2)。   In addition, a means for improving the situation and imparting liquid permeability, which is a necessary characteristic as a nonwoven fabric for sanitary materials, to the nonwoven fabric with a good balance of flexibility and texture while having excellent biodegradability has been proposed ( Patent Document 2).

すなわち、1,4−ブタジオールとコハク酸から合成されるポリブチレンサクシネート重合体をウレタン結合により高分子量化した後、得られる熱可塑性を有する脂肪族ポリエステルからなる樹脂組成物を異形断面用口金と円形断面口金を備えた押出し紡糸機で別々に加熱溶融して、多数の口金から押出して紡糸し、紡出された連続長繊維フィラメント群をエジェクターからの高速エアーで延伸し、衝突板に当てて開繊し、次いで、支持体上に捕集、堆積して、それぞれ特定の範囲の繊度と目付からなるウェブをそれぞれ形成させ、これらのウェブを積層して、このウェブの表面から高圧水ジェット流を噴射、乾燥し、交絡一体化したウェブとし、更にこのウェブを熱エンボス処理により部分的に、しかも規則的に熱融着区域を設けてなるスパンボンド不織布に関する提案がされている。該不織布は、不織布の厚さ方向において円形断面と異形断面の長繊維フィラメントが混在しており、それによって不織布は生分解性を有し優れた柔軟性、風合い、強度、透液性などをバランス良く備えることができるということが提案されている。   That is, after the polybutylene succinate polymer synthesized from 1,4-butadiol and succinic acid is made high molecular weight by urethane bond, the resulting resin composition comprising an aliphatic polyester having thermoplasticity is formed with a modified cross-section die. It is heated and melted separately in an extrusion spinning machine equipped with a circular cross-section die, extruded from a large number of die and spun, and the spun continuous filaments are stretched with high-speed air from an ejector and applied to a collision plate. Opening, then collecting and depositing on a support to form webs each having a specific range of fineness and basis weight, and laminating these webs, The web is formed by spraying, drying, and forming a entangled web, and the web is partially and regularly provided with a heat fusion zone by heat embossing. Proposals for spunbonded non-woven fabric is. The non-woven fabric has a mixture of long and thin filaments having a circular cross section and an irregular cross section in the thickness direction of the non-woven fabric, whereby the non-woven fabric has biodegradability and balances excellent flexibility, texture, strength, liquid permeability and the like. It has been proposed that it can be well prepared.

しかし、この不織布は、医療衛生材料等、特に使い捨ておむつ用途の場合には、従来のポリプロピレン、ポリエチレンなどのスパンポンド熱接着品では目付が15g/m2 〜25g/m2 であるのに比較して、目付が30g/m2 〜50g/m2 と高いために、また長繊維不織布では、円形断面フィラメントと異形断面フィラメントを積層しウェブ表面から高圧水ジェット流を噴射、乾燥しても風合い的に満足できるものでなかった。 However, this nonwoven fabric, medical sanitation materials, especially in the case of a disposable diaper applications, conventional polypropylene, basis weight in the spunbond thermal bonding articles such as polyethylene compared to a 15g / m 2 ~25g / m 2 Te, due to the high and 30g / m 2 ~50g / m 2 basis weight, also in the long-fiber nonwoven fabric, injects high-pressure water jet stream from the web surface by laminating a circular cross-section filaments and irregular cross section filaments, texture manner be dried It was not satisfactory.

特に、高圧水ジェット流を噴射、乾燥し、交絡一体化した後、更にこのウェブを熱エンボス処理により部分的に熱融着させるため、該熱接着により不織布の密度が高くなり、剛性が高くなるなど柔軟性、風合いの点で満足できるものでなかった。   In particular, after jetting, drying and entanglement and integration of a high-pressure water jet stream, the web is partially heat-sealed by heat embossing treatment, so that the density of the nonwoven fabric is increased and the rigidity is increased by the thermal bonding. It was not satisfactory in terms of flexibility and texture.

また、ポリ乳酸系長繊維の単糸繊度が1.5〜3.5デシテックスで不織布の目付を15g/m2 〜30g/m2 で調整することで、通気度を400〜1400cm3 /cm2 /秒にすることで透水性と柔軟性を兼ね備えた衛生材用不織布を得ることができると提案されている(特許文献3)。しかしながら単に単糸繊度を1.5〜3.5デシテックス、目付を15〜30g/m2 とし通気度を400〜1400cm3 /m2 /秒にするだけでは衛生材料用等の不織布として満足できるものでない。すなわち、衛生材料用等の不織布としては、目付斑が少なく均質であって、かつ柔軟性が高く適度な物性をもつ不織布への要求が強く、また通気度が400〜1400cm3 /m2 /秒では通気度が高く、本発明者らの知見によれば耐水圧も低すぎるため尿洩れがしやすく、実用上使用できないものである。
特開平8−060513号公報 特開平10−219556号公報 特開2002−242068号公報
Further, since the single yarn fineness of polylactic acid-based long fiber is to adjust the basis weight of the nonwoven fabric 15g / m 2 ~30g / m 2 at 1.5 to 3.5 dtex, 400~1400cm 3 / cm 2 air permeability It is proposed that a non-woven fabric for hygiene material having both water permeability and flexibility can be obtained by setting to / sec (Patent Document 3). However, it can be satisfied as a non-woven fabric for sanitary materials simply by setting the single yarn fineness to 1.5 to 3.5 dtex, the basis weight to 15 to 30 g / m 2 and the air permeability to 400 to 1400 cm 3 / m 2 / sec. Not. That is, as non-woven fabrics for sanitary materials and the like, there is a strong demand for non-woven fabrics with small unevenness in weight, high flexibility and appropriate physical properties, and air permeability is 400 to 1400 cm 3 / m 2 / sec. However, since the air permeability is high and the water pressure resistance is too low according to the knowledge of the present inventors, urine leakage tends to occur and it cannot be used practically.
JP-A-8-060513 JP-A-10-219556 Japanese Patent Laid-Open No. 2002-242068

本発明の目的は、前記課題を達成し、生分解性を有し柔軟な風合いと適度な機械強度を有し目付斑が少なく、高品位、高品質である医療衛生材料、包装材料または農業材料に好適に用いられる不織布と、該不織布を用いた医療衛生材料、包装材料または農業材料を安定的に提供せんとするものである。   The object of the present invention is to achieve the above-mentioned problems, biodegradable, flexible texture, moderate mechanical strength, low spot weight, high quality, high quality medical hygiene material, packaging material or agricultural material And a medical hygiene material, a packaging material, or an agricultural material using the nonwoven fabric.

本発明者らは、前記課題を解決すべく鋭意検討の結果、本発明に到達したものである。   The inventors of the present invention have reached the present invention as a result of intensive studies to solve the above problems.

すなわち、本発明は、次(1)〜(9)の構成を有するものである。
(1)不織布を構成する繊維径が8μm〜15μmであってかつ目付が6〜10g/m2 である生分解性長繊維不織布Aと、平均繊維径が2μm〜8μmであって目付が2〜6g/m2 である生分解性長繊維不織布Bの少なくとも2種類の不織布が積層された構成からなることを特徴する不織布。
(2)前記不織布Aがスパンボンド不織布であり、前記不織布Bがメルトブロー不織布である上記(1)記載の不織布。
(3)前記積層不織布を構成する不織布Bの繊維径の変動率が30〜60%であって、かつ積層不織布中、不織布Bの占める重量比率が12〜30%であることを特徴とする上記(1)または(2)記載の不織布。
(4)前記生分解性不織布AとBが部分的に熱圧着されており、部分的熱圧着部の総面積が全体の8〜30%であることを特徴とする上記(1)〜(3)のいずれかに記載の不織布。
(5)前記生分解性不織布のJIS−L−1096A法(45゜カンチレバー法)により測定した剛軟性(タテ方向測定)が30〜65mmであることを特徴とする上記(1)〜(4)のいずれかに記載の不織布。
(6)前記生分解性不織布Aと生分解性不織布Bを構成するポリマーの融点が実質的に同一であるか、もしくは融点差が50℃以内であることを特徴とする上記(1)〜(5)のいずれかに記載の不織布。
(7)前記生分解性不織布Aと生分解性不織布Bを構成する不織布がポリ乳酸あるいはポリブチレンサクシネートにより構成されているか、またはこれらの組合せにより構成されたことを特徴とする上記(1)〜(6)のいずれかに記載の不織布。
That is, the present invention has the following configurations (1) to (9).
(1) The biodegradable long-fiber nonwoven fabric A having a fiber diameter of 8 μm to 15 μm and a basis weight of 6 to 10 g / m 2 , and an average fiber diameter of 2 μm to 8 μm and a basis weight of 2 to 2 A nonwoven fabric characterized by comprising a structure in which at least two types of nonwoven fabrics of biodegradable long-fiber nonwoven fabric B of 6 g / m 2 are laminated.
(2) The nonwoven fabric according to (1), wherein the nonwoven fabric A is a spunbonded nonwoven fabric, and the nonwoven fabric B is a meltblown nonwoven fabric.
(3) The fiber diameter variation rate of the nonwoven fabric B constituting the laminated nonwoven fabric is 30 to 60%, and the weight ratio of the nonwoven fabric B in the laminated nonwoven fabric is 12 to 30%. The nonwoven fabric according to (1) or (2).
(4) The biodegradable nonwoven fabrics A and B are partially thermocompression bonded, and the total area of the partial thermocompression bonding portions is 8 to 30% of the whole (1) to (3) ) The nonwoven fabric according to any one of
(5) The above-mentioned (1) to (4), wherein the biodegradable nonwoven fabric has a bending resistance (measured in the vertical direction) measured by JIS-L-1096A method (45 ° cantilever method) of 30 to 65 mm. The nonwoven fabric in any one of.
(6) The polymers constituting the biodegradable nonwoven fabric A and the biodegradable nonwoven fabric B have substantially the same melting point, or the difference in melting point is within 50 ° C. The nonwoven fabric according to any one of 5).
(7) The above-described (1), wherein the nonwoven fabric constituting the biodegradable nonwoven fabric A and the biodegradable nonwoven fabric B is composed of polylactic acid or polybutylene succinate, or a combination thereof. The nonwoven fabric in any one of-(6).

