JP3262430B2 - Method for producing biodegradable laminated nonwoven structure - Google Patents

Method for producing biodegradable laminated nonwoven structure

Info

Publication number
JP3262430B2
JP3262430B2 JP28044793A JP28044793A JP3262430B2 JP 3262430 B2 JP3262430 B2 JP 3262430B2 JP 28044793 A JP28044793 A JP 28044793A JP 28044793 A JP28044793 A JP 28044793A JP 3262430 B2 JP3262430 B2 JP 3262430B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
fibers
polymer
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28044793A
Other languages
Japanese (ja)
Other versions
JPH07109659A (en
Inventor
繁満 村瀬
芳基 宮原
創 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP28044793A priority Critical patent/JP3262430B2/en
Publication of JPH07109659A publication Critical patent/JPH07109659A/en
Application granted granted Critical
Publication of JP3262430B2 publication Critical patent/JP3262430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性合成長繊維不
織布層と天然繊維不織布層とが積層されてなる積層不織
布構造体の製造方法であって、生分解性を有し、剥離強
力が高く、柔軟性が優れ、吸水性と疎水性を併せて有
し、医療・衛生材料、拭き取り布や包装材料あるいは家
庭用又は業務用の生塵捕集用袋等の一般生活関連材、あ
るいは農業用に代表される産業資材用の各素材として好
適な積層不織構造体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a laminated nonwoven fabric structure in which a thermoplastic synthetic long-fiber nonwoven layer and a natural fiber nonwoven layer are laminated, and has biodegradability and peel strength. Highly flexible, excellent in both water absorbency and hydrophobicity, and used in medical and sanitary materials, wiping cloths and packaging materials, or household or business-related materials such as bags for collecting fresh dust, or agriculture The present invention relates to a method for producing a laminated nonwoven structure suitable as each material for industrial materials represented by the above.

【0002】[0002]

【従来の技術】従来から,医療・衛生材料や一般生活関
連材あるいは一部の産業資材用の素材としてポリエチレ
ンやポリプロピレン,ポリエステル,ポリアミド等の熱
可塑性合成重合体繊維からなる不織布が知られている。
これらの不織布は,通常の自然環境下では化学的に安定
な前記のような重合体から構成されるため自己分解性が
なく,したがって使い捨て用途では,焼却あるいは埋め
立てという方法で処理されているのが実情である。焼却
処理に関しては,多大の費用が必要とされ,しかも廃棄
プラスチツクによる公害を生じる等,自然・生活環境保
護の観点からして問題である。一方,埋め立てに関して
は,上述したように素材が通常の自然環境下では化学的
に安定であるため土中で長期間にわたって元の状態のま
ま保持されるという問題がある。これらの問題を解決す
べく,生分解性を有する素材からなる不織布を選択する
ことが考えられる。例えば,乾式法あるいは溶液浸漬法
により得られるビスコースレーヨン短繊維不織布,湿式
スパンボンド法により得られるキユプラレーヨン長繊維
不織布,コツトンや麻に代表されるセルロース系繊維か
らなる短繊維不織布,その他,キチン等の多糖類,カツ
トグツト(脹線)あるいはアテロコラーゲン等の蛋白
質,ポリペプチド(ポリアミノ酸),微生物が自然界で
作るポリ−3−ヒドロキシブチレート,ポリ−3−ヒド
ロキシバリレート,ポリ−3−ヒドロキシカプロレート
等の微生物ポリエステルといった天然物の化学繊維から
なる不織布,ポリグリコリドやポリラクチド等の合成脂
肪族ポリエステルの合成繊維からなる不織布が挙げられ
る。しかしながら,前者の各種レーヨン繊維,セルロー
ス系繊維あるいは前記天然物の化学繊維からなる不織布
は,生分解性は有するものの不織布自体の構成素材自体
の機械的強度が低くかつ親水性があるため,吸水・湿潤
時の機械的強度低下が著しい,また柔軟性が劣る,さら
に素材自体が非熱可塑性であるため熱接着性を有しない
等の種々の問題を有している。また,後者の合成脂肪族
ポリエステル繊維からなる不織布は,生分解性を有しか
つ機械的強度は向上するものの細繊度化が困難であるた
め,柔軟性の兼備を要求されるような用途分野に適用す
ることが困難であり,しかも重合体特性の点で湿式紡糸
法に頼らざるを得ないため,不織布を得るに際して段階
的な複数の工程を必要とし,また加工コストを低減しよ
うとすると大規模な装置を要するという問題を有してい
る。
2. Description of the Related Art Conventionally, nonwoven fabrics made of thermoplastic synthetic polymer fibers such as polyethylene, polypropylene, polyester, and polyamide have been known as materials for medical and hygiene materials, general living materials, or some industrial materials. .
Since these nonwoven fabrics are composed of the above-mentioned polymers which are chemically stable in the normal natural environment, they do not have self-degradability. Therefore, in disposable applications, they are treated by incineration or landfill. It is a fact. Incineration requires a great deal of cost and is a problem from the viewpoint of protection of nature and living environment, such as pollution caused by waste plastic. On the other hand, as for landfills, as described above, there is a problem that the material is kept in the original state for a long time in soil because the material is chemically stable under a normal natural environment. In order to solve these problems, it is conceivable to select a nonwoven fabric made of a biodegradable material. For example, viscose rayon short fiber nonwoven fabric obtained by dry method or solution immersion method, kipura rayon long fiber nonwoven fabric obtained by wet spunbond method, short fiber nonwoven fabric made of cellulosic fiber represented by cotton and hemp, etc. Polysaccharides such as chitin, proteins (polyamino acids) such as cut-tooth (expanded lines) or atelocollagen, poly-3-hydroxybutyrate, poly-3-hydroxyvalerate, and poly-3-hydroxy produced by microorganisms in nature. Nonwoven fabrics composed of natural chemical fibers such as microbial polyesters such as caprolate, and nonwoven fabrics composed of synthetic aliphatic polyesters such as polyglycolide and polylactide. However, the former nonwoven fabric made of various rayon fibers, cellulosic fibers or the above-mentioned natural synthetic fibers has biodegradability, but the mechanical strength of the constituent material itself of the nonwoven fabric itself is low and hydrophilic. There are various problems such as a remarkable decrease in mechanical strength when wet, poor flexibility, and lack of thermal adhesiveness because the material itself is non-thermoplastic. In addition, the latter nonwoven fabric made of synthetic aliphatic polyester fiber is biodegradable and has improved mechanical strength, but it is difficult to fineness it. It is difficult to apply, and it is necessary to rely on wet spinning in terms of polymer properties. Therefore, multiple stepwise steps are required to obtain a nonwoven fabric, and large-scale processing is required to reduce processing costs. There is a problem that a complicated device is required.

【0003】一方,積層不織構造体として,従来から,
熱可塑性合成繊維不織布層と天然繊維不織布層とが積層
されてなる積層不織構造体が知られている。例えば,特
公昭54−24506号公報には,熱可塑性合成繊維不
織布からなる通気性熱溶着層と天然繊維等からなる通気
性非熱溶着層とが積層され,非熱溶着層上に熱溶着性物
質が点在的に配置されかつ熱溶着性物質と熱溶着層との
溶融部が非熱溶着層の両面から浸透して前記非熱溶着層
を接着挟持した構造を有する積層不織構造体が提案され
ている。しかしながら,この積層不織構造体は,天然繊
維が積層されているため吸水性は優れるものの,熱可塑
性合成繊維不織布が生分解性を有する素材からなるもの
ではなく,使い捨て用途の場合に上述したような問題を
生じる。しかも,この積層不織構造体は,これを製造す
るに際して通気性熱溶着層と通気性非熱溶着層とを積層
する工程と,非熱溶着層上に含浸用熱溶着性シート層を
重合し,超音波融着処理により熱溶着性物質と熱溶着層
との溶融部が非熱溶着層の両面から浸透して前記非熱溶
着層を接着挟持した構造を発現する工程と,前記含浸用
熱溶着性シートをその溶融部を残して剥離する工程とを
必要とするなど製造技術の観点からすれば煩雑で,経済
性にも劣るものであった。
On the other hand, as a laminated nonwoven structure,
BACKGROUND ART A laminated nonwoven structure in which a thermoplastic synthetic fiber nonwoven layer and a natural fiber nonwoven layer are laminated is known. For example, Japanese Patent Publication No. 54-24506 discloses that a gas-permeable heat-sealing layer made of a thermoplastic synthetic fiber non-woven fabric and a gas-permeable non-heat-sealing layer made of natural fibers and the like are laminated, and a heat-sealing layer is formed on the non-heat-sealing layer. A laminated nonwoven structure having a structure in which a substance is interspersed and a fusion part of a heat-welding substance and a heat-welding layer penetrates from both surfaces of the non-heat-welding layer and the non-heat-welding layer is bonded and sandwiched. Proposed. However, although this laminated nonwoven structure has excellent water absorbability due to the laminated natural fibers, the thermoplastic synthetic fiber nonwoven fabric is not made of a biodegradable material, and as described above for disposable applications. Problems arise. In addition, this laminated nonwoven structure is manufactured by laminating a gas-permeable heat-sealing layer and a gas-permeable non-heat-welding layer when manufacturing the same, and by superposing a heat-sealing sheet layer for impregnation on the non-heat-sealing layer. Forming a structure in which a welded portion of the heat-weldable substance and the heat-weldable layer penetrates from both sides of the non-heat-weldable layer by ultrasonic welding to form a structure in which the non-heat-weldable layer is adhered and sandwiched; From the viewpoint of manufacturing technology, the method requires a step of peeling off the weldable sheet while leaving the fused portion thereof, which is complicated and inferior in economy.