本発明の医療衛生材料は、次の(8)の構成を有するものである。
(8)上記(1)〜(7)のいずれかに記載の不織布を用いてなることを特徴とする医療衛生材料。
本発明の包装材料は、次の(9)の構成を有するものである。
(9)上記(1)〜(7)のいずれかに記載の不織布を用いてなることを特徴とする包装材料。
本発明の農業材料は、次の(10)の構成を有するものである。
(10)上記(1)〜(7)のいずれかに記載の不織布を用いてなることを特徴とする農業材料。
The medical hygiene material of the present invention has the following configuration (8).
(8) A medical hygiene material comprising the non-woven fabric according to any one of (1) to (7) above.
The packaging material of the present invention has the following configuration (9).
(9) A packaging material comprising the nonwoven fabric according to any one of (1) to (7) above.
The agricultural material of the present invention has the following configuration (10).
(10) An agricultural material comprising the nonwoven fabric according to any one of (1) to (7) above.

本発明によれば、生分解性を有し柔軟な風合いと適度な機械強度を有し目付斑が少なく、高品位、高品質である医療衛生材料、包装材料または農業材料に好適に用いられる不織布と、該不織布を用いた医療衛生材料、包装材料または農業材料が提供される。   INDUSTRIAL APPLICABILITY According to the present invention, a non-woven fabric suitably used for medical hygiene materials, packaging materials, or agricultural materials that is biodegradable, has a soft texture, moderate mechanical strength, has less spotted spots, and has high quality and high quality. And a medical hygiene material, a packaging material, or an agricultural material using the nonwoven fabric.


本発明の不織布を構成する繊維は、その繊維径が8μm〜15μmであって、かつ目付が6〜10g/m2 である生分解性長繊維不織布Aと、繊維径が2μm〜8μmであって目付が2〜6g/m2 である生分解性長繊維不織布Bの少なくとも2種類の不織布が積層された構成からなる不織布である。

The fibers constituting the nonwoven fabric of the present invention have a fiber diameter of 8 μm to 15 μm and a biodegradable long-fiber nonwoven fabric A having a basis weight of 6 to 10 g / m 2 and a fiber diameter of 2 μm to 8 μm. This is a nonwoven fabric having a configuration in which at least two types of nonwoven fabrics of biodegradable long-fiber nonwoven fabric B having a basis weight of 2 to 6 g / m 2 are laminated.

本発明に用いられる生分解性樹脂としては、ポリ乳酸樹脂、ポリブチレンサクシネート樹脂、ポリカプロラクトン樹脂、ポリエチレンサクシネート樹脂、ポリグリコール酸樹脂、ポリブチレンテレフタレート系樹脂、あるいはポリヒドロキシブチレート系樹脂などが挙げられる。中でもポリ乳酸樹脂は天然の植物を原料としたものであり、最も自然にやさしい生分解性樹脂であるので好ましい。   Examples of the biodegradable resin used in the present invention include polylactic acid resin, polybutylene succinate resin, polycaprolactone resin, polyethylene succinate resin, polyglycolic acid resin, polybutylene terephthalate resin, and polyhydroxybutyrate resin. Is mentioned. Among them, polylactic acid resin is preferable because it is made from natural plants and is the most naturally-friendly biodegradable resin.

ポリ乳酸とは、主としてL−乳酸を主たる原料とするポリエステルであり、構成成分の60%以上がL乳酸であり40%を超えない範囲でD乳酸を含有するポリエステルであってもよい。   Polylactic acid is a polyester mainly composed of L-lactic acid, and may be a polyester containing 60% or more of L-lactic acid and containing D-lactic acid within a range not exceeding 40%.

ポリ乳酸の製法としては、乳酸を原料としていったん環状2量体であるラクチドを生成せしめ、その後、開環重合を行う二段階のラクチド法と、乳酸を原料として溶媒中で直接脱水縮合を行う一段階の直接重合法が知られている。   Polylactic acid can be produced by using a two-stage lactide method in which lactide, which is a cyclic dimer, is first produced from lactic acid as a raw material, and then ring-opening polymerization, and direct dehydration condensation in a solvent using lactic acid as a raw material. A step direct polymerization process is known.

本発明においてポリ乳酸を用いる場合、ポリ乳酸はいずれの製法によって得られたものでも良い。ラクチド法によって得られるポリマーの場合、ポリマー中に含有される環状2量体が溶融紡糸時に気化して糸斑紡糸性不調などの原因となるため、溶融紡糸以前にポリマー中に含有する環状2量体の含有量を極力減少させておくことが好ましく、0.1wt%以下にすることが望ましい。また、直接重
合法の場合には、環状2量体に起因する問題が実質的にないため、製糸性の観点からより好ましいと言える。ポリ乳酸は、生分解性あるいは、加水分解性が高いため、自然環境中で容易に分解されるという利点を有している。ポリ乳酸の重量平均分子量はスパンボンド法の場合、10万〜30万の範囲内にあるものが良く、より好ましくは10万〜20万の範囲内にあるものがよい。重量平均分子量が10万より少ないと、繊維の強度が低くなるため、不織布の強度を十分に出すことがむずかしくなってくるからである。また、重量平均分子量が30万よりも大きいと、口金から紡出したフィラメントをエアサッカーなどで牽引しても曳糸性に欠けるため、高速紡糸ができず、操業性は良好なものの未延伸糸ライクとなるため十分な繊維強度を得ることが難しくなり、不織布としての強度が不十分なものとなる場合があるからである。
When polylactic acid is used in the present invention, the polylactic acid may be obtained by any method. In the case of a polymer obtained by the lactide method, since the cyclic dimer contained in the polymer is vaporized at the time of melt spinning and causes irregular yarn spinning, etc., the cyclic dimer contained in the polymer before melt spinning. The content of is preferably reduced as much as possible, and is preferably 0.1 wt% or less. Further, in the case of the direct polymerization method, there is substantially no problem due to the cyclic dimer, so that it can be said that it is more preferable from the viewpoint of yarn production. Since polylactic acid has high biodegradability or hydrolyzability, it has an advantage that it is easily decomposed in the natural environment. In the case of the spunbond method, the polylactic acid has a weight average molecular weight in the range of 100,000 to 300,000, more preferably in the range of 100,000 to 200,000. This is because if the weight average molecular weight is less than 100,000, the strength of the fiber is lowered, and it becomes difficult to sufficiently bring out the strength of the nonwoven fabric. In addition, if the weight average molecular weight is greater than 300,000, the filament spun from the die is not spun even if it is pulled by air soccer, etc., so high-speed spinning is not possible, and the operability is good but undrawn yarn This is because it becomes like, making it difficult to obtain sufficient fiber strength, and the strength as a nonwoven fabric may be insufficient.

また、メルトブロー不織布に用いる場合のポリ乳酸は重量平均分子量として15万以下、より好ましくは3万〜10万の範囲のものが良く、更に好ましくは3万〜7万の範囲内のものが良い。重量平均分子量が15万よりも大きいと、ポリ乳酸を溶融するときの熱分解性との関係から溶融温度を240℃以上にすることができないため、溶融温度アップによる溶融粘度の低下が困難となり、10μm以下の極細繊維を安定して得ることがむずかしくなり、そのため、不織布Bに必要な繊維径2〜8μmの極細繊維を得ることが難しくなる。   The polylactic acid used for the melt blown nonwoven fabric has a weight average molecular weight of 150,000 or less, preferably 30,000 to 100,000, and more preferably 30,000 to 70,000. If the weight average molecular weight is greater than 150,000, the melting temperature cannot be increased to 240 ° C. or higher due to the thermal decomposability when polylactic acid is melted. It becomes difficult to stably obtain ultrafine fibers having a diameter of 10 μm or less, and therefore, it becomes difficult to obtain ultrafine fibers having a fiber diameter of 2 to 8 μm necessary for the nonwoven fabric B.

生分解性不織布Aを構成するフィラメントの繊維径は8μm〜15μmであることが好ましく、より好ましくは8μm〜13μmである。繊維径が15μmよりも大きい場合、製糸性の点では有利であるが、繊維径のアップにともない不織布を構成する繊維本数が減少し、目付斑が増加する方向にあり、通気性、透水性は向上するものの、使い捨ておむつのように目付が低い医療衛生材料用不織布については目付斑が増加することによる部分的な通気性や、透水性の斑、柔軟性の斑、引張強力の斑、低目付部分の圧着不良による毛羽が発生しやすくなるなどの問題が生じ満足できるものが得られない場合がある。繊維径が8μm未満ではエアサッカーなどで高速牽引をする際、曳糸性不足に伴う操業性不良による単糸切れが発生するなど、品位、品質的にも良好な不織布を得ることがむずかしくなってくる。   The fiber diameter of the filament constituting the biodegradable nonwoven fabric A is preferably 8 μm to 15 μm, more preferably 8 μm to 13 μm. When the fiber diameter is larger than 15 μm, it is advantageous in terms of yarn production, but as the fiber diameter increases, the number of fibers constituting the non-woven fabric decreases, and the spot weight increases, and the air permeability and water permeability are Although it improves, non-woven fabrics for medical hygiene materials, such as disposable diapers, have partial breathability due to increased spot weight, water permeability spots, soft spots, tensile strength spots, low basis weight In some cases, a satisfactory product cannot be obtained due to problems such as easy generation of fluff due to poor bonding of the portion. When the fiber diameter is less than 8 μm, it is difficult to obtain a non-woven fabric that is of good quality and quality, such as when single-thread breakage occurs due to poor operability due to insufficient spinnability when pulling at high speed with air soccer. come.

また、生分解性不織布Bを構成する繊維径は2μm〜8μmの範囲内にあるものが良く、繊維径が8μmよりも大きいものである場合、フィラメントの冷却が不十分となるため、捕集距離を大きくとる必要があり、その結果、捕集性が悪くなるなどによる捕集ネット上でのウェブ乱れのため、メルトブロー不織布の特徴とされる均一な不織布が得られないという問題が生じてくるので好ましくない。
繊維径が2μm未満である場合、製糸性が悪化してショットと呼ばれるポリマー状の欠点が多発するなど品質的に満足できるものが得られない場合がある。
Further, the fiber diameter constituting the biodegradable nonwoven fabric B is preferably in the range of 2 μm to 8 μm, and when the fiber diameter is larger than 8 μm, the cooling of the filament becomes insufficient. As a result, there is a problem that the uniform nonwoven fabric, which is characteristic of the melt blown nonwoven fabric, cannot be obtained due to web disturbance on the collection net due to poor collection performance. It is not preferable.
When the fiber diameter is less than 2 μm, there may be a case where a product satisfying quality is not obtained, for example, the yarn-making property is deteriorated and polymer defects called shots are frequently generated.

生分解性不織布Aと生分解性不織布Bは、少なくとも2層以上を積層したものが良く、より好ましくは不織布Bを中間層にして、不織布Aを表裏両サイドに配置するものであり、このように構成すると、不織布の強度レベルの向上、耐毛羽性やリントフリー性の点でより良好な製品を得ることができ、更に必要に応じて繊度あるいは断面形状あるいは生分解性ポリマー種の異なる生分解性スパンボンド不織布A1、A2を積層し、更に生分解性メルトブロー不織布B1、B2を積層し、引き続きA1、A2を積層するなどの多層積層をすることで、機能性、品質の両面で優れた不織布とすることができる。   The biodegradable nonwoven fabric A and the biodegradable nonwoven fabric B are preferably laminated at least two layers, more preferably the nonwoven fabric B is an intermediate layer and the nonwoven fabric A is arranged on both the front and back sides. If it is configured, it is possible to obtain a better product in terms of improvement in the strength level of the nonwoven fabric, fluff resistance and lint-free property, and further, biodegradation with different fineness, cross-sectional shape or biodegradable polymer species as necessary A non-woven fabric that is superior in both functionality and quality by laminating the porous spunbonded nonwoven fabrics A1 and A2, further laminating the biodegradable meltblown nonwoven fabrics B1 and B2, and subsequently laminating A1 and A2. It can be.

生分解性不織布Aと生分解性不織布Bとの積層後の目付は10〜25g/m2 が良く、より好ましくは15〜20g/m2 、最も好ましくは16〜18g/m2 である。不織布の目付が25g/m2 を超えるものになると、強力的には満足できるものが得られるが、剛性が高く、柔軟性に欠けるため医療衛生材料、包装材料または農業材料として製品に仕上げた場合、肌触りが悪く、ごわごわするなど実用に適さないものとなる場合がある。また、目付が10g/m2 未満である場合、部分的な目付斑による強力不足からくる破れが発生する場合があるなどの問題が出てくる。 Basis weight after the lamination of the biodegradable nonwoven fabric A and a biodegradable nonwoven fabric B may have 10 to 25 g / m 2, more preferably 15 to 20 g / m 2, and most preferably 16~18g / m 2. When the basis weight of the nonwoven fabric exceeds 25 g / m 2 , a product that is strong and satisfactory can be obtained. However, when the product is finished as a medical hygiene material, packaging material, or agricultural material because it has high rigidity and lacks flexibility. In some cases, it may be unsuitable for practical use, such as being unpleasant to the touch. In addition, when the basis weight is less than 10 g / m 2 , there arises a problem that tearing due to insufficient strength due to partial spot weight may occur.

スパンボンド不織布Aとメルトブロー不織布Bで構成される積層不織布のうち、不織布Bの構成比率は12〜30%の範囲が好ましく、より好ましくは13〜25%が良い。構成比率が12%未満である場合、目付斑の改善効果が低く、例えば、紙おむつのサイドギャザーなどに使用する場合、耐水圧も不十分であり、満足できる不織布を得ることがむずかしい。また、構成比率が30%よりも大きいものである場合、不織布としての強力が低くなるばかりか、結晶配向性に欠けることになる熱収縮率の極めて高い不織布Bがエンボス接着時に熱収縮し、シワが発生するなど、また品位的にも硬いものとなるなど医療衛生材料、包装材料または農業材料として満足するものを得ることがむずかしくなる。   Among the laminated nonwoven fabrics composed of the spunbond nonwoven fabric A and the melt blown nonwoven fabric B, the composition ratio of the nonwoven fabric B is preferably in the range of 12 to 30%, more preferably 13 to 25%. When the composition ratio is less than 12%, the effect of improving the spot weight is low. For example, when used for a side gather of a paper diaper, the water pressure is insufficient, and it is difficult to obtain a satisfactory nonwoven fabric. Further, when the composition ratio is larger than 30%, not only the strength as a nonwoven fabric is lowered, but also the nonwoven fabric B having a very high thermal shrinkage rate that lacks crystal orientation is thermally shrunk during emboss bonding, and wrinkles. It is difficult to obtain a material that is satisfactory as a medical hygiene material, packaging material or agricultural material.

不織布Aと不織布Bとの積層方法は、幅方向の全幅にわたってシート化が可能な、少なくとも2層以上に配列したスパンボンド不織布製造設備とメルトブロー不織布製造設備とを連結したインライン製布設備を用いて製造することができる。   The lamination method of the non-woven fabric A and the non-woven fabric B is performed using an in-line fabric production facility in which a spunbond nonwoven fabric production facility and a melt blown nonwoven fabric production facility, which can be formed into a sheet over the entire width in the width direction, are connected to at least two layers. Can be manufactured.

また、生分解性不織布Aと生分解性不織布Bを構成する樹脂の融点は実質的に同一であるか、もしくは両者の融点差が50℃以内であることが好ましく、より好ましくは、不織布Aの融点に比べ不織布Bの融点が50℃以内のレベルで低いものであることであり、更に好ましくは、不織布Aの融点に比べ不織布Bの融点が40℃以内のレベルで低いものであることである。   Moreover, it is preferable that melting | fusing point of resin which comprises biodegradable nonwoven fabric A and biodegradable nonwoven fabric B is substantially the same, or both melting | fusing point difference is 50 degrees C or less, More preferably, the nonwoven fabric A The melting point of the non-woven fabric B is lower than the melting point at a level within 50 ° C., more preferably the melting point of the non-woven fabric B is lower than the melting point of the non-woven fabric A at a level within 40 ° C. .