【0004】[0004]

【発明が解決しようとする課題】本発明は、熱可塑性合
成長繊維不織布層と天然繊維不織布層とが積層されてな
る積層不織布構造体の製造方法であって、生分解性を有
し、剥離強力が高く、柔軟性が優れ、吸水性と疎水性を
併せて有し、医療・衛生材料、拭き取り布や包装材料あ
るいは家庭用又は業務用の生塵捕集用袋等の一般生活関
連材、あるいは農業用に代表される産業資材用の各素材
として好適な積層不織構造体の製造方法を提供しようと
するものである。
The present invention relates to a method for producing a laminated nonwoven fabric structure in which a thermoplastic synthetic long-fiber nonwoven layer and a natural fiber nonwoven layer are laminated. High strength, excellent flexibility, having both water absorption and hydrophobicity, medical and sanitary materials, wipes and packaging materials or household and business related materials such as household or business bags for collecting fresh dust, Another object of the present invention is to provide a method for producing a laminated nonwoven structure suitable as a material for industrial materials represented by agriculture.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記問題
を解決すべく鋭意検討の結果、本発明に到達した。すな
わち、本発明は、以下の構成をその要旨とするものであ
る。 (1)生分解性熱可塑性合成長繊維からなる不織布層
天然繊維同士が機械的に交絡してなる不織布層と
積層し、超音波融着装置を用いて、前記合成長繊維と天
然繊維とが融着されてなる点状融着区域を形成し、前記
点状融着区域において前記両不織布層の少なくとも境界
面に位置する天然繊維が前記合成長繊維の融解部に埋没
された状態で固定されることにより全体として一体化さ
せることを特徴とする生分解性積層不織構造体の製造方
。 (2)生分解性熱可塑性合成長繊維が、脂肪族グリコー
ルと脂肪族ジカルボン酸の縮重合体である生分解性熱可
塑性脂肪族ポリエステル系重合体からなる請求項1記載
の生分解性積層不織構造体の製造方法。 (3)生分解性熱可塑性脂肪族ポリエステル系重合体
が、ポリエチレンサクシネート又はポリブチレンサクシ
ネートである請求項2記載の生分解性積層不織構造体
製造方法。 (4)生分解性熱可塑性脂肪族ポリエステル系重合体
が、ポリエチレンサクシネートの0重量%を超えかつ3
5重量%以下と、ポリブチレンサクシネートの100重
量%未満かつ65重量%以上との共重合体である請求項
2記載の生分解性積層不織構造体の製造方法
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention. That is, the present invention has the following configuration as its gist. (1) and the nonwoven fabric layer made of biodegradable thermoplastic synthetic long fibers, and a nonwoven layer of natural fibers are formed by mechanically entangled <br/> laminated, using an ultrasonic welding device, the alloy The growth fiber and the natural fiber are fused to form a point-like fusion area, and the natural fiber located at least at the boundary surface between the two nonwoven fabric layers in the point-like fusion area is formed in the fusion portion of the synthetic long fiber. Being integrated as a whole by being fixed in a buried state
For producing a biodegradable laminated nonwoven structure characterized by the following:
Law . (2) The biodegradable laminated nonwoven fabric according to claim 1, wherein the biodegradable thermoplastic synthetic long fiber comprises a biodegradable thermoplastic aliphatic polyester polymer which is a condensation polymer of an aliphatic glycol and an aliphatic dicarboxylic acid. A method for manufacturing a woven structure. (3) The biodegradable laminated nonwoven structure according to claim 2, wherein the biodegradable thermoplastic aliphatic polyester polymer is polyethylene succinate or polybutylene succinate .
Manufacturing method . (4) The biodegradable thermoplastic aliphatic polyester polymer exceeds 0% by weight of polyethylene succinate and
The method for producing a biodegradable laminated nonwoven structure according to claim 2, wherein the copolymer is a copolymer of 5% by weight or less and less than 100% by weight and 65% by weight or more of polybutylene succinate.

【0006】次に,本発明を詳細に説明する。本発明に
おける生分解性熱可塑性合成長繊維不織布層は,脂肪族
グリコールと脂肪族ジカルボン酸の縮重合体である生分
解性熱可塑性脂肪族ポリエステル系重合体繊維からなる
メルトブローン不織布あるいはスパンボンド不織布であ
る。この生分解性熱可塑性脂肪族ポリエステル系重合体
とは,脂肪族グリコールと脂肪族ジカルボン酸の縮重合
体で,かつ融点が90℃以上のものであり,例えばポリ
エチレンオキサレート,ポリエチレンサクシネート,ポ
リエチレンアジペート,ポリエチレンアゼレート,ポリ
ブチレンオキサレート,ポリブチレンサクシネート,ポ
リブチレンアジペート,ポリブチレンセバケート,ポリ
ヘキサメチレンセバケート,ポリネオペンチルオキサレ
ート又はこれらの共重合体が挙げられる。本発明では,
前記脂肪族ポリエステル系重合体として,ポリエチレン
サクシネート及び/又はポリブチレンサクシネートを採
用すると,本願発明がその対象とする用途分野において
好適な不織布特性を発現させることができるため,特に
好ましい。ポリエチレンサクシネートとポリブチレンサ
クシネートは,ポリエチレンサクシネート単体あるいは
ポリブチレンサクシネート単体であってもよく,またこ
れらの共重合体であってもよいが,共重合体の場合に
は,ポリエチレンサクシネートを0重量%を超えかつ3
5重量%以下とし,ポリブチレンサクシネートを100
重量%未満かつ65重量%以上とするのが,共重合体の
融点と数平均分子量の点で好ましい。すなわち,ポリエ
チレンサクシネートが35重量%を超える(すなわち,
ポリブチレンサクシネートが65重量%未満となる。)
と,融点が90℃未満となるためこの重合体を用いて長
繊維不織布としたとき高温条件下での使用に困難とな
り,また数平均分子量が十分に向上しないためこの重合
体の繊維形成性が低く,溶融紡糸時の製糸性が向上しな
いためである。なお,本発明においては,上述したとこ
ろの生分解性熱可塑性重合体に,必要に応じて,例えば
艶消し剤,顔料,光安定剤,熱安定剤,酸化防止剤等の
各種添加剤を本発明の効果を損なわない範囲内で添加す
ることができる。
Next, the present invention will be described in detail. The biodegradable thermoplastic synthetic long-fiber nonwoven fabric layer in the present invention is a meltblown nonwoven fabric or a spunbonded nonwoven fabric made of a biodegradable thermoplastic aliphatic polyester-based polymer fiber which is a condensation polymer of aliphatic glycol and aliphatic dicarboxylic acid. is there. The biodegradable thermoplastic aliphatic polyester-based polymer is a condensation polymer of an aliphatic glycol and an aliphatic dicarboxylic acid and has a melting point of 90 ° C. or more. For example, polyethylene oxalate, polyethylene succinate, polyethylene Examples include adipate, polyethylene azelate, polybutylene oxalate, polybutylene succinate, polybutylene adipate, polybutylene sebacate, polyhexamethylene sebacate, polyneopentyl oxalate, and copolymers thereof. In the present invention,
It is particularly preferable to employ polyethylene succinate and / or polybutylene succinate as the aliphatic polyester-based polymer, since nonwoven fabric characteristics suitable for the field of application targeted by the present invention can be exhibited. Polyethylene succinate and polybutylene succinate may be polyethylene succinate alone or polybutylene succinate alone or a copolymer thereof. In the case of a copolymer, polyethylene succinate and polybutylene succinate may be used. Exceeds 0% by weight and 3
5% by weight or less and 100% of polybutylene succinate
It is preferred to be less than 65% by weight and less than 65% by weight in view of the melting point and the number average molecular weight of the copolymer. That is, the content of polyethylene succinate exceeds 35% by weight (ie,
Polybutylene succinate is less than 65% by weight. )
And the melting point is less than 90 ° C., it becomes difficult to use this polymer as a long-fiber nonwoven fabric under high-temperature conditions, and since the number average molecular weight is not sufficiently improved, the fiber forming property of this polymer becomes poor. This is because the spinning property is not improved during melt spinning. In the present invention, various additives such as matting agents, pigments, light stabilizers, heat stabilizers, and antioxidants are added to the above-mentioned biodegradable thermoplastic polymer as required. It can be added within a range that does not impair the effects of the invention.

【0007】本発明における生分解性熱可塑性合成長繊
維不織布層は,前記重合体長繊維からなるメルトブロー
ン不織布あるいはスパンボンド不織布であって,この長
繊維は,前記重合体単独からなるものの他に前記重合体
の中から選択された2種以上の相異なる重合体が各々溶
融紡糸性を損なわない範囲内でブレンドされたブレンド
物からなるものであってもよく,例えばポリエステル系
重合体とポリオレフイン系重合体とがブレンドされたも
のや,2種の相異なるポリアミド系重合体がブレンドさ
れたものが挙げられる。また,この長繊維の形態は,前
記重合体の中から選択された2種の相異なる重合体が芯
鞘型あるいは並列型に配されたものであってもよい。
[0007] The biodegradable thermoplastic synthetic long-fiber nonwoven fabric layer according to the present invention is a melt-blown nonwoven fabric or a spunbonded nonwoven fabric made of the above-mentioned polymer long fiber, and the long fiber is made of the above polymer alone in addition to the above-mentioned polymer. Two or more different polymers selected from the coalesced polymer may be blends blended within a range that does not impair the melt spinnability. For example, a polyester polymer and a polyolefin polymer may be used. And a blend of two different polyamide-based polymers. Further, the form of the long fiber may be such that two different polymers selected from the above-mentioned polymers are arranged in a core-sheath type or a parallel type.