不織布Aと不織布Bとの融点差が50℃よりも大きいものである場合、積層した不織布Aと不織布Bとの層間剥離が発生しやすく医療衛生材料、包装材料または農業材料として満足するものが得られず、また、仮りに層間剥離がなくても融点の低い不織布(B)の熱接着が強く、風合いとして硬い不織布となってしまう場合があり、好ましくない。   When the difference in melting point between the nonwoven fabric A and the nonwoven fabric B is greater than 50 ° C., delamination between the laminated nonwoven fabric A and the nonwoven fabric B is likely to occur, and a satisfactory medical hygiene material, packaging material, or agricultural material is obtained. In addition, even if there is no delamination, the non-woven fabric (B) having a low melting point has a strong thermal bond and may become a hard non-woven fabric as a texture.

不織布の目付斑は、医療衛生材料用、包装材料用または農業材料用不織布にとって、極めて重要な特性であり、不織布の引張り強力、透湿、透液性、剛性などを大きく左右するものである。不織布の目付が25g/m2 以下である場合、目付斑は9%以下であることが好ましい。例えば目付が25g/m2 であって、目付斑が9%である場合には目付が低い部分は20g/m2 以下となり、同部分の風合いはソフトであるものの引張り強力も低く、接着力も低いため毛羽が発生するなど、また目付の高い部分は30g/m2 以上となり、剛性が高くなりすぎ衛生材料、包装材料または農業材料として不十分なものである。また、不織布の目付が10g/m2 未満である場合、低目付部分の引張り強力があまりにも低く、使用に耐えうるものでなく好ましくない。 Spots on the nonwoven fabric are extremely important characteristics for nonwoven fabrics for medical hygiene materials, packaging materials, or agricultural materials, and greatly affect the tensile strength, moisture permeability, liquid permeability, rigidity, etc. of the nonwoven fabric. When the basis weight of the nonwoven fabric is 25 g / m 2 or less, the basis weight is preferably 9% or less. For example, when the basis weight is 25 g / m 2 and the basis weight is 9%, the portion with a low basis weight is 20 g / m 2 or less, and although the texture of the portion is soft, the tensile strength is low and the adhesive strength is also low. For this reason, fluff is generated, and the portion having a high basis weight is 30 g / m 2 or more, and the rigidity becomes too high, which is insufficient as a sanitary material, packaging material or agricultural material. Moreover, when the fabric weight of a nonwoven fabric is less than 10 g / m < 2 >, the tensile strength of a low fabric weight part is too low, and it cannot endure use, and is unpreferable.

本発明の生分解性長繊維不織布Aとしては、生分解性樹脂の単成分からなるフィラメントであっても良く、低融点樹脂が鞘成分、高融点樹脂が芯成分である生分解性繊維と芯成分樹脂と同様の生分解性繊維との混繊フィラメント、あるいは前記芯鞘型複合繊維の単独使いの不織布であってもよい。   The biodegradable long-fiber nonwoven fabric A of the present invention may be a filament composed of a single component of a biodegradable resin, a biodegradable fiber and a core in which a low melting point resin is a sheath component and a high melting point resin is a core component. It may be a mixed filament with the same biodegradable fiber as the component resin, or a single-use nonwoven fabric of the core-sheath type composite fiber.

また、生分解性スパンボンドと生分解性メルトブローとの積層不織布である場合、スパンボンド不織布を構成するフィラメントの表層部樹脂とメルトブロー不織布を構成する樹脂と同種の生分解性樹脂を用いることが熱圧着後の不織布の層間剥離がなくなるなどの接着安定性を良くする上で有効である。   In the case of a laminated nonwoven fabric of biodegradable spunbond and biodegradable meltblown, it is necessary to use the same kind of biodegradable resin as the resin constituting the surface layer resin of the filament constituting the spunbond nonwoven fabric and the meltblown nonwoven fabric. This is effective in improving the adhesion stability such as elimination of delamination of the nonwoven fabric after pressure bonding.

不織布を構成するフィラメントの熱圧着方法は、従来から行われている熱エアースルー方式、超音波方式、エンボス方式など、どんな方式であっても特に問題なく接着可能である。エンボス方式による熱圧着温度は、フィラメント表面を形成する樹脂の融点より10℃〜50℃低い温度が良く、より好ましくは15℃〜40℃低い温度が好ましい。エンボス温度がフィラメント表面を形成する樹脂の融点より10℃未満低い温度である場合、樹脂の溶融が激しく、エンボスロールへのシート取られ、ロール汚れが発生、シートが硬くなるばかりかロール巻付きも頻発するなど安定した生産も不可能となる。また、フィラメント表面樹脂の融点より50℃以上低い温度である場合、樹脂の溶着が不十分であり風合い的にはソフトなものとなるが、物性的に弱いものとなるなどの問題点も多い。エンボスロールの圧着面積は8%〜30%の範囲内とするのがよく、ロールの彫刻はどんなパターンでも良いが、接着温度範囲を広くとる意味からも上ロール及び下ロールともに彫刻したものがより好ましい。また、本発明において製糸性、物性など効果が損なわれない範囲で酸化チタン、ニ酸化ケイ素、または炭酸カルシウムなどの無機系粒子、あるいはエチレンビスステアロアミドなどの滑剤を添加すると、エンボスロールと接着シートの離型性が向上し、より安定した接着性が得られ、また不織布の隠ぺい性や柔軟性が向上できるので好ましく、その添加率はポリマー中に0.05重量%〜1.0重量%であることが好ましく、より好ましくは0.1重量%〜1.0重量%、さらに好ましくは0.1重量%〜0.7重量%、最も好ましいのは0.2重量%〜0.7重量%である。   As a method for thermocompression bonding of the filaments constituting the nonwoven fabric, any conventional method such as a hot air-through method, an ultrasonic method, or an embossing method can be bonded without any particular problem. The thermocompression bonding temperature by the embossing method is preferably a temperature that is 10 ° C to 50 ° C lower than the melting point of the resin that forms the filament surface, and more preferably a temperature that is 15 ° C to 40 ° C lower. When the embossing temperature is lower than the melting point of the resin forming the filament surface by less than 10 ° C., the resin melts severely, the sheet is taken on the embossing roll, roll contamination occurs, the sheet becomes hard, and the roll is also wound. Stable production such as frequent occurrence is also impossible. Further, when the temperature is 50 ° C. or more lower than the melting point of the filament surface resin, the resin is insufficiently welded and soft in texture, but there are many problems such as weak physical properties. The embossing roll should have a pressure bonding area in the range of 8% to 30%, and any pattern can be engraved on the roll, but both the upper and lower rolls are more engraved from the standpoint of widening the bonding temperature range. preferable. Further, in the present invention, when inorganic particles such as titanium oxide, silicon dioxide, or calcium carbonate, or a lubricant such as ethylene bisstearamide is added within a range in which the effects such as the spinning property and physical properties are not impaired, the embossing roll and the adhesive are bonded. The sheet releasability is improved, more stable adhesion is obtained, and the non-woven fabric can be improved in concealment and flexibility. The addition ratio is 0.05 wt% to 1.0 wt% in the polymer. More preferably, 0.1% by weight to 1.0% by weight, more preferably 0.1% by weight to 0.7% by weight, and most preferably 0.2% by weight to 0.7% by weight. %.

添加率が0.05重量%未満である場合、エンボスロールと熱接着シートの剥離効果が乏しく、また1.0重量%を超える場合、単糸切れなど悪影響を与えることになる。   When the addition rate is less than 0.05% by weight, the peeling effect between the embossing roll and the heat-bonding sheet is poor, and when it exceeds 1.0% by weight, there is an adverse effect such as single yarn breakage.

前記無機系微粒子または滑剤の添加は、口金構成が芯鞘型である場合、芯成分、鞘成分の両方に添加してもよいが、無機系微粒子または滑剤を少なくとも鞘成分に添加することで十分効果を発揮することができる。また、熱接着後のシートに撥水剤、柔軟剤などを付与することで、より一層の機能性を有する不織布を得ることができる。   The inorganic fine particles or lubricant may be added to both the core component and the sheath component when the die configuration is a core-sheath type, but it is sufficient to add the inorganic fine particles or lubricant to at least the sheath component. The effect can be demonstrated. Moreover, the nonwoven fabric which has still more functionality can be obtained by providing a water repellent, a softening agent, etc. to the sheet | seat after heat bonding.

本発明に用いる生分解性不織布は従来から用いられているスパンボンド方式とメルトブロー方式の少なくとも1対以上がインラインで組み合わされた方式でも効率的に製造することができる。生分解性長繊維不織布Aである場合、繊維径が8〜15μmであって品質的に良好な不織布を得るためには、生分解性樹脂をエクストルーダーにて加熱溶融して吐出孔径が0.20〜0.60mmである口金から吐出させ、冷却した後、エジェクターにて2000m/分〜5500m/分、より好ましくは2500m/分〜5000m/分、さらに好ましくは4300m/分〜5000m/分で高速牽引することが好ましい。口金孔径が0.20mm未満である場合、吐出開始初期直後の孔詰まりによる欠点が発生しやすく、また0.60mmよりも大きいものである場合、紡糸ドラフトが高すぎることによる単糸流れが発生するなどの問題がある。紡糸速度が2000m/分未満である場合、物性レベルが低下するばかりかフィラメントの開繊性が悪化し、シートとしての目付斑も悪化する。また、紡糸速度が5500m/分を超える場合、紡出されたフィラメントの曳糸性が不十分となり、単糸切れが増加するという問題がある。   The biodegradable nonwoven fabric used in the present invention can also be efficiently produced by a method in which at least one pair of a conventional spunbond method and a melt blow method is combined in-line. In the case of the biodegradable long-fiber nonwoven fabric A, in order to obtain a nonwoven fabric having a fiber diameter of 8 to 15 μm and good quality, the biodegradable resin is heated and melted with an extruder, and the discharge hole diameter is 0. After discharging from a base of 20 to 0.60 mm and cooling, high speed at 2000 m / min to 5500 m / min, more preferably 2500 m / min to 5000 m / min, more preferably 4300 m / min to 5000 m / min with an ejector. Towing is preferable. When the diameter of the nozzle hole is less than 0.20 mm, defects due to hole clogging immediately after the beginning of discharge are likely to occur, and when the diameter is larger than 0.60 mm, a single yarn flow is generated due to the spinning draft being too high. There are problems such as. When the spinning speed is less than 2000 m / min, not only the physical property level is lowered, but also the opening property of the filament is deteriorated, and the spot weight as a sheet is also deteriorated. Further, when the spinning speed exceeds 5500 m / min, there is a problem that the spinnability of the spun filament becomes insufficient and the single yarn breakage increases.

また、良好な紡糸性を維持しながら高速紡糸に対応するためには、口金より吐出されたフィラメントの冷却条件が重要であり、口金面からエジェクター入口までの長さ(冷却長)を50cm〜100cm、より好ましくは60cm〜80cmとするのが良い。冷却長が100cmを超える場合、チムニー風量と随伴流とのバランスが取りにくく糸ゆれが発生しやすく、紡糸性悪化や糸ゆれによる目付斑も悪化するという問題がある。   In order to support high speed spinning while maintaining good spinnability, the cooling condition of the filament discharged from the die is important, and the length (cooling length) from the die surface to the ejector inlet is 50 cm to 100 cm. More preferably, the thickness is 60 cm to 80 cm. When the cooling length exceeds 100 cm, there is a problem that the balance between the chimney air flow and the accompanying flow is difficult to be obtained, and the yarn is liable to be distorted, and the spinnability is deteriorated and the unevenness due to the yarn is also deteriorated.

また、スパンボンド不織布Aとメルトブロー不織布Bとをインラインで積層する際のメルトブロー不織布Bの条件としては、噴射する熱風温度は220℃〜250℃が好ましく、熱風圧力は0.02Mpa〜0.3Mpaが良い。熱風温度が220℃未満である場合、溶融ポリマーの粘度が高くなり曳糸性に欠けて均一な延伸がなされないためであり、熱風温度が250℃よりも高いものである場合、口金温度が高くなりポリマーの熱分解が激しく欠点が発生するためである。熱風圧力が0.3Mpaを超える場合、噴射する熱風が多すぎることにより、捕集ネット上に捕集され搬送されているスパンボンド不織布Aのウェブ乱れが発生するため不織布として品位的に満足できるものが得られない。また、熱風圧力が0.02Mpa未満である場合、十分な牽引力が得られず、繊維径も太いものとなるため不織布が硬く、品質的に良くないものとなる。また、スパンボンド及びメルトブロー方式における噴射距離は、フィラメント捕集性および目付斑など品位、品質安定性の点から、スパンボンドである場合には、牽引用エジェクター出口から移動する捕集ネットの距離が30cm〜60cm、メルトブローである場合には、フィラメント噴射口金面から捕集ネットの距離が10cm〜30cmであることが好ましい。   Moreover, as conditions of the melt blown nonwoven fabric B when laminating the spunbond nonwoven fabric A and the melt blown nonwoven fabric B in-line, the hot air temperature to be injected is preferably 220 ° C. to 250 ° C., and the hot air pressure is 0.02 Mpa to 0.3 Mpa. good. This is because when the hot air temperature is less than 220 ° C, the viscosity of the molten polymer becomes high and the stretchability is lacking and uniform stretching is not performed. When the hot air temperature is higher than 250 ° C, the die temperature is high. This is because the thermal decomposition of the polymer becomes severe and disadvantages occur. When the hot air pressure exceeds 0.3 Mpa, the web of the spunbond nonwoven fabric A collected and conveyed on the collection net is generated due to too much hot air to be jetted, so that the nonwoven fabric can be satisfactorily satisfied as a nonwoven fabric. Cannot be obtained. Further, when the hot air pressure is less than 0.02 MPa, sufficient traction force cannot be obtained and the fiber diameter becomes thick, so that the nonwoven fabric is hard and the quality is not good. In addition, the spun bond and melt blown spray distances from the point of quality, such as the ability to collect filaments and uneven spots, and the stability of the quality, in the case of spunbond, the distance of the collection net moving from the outlet of the ejector for towing In the case of 30 cm to 60 cm and melt blow, it is preferable that the distance from the filament jet base to the collection net is 10 cm to 30 cm.

本発明に係る不織布は、上述のようにして捕集ネット上に捕集されたウェブを熱接着することで容易に製造することができる。   The nonwoven fabric according to the present invention can be easily manufactured by thermally bonding the web collected on the collection net as described above.

以下、実施例に基づき本発明につき具体的に説明するが、本発明がこれら実施例によって限定されるものではない。なお、下記実施例における各特性値は、次の方法で測定したものである。
(1)融点(℃):
セイコーインスツルメンツ社製DSC6200型測定装置を用いて測定した。試料量10mg、温度範囲40〜300℃、昇温速度20℃/分、測定間隔0.5秒の条件で、得られた融解吸熱曲線において極値を与える温度を、二つの試料について測定し、それらの平均を融点とした。
(2)繊維径(μm):
不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡で100〜5000倍の断面写真を撮影し、各サンプルからスパンボンド不織布層およびメルトブロー不織布層それぞれn数=10本(総計100本)の繊維直径(μm)を測定し、それぞれの平均値を算出し、小数点以下は四捨五入して繊維径(μm)とした。
(3)製品目付(g/m2 ):
標準状態下にサンプルを24時間放置後、縦方向50cm×横方向50cmの試料4点を採取し、各試料の重量(g)を測定し、得られた値の平均値を単位面積(m2 )当たりに換算し、小数点以下は四捨五入して不織布の目付(g/m2 )とした。
EXAMPLES Hereinafter, although this invention is concretely demonstrated based on an Example, this invention is not limited by these Examples. In addition, each characteristic value in the following Example is measured by the following method.
(1) Melting point (° C):
It measured using the DSC6200 type | mold measuring apparatus by Seiko Instruments. Under the conditions of a sample amount of 10 mg, a temperature range of 40 to 300 ° C., a heating rate of 20 ° C./min, and a measurement interval of 0.5 seconds, the temperature giving an extreme value in the obtained melting endotherm curve was measured for two samples, Their average was taken as the melting point.
(2) Fiber diameter (μm):
Ten small piece samples were randomly collected from the nonwoven fabric, taken with a scanning electron microscope at a cross-sectional photograph of 100 to 5000 times, and each of the spunbond nonwoven fabric layer and the melt blown nonwoven fabric layer from n = 10 (total of 100). The fiber diameter (μm) was measured, the average value of each was calculated, and the fractional part was rounded to the fiber diameter (μm).
(3) Product weight (g / m 2 ):
After leaving the sample under standard conditions for 24 hours, four samples of 50 cm in the vertical direction and 50 cm in the horizontal direction were collected, the weight (g) of each sample was measured, and the average value of the obtained values was expressed in unit area (m 2 ), And rounded off to the nearest decimal place to obtain the basis weight of the nonwoven fabric (g / m 2 ).

なおスパンボンド及びメルトブロー不織布におけるそれぞれの各層の単体目付は、それぞれの吐出量、シート幅、捕集ネット速度から
各層の単体目付=吐出量(g/分)/{幅(m)×速度(m/分)}
により算出した。
(4)剛軟度(mm):
JIS L1096、6.19.1 A法(45゜カンチレバー法)によって縦方向の剛軟度を測定した。
The unit weight of each layer in the spunbond and meltblown nonwoven fabric is determined based on the discharge amount, sheet width, and collection net speed of each layer. Single layer basis weight of each layer = discharge amount (g / min) / {width (m) × speed (m / Min)}
Calculated by
(4) Bending softness (mm):
The bending resistance in the vertical direction was measured by JIS L1096, 6.19.1 A method (45 ° cantilever method).