【0008】メルトブローン不織布に関してであるが,
まず前述した重合体を単独で,あるいは前記重合体の中
から選択された2種以上の相異なる重合体がブレンドさ
れたブレンド物を,あるいは前記重合体の中から選択さ
れた2種の相異なる重合体を芯鞘型あるいは並列型に配
するようにしていわゆるメルトブローン法で溶融紡出
し,すなわち紡糸口金に配設された孔径0.1〜1.0
mm程度の紡糸孔から吐出し,吐出された溶融重合体流
を溶融温度より20〜50℃高い温度で幅0.1〜0.
5mm程度のスリツト状ノズルから噴出される高圧気体
流により牽引・細化し,冷却した後,移動する捕集面上
に捕集・堆積させることによって,容易にメルトブロー
ン不織ウエブを得ることができる。メルトブローン法で
溶融紡出するに際しては,前記脂肪族ポリエステル系重
合体としてASTM−D−1238(L)に準じて温度
200℃で測定したメルトフローレート値が100g/
10分以上1000g/10分以下のものを採用するの
が好ましい。このメルトフローレート値が100g/1
0分未満であると重合体の粘度が高過ぎて細繊度の不織
布を得ることが困難となるため,一方,メルトフローレ
ート値が1000g/10分を超えると重合体の粘度が
低過ぎて長繊維のすなわち不織布の機械的強度が低下し
たりあるいは溶融紡糸時の製糸性が低下するため,いず
れも好ましくない。また,紡糸温度は用いる重合体の溶
融特性に応じて適宜選択するが,通常は前記重合体の融
点より50℃高くかつ300℃までの温度とするのが好
ましく,紡糸温度が前記重合体の融点+50℃未満であ
ると溶融重合体を紡糸孔から吐出することが困難となっ
て溶融重合体流が途切れ易くなり,一方,紡糸温度が3
00℃を超えると重合体が熱分解を生じるため,いずれ
も好ましくない。また,吐出された溶融重合体流を牽引
・細化する高圧気体流は,その温度を重合体流の溶融温
度より20〜50℃高い温度とするのが好ましく,この
温度が重合体の溶融温度+20℃未満であると製糸性が
低下して長繊維の形成が困難となり,一方,この温度が
重合体の溶融温度+50℃を超えると重合体の熱分解に
より紡糸口金の吐出孔が経時的に汚れて操業性が低下
し,いずれも好ましくない。さらに,高圧気体流の流速
は,通常は80〜300m/秒程度とし,その噴出方向
は,紡糸線方向に対して5〜55度の角度をなす方向と
するのが好ましい。
[0008] Regarding the melt blown nonwoven fabric,
First, the above-mentioned polymer is used alone, or a blend of two or more different polymers selected from the above polymers is blended, or two different polymers selected from the above polymers are used. The polymer is melt-spun by a so-called melt blown method so that the polymer is arranged in a core-in-sheath type or a parallel type, that is, a pore diameter of 0.1 to 1.0 provided in a spinneret.
mm from the spinning hole, and the discharged molten polymer stream has a width of 0.1 to 0.1 mm at a temperature 20 to 50 ° C. higher than the melting temperature.
The melt blown nonwoven web can be easily obtained by drawing and thinning by a high-pressure gas flow ejected from a slit-like nozzle of about 5 mm, cooling, and then collecting and depositing it on a moving collecting surface. When the melt spinning is performed by the melt blown method, a melt flow rate value of the aliphatic polyester-based polymer measured at a temperature of 200 ° C. according to ASTM-D-1238 (L) is 100 g /
It is preferable to employ one for 10 minutes or more and 1000 g / 10 minutes or less. This melt flow rate value is 100 g / 1
If the time is less than 0 minutes, the viscosity of the polymer is too high and it is difficult to obtain a fine non-woven fabric. On the other hand, if the melt flow rate exceeds 1000 g / 10 minutes, the viscosity of the polymer is too low and the length is too long. Both of these are not preferred because the mechanical strength of the fiber, that is, the nonwoven fabric, or the spinnability during melt spinning is reduced. The spinning temperature is appropriately selected according to the melting characteristics of the polymer to be used, but is usually preferably 50 ° C. higher than the melting point of the polymer and up to 300 ° C., and the spinning temperature is set to the melting point of the polymer. If the temperature is lower than + 50 ° C., it becomes difficult to discharge the molten polymer from the spinning hole, so that the flow of the molten polymer tends to be interrupted.
If the temperature is higher than 00 ° C., the polymer is thermally decomposed, and thus both are not preferable. Further, it is preferable that the temperature of the high-pressure gas stream that pulls and narrows the discharged molten polymer stream is 20 to 50 ° C. higher than the melting temperature of the polymer stream. If the temperature is lower than + 20 ° C., the spinnability deteriorates and it becomes difficult to form long fibers. On the other hand, if the temperature exceeds the melting temperature of the polymer + 50 ° C., the discharge hole of the spinneret is gradually deteriorated due to thermal decomposition of the polymer. Dirty and reduced operability, both of which are undesirable. Further, the flow velocity of the high-pressure gas flow is usually about 80 to 300 m / sec, and the jetting direction is preferably a direction forming an angle of 5 to 55 degrees with respect to the direction of the spinning line.

【0009】スパンボンド不織布に関してであるが,ま
ず前述した重合体を単独で,あるいは前記重合体の中か
ら選択された2種以上の相異なる重合体がブレンドされ
たブレンド物を,あるいは前記重合体の中から選択され
た2種の相異なる重合体を芯鞘型あるいは並列型に配す
るようにしていわゆるスパンボンド法で溶融紡出し,す
なわち紡糸口金から溶融紡出・冷却し,エアーサツカ等
の引き取り手段を用い引取り速度を例えば2500〜6
000m/分として牽引・細化した後,開繊器を用いて
開繊し,移動する捕集面上に捕集・堆積させることによ
って,容易にスパンボンド不織ウエブを得ることができ
る。この場合,前述した重合体から選択された非相溶性
の2種以上の重合体を用いて複合紡出し,前述したと同
様にして不織ウエブを作成し,得られた不織ウエブに機
械的割繊処理を施して各重合体単独からなる割繊繊維と
する方法を採用すると,より容易に極細長繊維のスパン
ボンド不織ウエブを得ることができる。なお,この非相
溶性の2種以上の重合体としてはほぼ同等の融点を有す
るものであってもよいが,相互に融点を少なくとも20
℃異にする重合体を選択することもできる。スパンボン
ド法で溶融紡出するに際しては,前記脂肪族ポリエステ
ル系重合体としてASTM−D−1238(L)に準じ
て温度200℃で測定したメルトフローレート値が20
g/10分以上100g/10分以下のものを採用する
のが好ましい。このメルトフローレート値が20g/1
0分未満であると重合体の粘度が高過ぎて得られる不織
布が硬い風合いのものとなるため,一方,メルトフロー
レート値が100g/10分を超えると重合体の粘度が
低過ぎて溶融紡糸時の高速製糸性が低下するため,いず
れも好ましくない。また,その引取り速度を2500〜
6000m/分とするのがよく,引取り速度が2500
m/分未満であると紡出繊維の分子配向度が十分に増大
しないため得られるウエブの機械的特性や寸法安定性が
向上せず,一方,引取り速度が6000m/分を超える
と溶融紡糸時の製糸性が低下し,いずれも好ましくな
い。
Regarding the spunbond nonwoven fabric, first, the above-mentioned polymer is used alone, or a blend of two or more different polymers selected from the above-mentioned polymers is blended. Melt spinning by so-called spunbonding method in which two different polymers selected from the above are arranged in a core-in-sheath type or a side-by-side type, that is, melt spinning out from a spinneret, cooling, and taking off air sack etc. Means for taking off speed, for example, 2500 to 6
After drawing and thinning at 000 m / min, the spunbonded nonwoven web can be easily obtained by spreading using a spreader and collecting and depositing on a moving collecting surface. In this case, composite spinning is performed using two or more incompatible polymers selected from the above-mentioned polymers, and a nonwoven web is prepared in the same manner as described above. If the splitting treatment is performed to obtain splitting fibers composed of each polymer alone, a spunbond nonwoven web of ultrafine long fibers can be obtained more easily. The two or more incompatible polymers may have substantially the same melting point.
It is also possible to select a polymer having a different temperature. When the melt spinning is performed by the spunbond method, the aliphatic polyester-based polymer has a melt flow rate of 20 measured at a temperature of 200 ° C. according to ASTM-D-1238 (L).
It is preferable to use one having g / 10 minutes or more and 100 g / 10 minutes or less. This melt flow rate value is 20 g / 1
If it is less than 0 minutes, the viscosity of the polymer is too high, and the obtained nonwoven fabric has a hard texture. On the other hand, if the melt flow rate value exceeds 100 g / 10 minutes, the viscosity of the polymer is too low, and None of them is preferable because the high-speed spinning property at the time is reduced. In addition, the take-up speed is 2,500-
6000m / min, and take-up speed of 2500
If it is less than m / min, the molecular orientation of the spun fiber is not sufficiently increased, so that the mechanical properties and dimensional stability of the obtained web are not improved. On the other hand, if the take-up speed exceeds 6000 m / min, melt spinning is performed. In this case, the spinning property is deteriorated, which is not preferable.

【0010】スパンボンド不織布では,その機械的特性
と寸法安定性の向上を目的に,得られた不織ウエブに部
分的熱圧接処理を施すことが好ましい。ウエブに部分的
な熱圧接処理を施すに際しては,公知の方法を採用する
ことができる。例えば,加熱されたエンボスローラと表
面が平滑な金属ローラとを用いて長繊維間に点状融着区
域を形成する方法である。加熱されたエンボスローラを
用いてエンボスパターン部に存在する長繊維同士を部分
的に熱圧接させるに際しては,熱エンボスローラの個々
の圧接点面積を円形換算にて0.1〜1.0mm2 ,圧
接面積率を2〜30%好ましくは4〜20%,かつ圧接
点密度を2〜80点/cm2 好ましくは4〜60点/c
2 とし,圧接面積率が2%未満あるいは圧接点密度が
2点/cm2 未満であると熱接着域が少な過ぎるため不
織布の機械的強度と形態保持性そして寸法安定性が低下
し,一方,圧接面積率が30%を超えあるいは圧接点密
度が60点/cm2 を超えると不織布が剛直化して柔軟
性が損なわれるため,いずれも好ましくない。また,ロ
ーラ温度を,通常は用いる脂肪族ポリエステル系重合体
の融点より5〜40℃程度低い温度とするのが好まし
く,この温度を適宜選択することにより長繊維間の接着
力が高くすなわち機械的強度が優れ,しかも柔軟性に富
む不織布を得ることができる。熱エンボスローラのエン
ボスパターンは,その圧接面積率が2〜30%の範囲内
であれば特に限定されるものではなく,丸型,楕円型,
菱型,三角型,T字型,井型等,任意の形状でよい。な
お,この熱エンボスローラを用いる部分的熱圧接処理
は,連続工程あるいは別工程のいずれであってもよい。
[0010] In the case of spunbonded nonwoven fabrics, it is preferable to subject the obtained nonwoven web to a partial hot pressing treatment in order to improve its mechanical properties and dimensional stability. When the web is subjected to a partial heat-pressing treatment, a known method can be employed. For example, a method in which a point-like fusion zone is formed between long fibers using a heated emboss roller and a metal roller having a smooth surface. When the long fibers existing in the embossed pattern portion are partially hot-pressed with each other by using the heated embossing roller, the area of each pressure contact of the hot embossing roller is 0.1 to 1.0 mm 2 in terms of a circle, The pressure contact area ratio is 2 to 30%, preferably 4 to 20%, and the pressure contact density is 2 to 80 points / cm 2, preferably 4 to 60 points / c.
and m 2, the mechanical strength and shape retention and dimensional stability of the nonwoven fabric for heat bonding zone with pressure area ratio or pressure point density less than 2% is less than 2 points / cm 2 is too small decreases, whereas When the area ratio of the press contact exceeds 30% or when the density of the press contact exceeds 60 points / cm 2 , the nonwoven fabric becomes rigid and the flexibility is impaired. It is preferable that the temperature of the roller is usually about 5 to 40 ° C. lower than the melting point of the aliphatic polyester polymer to be used. A nonwoven fabric having excellent strength and high flexibility can be obtained. The embossing pattern of the hot embossing roller is not particularly limited as long as the pressed area ratio is in the range of 2 to 30%.
Any shape such as a rhombus, a triangle, a T-shape, and a well may be used. The partial heat-pressing process using the hot embossing roller may be a continuous process or a separate process.

【0011】本発明における生分解性熱可塑性合成長繊
維不織布層は,前述したような製法により得られるもの
であり,メルトブローン不織布あるいは割繊スパンボン
ド不織布の場合にはその構成繊維の単繊維繊度を1.0
デニール以下好ましくは0.2デニール以下とし,一
方,通常のスパンボンド不織布の場合にはその構成繊維
の単繊維繊度を1.0デニール以上8.0デニール以下
好ましくは2.0デニール以上5.0デニール以下とす
るのがよい。メルトブローン不織布あるいは割繊スパン
ボンド不織布の場合,その単繊維繊度を1.0デニール
以下とすることによってバクテリアバリア性と柔軟性に
富む積層不織構造体を得ることができ,また,通常のス
パンボンド不織布の場合,その単繊維繊度を1.0デニ
ール以上8.0デニール以下とすることによって機械的
特性と寸法安定性に優れた積層不織構造体を得ることが
できる。
The biodegradable thermoplastic synthetic long-fiber nonwoven fabric layer in the present invention is obtained by the above-mentioned production method. In the case of a melt-blown nonwoven fabric or a split-spunbond nonwoven fabric, the single-fiber fineness of the constituent fibers is adjusted. 1.0
Denier or less, preferably 0.2 denier or less. On the other hand, in the case of ordinary spunbonded nonwoven fabric, the single fiber fineness of the constituent fibers is 1.0 to 8.0 denier, preferably 2.0 to 5.0 denier. It should be less than denier. In the case of a melt blown nonwoven fabric or split spunbonded nonwoven fabric, by setting the single fiber fineness to 1.0 denier or less, a laminated nonwoven structure having a high bacterial barrier property and flexibility can be obtained. In the case of a nonwoven fabric, a single-fiber fineness of 1.0 denier or more and 8.0 denier or less can provide a laminated nonwoven structure excellent in mechanical properties and dimensional stability.

【0012】本発明における生分解性熱可塑性合成長繊
維不織布層は,メルトブローン不織布又は割繊スパンボ
ンド不織布の場合にはその目付けが10〜70g/m2
のものであるのが好ましく,また,通常のスパンボンド
不織布の場合にもその目付けが10〜70g/m2 のも
のであるのが好ましい。目付けが10g/m2 未満であ
ると繊維同士の緻密な重なりの程度が低く,この不織布
に天然繊維不織布を積層・一体化して得られる積層不織
構造体の層間接着力が低下したりあるいは地合いが劣る
ため,好ましくない。一方,目付けが70g/m2 を超
えると厚みが大きくなり過ぎて,得られる積層不織構造
体を例えば柔軟性が要求されるような分野に適用するこ
とが困難となり,あるいは例えば医療・衛生材料や生活
関連材等の直接皮膚に接触する分野における素材として
使用したとき皮膚を刺激し,しかもこの不織布に天然繊
維不織布を積層した後,超音波融着装置を用い融着処理
を施して一体化するに際して加工速度を遅くしたりある
いは多大の超音波エネルギを供給するなどの必要が生じ
るため,好ましくない。
The biodegradable thermoplastic synthetic long-fiber nonwoven fabric layer in the present invention has a basis weight of 10 to 70 g / m 2 in the case of a melt blown nonwoven fabric or split spunbonded nonwoven fabric.
It is also preferable that the basis weight is 10 to 70 g / m 2 in the case of ordinary spunbonded nonwoven fabric. If the basis weight is less than 10 g / m 2 , the degree of dense overlap between the fibers is low, and the interlayer adhesive strength of the laminated nonwoven structure obtained by laminating and integrating a natural fiber nonwoven fabric with this nonwoven fabric is reduced, or the formation is reduced. Is inferior, which is not preferable. On the other hand, if the basis weight exceeds 70 g / m 2 , the thickness becomes too large, and it is difficult to apply the obtained laminated nonwoven structure to, for example, a field where flexibility is required. Stimulates the skin when used as a material in the field that comes into direct contact with the skin, such as materials for daily life and related materials. In addition, after laminating a natural fiber non-woven fabric on this non-woven fabric, it is subjected to fusion treatment using an ultrasonic fusion device and integrated. In such a case, it is necessary to reduce the processing speed or supply a large amount of ultrasonic energy.

【0013】次に,本発明における天然繊維同士が機械
的に交絡してなる不織布層に関してであるが,この不織
布層を構成する天然繊維とは,木綿繊維や麻繊維等のセ
ルロース系繊維の他に,ラミー等の動物繊維,絹短繊
維,天然パルプ,レーヨンに代表される各種再生短繊維
をも包含するものである。本発明では,この不織布層の
出発原料として,晒し加工の施されていないコーマ糸,
晒し加工された晒し綿,あるいは織物・編物から得られ
る各種反毛を用いることもできる。出発原料として反毛
を用いる場合,効果的に用い得る反毛機としては,ラツ
グマシン,ノツトブレーカ,ガーネツトマシン,廻切機
が挙げられる。用いる反毛機の種類と組み合わせは,反
毛される織物・編物等の布帛形状や構成する糸の太さあ
るいは撚りの強さにもよるが,同一の反毛機を複数台直
列に連結したり,2種以上の反毛機を組み合わせて使用
したりするとより効果的である。この反毛機による解繊
率(%)は30〜95%の範囲であるのが好ましい。こ
の解繊率が30%未満であると,カードウエブ中に未解
繊繊維が存在するため不織布表面にザラツキが生じるの
みでなく,例えば高圧液体柱状流処理により天然繊維同
士を三次元的機械的交絡を施すに際して未解繊繊維部分
を高圧液体柱状流が十分貫通せず,一方,解繊率が95
%を超えると,前記生分解性熱可塑性合成長繊維不織布
と積層・一体化して得られる積層不織構造体において,
十分な表面摩擦強度が得られず,いずれも好ましくな
い。なお,ここでいう解繊率(%)とは,下記式(1)
により求められるものである。 解繊率(%)=(被反毛重量−糸状物重量)×100/被反毛重量・・(1)
Next, with regard to the nonwoven fabric layer of the present invention in which the natural fibers are mechanically entangled with each other, the natural fibers constituting this nonwoven fabric layer include cellulose fibers such as cotton fibers and hemp fibers. In addition, various kinds of recycled short fibers represented by animal fibers such as ramie, silk short fibers, natural pulp and rayon are also included. In the present invention, as a starting material of the nonwoven fabric layer, a combed yarn that has not been subjected to bleaching processing,
It is also possible to use bleached cotton that has been bleached or various types of bristles obtained from woven or knitted fabrics. When anti-hair is used as a starting material, examples of anti-hair machines that can be used effectively include a rat machine, a knot breaker, a garnet machine, and a turning machine. The type and combination of anti-hair machines to be used depends on the shape of the fabric, such as woven or knitted fabric, and the thickness or twist strength of the constituent yarns. It is more effective to use a combination of two or more types of anti-hair machines. It is preferable that the defibration rate (%) by this anti-hair machine is in the range of 30 to 95%. When the defibration rate is less than 30%, not only the unwoven fibers are present in the card web, but also the surface of the nonwoven fabric becomes rough, and the natural fibers are three-dimensionally mechanically processed by, for example, high pressure liquid column flow treatment. When performing the entanglement, the high pressure liquid columnar flow does not penetrate the unfibrillated fiber portion sufficiently,
%, The laminated nonwoven structure obtained by laminating and integrating with the biodegradable thermoplastic synthetic long-fiber nonwoven fabric:
Sufficient surface friction strength cannot be obtained, and both are not preferred. Here, the defibration rate (%) is expressed by the following equation (1).
Is required by: Fibrillation rate (%) = (weight of bristles-weight of thread) x 100 / weight of bristles ... (1)

【0014】本発明における天然繊維不織布層は,前記
天然繊維からなり,かつ繊維同士が機械的に交絡してな
るものである。すなわち,天然繊維同士が,高圧液体柱
状流処理あるいはニードルパンチング処理により機械的
に交絡したものであり,特に前者の場合,繊維同士が三
次元的に交絡して不織布の嵩高性が向上すると共に柔軟
性も向上するため,例えば前記生分解性熱可塑性合成長
繊維不織布と積層・一体化して得られる積層不織構造体
を衛生材用あるいは生活関連材用の素材として用いる上
で好ましい。この不織布層は,前記天然繊維素材の中か
ら選択された単一素材あるいは複数種の素材が混合され
てなるものを出発原料とし,カード機を用いて所定目付
けのカードウエブを作成し,次いで得られたウエブに高
圧液体柱状流処理あるいはニードルパンチング処理によ
り繊維間に機械的交絡を施すことにより容易に得ること
ができる。このカードウエブは,構成繊維の配列度合に
よって種々選択することができ,例えばカード機の進行
方向に配列したパラレルウエブ,パラレルウエブがクロ
スレイドされたウエブ,ランダムに配列したランダムウ
エブあるいは両者の中程度に配列したセミランダムウエ
ブ等が挙げられる。また,衣料用素材としての展開を図
りたい場合には,不織布強力の縦/横比が概ね1/1と
なるカードウエブを使用するのが好ましい。
The natural fiber nonwoven fabric layer of the present invention comprises the above-mentioned natural fibers, and the fibers are mechanically entangled with each other. In other words, natural fibers are mechanically entangled with each other by a high-pressure liquid columnar flow treatment or needle punching treatment. In the former case, in particular, the fibers are entangled three-dimensionally to improve the bulkiness of the nonwoven fabric and improve flexibility. In order to improve the property, for example, it is preferable to use a laminated nonwoven structure obtained by laminating and integrating with the biodegradable thermoplastic synthetic long-fiber nonwoven fabric as a material for sanitary materials or living-related materials. This non-woven fabric layer is formed by using a single material selected from the above natural fiber materials or a mixture of a plurality of types of materials as a starting material, using a carding machine to prepare a card web having a predetermined basis weight, and then obtaining the card web. The obtained web can be easily obtained by subjecting the fibers to mechanical entanglement between fibers by a high-pressure liquid column flow treatment or a needle punching treatment. This card web can be selected variously according to the degree of arrangement of the constituent fibers. For example, a parallel web arranged in the traveling direction of the card machine, a web in which parallel webs are cross-laid, a random web arranged randomly, or a medium degree of both. And the like. Further, when it is desired to develop the material as a clothing material, it is preferable to use a card web in which the aspect ratio of the nonwoven fabric is approximately 1/1.