すなわち、試料から巾方向(横方向)2cm×長さ方向(縦方向)15cmのサンプルを5枚採取し、一端が45度の斜面をもつ表面が滑らかな水平台の上に試験片の端片をスケールの基線に置き、試験片を斜面の方向に緩やかに滑らせて試験片の一端の中央点が斜面と接したとき、他端の位置をスケールで読み、5枚の表裏を測り、これらの平均値を剛軟度とした。
(5)風合い:
不織布から幅20cm、長さ20cmのサンプルを採取し、5人のモニターにより評価した。サンプルを手で揉み、不織布の柔軟性を評価し、次の基準で判定し、その合計点で柔軟性のランク分けし、合計点数が高いものほど柔軟であると判定した。
That is, five samples of width direction (horizontal direction) 2 cm × length direction (longitudinal direction) 15 cm were taken from the sample, and the end piece of the test piece was placed on a horizontal table with one end having a 45-degree slope and a smooth surface. Is placed on the base line of the scale, and the test piece is gently slid in the direction of the slope. When the center point of one end of the test piece touches the slope, read the position of the other end on the scale and measure the front and back of the five pieces. The average value was defined as the bending resistance.
(5) Texture:
A sample having a width of 20 cm and a length of 20 cm was taken from the nonwoven fabric and evaluated by a monitor of five people. The sample was rubbed by hand, the flexibility of the nonwoven fabric was evaluated, judged according to the following criteria, and ranked according to the total score. The higher the total score, the more flexible the sample.

3点:不織布の手触りが良く柔軟である。   3 points: The nonwoven fabric is soft and flexible.

2点:不織布の手触り感が普通である。   2 points: The feel of the nonwoven fabric is normal.

1点:不織布の手触り感が硬いものである。
(6)製品品位:
不織布から幅100cm、長さ50cmのサンプルを採取し、目視にて次の通り判定した。
1 point: The touch of the nonwoven fabric is hard.
(6) Product quality:
A sample having a width of 100 cm and a length of 50 cm was taken from the nonwoven fabric, and visually judged as follows.

○:エンボス接着時の熱収縮に起因するシワ等がなく品位良好である。   ○: Good quality with no wrinkles or the like due to heat shrinkage during emboss bonding.

△:部分的にシワが認められるが使用上問題ないレベルである。   Δ: Wrinkles are partially observed, but there is no problem in use.

×:シワが多く品位的に極めて不良である。
(7)耐水圧(mm)
JIS−L−1092に準じ耐水圧測定装置を用いて測定した。160mm×160mmに裁断した試料を測定装置にセットし、蒸留水を入れた水準装置を10cm/分の速さで上昇させ、不織布表面から水滴が1敵出たときのマノメーターの水位を読み取る。10個の試料を測定し、その平均値を耐水圧とした。
(8)繊維径の変動率(CV%)
繊維径測定結果をもとに中層のメルトブロー部分の測定値を次式により算出した。
X: There are many wrinkles and the quality is extremely poor.
(7) Water pressure resistance (mm)
It measured using the water pressure-resistant measuring apparatus according to JIS-L-1092. A sample cut to 160 mm × 160 mm is set in a measuring device, a level device containing distilled water is raised at a speed of 10 cm / min, and the water level of the manometer when one drop of water comes out from the nonwoven fabric surface is read. Ten samples were measured and the average value was taken as the water pressure resistance.
(8) Fluctuation rate of fiber diameter (CV%)
Based on the fiber diameter measurement result, the measured value of the melt blow part of the middle layer was calculated by the following formula.

Figure 2005048350
Figure 2005048350

(9)毛羽
摩擦に対する染色堅牢度試験法(摩擦試験機II型)JIS−L0849に準じ、不織布の縦方向、横方向にそれぞれ幅30mm×長さ220mmのサンプル6枚を採取、摩擦用白綿布を貼り付けた荷重200gの摩擦子を不織布縦方向の測定は100回、横方向の測定は50回往復させ、摩擦面の表面状態を観察し次の通り判定した。
(9) Fuzz Dyeing fastness test method for friction (friction tester type II) In accordance with JIS-L0849, six samples each having a width of 30 mm and a length of 220 mm were collected in the longitudinal and lateral directions of the nonwoven fabric. A 200 g load was applied to the nonwoven fabric, and the nonwoven fabric was measured 100 times in the longitudinal direction and 50 times in the lateral direction, and the surface condition of the friction surface was observed and determined as follows.

○:表面にも毛羽発生がほとんどなく、使用上問題ないと認められるもの。   ○: There is almost no fluffing on the surface, and it is recognized that there is no problem in use.

△:表面に毛羽があるが使用上問題ないと見られるもの。   Δ: Fluff on the surface, but no problem in use.

×:表面に毛羽が多く使用上問題あるもの。
(10)生分解性:
大きさ20cm×20cmの不織布3枚を採取し、土壌約10cmに埋め込み、6ヶ月放置後の形態変化を目視で評価した。
X: The surface has many fuzz and has a problem in use.
(10) Biodegradability:
Three nonwoven fabrics having a size of 20 cm × 20 cm were collected, embedded in about 10 cm of soil, and the shape change after being left for 6 months was visually evaluated.

不織布に生分解性が認められたもの :○
不織布に生分解性が認められないもの:×
実施例1〜7
スパンボンド用には重量平均分子量が15万でQ値(Mw/Mn)が1.78、融点が170℃であるポリ乳酸樹脂を、またメルトブロー用には重量平均分子量が9.6万であり、Q値が1.68であるポリ乳酸樹脂を、別々にそれぞれ真空乾燥機を用い100℃で24時間乾燥した。
Non-woven fabric with biodegradability: ○
Non-biodegradable non-woven fabric: ×
Examples 1-7
A polylactic acid resin having a weight average molecular weight of 150,000, a Q value (Mw / Mn) of 1.78 and a melting point of 170 ° C. is used for spunbond, and a weight average molecular weight is 96,000 for meltblowing. The polylactic acid resin having a Q value of 1.68 was separately dried at 100 ° C. for 24 hours using a vacuum dryer.

次に、口金孔径が0.3mmであって1m幅当たりの穴数が3500孔である矩形口金と矩形エジェクターを有するスパンボンド設備、口金孔径が0.4mmであって1mmピッチの吐出孔を有するメルトブロー設備、更に前記同様に口金孔径が0.3mmであって1m幅当たりの穴数が3500孔である矩形口金と矩形エジェクターを有するスパンボンド設備を直列に配置し、不織布の表、裏面がスパンボンド不織布で中層がメルトブロー不織布を製造可能な設備を用いた。捕集ネット進行最後部に位置するスパンボンド用エクストルーダーの温度を230℃、紡糸温度を235℃とし、吐出量を表1に示すように変更し、紡出した後、冷却温度を15℃とし、矩形エジェクター圧力0.3Mpa、紡糸速度4800m/分で高速牽引し、移動するネットコンベアー上に捕集した。引き続き、中層を形成するメルトブロー用エクストルーダーの温度を235℃、ダイ温度を235℃とし、吐出量と熱風圧力を適宜変更してメルトブロー層の繊維径と目付比率を表1に示すように調整し、ネット進行方向最後部に位置するスパンボンド設備により形成された不織布ウェブ上に積層した。   Next, a spunbond facility having a rectangular die having a diameter of 0.3 mm and a number of holes per 1 m width of 3500 holes and a rectangular ejector, and having a diameter of 0.4 mm and a discharge hole having a pitch of 1 mm. A melt blow equipment and a spunbond equipment having a rectangular base having a diameter of 0.3 mm and a number of holes per 1 m width of 3500 holes and a rectangular ejector are arranged in series, and the front and back surfaces of the nonwoven fabric are spanned. An equipment capable of producing a melt-blown nonwoven fabric with a bonded nonwoven fabric as an intermediate layer was used. The temperature of the spunbond extruder located at the end of the collection net progression is 230 ° C, the spinning temperature is 235 ° C, the discharge rate is changed as shown in Table 1, and after spinning, the cooling temperature is 15 ° C. They were pulled at a high speed at a rectangular ejector pressure of 0.3 Mpa and a spinning speed of 4800 m / min, and collected on a moving net conveyor. Subsequently, the temperature of the melt blown extruder for forming the middle layer was set to 235 ° C., the die temperature was set to 235 ° C., and the discharge amount and hot air pressure were appropriately changed to adjust the fiber diameter and basis weight ratio of the melt blow layer as shown in Table 1. And laminated on a nonwoven web formed by a spunbond facility located at the end of the net traveling direction.