【0015】高圧液体柱状流処理の場合,例えば孔径が
0.05〜1.5mm特に0.1〜0.4mmの噴射孔
を孔間隔を0.05〜5mmで1列あるいは複数列に多
数配列した装置を用い,噴射圧力が5〜150kg/c
2 Gの高圧液体を前記噴射孔から噴射し,多孔性支持
部材上に載置したカードウエブに衝突させることにより
繊維間に三次元的交絡を付与する方法を採用する。噴射
孔の配列は,このカードウエブの進行方向と直交する方
向に列状に配列する。高圧液体としては,常温の水ある
いは温水を用いることができる。噴射孔とウエブとの間
の距離は,1〜15cmとするのがよい。この距離が1
cm未満であるとこの処理により得られる複合不織布の
地合いが乱れ,一方,この距離が15cmを超えると液
体流が積層物に衝突したときの衝撃力が低下して三次元
的な交絡が十分に施されず,いずれも好ましくない。こ
の高圧液体柱状流による処理は,少なくとも2段階に別
けて施とよい。すなわち,第1段階の処理として圧力が
5〜40kg/cm2 Gの高圧液体流を噴出し前記ウエ
ブに衝突させ,ウエブの構成繊維同士を予備的に交絡さ
せる。この第1段階の処理において,液体流の圧力が5
kg/cm2 G未満であるとウエブの構成繊維同士を予
備的に交絡させることができず,一方,液体流の圧力が
40kg/cm2 Gを超えるとウエブに高圧液体流を噴
出し衝突させたときウエブの構成繊維が液体流の作用に
よって乱れ,ウエブに地合いの乱れや目付け斑が生じる
ため,いずれも好ましくない。引き続き,第2段階の処
理として圧力が50〜150kg/cm2 Gの高圧液体
流を噴出し前記ウエブに衝突させ,ウエブの構成繊維同
士を三次元的に交絡させて全体として緻密に一体化させ
る。この第2段階の処理において,液体流の圧力が50
kg/cm2 G未満であると,上述したような繊維間の
三次元的交絡を十分に形成することができず,一方,液
体流の圧力が150kg/cm2 Gを超えると,得られ
る不織布の嵩高性と柔軟性が向上せず,いずれも好まし
くない。なお,ウエブの目付けによっては,第2段階の
処理に引き続き第3段階の処理として,第2段階の処理
側と逆の側から第2段階の処理と同様の条件にて再度処
理を施すことにより,表裏共に緻密に繊維同士が交絡し
た不織布を得ることができる。高圧液体柱状流処理を施
すに際して用いる前記ウエブを担持する多孔性支持部材
としては,例えば20〜100メツシユの金網製あるい
は合成樹脂製等のメツシユスクリーンや有孔板など,高
圧液体流がウエブを貫通し得るものであれば特に限定さ
れない。また,多孔性支持部材のメツシユ構成は20本
/25mm〜200本/25mmの範囲であるのが好ま
しく,20本/25mm未満であると,高圧液体柱状流
がウエブに衝突した際に繊維が柱状流と共にメツシユス
クリーンを通過して繊維の脱落が発生し,一方,200
本/25mmを超えると,高圧液体柱状流がウエブとメ
ツシユスクリーンとを通過するに要するエネルギー量が
多大になって生産コストが上昇し,いずれも好ましくな
い。高圧液体流処理を施した後,処理後の前記ウエブか
ら過剰水分を除去する。この過剰水分を除去するに際し
ては,公知の方法を採用することができる。例えばマン
グルロール等の絞り装置を用いて過剰水分をある程度機
械的に除去し,引き続きサクシヨンバンド方式の熱風循
環式乾燥機等の乾燥装置を用いて残余の水分を除去して
不織布を得ることができる。
In the case of the high pressure liquid columnar flow treatment, for example, a large number of injection holes having a hole diameter of 0.05 to 1.5 mm, particularly 0.1 to 0.4 mm are arranged in one row or plural rows with a hole interval of 0.05 to 5 mm. The injection pressure is 5 to 150 kg / c.
A method is adopted in which high-pressure liquid of m 2 G is ejected from the ejection hole and impinged on a card web placed on a porous support member to impart three-dimensional entanglement between fibers. The ejection holes are arranged in rows in a direction perpendicular to the direction of travel of the card web. Room temperature water or warm water can be used as the high-pressure liquid. The distance between the injection hole and the web is preferably 1 to 15 cm. This distance is 1
If the distance is less than 15 cm, the formation of the composite nonwoven fabric obtained by this treatment is disturbed. On the other hand, if the distance exceeds 15 cm, the impact force when the liquid stream collides with the laminate is reduced, and three-dimensional confounding is sufficiently caused. Not applied, neither of which is preferred. This treatment with the high pressure liquid columnar flow may be performed in at least two stages. That is, a high-pressure liquid stream having a pressure of 5 to 40 kg / cm 2 G is jetted as a first-stage treatment so as to impinge on the web to preliminarily entangle the constituent fibers of the web. In this first stage of processing, the pressure of the liquid stream is 5
When the pressure is less than kg / cm 2 G, the constituent fibers of the web cannot be preliminarily entangled with each other. On the other hand, when the pressure of the liquid flow exceeds 40 kg / cm 2 G, a high-pressure liquid flow is jetted onto the web to cause collision. In this case, the constituent fibers of the web are disturbed by the action of the liquid flow, and the formation of the formation is disturbed and the weight of the web is uneven. Subsequently, a high-pressure liquid stream having a pressure of 50 to 150 kg / cm 2 G is jetted as a second stage treatment to impinge on the web, and the constituent fibers of the web are three-dimensionally entangled to form a densely integrated structure as a whole. . In this second stage of processing, the pressure of the liquid stream is 50
If it is less than kg / cm 2 G, can not be sufficiently form a three-dimensional entanglement between fibers, as described above, whereas, when the pressure of the liquid stream exceeds 150 kg / cm 2 G, obtained nonwoven Both bulkiness and flexibility are not improved, and neither is preferred. Depending on the basis weight of the web, the third stage process may be performed again from the side opposite to the second stage process under the same conditions as the second stage process, following the second stage process. Thus, a nonwoven fabric in which the fibers are entangled densely on both the front and back sides can be obtained. As a porous support member for supporting the web used in performing the high-pressure liquid columnar flow treatment, a high-pressure liquid flow is applied to the web, for example, a mesh screen or a perforated plate made of a 20-100 mesh wire mesh or a synthetic resin. There is no particular limitation as long as it can penetrate. The mesh structure of the porous support member is preferably in the range of 20 lines / 25 mm to 200 lines / 25 mm, and if it is less than 20 lines / 25 mm, when the high-pressure liquid columnar stream collides with the web, the fibers become columnar. The fibers pass through the mesh screen together with the flow, and the fibers fall off.
If it exceeds 25 mm, the amount of energy required for the high-pressure liquid columnar flow to pass through the web and the mesh screen increases, and the production cost increases. After the high-pressure liquid flow treatment, excess water is removed from the treated web. In removing the excess moisture, a known method can be employed. For example, the excess water is mechanically removed to some extent using a squeezing device such as a mangle roll, and the remaining moisture is subsequently removed using a drying device such as a suction band type hot air circulation dryer to obtain a nonwoven fabric. it can.

【0016】本発明における天然繊維不織布層は,その
目付けが30〜200g/m2 好ましくは50〜150
g/m2 のものであるのがよい。目付けが30g/m2
未満であると天然繊維の単位面積当たりの存在量が小さ
過ぎて本発明が目的とする吸水性が十分に具備されず,
一方,目付けが200g/m2 を超えると前記生分解性
熱可塑性合成長繊維不織布との積層後に超音波融着装置
を用いて点状融着区域を形成することにより一体化して
得られる積層不織構造体においてその剥離強力が十分に
向上せず,いずれも好ましくない。
The nonwoven fabric layer of the present invention has a basis weight of 30 to 200 g / m 2, preferably 50 to 150 g / m 2.
g / m 2 . The basis weight is 30 g / m 2
If it is less than 1, the abundance per unit area of the natural fiber is too small to sufficiently provide the water absorption targeted by the present invention,
On the other hand, if the basis weight exceeds 200 g / m 2 , the lamination with the biodegradable thermoplastic synthetic long-fiber nonwoven fabric is followed by forming a point fusion zone using an ultrasonic fusion device to obtain a laminated non-woven fabric. The peel strength of the woven structure is not sufficiently improved, and neither is preferable.

【0017】次に、本発明の積層不織構造体の製造方法
においては、前記生分解性熱可塑性合成長繊維不織布層
と、天然繊維不織布層と積層超音波融着装置を用
いて、前記合成長繊維と天然繊維とが融着されてなる点
状融着区域を形成し、かつ前記点状融着区域において前
記両不織布層の少なくとも境界面に位置する天然繊維が
前記合成長繊維の融解部に埋設された状態で固定される
ことにより全体として一体化さる。この点状融着区域
とは、周波数が19.15KHzの通常ホーンと呼称さ
れる超音波発信器と、円周上に点状又は帯状に凸状突起
部を具備するパターンロールとからなる超音波融着装置
を用いて形成され、前記凸状突起部に該当する部分に当
接する短繊維同士を融着させたものである。さらに詳し
くは、この点状融着区域は、不織構造体全表面積に対し
て特定の領域と特定の配置とを有し、個々の点状融着区
域は必ずしも円形の形状である必要はないが、不織構造
体全表面積に対する全点状融着区域の面積の比が2〜4
0%、好ましくは4〜25%、同区域密度が7〜80点
/cm2、好ましくは8〜50点/cm2であるものがよ
い。不織構造体全表面積に対する全点状融着区域の面積
の比が2%未満であると、前記生分解性熱可塑性合成長
繊維不織布と天然繊維不織布との積層後に超音波融着装
置を用いて点状融着区域を形成することにより一体化し
て得られる積層不織構造体の柔軟性と嵩高性が低下する
ため、いずれも好ましくない。また、同区域密度が7点
/cm2未満であると得られる積層不織構造体の層間接
着力すなわち剥離強力に斑が生じたり、あるいはメルト
ブローン不織布又は割繊スパンボンド不織布の場合にバ
クテリアバリア性が低下し、一方、同区域密度が80点
cm2を超えると得られる積層不織構造体の柔軟性と嵩
高製が低下し、いずれも好ましくない。
Next, a method for producing a laminated nonwoven structure according to the present invention.
In the above, the biodegradable thermoplastic synthetic long fiber non-woven fabric layer and the natural fiber non-woven fabric layer are laminated, and an ultrasonic fusion device is used.
There are, the synthetic long fibers and natural fibers and form a point-like fused area formed by fusing, and natural fibers the synthetic long located at least the boundary surface of the two non-woven layers in said point-like fused area Ru is integrated as a whole by being fixed in a state of buried in the melt of the fiber. This point-like fusion zone is an ultrasonic wave consisting of an ultrasonic transmitter called a normal horn having a frequency of 19.15 KHz and a pattern roll having a point-like or band-like convex projection on the circumference. The short fibers which are formed by using a fusion device and are in contact with the portions corresponding to the convex protrusions are fused together. More specifically, the point fusion zones have a specific area and a specific arrangement with respect to the total surface area of the nonwoven structure, and the individual point fusion zones do not necessarily have to be circular in shape. However, the ratio of the area of the whole point fusion zone to the total surface area of the nonwoven structure is 2 to 4
0%, preferably 4 to 25%, and the area density is 7 to 80 points / cm 2 , preferably 8 to 50 points / cm 2 . If the ratio of the area of the entire point-like fusion zone to the total surface area of the nonwoven structure is less than 2%, an ultrasonic fusion device is used after laminating the biodegradable thermoplastic synthetic long-fiber nonwoven fabric and the natural fiber nonwoven fabric. By forming the point-like fusion zone, the flexibility and bulkiness of the laminated nonwoven structure obtained by integration are reduced, and neither is preferable. Further, if the density of the area is less than 7 points / cm 2 , unevenness occurs in the interlayer adhesive strength, that is, peeling strength of the obtained laminated nonwoven structure, or a bacterial barrier property in the case of a melt blown nonwoven fabric or split spunbonded nonwoven fabric. On the other hand, if the area density exceeds 80 points cm 2 , the flexibility and bulkiness of the obtained laminated nonwoven structure decrease, and both are not preferred.