さらに引き続いて、ネット進行方向最前列に位置するネット進行方向最後部のスパンボンド設備と同様の条件及び方法で紡出したスパンボンド不織布ウェブを、中間層を構成するメルトブロー不織布ウェブ上に噴射し捕集した。得られたスパンボンド層とメルトブロー層、更にスパンボンドウェブ層との積層ウェブを、片面がフラットで片面に凹凸を有し、凸面の面積比率が18%で、エンボス温度が140℃、エンボス圧力が50kg/cmで熱圧着し不織布を製造した。   Subsequently, a spunbond nonwoven web spun under the same conditions and method as the spunbond equipment at the end of the net traveling direction located in the front row of the net traveling direction is jetted onto the melt blown nonwoven web constituting the intermediate layer. Gathered. The laminated web of the obtained spunbond layer, meltblown layer, and spunbond web layer is flat on one side and uneven on one side, the area ratio of the convex surface is 18%, the embossing temperature is 140 ° C., and the embossing pressure is A nonwoven fabric was manufactured by thermocompression bonding at 50 kg / cm.

得られた不織布は、熱接着による収縮シワな発生もなく、良好な品位であり、剛軟度及び風合いとも良好な結果を示し、また耐水圧も満足できるものであった。また、いずれも十分な生分解性を有するものであった。   The obtained non-woven fabric was free from shrink wrinkles due to thermal bonding, was of good quality, showed good results in bending resistance and texture, and was also satisfactory in water pressure resistance. Moreover, all had sufficient biodegradability.

評価結果を表1に示した。   The evaluation results are shown in Table 1.

Figure 2005048350
Figure 2005048350

実施例8〜10
実施例3で得られた不織布を用いマイクレックス社製、マイクロクレーパーにより押込み比10%、15%、20%(シートの供給速度を排出速度に対し10%、15%、20%にアップして処理する)で処理した結果、風合いは大幅に柔軟化、剛軟度も大幅に低下し、医療衛生材料、包装材料および農業材料として満足できるものであった。
Examples 8-10
Using the non-woven fabric obtained in Example 3, manufactured by Mike Rex Co., Ltd., indentation ratios of 10%, 15%, and 20% by a micro creper (the sheet feeding speed was increased to 10%, 15%, and 20% of the discharge speed As a result, the texture was greatly softened and the bending resistance was greatly reduced, which was satisfactory as a medical hygiene material, packaging material and agricultural material.

評価結果を表2に示した。   The evaluation results are shown in Table 2.

Figure 2005048350
Figure 2005048350

比較例1〜7
実施例1と同様の設備及び原料を用い、スパンボンドおよびメルトブローの吐出量を変更し、更にメルトブローでは熱風風速を変更することでそれぞれの繊維径と目付を調整し、ネット上に捕集、スパンボンド、メルトブロー、スパンボンドの積層ウェブとし、引き続き片面がフラットで片面に凹凸を有し、凸面の面積比率が6%、18%及び40%とし、エンボス温度140℃、エンボス圧力50kg/cmで熱圧着した。
Comparative Examples 1-7
The same equipment and raw materials as in Example 1 were used, the spunbond and meltblown discharge rates were changed, and in meltblown, the hot air wind speed was changed to adjust the respective fiber diameters and basis weights, and they were collected on the net. Bond, meltblown, spunbond laminated web, one side is flat and uneven on one side, convex area ratio is 6%, 18% and 40%, embossing temperature 140 ° C, embossing pressure 50kg / cm Crimped.

比較例1では、積層不織布を構成するメルトブロー不織布の重量比率が40%と高く、熱圧着時の幅縮みが大きく、耳部周辺にシワが発生し、品位が悪く剛軟度が高く風合い的にも良くなかった。   In Comparative Example 1, the weight ratio of the melt blown nonwoven fabric constituting the laminated nonwoven fabric is as high as 40%, the width shrinkage at the time of thermocompression bonding is large, wrinkles are generated around the ears, the quality is poor, the bending resistance is high, and the texture Was not good either.

比較例2では、メルトブロー比率が少なく、耐水圧に欠けるものであった。   In Comparative Example 2, the melt blow ratio was small and the water pressure resistance was insufficient.

比較例3は、不織布目付が高すぎるため、剛軟度が高く、風合い的にも良くなかった。   In Comparative Example 3, since the nonwoven fabric basis weight was too high, the bending resistance was high and the texture was not good.

比較例4は、スパンボンドの繊維径が大きくて剛軟度が高く、風合い、耐水圧とも満足できるものでなかった。   In Comparative Example 4, the fiber diameter of the spunbond was large and the bending resistance was high, and the texture and water pressure resistance were not satisfactory.

比較例5は、スパンボンド、メルトブロー不織布ともに繊維径が高く、剛軟度が高く、風合い、耐水圧とも比較例4以下の悪いものであった。   In Comparative Example 5, both the spunbond and the melt blown nonwoven fabric had high fiber diameters and high bending resistance, and both the texture and water pressure resistance were worse than those in Comparative Example 4.

比較例6は、不織布の熱圧着面積が40%と高いため剛軟度が極めて高く、風合いが硬く医療衛生材料、包装材料または農業材料として使用できるものでなかった。   In Comparative Example 6, since the non-woven fabric had a high thermocompression bonding area of 40%, the bending resistance was extremely high, the texture was hard, and it could not be used as a medical hygiene material, packaging material or agricultural material.

比較例7は、不織布の熱圧着面積が6%と低いため熱圧着が不十分であり表面の毛羽が多く医療衛生材料、包装材料または農業材料として使用できるものではなかった。   In Comparative Example 7, the thermocompression bonding area of the nonwoven fabric was as low as 6%, so that the thermocompression bonding was insufficient, and there were many fluffs on the surface, which could not be used as a medical hygiene material, packaging material or agricultural material.

以上の評価結果をまとめて表3に示した。   The above evaluation results are summarized in Table 3.

Figure 2005048350
Figure 2005048350

Claims (10)

不織布を構成する繊維径が8μm〜15μmであってかつ目付が6〜10g/m2 である生分解性長繊維不織布Aと、平均繊維径が2μm〜8μmであって目付が2〜6g/m2 である生分解性長繊維不織布Bの少なくとも2種類の不織布が積層された構成からなることを特徴する不織布。 Biodegradable filament nonwoven fabric A fiber diameter of a 8μm~15μm and weight per unit area is 6-10 g / m 2 constituting the nonwoven fabric, the basis weight average fiber diameter of a 2μm~8μm is 2 to 6 g / m 2. A non-woven fabric characterized by comprising a structure in which at least two types of non-woven fabric of biodegradable long-fiber non-woven fabric B, which is 2 , are laminated. 前記不織布Aがスパンボンド不織布であり、前記不織布Bがメルトブロー不織布である請求項1記載の不織布。 The nonwoven fabric according to claim 1, wherein the nonwoven fabric A is a spunbond nonwoven fabric and the nonwoven fabric B is a meltblown nonwoven fabric. 前記積層不織布を構成する不織布Bの繊維径の変動率が30〜60%であって、かつ積層不織布中、不織布Bの占める重量比率が12〜30%であることを特徴とする請求項1または2記載の不織布。 The variation rate of the fiber diameter of the nonwoven fabric B constituting the laminated nonwoven fabric is 30 to 60%, and the weight ratio of the nonwoven fabric B in the laminated nonwoven fabric is 12 to 30%. 2. The nonwoven fabric according to 2. 前記生分解性不織布AとBが部分的に熱圧着されており、部分的熱圧着部の総面積が全体の8〜30%であることを特徴とする請求項1〜3のいずれかに記載の不織布。 The said biodegradable nonwoven fabric A and B are partially thermocompression bonded, and the total area of a partial thermocompression bonding part is 8 to 30% of the whole, The any one of Claims 1-3 characterized by the above-mentioned. Non-woven fabric. 前記生分解性不織布のJIS−L−1096A法(45゜カンチレバー法)により測定した剛軟性(タテ方向測定)が30〜65mmであることを特徴とする請求項1〜4のいずれかに記載の不織布。 The bending resistance (measurement in the vertical direction) measured by the JIS-L-1096A method (45 ° cantilever method) of the biodegradable nonwoven fabric is 30 to 65 mm. Non-woven fabric. 前記生分解性不織布Aと生分解性不織布Bを構成するポリマーの融点が実質的に同一であるか、もしくは融点差が50℃以内であることを特徴とする請求項1〜5のいずれかに記載の不織布。 The melting point of the polymer constituting the biodegradable nonwoven fabric A and the biodegradable nonwoven fabric B is substantially the same, or the melting point difference is within 50 ° C. The nonwoven fabric described. 前記生分解性不織布Aと生分解性不織布Bを構成する不織布がポリ乳酸あるいはポリブチレンサクシネートにより構成されているか、またはこれらの組合せにより構成されたことを特徴とする請求項1〜6のいずれかに記載の不織布。 The nonwoven fabric constituting the biodegradable nonwoven fabric A and the biodegradable nonwoven fabric B is composed of polylactic acid or polybutylene succinate, or a combination thereof. The non-woven fabric according to crab. 請求項1〜7のいずれかに記載の不織布を用いてなることを特徴とする医療衛生材料。 A medical hygiene material comprising the nonwoven fabric according to any one of claims 1 to 7. 請求項1〜7のいずれかに記載の不織布を用いてなることを特徴とする包装材料。 A packaging material comprising the nonwoven fabric according to any one of claims 1 to 7. 請求項1〜7のいずれかに記載の不織布を用いてなることを特徴とする農業材料。 An agricultural material comprising the nonwoven fabric according to any one of claims 1 to 7.
JP2004189882A 2003-07-15 2004-06-28 Biodegradable nonwoven fabric and sanitary material, wrapping material and agricultural material using the same Withdrawn JP2005048350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004189882A JP2005048350A (en) 2003-07-15 2004-06-28 Biodegradable nonwoven fabric and sanitary material, wrapping material and agricultural material using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003196972 2003-07-15
JP2004189882A JP2005048350A (en) 2003-07-15 2004-06-28 Biodegradable nonwoven fabric and sanitary material, wrapping material and agricultural material using the same