【0018】本発明において用い得る超音波融着装置と
は、公知の装置すなわち周波数が19.15KHzの通
常ホーンと呼称される超音波発振器と、円周上に点状又
は帯状に凸状突起部を具備するパターンロールとからな
る装置である。前記超音波発振器の下部に前記パターン
ロールが配設され、被処理物は超音波発振器とパターン
ロールとの間に通される。このパターンロールに配設さ
れる凸状突起部は1列あるいは複数列であてもよく、ま
た、その配設が複数列の場合には、並列あるいは千鳥型
のいずれの配列でもよい。融着処理に際しては、ホーン
に空気圧を印加して加圧する。ホーンとパターンロール
間の線圧は、通常1〜10kg/cmとし、線圧が1k
g/cm未満であると、前記熱可塑性合成長繊維不織布
層と天然繊維不織布層との積層物に対する押し圧が不足
して融着が生じなく、一方、線圧が10kg/cmを超
えると、点状融着区域に対する押し圧が高過ぎて融着区
域に相当する前記生分解性熱可塑性合成長繊維不織布層
が熱分解したり、あるいは極端な場合には穿孔が生じた
りして得られる積層不織構造体の層間接着力が低下し、
いずれも好ましくない。図1は、本発明により得られる
積層不織構造体における前記点状融着区域の断面を示す
模式図である。図において、1は点状融着区域において
融解した生分解性熱可塑性合成長繊維層、2は天然繊維
で、同図から明らかなように点状融着区域において両不
織布層の少なくとも境界面に位置する天然繊維2は、熱
可塑性合成長繊維が融解した融解部すなわち1に埋設さ
れた状態で固定されており、両不織布層が点状融着区域
において、このような接着構造を有するため、剥離強力
の高い積層不織構造体となる。
The ultrasonic welding device usable in the present invention includes a known device, that is, an ultrasonic oscillator called a normal horn having a frequency of 19.15 KHz, and a point-shaped or band-shaped projecting portion on the circumference. And a pattern roll comprising: The pattern roll is disposed below the ultrasonic oscillator, and the object is passed between the ultrasonic oscillator and the pattern roll. The number of convex protrusions provided on the pattern roll may be one or more, and when the number of the protrusions is plural, any of parallel or staggered arrangement may be used. During the fusion process, the horn is pressurized by applying air pressure to the horn. The linear pressure between the horn and the pattern roll is usually 1 to 10 kg / cm, and the linear pressure is 1 k.
When it is less than g / cm, the pressing force against the laminate of the thermoplastic synthetic long-fiber non-woven fabric layer and the natural fiber non-woven fabric layer is insufficient, and no fusion occurs. On the other hand, when the linear pressure exceeds 10 kg / cm, Laminates obtained by excessively high pressing pressure on the point-like fusion zone and the biodegradable thermoplastic synthetic long-fiber nonwoven fabric layer corresponding to the fusion zone being thermally decomposed or, in extreme cases, perforation being generated The interlayer adhesion of the nonwoven structure decreases,
Neither is preferred . FIG. 1 is a schematic view showing a cross section of the point-like fusion zone in the laminated nonwoven structure obtained by the present invention. In the figure, 1 is a biodegradable thermoplastic synthetic long fiber layer melted in a point-like fusion zone, and 2 is a natural fiber. As is apparent from the figure, at least a boundary surface between both nonwoven fabric layers in a point-like fusion zone. The located natural fiber 2 is fixed in a state where the thermoplastic synthetic long fiber is buried in the melted portion where the thermoplastic synthetic fiber is melted, that is, 1 and both nonwoven fabric layers have such an adhesive structure in the point-like fusion zone, A laminated nonwoven structure having high peel strength is obtained.

【0019】[0019]

【作用】本発明の製造方法により得られる積層不織布構
造体は、片面が生分解性熱可塑性合成長繊維からなる不
織布層から構成されるため疎水性を有し、他面が天然繊
維同士が機械的に交絡してなる不織布層から構成される
ため吸水性を有し、しかも両面の不織布共に生分解性を
有する。また、前記の熱可塑性合成長繊維不織布がメル
トブローン不織布又は割繊スパンボンド不織布であっ
て、かつ天然繊維同士が三次元的に交絡してなる場合、
前記合成長繊維と相乗して優れた柔軟性が具備される。
さらに、前記合成長繊維と天然繊維とが融着されてなる
点状融着区域において、前記両不織布層の少なくとも境
界面に位置する天然繊維が前記合成長繊維の融解部に埋
設された状態で固定された接着構造を有するため、剥離
強力の高い積層不織構造体となる。
The laminated non-woven fabric structure obtained by the production method of the present invention has hydrophobicity because one side is composed of a non-woven fabric layer made of biodegradable thermoplastic synthetic long fibers, and the other side has natural fibers. Since it is composed of a non-woven fabric layer that is entangled with each other, it has water absorbency, and both non-woven fabrics have biodegradability. Further, when the thermoplastic synthetic long-fiber nonwoven fabric is a melt-blown nonwoven fabric or split spunbonded nonwoven fabric, and natural fibers are three-dimensionally entangled with each other,
Excellent flexibility is provided in synergy with the synthetic long fiber.
Furthermore, in the point-like fusion zone where the synthetic long fibers and the natural fibers are fused, the natural fibers located at least at the boundary surface between the two nonwoven fabric layers are embedded in the fused portion of the synthetic long fibers. Since it has a fixed adhesive structure, it becomes a laminated nonwoven structure having high peel strength.

【0020】[0020]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 メルトフローレート値(g/10分):ASTM−D−
1238(L)に記載の方法に準じて測定した。なお,
生分解性熱可塑性脂肪族ポリエステル系重合体の場合,
測定温度を200℃とした。 融点(℃):パーキンエルマ社製示差走査型熱量計DS
C−2型を用い,試料重量を5mg,昇温速度を20℃
/分として測定して得た融解吸熱曲線の最大極値を与え
る温度を融点(℃)とした。 目付け(g/m2 ):標準状態の試料から縦10cm×
横10cmの試料片計10点を作成し平衡水分に到らし
めた後,各試料片の重量(g)を秤量し,得られた値の
平均値を単位面積(m2 )当たりに換算し目付け(g/
2 )とした。引張り強力(kg/5cm幅)及び引張
り伸度(%):JIS−L−1096Aに記載の方法に
準じて測定した。すなわち,試料長が10cm,試料幅
が5cmの試料片計10点を作成し,各試料片毎に不織
布の経方向について,定速伸長型引張り試験機(東洋ボ
ールドウイン社製テンシロンUTM−4−1−100)
を用いて引張り速度10cm/分で伸長し,得られた切
断時荷重値(kg/5cm幅)の平均値を引張り強力
(kg/5cm幅),切断時伸長率(%)の平均値を引
張り伸度(%)とした。 層間剥離強力(g/5cm幅):試料長が10cm,試
料幅が5cmの試料片計10点を作成し,各試料片毎に
不織布の経方向について,定速伸長型引張り試験機(東
洋ボールドウイン社製テンシロンUTM−4−1−10
0)を用いて引張り速度10cm/分で天然繊維不織布
層が合成長繊維不織布層から積層構造体の端部から計っ
て5cmの位置まで強制的に剥離させ,得られた荷重値
(g/5cm幅)の平均値を層間剥離強力(g/5cm
幅)とした。 剛軟度(g):試料長が10cm,試料幅が5cmの試
料片計5点を作成し,各試料片毎に横方向に曲げて円筒
状物とし,各々その端部を接合したものを剛軟度測定試
料とした。次いで,各測定試料毎にその軸方向につい
て,定速伸長型引張り試験機(東洋ボールドウイン社製
テンシロンUTM−4−1−100)を用いて圧縮速度
5cm/分で圧縮し,得られた最大荷重値(g)の平均
値を剛軟度(g)とした。 吸水性(mm):JIS−L−1096に記載のバイレ
ツク法に準じて測定した。 生分解性の評価:試料片を土壌中に3カ月間埋設した後
に取り出し,試料片がその形態を保持しいる場合,ある
いはその形態を保持していても引張り強力が初期の50
%以下に低下している場合,生分解性が良好であると評
価した。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, the measurement of each characteristic value was performed by the following method. Melt flow rate value (g / 10 minutes): ASTM-D-
It was measured according to the method described in 1238 (L). In addition,
In the case of a biodegradable thermoplastic aliphatic polyester polymer,
The measurement temperature was 200 ° C. Melting point (° C): Differential scanning calorimeter DS manufactured by PerkinElmer
Using C-2 type, sample weight 5mg, heating rate 20 ℃
The temperature at which the maximum extremum of the melting endothermic curve obtained by measuring per minute was obtained was defined as the melting point (° C.). Basis weight (g / m 2 ): 10 cm long from the sample in the standard state
After making a total of 10 specimens of 10 cm width and reaching equilibrium moisture, the weight (g) of each specimen was weighed, and the average of the obtained values was converted to unit area (m 2 ). Weight (g /
m 2 ). Tensile strength (kg / 5 cm width) and tensile elongation (%): Measured according to the method described in JIS-L-1096A. That is, a total of 10 sample pieces each having a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant-speed elongation type tensile tester (Tensilon UTM-4 manufactured by Toyo Baldwin Co., Ltd.) was used for each sample piece in the longitudinal direction of the nonwoven fabric. 1-100)
The tensile strength is calculated using the following formula: The tensile strength (kg / 5 cm width) and the average value of the elongation percentage (%) are determined. The elongation (%) was used. Delamination strength (g / 5 cm width): A total of 10 specimens each having a sample length of 10 cm and a specimen width of 5 cm were prepared, and a constant-speed elongation type tensile tester (Toyo Bold Co., Ltd.) was prepared for each specimen in the longitudinal direction of the nonwoven fabric. Wins Tensilon UTM-4-1-10
0), the natural fiber nonwoven fabric layer is forcibly peeled off from the synthetic long fiber nonwoven fabric layer to a position of 5 cm measured from the end of the laminated structure at a pulling speed of 10 cm / min, and the obtained load value (g / 5 cm The average value of the width was calculated as the delamination strength (g / 5 cm).
Width). Softness (g): A sample length of 10 cm and a sample width of 5 cm were prepared, and a total of five sample pieces were formed. Each sample piece was bent in the horizontal direction to form a cylindrical object, and the end of each was joined. It was used as a sample for measuring the hardness. Next, each measurement sample was compressed in the axial direction at a compression rate of 5 cm / min using a constant-speed elongation-type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.). The average value of the load values (g) was defined as the softness (g). Water absorption (mm): Measured according to the birec method described in JIS-L-1096. Evaluation of biodegradability: The specimen was taken out after burying it in soil for three months, and when the specimen retained its shape, or even when it retained its tensile strength, the initial tensile strength was 50%.
%, It was evaluated that the biodegradability was good.