Publications (1)

Publication Number Publication Date
JP2005048350A true JP2005048350A (en) 2005-02-24

Family

ID=34277306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189882A Withdrawn JP2005048350A (en) 2003-07-15 2004-06-28 Biodegradable nonwoven fabric and sanitary material, wrapping material and agricultural material using the same

Country Status (1)

Country Link
JP (1) JP2005048350A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291375A (en) * 2005-04-07 2006-10-26 Asahi Kasei Fibers Corp Biodegradable weedproof sheet
JP2006333936A (en) * 2005-05-31 2006-12-14 Asahi Kasei Fibers Corp Biodegradable nonwoven fabric for pocket warmer-packaging material
WO2007117235A1 (en) 2006-04-07 2007-10-18 Kimberly-Clark Worldwide, Inc. Biodegradable nonwoven laminate
US7972692B2 (en) 2005-12-15 2011-07-05 Kimberly-Clark Worldwide, Inc. Biodegradable multicomponent fibers
JP2011157118A (en) * 2010-02-02 2011-08-18 Asahi Kasei Fibers Corp Filter for food made of biodegradable laminate nonwoven fabric
US8268738B2 (en) 2008-05-30 2012-09-18 Kimberly-Clark Worldwide, Inc. Polylactic acid fibers
US8461262B2 (en) 2010-12-07 2013-06-11 Kimberly-Clark Worldwide, Inc. Polylactic acid fibers
US8470222B2 (en) 2008-06-06 2013-06-25 Kimberly-Clark Worldwide, Inc. Fibers formed from a blend of a modified aliphatic-aromatic copolyester and thermoplastic starch
US8518311B2 (en) 2007-08-22 2013-08-27 Kimberly-Clark Worldwide, Inc. Multicomponent biodegradable filaments and nonwoven webs formed therefrom
US8609808B2 (en) 2006-07-14 2013-12-17 Kimberly-Clark Worldwide, Inc. Biodegradable aliphatic polyester for use in nonwoven webs
US8710172B2 (en) 2006-07-14 2014-04-29 Kimberly-Clark Worldwide, Inc. Biodegradable aliphatic-aromatic copolyester for use in nonwoven webs
US8841386B2 (en) 2008-06-10 2014-09-23 Kimberly-Clark Worldwide, Inc. Fibers formed from aromatic polyester and polyether copolymer
US9091004B2 (en) 2006-07-14 2015-07-28 Kimberly-Clark Worldwide, Inc. Biodegradable polylactic acid for use in nonwoven webs

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291375A (en) * 2005-04-07 2006-10-26 Asahi Kasei Fibers Corp Biodegradable weedproof sheet
JP2006333936A (en) * 2005-05-31 2006-12-14 Asahi Kasei Fibers Corp Biodegradable nonwoven fabric for pocket warmer-packaging material
US7972692B2 (en) 2005-12-15 2011-07-05 Kimberly-Clark Worldwide, Inc. Biodegradable multicomponent fibers
US7989062B2 (en) 2005-12-15 2011-08-02 Kimberly-Clark Worldwide, Inc. Biodegradable continuous filament web
US8927443B2 (en) 2006-04-07 2015-01-06 Kimberly-Clark Worldwide, Inc. Biodegradable nonwoven laminate
AU2006341586B2 (en) * 2006-04-07 2011-05-12 Kimberly-Clark Worldwide, Inc. Biodegradable nonwoven laminate
CN101415543B (en) * 2006-04-07 2012-07-18 金伯利-克拉克环球有限公司 Biodegradable non-woven laminating material
WO2007117235A1 (en) 2006-04-07 2007-10-18 Kimberly-Clark Worldwide, Inc. Biodegradable nonwoven laminate
US9394629B2 (en) 2006-07-14 2016-07-19 Kimberly-Clark Worldwide, Inc. Biodegradable aliphatic-aromatic copolyester for use in nonwoven webs
US8609808B2 (en) 2006-07-14 2013-12-17 Kimberly-Clark Worldwide, Inc. Biodegradable aliphatic polyester for use in nonwoven webs
US8710172B2 (en) 2006-07-14 2014-04-29 Kimberly-Clark Worldwide, Inc. Biodegradable aliphatic-aromatic copolyester for use in nonwoven webs
US9260802B2 (en) 2006-07-14 2016-02-16 Kimberly-Clark Worldwide, Inc. Biodegradable aliphatic polyester for use in nonwoven webs
US9091004B2 (en) 2006-07-14 2015-07-28 Kimberly-Clark Worldwide, Inc. Biodegradable polylactic acid for use in nonwoven webs
US8518311B2 (en) 2007-08-22 2013-08-27 Kimberly-Clark Worldwide, Inc. Multicomponent biodegradable filaments and nonwoven webs formed therefrom
US8268738B2 (en) 2008-05-30 2012-09-18 Kimberly-Clark Worldwide, Inc. Polylactic acid fibers
US11236443B2 (en) 2008-06-06 2022-02-01 Kimberly-Clark Worldwide, Inc. Fibers formed from a blend of a modified aliphatic-aromatic copolyester and theremoplastic starch
US8470222B2 (en) 2008-06-06 2013-06-25 Kimberly-Clark Worldwide, Inc. Fibers formed from a blend of a modified aliphatic-aromatic copolyester and thermoplastic starch
US9163336B2 (en) 2008-06-10 2015-10-20 Kimberly-Clark Worldwide, Inc. Fibers formed from aromatic polyester and polyether copolymer
US8841386B2 (en) 2008-06-10 2014-09-23 Kimberly-Clark Worldwide, Inc. Fibers formed from aromatic polyester and polyether copolymer
JP2011157118A (en) * 2010-02-02 2011-08-18 Asahi Kasei Fibers Corp Filter for food made of biodegradable laminate nonwoven fabric
US8461262B2 (en) 2010-12-07 2013-06-11 Kimberly-Clark Worldwide, Inc. Polylactic acid fibers

Similar Documents

Publication Publication Date Title
JP4834659B2 (en) Fibers, nonwovens and articles containing nanofibers made from high glass transition temperature polymers
WO2008073101A1 (en) Biodegradable polylactic acids for use in forming fibers
JP2005048350A (en) Biodegradable nonwoven fabric and sanitary material, wrapping material and agricultural material using the same
JP3264720B2 (en) Biodegradable composite short fiber non-woven fabric
JPH06207323A (en) Biodegradable latent-crimping conjugate filament and nonwoven fabric made of the filament
JPH1143857A (en) Biodegradable non-woven fabric
JP2541523B2 (en) Nonwoven webs with improved softness
TWI776814B (en) Heat-fusible composite fibers and nonwoven fabrics and products using the same
JP2004263344A (en) Nonwoven fabric for simple mask and simple mask
JP5276305B2 (en) Mixed fiber non-woven fabric
JPH08260323A (en) Biodegradable filament nonwoven fabric and its production
JPH11117164A (en) Biodegradable laminated sheet
JP2004143633A (en) Biodegradable nonwoven fabric, and medical and hygienic goods
WO2023032763A1 (en) Biodegradable nonwoven fabric and use of same
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JP3516291B2 (en) Method for producing biodegradable nonwoven fabric with excellent elasticity
JP3146221B2 (en) Microbial degradable ultrafine fiber meltblown nonwoven fabric and method for producing the same
JP5235783B2 (en) Polylactic acid latent crimp fiber
JP2004360130A (en) Medical and hygienic material
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JPH10219556A (en) Biodegradable nonwoven fabric for disposable sanitary material
JP5503768B2 (en) Mixed fiber non-woven fabric
JPH0995852A (en) Polylactate-based laminated nonwoven fabric and its production
JPH07125128A (en) Biodegradable nonwoven laminate
JP4117915B2 (en) Biodegradable nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070626

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20090317

Free format text: JAPANESE INTERMEDIATE CODE: A761