【0021】実施例1 融点が110℃,温度200℃で測定したメルトフロー
レート値が30g/10分のポリエチレンサクシネート
10重量%/ポリブチレンサクシネート90重量%の共
重合体チツプを用い,前記共重合体の長繊維からなるス
パンボンド不織布を作成した。すなわち,前記共重合体
チツプをエクストルーダ型溶融押出し機を用いて溶融
し,これを孔径が0.35mmの円形断面紡糸孔を有す
る紡糸口金を通し紡糸温度を210℃かつ単孔吐出量を
0.78g/分として溶融紡出し,温度が20℃の冷却
風を用いて冷却した後,エアーサツカを用い引取り速度
を3500m/分として牽引・細化した後,開繊器を用
いて開繊し,移動する捕集面上に捕集・堆積させてウエ
ブとし,得られたウエブに先端部面積が0.6mm2
突起状彫刻模様部が圧接面積率17%かつ密度20点/
cm2 で配設された熱エンボスローラと表面平滑な金属
ローラとを用い,処理温度を95℃,かつ線圧を40k
g/cmとして加工速度10m/分で部分熱圧接処理を
施し,単繊維繊度が2.0デニールで,目付けが30g
/m2 のスパンボンド不織布を得た。得られたスパンボ
ンド不織布は,引張り強力が5.3kg/5cm幅,引
張り伸度が37%,剛軟度が27g,吸水性が12mm
のものであった。別途,平均単繊維繊度が1.5デニー
ルで,かつ平均繊維長が25mmの木綿晒し綿を用い,
木綿繊維同士が三次元的に交絡してなる不織布を作成し
た。すなわち,前記晒し綿を出発原料とし,ランダムカ
ード機により繊維配列がランダムなカードウエブを作成
し,次いで得られたウエブを移動速度20m/分で移動
する70メツシユの金網上に載置して高圧液体流処理を
施した。高圧液体流処理は孔径0.1mmの噴射孔が孔
間隔0.6mmで一列に配設された高圧柱状水流処理装
置を用い,ウエブの上方50mmの位置から2段階に別
けて柱状水流を作用させた。第1段階の処理では圧力を
30kg/cm2 Gとし,第2段階の処理では圧力を7
0kg/cm2 Gとした。なお,第2段階の処理は,ま
ずウエブの表側から4回施した後にウエブを反転し,裏
側から5回施した。次いで,得られた処理物からマング
ルロールを用いて過剰水分を除去した後,得られた処理
物に熱風乾燥機を用い温度100℃の条件で乾燥処理を
施し,木綿繊維同士が緻密に三次元的交絡をした目付け
が35g/m2 の木綿繊維不織布を得た。得られた木綿
繊維不織布は,引張り強力が4.5kg/5cm幅,引
張り伸度が35%,剛軟度が28g,吸水性が132m
mのものであった。
Example 1 A copolymer chip of 10% by weight of polyethylene succinate / 90% by weight of polybutylene succinate having a melt flow rate measured at a melting point of 110 ° C. and a temperature of 200 ° C. of 30 g / 10 minutes was used. A spunbonded nonwoven fabric consisting of long fibers of the copolymer was prepared. That is, the copolymer chip was melted using an extruder-type melt extruder, and this was passed through a spinneret having a circular cross-section spinning hole having a hole diameter of 0.35 mm, a spinning temperature of 210 ° C., and a single hole discharge amount of 0.1 mm. After melt spinning at 78 g / min, cooling using cooling air at a temperature of 20 ° C., drawing and narrowing at a take-up speed of 3500 m / min using an air sack, and then opening using an opener, A web is formed by collecting and accumulating on the moving collecting surface, and the obtained web is provided with a protruding sculpture pattern having a tip area of 0.6 mm 2 at a contact area ratio of 17% and a density of 20 points /
using the provided thermal embossing roller and the surface smooth metal roller in cm 2, a processing temperature of 95 ° C., and 40k linear pressure
g / cm, partial heat pressing at a processing speed of 10 m / min, a single fiber fineness of 2.0 denier and a basis weight of 30 g
/ M 2 . The resulting spunbonded nonwoven fabric has a tensile strength of 5.3 kg / 5 cm width, a tensile elongation of 37%, a softness of 27 g, and a water absorption of 12 mm.
It was. Separately, bleached cotton with an average single fiber fineness of 1.5 denier and an average fiber length of 25 mm was used.
A nonwoven fabric in which cotton fibers are three-dimensionally entangled was prepared. That is, the bleached cotton is used as a starting material, a card web having a random fiber arrangement is prepared by a random card machine, and the obtained web is placed on a 70 mesh wire mesh moving at a moving speed of 20 m / min. Liquid flow treatment was applied. The high-pressure liquid flow treatment uses a high-pressure columnar water flow treatment device in which injection holes having a hole diameter of 0.1 mm are arranged in a line at a hole interval of 0.6 mm, and a columnar water flow is applied in two stages from a position 50 mm above the web. Was. In the first stage processing, the pressure was 30 kg / cm 2 G, and in the second stage processing, the pressure was 7 kg / cm 2 G.
It was 0 kg / cm 2 G. The processing in the second stage was performed four times from the front side of the web, then reversed the web, and performed five times from the back side. Next, after removing excess moisture from the obtained processed material using a mangle roll, the obtained processed material is subjected to a drying treatment at a temperature of 100 ° C. using a hot-air drier so that the cotton fibers are densely three-dimensionally. A cotton fiber nonwoven fabric having a target weight of 35 g / m 2 was obtained. The obtained cotton fiber nonwoven fabric has a tensile strength of 4.5 kg / 5 cm width, a tensile elongation of 35%, a softness of 28 g, and a water absorption of 132 m.
m.

【0022】次いで,前記で得られたスパンボンド不織
布と木綿繊維不織布とを積層し,周波数が19.15K
Hzの超音波発振器と円周上に点状に凸状突起部が面積
比(ロール全表面積に対する全凸状突起部の面積の比)
11%かつ密度18点/cm2 で配設されたパターンロ
ールとからなる超音波融着装置を用い,加工速度を30
m/分,線圧を1.5kg/cm,超音波の振幅を16
μmとし超音波融着処理を施して積層不織構造体を得
た。得られた積層不織構造体の特性を表1に示す。
Next, the spunbond nonwoven fabric obtained above and the cotton fiber nonwoven fabric are laminated, and the frequency is 19.15K.
Hz ultrasonic oscillator and dot-shaped projections on the circumference have an area ratio (ratio of area of all projections to total surface area of the roll)
Using an ultrasonic fusing apparatus consisting of 11% and pattern rolls arranged at a density of 18 points / cm 2 , the processing speed was 30
m / min, linear pressure 1.5 kg / cm, ultrasonic amplitude 16
μm and subjected to an ultrasonic fusion treatment to obtain a laminated nonwoven structure. Table 1 shows the properties of the obtained laminated nonwoven structure.

【0023】実施例2 融点が110℃,温度200℃で測定したメルトフロー
レート値が160g/10分のポリブチレンサクシネー
トチツプを用い,前記重合体の極細長繊維からなるメル
トブローン不織布を作成した。すなわち,前記重合体チ
ツプをエクストルーダ型溶融押出し機を用いて溶融し,
これを孔径が0.15mmの紡糸孔を有する紡糸口金を
通し紡糸温度を270℃かつ単孔吐出量を80g/分と
して溶融吐出し,吐出された溶融重合体流を溶融温度よ
り30℃高い温度の高圧空気流を速度170m/秒で紡
糸線方向に対して25度の角度をなす方向に噴出して牽
引・細化し,冷却した後,紡糸口金の下方30cmの位
置に配設されたサクシヨンドラム上に捕集・堆積させ,
平均単繊維繊度が0.14デニールで,目付けが20g
/m2 のメルトブローン不織布を得た。得られたメルト
ブローン不織布は,引張り強力が1.0kg/5cm
幅,引張り伸度が42%,剛軟度が12g,吸水性が7
mmのものであった。次いで,前記で得られたメルトブ
ローン不織布と実施例1で作成した木綿繊維不織布とを
積層し,以降は実施例1と同様にして,積層不織構造体
を得た。得られた積層不織構造体の特性を表1に示す。
Example 2 Using a polybutylene succinate chip having a melt flow rate measured at a melting point of 110 ° C. and a temperature of 200 ° C. and having a melt flow rate of 160 g / 10 minutes, a melt-blown nonwoven fabric made of the ultrafine fibers of the polymer was prepared. That is, the polymer chip is melted using an extruder-type melt extruder,
This is melted and discharged through a spinneret having a spinning hole having a hole diameter of 0.15 mm at a spinning temperature of 270 ° C. and a single hole discharge amount of 80 g / min, and the discharged molten polymer stream is heated to a temperature 30 ° C. higher than the melting temperature. A high-pressure air stream is jetted at a speed of 170 m / sec in a direction at an angle of 25 degrees with respect to the direction of the spinning line, drawn and thinned, cooled, and then placed at a position 30 cm below the spinneret. Collected and deposited on the drum,
The average single fiber fineness is 0.14 denier and the basis weight is 20 g
/ M 2 of melt blown nonwoven fabric. The obtained melt blown nonwoven fabric has a tensile strength of 1.0 kg / 5 cm.
Width, tensile elongation 42%, bristles 12g, water absorption 7
mm. Next, the melt-blown non-woven fabric obtained above was laminated with the cotton fiber non-woven fabric prepared in Example 1, and thereafter a laminated non-woven structure was obtained in the same manner as in Example 1. Table 1 shows the properties of the obtained laminated nonwoven structure.

【0024】比較例1 融点が156℃,メルトフローレート値が50g/10
分のポリプロピレンチツプを用い,前記重合体の長繊維
からなるスパンボンド不織布を作成した。すなわち,前
記重合体チツプをエクストルーダ型溶融押出し機を用い
て溶融し,以降は紡糸温度を230℃とした以外は実施
例1と同様にして,単繊維繊度が2.0デニールで,目
付けが30g/m2 のスパンボンド不織布を得た。得ら
れたスパンボンド不織布は,引張り強力が8.3kg/
5cm幅,引張り伸度が38%,剛軟度が38g,吸水
性が10mmのものであった。次いで,前記で得られた
スパンボンド不織布と実施例1で作成した木綿繊維不織
布とを積層し,以降は実施例1と同様にして,積層不織
構造体を得た。得られた積層不織構造体の特性を表1に
示す。
Comparative Example 1 Melting point: 156 ° C., melt flow rate: 50 g / 10
A spunbonded nonwoven fabric made of the above-mentioned polymer long fiber was prepared using a polypropylene chip of the above type. That is, the polymer chip was melted using an extruder-type melt extruder, and thereafter the same procedure as in Example 1 was carried out except that the spinning temperature was 230 ° C., and the single fiber fineness was 2.0 denier and the basis weight was 30 g. / M 2 . The resulting spunbonded nonwoven fabric has a tensile strength of 8.3 kg /
It had a width of 5 cm, a tensile elongation of 38%, a softness of 38 g, and a water absorption of 10 mm. Next, the spunbonded nonwoven fabric obtained above and the cotton fiber nonwoven fabric prepared in Example 1 were laminated, and thereafter a laminated nonwoven structure was obtained in the same manner as in Example 1. Table 1 shows the properties of the obtained laminated nonwoven structure.

【0025】比較例2 実施例1で作成したスパンボンド不織布と実施例1で作
成した木綿繊維不織布とを積層し,超音波融着処理に代
わり圧接面積率が12%の熱エンボスローラと表面平滑
な金属ローラとを用い,処理温度を102℃,かつ線圧
を80kg/cmとして加工速度15m/分で部分熱圧
接処理を施した以外は実施例1と同様にして,積層不織
構造体を得た。得られた積層不織構造体の特性を表1に
示す。
Comparative Example 2 The spunbonded nonwoven fabric prepared in Example 1 and the cotton fiber nonwoven fabric prepared in Example 1 were laminated, and a hot emboss roller having a pressed area ratio of 12% and a smooth surface were used instead of the ultrasonic fusion treatment. A laminated non-woven structure was produced in the same manner as in Example 1 except that a partial metal pressure treatment was performed at a processing temperature of 102 ° C., a linear pressure of 80 kg / cm, and a processing speed of 15 m / min. Obtained. Table 1 shows the properties of the obtained laminated nonwoven structure.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例1及び2で得られた積層不織構造体
は,表1から明らかなように実用上十分な引張り強伸度
を有すると共に剥離強力が高く,柔軟性が優れ,生分解
性を具備するものであった。特に実施例2積層不織構造
体は,メルトブローン不織布を用いたものであり,良好
なバクテリアバリア性を併せ具備するものであった。こ
れに対し,比較例1で得られた積層不織構造体は,生分
解性繊維を含有しておらず前記評価試験の結果,生分解
性が劣ると評価された。比較例2で得られた積層不織構
造体は,熱エンボスローラを用いた部分熱圧接処理が施
されたものであるため,剥離強力が極めて低いものであ
った。
The laminated nonwoven structures obtained in Examples 1 and 2 have practically sufficient tensile strength and elongation as well as high peel strength, excellent flexibility, and biodegradability, as is clear from Table 1. Was provided. In particular, the laminated nonwoven structure of Example 2 used a melt-blown nonwoven fabric, and also had good bacterial barrier properties. In contrast, the laminated nonwoven structure obtained in Comparative Example 1 did not contain biodegradable fibers, and as a result of the evaluation test, was evaluated as having poor biodegradability. Since the laminated nonwoven structure obtained in Comparative Example 2 was subjected to the partial heat pressing treatment using the hot embossing roller, the peel strength was extremely low.

【0028】[0028]

【発明の効果】本発明の製造方法により得られる生分解
性積層不織構造体は、生分解性熱可塑性合成長繊維不織
布層と天然繊維同士が機械的に交絡してなる不織布層と
が積層され、前記合成短繊維と天然繊維とが融着されて
なる点状融着区域とを有し、前記点状融着区域において
前記両不織布層の少なくとも境界面に位置する天然繊維
が前記合成長繊維の融解部に埋設された状態で固定され
ることにより全体として一体化されてなるものであるの
、生分解性を有し、剥離強力が高く、柔軟性が優れ、
吸水性と疎水性を併せ有し、医療・衛生材料、拭き取り
布や包装材料あるいは家庭用又は業務用の生塵捕集用袋
等の一般生活関連材、あるいは農業用に代表される産業
資材用の各素材として好適である。
The biodegradable laminated nonwoven structure obtained by the production method of the present invention comprises a biodegradable thermoplastic synthetic long-fiber nonwoven fabric layer and a nonwoven fabric layer in which natural fibers are mechanically entangled with each other. Wherein the synthetic short fibers and the natural fibers have a point fusion zone formed by fusing, and the natural fibers located at least at the boundary surface between the two nonwoven fabric layers in the point fusion zone are the synthetic lengths. No Ru der made are integrated as a whole by being fixed in a state of buried in the melt of the fiber
With biodegradability, high peel strength, excellent flexibility,
It has both water absorbency and hydrophobicity, and is used for general life related materials such as medical and sanitary materials, wiping cloths and packaging materials, household or commercial bags for collecting dust, or industrial materials represented by agriculture. It is suitable as each material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の生分解性積層不織構造体における前記
点状融着区域の断面を示す模式図である。
FIG. 1 is a schematic view showing a cross section of the point-like fusion zone in a biodegradable laminated nonwoven structure of the present invention.

【符号の説明】[Explanation of symbols]

1:融解した生分解性熱可塑性合成長繊維層 2:天然繊維 1: melted biodegradable thermoplastic synthetic long fiber layer 2: natural fiber

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−214648(JP,A) 特開 平5−230751(JP,A) 特開 昭50−47492(JP,A) 特開 昭60−101118(JP,A) 特開 平7−119010(JP,A) (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 C68G 63/00 - 63/91 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-214648 (JP, A) JP-A 5-230751 (JP, A) JP-A-50-47492 (JP, A) JP-A-60-1985 101118 (JP, A) JP-A-7-119010 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) D04H 1/00-18/00 C68G 63/00-63/91

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 生分解性熱可塑性合成長繊維からなる不
織布層と天然繊維同士が機械的に交絡してなる不織布
層と積層し、超音波融着装置を用いて、前記合成長繊
維と天然繊維とが融着されてなる点状融着区域を形成
し、前記点状融着区域において前記両不織布層の少なく
とも境界面に位置する天然繊維が前記合成長繊維の融解
部に埋没された状態で固定されることにより全体として
一体化させることを特徴とする生分解性積層不織構造体
の製造方法
And 1. A non-woven fabric layer made of biodegradable thermoplastic synthetic long fibers, natural fibers with each other by stacking a nonwoven fabric layer formed by mechanically entangled, using an ultrasonic welding device, wherein the synthetic filament Fusing area formed by fusing with natural fiber
Then, the natural fibers located at least at the boundary surface between the two nonwoven fabric layers in the point-like fusion zone are fixed in a state where they are buried in the fusion portion of the synthetic long fiber, thereby being integrated as a whole. Biodegradable laminated nonwoven structure
Manufacturing method .
【請求項2】 生分解性熱可塑性合成長繊維が、脂肪族
グリコールと脂肪族ジカルボン酸の縮重合体である生分
解性熱可塑性脂肪族ポリエステル系重合体からなる請求
項1記載の生分解性積層不織構造体の製造方法
2. The biodegradable thermoplastic synthetic polyester fiber according to claim 1, wherein the biodegradable thermoplastic synthetic long fiber comprises a biodegradable thermoplastic aliphatic polyester polymer which is a condensation polymer of an aliphatic glycol and an aliphatic dicarboxylic acid. A method for producing a laminated nonwoven structure.
【請求項3】 生分解性熱可塑性脂肪族ポリエステル系
重合体が、ポリエチレンサクシネート又はポリブチレン
サクシネートである請求項2記載の生分解性積層不織構
造体の製造方法
3. The method for producing a biodegradable laminated nonwoven structure according to claim 2, wherein the biodegradable thermoplastic aliphatic polyester polymer is polyethylene succinate or polybutylene succinate.
【請求項4】 生分解性熱可塑性脂肪族ポリエステル系
重合体が、ポリエチレンサクシネートの0重量%を超え
かつ35重量%以下と、ポリブチレンサクシネートの1
00重量%未満かつ65重量%以上との共重合体である
請求項2記載の生分解性積層不織構造体の製造方法
4. The biodegradable thermoplastic aliphatic polyester-based polymer contains more than 0% by weight and not more than 35% by weight of polyethylene succinate, and 1% of polybutylene succinate.
The method for producing a biodegradable laminated nonwoven structure according to claim 2, which is a copolymer of less than 00% by weight and 65% by weight or more.
JP28044793A 1993-10-13 1993-10-13 Method for producing biodegradable laminated nonwoven structure Expired - Fee Related JP3262430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28044793A JP3262430B2 (en) 1993-10-13 1993-10-13 Method for producing biodegradable laminated nonwoven structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28044793A JP3262430B2 (en) 1993-10-13 1993-10-13 Method for producing biodegradable laminated nonwoven structure

Publications (2)

Publication Number Publication Date
JPH07109659A JPH07109659A (en) 1995-04-25
JP3262430B2 true JP3262430B2 (en) 2002-03-04

Family

ID=17625190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28044793A Expired - Fee Related JP3262430B2 (en) 1993-10-13 1993-10-13 Method for producing biodegradable laminated nonwoven structure

Country Status (1)

Country Link
JP (1) JP3262430B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283172B1 (en) 2006-04-07 2013-07-08 킴벌리-클라크 월드와이드, 인크. Biodegradable Nonwoven Laminate
WO2009145778A1 (en) 2008-05-30 2009-12-03 Kimberly-Clark Worldwide, Inc. Polylactic acid fibers
CN105936156A (en) * 2016-06-13 2016-09-14 浙江长兴惠龙医疗科技有限公司 Medical non-woven fabric

Also Published As

Publication number Publication date
JPH07109659A (en) 1995-04-25

Similar Documents

Publication Publication Date Title
EP0796940B1 (en) Water jet intertwined nonwoven cloth and method of manufacturing the same
JP3264720B2 (en) Biodegradable composite short fiber non-woven fabric
JP5329860B2 (en) Composite sheet and manufacturing method thereof
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JP5902257B2 (en) Method for producing composite nonwoven sheet
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JP3305453B2 (en) Laminated non-woven structure
JP3213460B2 (en) Method for producing biodegradable laminated nonwoven structure
JPH07125128A (en) Biodegradable nonwoven laminate
JP3146221B2 (en) Microbial degradable ultrafine fiber meltblown nonwoven fabric and method for producing the same
JP3905916B2 (en) Method for producing composite nonwoven fabric containing ultrafine fibers
JPH03860A (en) Conjugate non-woven fabric and production thereof
JPH0995852A (en) Polylactate-based laminated nonwoven fabric and its production
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JP3784093B2 (en) Disposable handbag
JPH0768686A (en) Laminated nonwoven structure
JPH08109567A (en) Laminated nonwoven structure and its production
JPH083855A (en) Laminated nonwoven structure
JPH07316969A (en) Laminated nonwoven structure
JPH0931857A (en) Laminated nonwoven fabric and its production
JPH07266479A (en) Laminated nonwoven structure
JPH0841762A (en) Laminated nonwoven fabric and production of the same
JPH08232149A (en) Sewing of nonwoven fabric
JP2001248021A (en) Biodegradable conjugate staple fiber
JPH083856A (en) Laminated nonwoven structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071221

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111221

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees