JP2005041938A - Organic insulating film-forming composition - Google Patents

Organic insulating film-forming composition Download PDF

Info

Publication number
JP2005041938A
JP2005041938A JP2003200961A JP2003200961A JP2005041938A JP 2005041938 A JP2005041938 A JP 2005041938A JP 2003200961 A JP2003200961 A JP 2003200961A JP 2003200961 A JP2003200961 A JP 2003200961A JP 2005041938 A JP2005041938 A JP 2005041938A
Authority
JP
Japan
Prior art keywords
group
ring
insulating film
compound
organic insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003200961A
Other languages
Japanese (ja)
Inventor
Hisaya Sato
尚也 佐藤
Yuji Yoshida
祐司 吉田
Akira Yokota
明 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003200961A priority Critical patent/JP2005041938A/en
Publication of JP2005041938A publication Critical patent/JP2005041938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic insulating film-forming composition which can form organic insulating films having high mechanical strength. <P>SOLUTION: [1] The organic insulating film-forming composition is characterized by containing a compound having at least three -C≡CH groups in the molecule. [2] A method for producing an organic insulating film is characterized by comprising a process for coating a composition described in the above-mentioned [1] on a substrate and then thermally treating the coated composition at an oxygen concentration of <1 %. [3] An organic insulating film obtained by the production method described in the above-mentioned [2]. [4] An organic insulating film described in the above-mentioned [3], wherein the hardness and elastic modulus of the organic insulating film are ≥1 GPa and ≥10 GPa, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、有機絶縁膜形成用組成物に関する。
【0002】
【従来の技術】
近年、電子材料分野においては、半導体の高集積化、高速化、高性能化に伴って、配線間抵抗の増大や電気容量の増大による遅延時間が大きな問題となってきている。この遅延時間を減少させてデバイスをより高速化するためには、低誘電率の絶縁膜を用いることが必要である。
ところで、低誘電率の絶縁膜に微細な配線を形成するプロセスにおいては、該絶縁膜にパターンニングした後、配線を形成するが、平坦化のために化学的機械研磨(Chemical Mechanical Polishing(以下、CMPという))が行われる。このCMPにおいては絶縁膜に高い機械強度が要求される。
低誘電率の絶縁膜の材料としては、例えば、1,2−ジヨードベンゼンと4,4’ −ジエチニルジフェニルエーテルとをパラジウム触媒の存在下で重合して得られる重合体からなる組成物が知られているが(特許文献1参照)、該組成物より得られる絶縁膜の機械強度は十分なものとは言えなかった。
【0003】
【特許文献1】
特開2002−322246
【0004】
【発明が解決しようとする課題】
本発明の目的は、高い機械強度を有する有機絶縁膜を形成し得る有機絶縁膜形成用組成物を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記したような問題を解決し得る有機絶縁膜形成用組成物を見出すべく、鋭意検討を重ねた結果、分子内に−C≡CH基を3個以上有する化合物を含有する組成物が、高い機械強度を有する有機絶縁膜を形成し得ることを見出し、本発明を完成させるに至った。
【0006】
即ち、本発明は、分子内に−C≡CH基を少なくとも3個有する化合物を含有することを特徴とする有機絶縁膜形成用組成物を提供するものである。
【0007】
【発明の実施の形態】
本発明の有機絶縁膜形成用組成物は、分子内に−C≡CH基を少なくとも3個有する化合物を含有するものである。本発明の有機絶縁膜形成用組成物は、多孔室の有機絶縁膜を形成する際に使用される熱蒸散性化合物および/または熱分解性化合物を含まないことが好ましい。
【0008】
分子内に−C≡CH基を少なくとも3個有する化合物は、以下の式(1)及び式(2)で示される化合物からなる群から選ばれる少なくとも1種の化合物であることが好ましい。

Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
【0009】
式(1)中、nは3または4を表わし、Xは、−C≡CH基以外の基で置換されていてもよい炭素数4〜20の脂環式炭化水素基、または−C≡CH基以外の基で置換されていてもよい芳香環を有する基を表わし、Y、Zは、それぞれ独立に、単結合、−C≡CH基以外の基で置換されていてもよい芳香環を有する基、−O−または−CO−を表わす。
【0010】
式(1)中、Xにおいて、炭素数4〜20の脂環式炭化水素基としては、例えば、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、アダマンタン環、ノルボルネン環などを有する3価または4価の基が挙げられる。
−C≡CH基以外の置換基としては、例えば、アルキル基、アルコキシ基、アルケニル基、炭素数3〜10のアルキニル基、アリール基、置換基を有してもよいトリアルキルシリル基、ヒドロキシル基などが挙げられる。
ここで、アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、へキシル基などが挙げられる。
アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。
アルケニル基としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、2−メチルアリル基、ブタジエニル基などが挙げられる。
炭素数3〜10のアルキニル基としては、例えば、プロパルギル基、ブチニル基、ペンチニル基、ブタジイニル基、ヘプチニル基などが挙げられる。
アリール基としては、例えば、フェニル基、ジフェニル基、ナフチル基、アントラセニル基、フルオレニル基などが挙げられる。
置換基を有してもよいトリアルキルシリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルエチルシリル基などが挙げられる。
【0011】
芳香環を有する基としては、例えば、ベンゼン環、ジフェニル環、ナフタレン環、アントラセン環、フルオレン環などを有する3価または4価の基などが挙げられる。
−C≡CH基以外の置換基としては、例えば、アルキル基、アルコキシ基、アルケニル基、炭素数3〜10のアルキニル基、アリール基、置換基を有してもよいトリアルキルシリル基、ヒドロキシル基などが挙げられる。
ここで、アルキル基、アルコキシ基、アルケニル基、炭素数3〜10のアルキニル基、アリール基、置換基を有してもよいトリアルキルシリル基としては、前記と同じものが挙げられる。
【0012】
式(1)中、Y、Zにおける芳香環を有する基としては、例えば、ベンゼン環、ジフェニル環、ナフタレン環、アントラセン環、フルオレン環を有する2価の基などが挙げられる。
−C≡CH基以外の置換基としては、例えば、アルキル基、アルコキシ基、アルケニル基、炭素数3〜10のアルキニル基、アリール基、置換基を有してもよいトリアルキルシリル基、ヒドロキシル基などが挙げられる。
アルキル基、アルコキシ基、アルケニル基、炭素数3〜10のアルキニル基、アリール基、置換基を有してもよいトリアルキルシリル基としては、前記と同じものが挙げられる。
【0013】
耐熱性の観点から、前記式(1)におけるXが、ベンゼン環、ジフェニル環、ナフタレン環、アントラセン環、アダマンタン環を有する3価または4価の基であることが好ましく、ベンゼン環、アダマンタン環を有する3価または4価の基であることがより好ましい。
【0014】
また、耐熱性の観点から、前記式(1)におけるYが、ベンゼン環、ジフェニル環、ナフタレン環、アントラセン環、アダマンタン環を有する2価の基で、Zが、酸素原子であるか、YとZがともに単結合であることが好ましく、Yが、ベンゼン環を有する2価の基で、Zが、酸素原子であるか、YとZがともに単結合であることがより好ましい。
【0015】
これらの中で、前記式(1)におけるXがベンゼン環、アダマンタン環を有する3価または4価の基で、Yがベンゼン環を有する2価の基で、Zが酸素原子であるか、Xがベンゼン環、アダマンタン環を有する3価または4価の基で、Y、Zがともに単結合であることがさらに好ましい。
【0016】
式(1)で示される化合物は、以下の化合物の少なくとも1つであることが特に好ましい。
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
【0017】
式(2)中、mは2または3を表わし、Xは、−C(R)(R)−、>C(R)−、−C≡CH基以外の基で置換されていてもよい炭素数4〜20の脂環式炭化水素を有する基、−C≡CH基以外の基で置換されていてもよい芳香環を有する基、−O−または−CO−を表わし、R〜Rは、それぞれ独立に、水素原子を表わすか、ヒドロキシル基、または置換されていてもよい炭素数1〜10のアルキル基を表わし、Y、Zは、それぞれ独立に、単結合、−C≡CH基以外の基で置換されていてもよい芳香環を有する基、−O−または−CO−を表わす。
【0018】
式(2)中、Xにおいて、炭素数4〜20の脂環式炭化水素基としては、例えば、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、アダマンタン環、ノルボルネン環などを有する2価または3価の基などが挙げられる。
また、芳香環を有する基としては、例えば、ベンゼン環、ジフェニル環、ナフタレン環、アントラセン環、フルオレン環などを有する2価または3価の基などが挙げられる。
−C≡CH基以外の置換基としては、例えば、アルキル基、アルコキシ基、アルケニル基、炭素数3〜10のアルキニル基、アリール基、置換基を有してもよいトリアルキルシリル基、ヒドロキシル基などが挙げられる。
ここで、アルキル基、アルコキシ基、アルケニル基、炭素数3〜10のアルキニル基、アリール基、置換基を有してもよいトリアルキルシリル基としては、前記と同じものが挙げられる。
【0019】
式(2)中、R〜Rにおける炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、へキシル基などが挙げられる。
炭素数1〜10のアルキル基置換基としては、例えば、アルコキシ基、アルケニル基、炭素数3〜10のアルキニル基、アリール基、置換基を有してもよいトリアルキルシリル基、ヒドロキシル基などが挙げられる。
ここで、アルコキシ基、アルケニル基、炭素数3〜10のアルキニル基、アリール基、置換基を有してもよいトリアルキルシリル基としては、前記と同じものが挙げられる。
【0020】
式(2)中、Y、Zにおいて、芳香環を有する基としては、例えば、ベンゼン環、ジフェニル環、ナフタレン環、アントラセン環、フルオレン環などを有する2価の基などが挙げられる。
−C≡CH基以外の置換基としては、例えば、アルキル基、アルコキシ基、アルケニル基、炭素数3〜10のアルキニル基、アリール基、置換基を有してもよいトリアルキルシリル基、ヒドロキシル基などが挙げられる。
ここで、アルキル基、アルコキシ基、アルケニル基、炭素数3〜10のアルキニル基、アリール基、置換基を有してもよいトリアルキルシリル基としては、前記と同じものが挙げられる。
【0021】
耐熱性の観点から、前記式(2)におけるXが、ベンゼン環、ジフェニル環、ナフタレン環、アントラセン環、フルオレン環、シクロヘキサン環、アダマンタン環を有する2価または3価の基、カルボニル基、アルキリデン基、アルキリジン基であることが好ましく、フルオレン環、シクロヘキサン環、アダマンタン環を有する2価または3価の基、カルボニル基、アルキリデン基、アルキリジン基であることがより好ましい。
【0022】
また、耐熱性の観点から、前記式(2)におけるYがベンゼン環基、ジフェニル環、ナフタレン環を、アントラセン環、アダマンタン環を有する2価の基で、Zが、酸素原子であるか、YとZがともに単結合であることが好ましく、Yがベンゼン環を有する2価の基で、Zが酸素原子であるか、YとZがともに単結合であることがより好ましい。
【0023】
これらの中で、前記式(2)におけるXがフルオレン環、シクロヘキサン環、アダマンタン環を有する2価または3価の基、カルボニル基、アルキリデン基、アルキリジン基で、Yがベンゼン環を有する2価の基で、Zが酸素原子であるか、Xがフルオレン環、シクロヘキサン環、アダマンタン環を有する2価または3価の基、カルボニル基、アルキリデン基、アルキリジン基で、Y、Zがともに単結合であることがさらに好ましい。
【0024】
式(2)で示される化合物は、以下の化合物の少なくとも1つであることが特に好ましい。
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
【0025】
分子内に−C≡CH基を少なくとも3個有する化合物のGPCによるポリスチレン換算重量平均分子量は、5000以下であることが好ましく、3000以下であることがより好ましく、1500以下であることがさらに好ましい。
該分子量が5000を超えると、分子内の−C≡CH基の割合が低下することにより、架橋密度が低下し、硬度、弾性率が十分でない傾向がある。
【0026】
本発明の有機絶縁膜形成用組成物は、分子内に−C≡CH基を少なくとも3個有する化合物を含有するものであるが、さらに有機溶剤を配合して塗布液としてもよい。
該有機溶剤としては、分子内に−C≡CH基を少なくとも3個有する化合物を溶解可能なものであれば特に限定されない。
該有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、1−ブタノール、2−エトキシメタノール、3−メトキシプロパノール等のアルコール系溶剤、アセチルアセトン、メチルエチルケトン、メチルイソブチルケトン、3−ペンタノン、2−ヘプタノン、3−ヘプタノン、シクロヘキサノン等のケトン系溶剤、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル等のエステル系溶剤、ジイソプロピルエーテル、ジブチルエーテル、ジオキサン、アニソール、フェネトール、ベラトロール、ジフェニルエーテル等のエーテル系溶剤、ベンゼン、トルエン、メシチレン、エチルベンゼン等の芳香族炭化水素系溶剤、クロロホルム、クロロベンゼン、ジクロロエチレン、トリクロロエチレン等のハロゲン系溶剤、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド,N−メチルピロリドン等のアミド系溶剤、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素系溶剤などが挙げられ、これらは工業的に入手が容易であるため好適に使用される。
【0027】
これらの有機溶剤は、分子内に−C≡CH基を少なくとも3個有する化合物の溶解性、塗布液自体の塗布性が良好に維持できる範囲で任意に選択することが可能であり、1種または2種以上を組み合わせて用いてもよい。
【0028】
該有機溶剤を配合した塗布液として用いる場合、その全固形分濃度、すなわち、[分子内に−C≡CH基を少なくとも3個有する化合物/[分子内に−C≡CH基を少なくとも3個有する化合物+有機溶剤配合量]]×100は、5〜50%であることが好ましい。該濃度は、得られる塗布膜の膜厚や段差埋め込み性改良等の目的に応じて適宜調整することができる。
【0029】
本発明の有機絶縁膜形成用組成物には、さらに添加剤を配合してもよい。
該添加剤としては、例えば、シランカップリング剤、チタンカップリング剤等のカップリング剤、界面活性剤、整泡剤、有機過酸化物等の触媒などが挙げられる。
カップリング剤は基板との密着性を向上させるために、界面活性剤は塗布性の安定化のために、有機過酸化物等の触媒はモノマーの架橋温度を低下させるためにそれぞれ配合してもよい。
【0030】
有機絶縁膜の形成に用いられる基板としては、例えば、ガラス、石英、金属、セラミック、シリコン、GaAs、SiO、SiN、SiCなどの基板が挙げられる。
【0031】
該基板への有機絶縁膜形成用組成物の塗布方法としては、例えば、スピンコーティング、ローラーコーティング、ディップコーティング、スプレー法などが挙げられる。
【0032】
基板に塗布された分子内に−C≡CH基を少なくとも3個有する化合物を含む組成物を架橋せしめる方法としては、例えば、加熱処理法、紫外線照射法等が挙げられる。
加熱処理法としては、例えば、オーブン、ホットプレート、ファーネス炉などを使用する方法、RTP(ランプ加熱ヒーター)等によるキセノンランプを使用した光照射加熱などが挙げられる。
【0033】
加熱処理は、酸素濃度1%未満の雰囲気で行うことが好ましく、酸素濃度100ppm未満の雰囲気で行うことがより好ましい。
酸素濃度1%未満の雰囲気としては、例えば、減圧雰囲気、不活性ガス雰囲気、または真空下などを挙げることができる。
減圧雰囲気は、1〜20Pa程度であることが好ましい。
不活性ガスとしては、例えば、ヘリウム、窒素、アルゴン等が挙げられる。
加熱処理の温度は、400℃以下であることが好ましい。400℃以下で加熱することにより、基板に塗布された分子内に−C≡CH基を少なくとも3個有する化合物の分解を抑制することができる傾向がある。
【0034】
得られた有機絶縁膜の硬度、弾性率は、有機絶縁膜の表面近傍での硬度、弾性率であり、HYSITRON社製Hysitoron TriboScope Micromechanical Test装置を用いてナノインデンテーション法により測定した値である。なお、表面近傍とは、有機絶縁膜の膜厚の1/10〜1/6の深度で、具体的には15nm〜50nmをいう。また、硬度、弾性率の測定には、ベルコビッチ圧子(ダイアモンド製)を用いた。
該有機絶縁膜の硬度は1GPa以上であることが好ましく、弾性率が10GPa以上であることが好ましい。
【0035】
本発明の有機絶縁膜形成用組成物から得られる有機絶縁膜は、比較的低温で架橋可能であることから、短時間で容易に製造することが可能である。
該有機絶縁膜は、低誘電率である上、高硬度、高弾性率であり、耐熱性、耐薬品性にも優れていることから、半導体などの電子材料用の絶縁膜として好適に使用される。
【0036】
【実施例】
以下、本発明を実施例に基いて更に詳細に説明するが、本発明が実施例により限定されるものではないことは言うまでもない。
【0037】
製造例1
化合物Aの製造
1000mL4つ口フラスコにジブロモアダマンタン30.0g(102mmol)、ブロモベンゼン160.2g(1.02mol)及びジクロロメタン570gを仕込み、氷水で5℃まで冷却した。ここに、無水塩化鉄(III)0.83g(5.1mmol)を加え、12時間かけて室温まで昇温しながら攪拌を続けた。反応液を1N塩酸300gに添加し、攪拌後、水層を除去した。有機層を1N塩酸100gで1回洗浄し、さらにイオン交換水100gで4回洗浄した。ジクロロメタンと過剰ブロモベンゼンを減圧蒸留で除去した後、残さにメタノール300gを加え、攪拌した。沈殿したオイル状物を取り出し、テトラヒドロフラン30gを加えて溶解させ、メタノール300g中に滴下した。沈殿したオイル状物を取り出して減圧乾燥し、オイル状物を38.5g得た。このオイル状物37.4gを1000mL4つ口フラスコに仕込み、テトラキス(トリフェニルホスフィン)パラジウム4.36g、よう化銅(I)1.44g及びトリエチルアミン374gを加え、オイル状物を溶解させた。ここに、トリメチルシリルアセチレン41.2gを1時間かけて滴下し、80℃まで昇温した。同温度で8時間反応させ、さらに室温まで冷却後、16時間攪拌を続けた。不溶物を濾別し、トルエン150gで洗浄した。濾液と洗液を混合して濃縮し、残さをカラム(固定相;シリカゲル60、展開液;ヘキサン/トルエン)で精製した。主生成物7.80gをメタノール78g、テトラヒドロフラン234gの混合溶媒に溶解させ、炭酸カリウム1.65gを加え、室温で10時間攪拌した。溶媒を減圧留去し、残さにトルエン80g、1N塩酸30gを加え、攪拌後、水層を除去した。さらに1N塩酸20gを加え、攪拌後、水層を除去した。有機層をイオン交換水30mLで3回洗浄し、さらに、1%蓚酸水30gで2回、イオン交換水30mLで4回洗浄し、トルエンを減圧溜去下した。1,3,5−トリス(4−エチニルフェニル)アダマンタン4.2gを得た。これを化合物Aとする。
【0038】
製造例2
化合物Bの製造
200mL4つ口フラスコにジブロモアダマンタン5.0g(17mmol)、臭化アルミニウム2.3g(9mmol)及びm−ジブロモベンゼン100mLを仕込み、60℃で10時間攪拌した。冷却後、反応液を濃塩酸10gを溶解させた氷水150gに添加し、攪拌後、水相を除去した。過剰ジブロモベンゼンを減圧蒸留で除去した後、残さに塩化メチレン100mLを添加・溶解させ、水及び食塩水で洗浄後、硫酸マグネシウムで乾燥させた。乾燥剤をろ別後、エバポレータで塩化メチレンを濃縮し、メタノール100mLを加えて攪拌した。析出した結晶をろ別し、減圧乾燥させた。この結晶6.0gを200mL4つ口フラスコに仕込み、ジクロロビス(トリフェニルホスフィン)パラジウム200mg、トリフェニルホスフィン400mg、よう化銅(I)180mg及びトリエチルアミン100mLを加え、70〜80℃まで昇温した。トリメチルシリルアセチレン6.7gを1時間かけて滴下し、同温度で4時間反応させた。冷却後、溶媒を留去し、残渣にジエチルエーテル200mLを加え、不溶塩をろ過した。ろ液を1N塩酸、飽和食塩水および超純水で洗浄し、エーテル相を硫酸マグネシウムで乾燥させた。乾燥剤をろ別し、エーテルを留去し、残渣をカラム(固定相;シリカゲル60、展開液;ヘキサン/塩化メチレン)で生成した。主生成物5.9gをメタノール150mL、テトラヒドロフラン100mLに溶解させ、炭酸カリウム0.5gを加え、室温で4時間攪拌した。溶媒を減圧留去し、残渣に塩化メチレン200mL、1N塩酸100mLを加え、攪拌後、塩酸相を除去した。塩化メチレン相を超純水100mLで3回洗浄し、塩化メチレン相から溶媒を留去・減圧乾燥し、ビス(ジエチニルフェニル)アダマンタン3.2gを得た。これを化合物Bとする。
【0039】
製造例3
化合物Cの製造
500mL4つ口フラスコに1,3−ビス(4−ヒドロキシフェニル)アダマンタン6.4g(20mmol)、1,3−ジブロモ−5−フルオロベンゼン10.4g(41mmol)及び炭酸カリウム22.4g(60mmol)、トルエン168g、ジメチルスルホキシド84gを仕込み、120℃まで徐々に昇温し、この温度で45時間保温を続けた。室温まで冷却後、イオン交換水150gと酢酸21gを加え、攪拌後、水層を除いた。有機層をさらに100gのイオン交換水にて洗浄し、減圧濃縮した。ここにトルエン20gを加えて60℃まで昇温させ、メタノール70gを加えて室温まで徐々に冷却した。析出した結晶を濾取し、メタノール100gで洗浄した。白色結晶として1,3−ビス(4−(3,5−ジブロモフェニルオキシ)フェニル)アダマンタンを15.4g(収率98%)を得た。
1,3−ビス(4−(3,5−ジブロモフェニルオキシ)フェニル)アダマンタン14.2g(18mmol)を500mL4つ口フラスコに仕込み、テトラキス(トリフェニルホスフィン)パラジウム0.62g、よう化銅(I)0.21g及びトリエチルアミン142gとトルエン100gを加えた。ここに、トリメチルシリルアセチレン10.6gを1時間かけて滴下し、80℃まで昇温した。同温度で40時間反応させた。この間、12時間目と26時間目にそれぞれ3.7g、3.6gのトリメチルシリルアセチレンを加えた。室温まで冷却後、不溶物を濾別し、トルエン120gで洗浄した。濾液と洗液を混合して濃縮し、残さをカラム(固定相;シリカゲル60、展開液;ヘキサン/トルエン)で精製した。主生成物として、12.6g(収率82%)の1,3−ビス(4−(3,5−ビス(トリメチルシリルエチニル)フェニルオキシ)フェニル)アダマンタンを得た。
1,3−ビス(4−(3,5−ビス(トリメチルシリルエチニル)フェニルオキシ)フェニル)アダマンタン12.0g(14mmol)をメタノール120g、テトラヒドロフラン240gの混合溶媒に溶解させ、炭酸カリウム1.93gを加え、室温で10時間攪拌した。溶媒を減圧留去し、残さにトルエン50gを加え、酢酸2.4g、イオン交換水25gを加えて中和し、水層を除去した。有機層を1N塩酸20gで1回、イオン交換水25mLで4回洗浄した。さらに、1%蓚酸水30gで2回、イオン交換水20mLで4回洗浄し、トルエンを減圧留去下した。残さにメタノール50gを加えた。結晶を濾取し、メタノール50gで洗浄した。1,3−ビス(4−(3,5−ジエチニルフェニルオキシ)フェニル)アダマンタン6.4g(収率80%)を得た。これを化合物Cとする。
【0040】
製造例4
化合物Dの製造
500mL4つ口フラスコに、4,4’−(9H−フルオレン−9−イリデン)ビスフェノール(8.8g)、1,3−ジブロモ−5−フルオロベンゼン(12.7g)、炭酸カリウム(13.8g)、トルエン(100g)、DMSO(200g)を仕込み、窒素気流下、120℃/5hr保温攪拌を行なった。トルエン、酢酸、水を加え分液し、油層を減圧留去してテトラブロモ体である中間体D1を得た。
500mL4つ口フラスコに、上記で得られた中間体D1の一部(11.6g)、トリエチルアミン(200g)、CuI(I)(0.5g)を仕込み、Ar気流下、室温にて30分間攪拌を行った。Pd(0)(TPP)(1.8g)、トリメチルシリルアセチレン(7.9g)を仕込んだ後、80℃に昇温し、5hr保温攪拌を行った。反応マスをろ過し、ろ液を濃縮した後、トルエンにてカラム処理を行い、濃縮してテトラ(トリメチルシリルエチニル)体である中間体D2を得た。
上で得られた中間体D2をそのまま300mL4つ口フラスコに仕込み、トルエン50g、メタノール50g、炭酸カリウム11.6gを仕込み、室温にて18時間攪拌を行った。反応マスをそのまま酢酸で中和し、トルエンを加えて水洗を行なった後、トルエンを減圧留去した。得られたテトラエチニル体モノマーを化合物Dとする。
【0041】
製造例5
化合物Eの製造
ジブロモアダマンタンをトリブロモアダマンタンに変えた以外は製造例2と同様な処理を行い、トリス(ジエチニルフェニル)アダマンタン4.5gを得た。これを化合物Eとする。
【0042】
製造例6
化合物Fの製造
500mL4つ口フラスコに、1,1’,1“−トリヒドロキシフェニルエタン(6.1g)、1,3−ジブロモ−5−フルオロベンゼン(15.2g)、炭酸カリウム(13.8g)、トルエン(100g)、DMSO(200g)を仕込み、窒素気流下、120℃/5hr保温攪拌を行なった。トルエン、酢酸、水を加え分液し、油層を減圧留去してヘキサブロモ体である中間体F1を得た。このヘキサブロモ体を用い、製造例4と同様にしてエチニルカップリングおよび保護基の脱離を行ない、化合物Fを得た。
【0043】
製造例7
化合物Gの製造
500mL4つ口フラスコに、4,4’−ジフルオロベンゾフェノン(5.5g)、2,4−ジブロモフェノール(12.6g)、炭酸カリウム(13.8g)、トルエン(100g)、DMSO(200g)を仕込み、窒素気流下、120℃/5hr保温攪拌を行なった。トルエン、酢酸、水を加え分液し、油層を減圧留去して中間体G1を得た。このテトラブロモ体を用い、製造例4と同様にしてエチニルカップリングおよび保護基の脱離を行ない、化合物Gを得た。
【0044】
製造例8
化合物Hの製造
500mL4つ口フラスコに無水臭化アルミニウム5.03g(19mmol)を仕込み、5℃まで冷却した。ジブロモアダマンタン15.0g(51mmol)、ヨードベンゼン260.2g(1.28mol)の混合物を仕込んだ。12時間かけて室温まで昇温しながら攪拌を続けた。更に60℃まで昇温し、この温度で4時間保温を続けた。冷却後、反応液を濃塩酸20gとイオン交換水120gの混合液に注いだ。この混合物を分液し、有機層を10%亜硫酸ナトリウム水溶液100gで3回、イオン交換水100gで3回洗浄した。得られた有機層にメタノール400gを加え、攪拌した。沈殿したオイル状物を取り出し、メタノール200gを加え、攪拌した。沈殿したオイル状物を取り出し、更にメタノール200gを加え、攪拌した。得られたオイル状物をテトラヒドロフラン40gに溶解し、メタノール200g中に滴下した。析出した結晶を濾取し、テトラヒドロフラン40gに溶解し、メタノール200g中に滴下した。析出した結晶を濾取して乾燥し、白色結晶18.5gを得た。この結晶17.8gを500mL4つ口フラスコに仕込み、テトラキス(トリフェニルホスフィン)パラジウム0.57g、よう化銅(I)0.19g及びトリエチルアミン178gを加えた。ここに、トリメチルシリルアセチレン13.0gを滴下して加え、80℃まで昇温した。同温度で4時間反応させ、さらに室温まで冷却後、16時間攪拌を続けた。不溶物を濾別し、トルエン75gで洗浄した。濾液と洗液を混合して濃縮し、残さをカラム(固定相;シリカゲル60、展開液;ヘキサン/トルエン)で精製した。主生成物12.2gをメタノール122g、テトラヒドロフラン244gの混合溶媒に溶解させ、炭酸カリウム1.16gを加え、室温で1時間攪拌した。溶媒を減圧留去し、残さにジクロロメタン150g、1N塩酸100gを加え、攪拌後、水層を除去した。さらに有機層をイオン交換水100mLで洗浄し、さらに、1%蓚酸水75gで2回、イオン交換水75mLで3回洗浄し、ジクロロメタンを減圧留去下した。得られた結晶を化合物Hとする。
【0045】
製造例9
化合物Iの製造
500mL4つ口フラスコにジブロモアダマンタン10.0g(34mmol)、4−ブロモジフェニルエーテル84.7g(0.34mol)及びジクロロメタン170gを仕込み、氷水で5℃まで冷却した。ここに、無水塩化鉄(III)0.28g(1.7mmol)を加えた。この温度で6時間攪拌を続け、さらに室温まで昇温し、この温度で10時間攪拌を続けた。反応液にジクロロメタン80gを加え、イオン交換水200gで2回、さらに100gで2回洗浄した。ジクロロメタンを減圧蒸留で除去した後、残さをカラム(固定相;シリカゲル60、展開液;ヘキサン/トルエン)で精製した。1,3−ビス(4−(4−ブロモフェニルオキシ)フェニル)アダマンタン9.2gをオイル状物として得た。このオイル状物を200mL4つ口フラスコに仕込み、テトラキス(トリフェニルホスフィン)パラジウム0.50g、よう化銅(I)0.17g及びトリエチルアミン92gを加え、オイル状物を溶解させた。ここに、トリメチルシリルアセチレン4.3gを1時間かけて滴下し、80℃まで昇温した。同温度で55時間反応させた。この間、20時間目と34時間目にそれぞれ6.5g、5.8gのトリメチルシリルアセチレンを加えた。室温まで冷却後、不溶物を濾別し、トルエン70gで洗浄した。濾液と洗液を混合して濃縮し、残さをカラム(固定相;シリカゲル60、展開液;ヘキサン/トルエン)で精製した。主生成物4.0gをメタノール40g、テトラヒドロフラン120gの混合溶媒に溶解させ、炭酸カリウム0.83gを加え、室温で28時間攪拌した。溶媒を減圧留去し、残さにトルエン30g、2N塩酸7gとイオン交換水10gを加え、攪拌後、水層を除去した。さらに1N塩酸3gとイオン交換水10gを加え、攪拌後、水層を除去した。有機層をイオン交換水10mLで3回洗浄し、さらに1%蓚酸水10gで2回、イオン交換水10mLで3回洗浄し、トルエンを減圧留去下した。1,3−ビス(4−(4−エチニルフェニルオキシ)フェニル)アダマンタン2.7gを得た。これを化合物Iとする。
【0046】
製造例10
化合物Jの製造
ブロモアダマンタン21.5g(0.1mol)、ジフェニルエーテル8.5g(0.05mol)及び四塩化炭素50mLを200mL4つ口フラスコに仕込み、氷浴で冷却しながら、塩化アルミニウム10.8g(0.08mol)を1時間かけて少量ずつ仕込んだ。冷却下1時間、室温に戻して1時間、更にオイルバスを設置し、内温40℃で4時間反応させた。再度、氷浴を設置し、内温を10℃以下にした後、1N HCl80mLを滴下した。次いで、THF50mLを仕込み、生成物を溶解させた後、不溶塩をセライト515をプレコートしたフィルターでろ過し、ろ液から水相を除去した。次いで、飽和食塩水で四塩化炭素相を洗浄した後、硫酸マグネシウムで乾燥させた。乾燥剤をろ別し、減圧蒸留で溶媒を留去した。残さにメタノール250gを加え、攪拌し、析出した結晶をろ過し、減圧乾燥を行い、ビスアダマンチルジフェニルエーテル21gを得た。これを5.0g(11mmol)、臭素12mL(23mmol)とともに100mL4つ口フラスコに仕込み、氷浴で冷却しながら、4時間反応させた。塩化メチレン150mLを加え、内容物を溶解させた後、10%亜硫酸ナトリウム水溶液500mL中に滴下した。水相を除去し、イオン交換水で洗浄した後、塩化メチレンを除去した。残さにTHF25gを加えて溶解させた後、メタノール300mL中に投入し、結晶を析出させた。結晶をろ過・眼圧乾燥させ、ビスアダマンチルジブロモジフェニルエーテル5.2gを得た。これを3g分取し、ビス(トリフェニルホスフィン)ジクロロパラジウム20mg、よう化銅80mg、トリフェニルホスフィン40mg及びトリエチルアミン50mLと共に100mL4つ口フラスコに入れ、75℃まで昇温した。トリメチルシリルアセチレン1.48gを30分かけて滴下し、同温度で6時間反応させた。冷却後、反応マスから不溶塩をろ別し、ろ液からトリエチルアミンを留去後、残さに塩化メチレン100mLを加え、1NHCl50mLで洗浄し、更にイオン交換水で有機相を洗浄した。有機相から塩化メチレンを留去し、残さをシリカゲルカラムクロマトグラフィー(固定相:シリカゲル60、展開相 塩化メチレン/n−ヘキサン=1/2)で精製した。主成分フラクションを集め、展開相を留去し、残さにメタノール50mL、THF50mL、炭酸ナトリウム0.5gを加え、4時間室温で攪拌した。溶媒を留去し、残さに塩化メチレン100mLを加え、1N HCl50mLで洗浄し、更にイオン交換水で洗浄した。有機相を約 20mLまで濃縮し、メタノール200mLに投入して、ビスアダマンチルジエチニルジフェニルエーテル1.2gを得た。これを化合物Jとする。
【0047】
塗布液の調製
塗布液1
製造例1で得られた化合物Aをアニソールで固形分10重量%になるように調整した。さらに調製された溶液を、0.1μmPTFEフィルターで公知の方法により濾過し、塗布液を調製した。
塗布液2
製造例1で得られた化合物Aの代わりに製造例2で得られた化合物Bを用いた以外は塗布液1に準拠して塗布液を調整した。
塗布液3
製造例1で得られた化合物Aの代わりに製造例3で得られた化合物Cを用いた以外は塗布液1に準拠して塗布液を調整した。
塗布液4
製造例1で得られた化合物Aの代わりに製造例4で得られた化合物Dを用いた以外は塗布液1に準拠して塗布液を調整した。
塗布液5
製造例1で得られた化合物Aの代わりに製造例5で得られた化合物Eを用いた以外は塗布液1に準拠して塗布液を調整した。
塗布液6
製造例1で得られた化合物Aの代わりに製造例6で得られた化合物Fを用いた以外は塗布液1に準拠して塗布液を調整した。
塗布液7
製造例1で得られた化合物Aの代わりに製造例7で得られた化合物GをNMPで固形分10重量%になるように調整した。さらに調製された溶液を、0.1μmPTFEフィルターで公知の方法により濾過し、塗布液を調製した。
塗布液8
製造例1で得られた化合物Aの代わりに製造例8で得られた化合物Hを用いた以外は塗布液1に準拠して塗布液を調整した。
Figure 2005041938
塗布液9
製造例1で得られた化合物Aの代わりに製造例9で得られた化合物Iを用いた以外は塗布液1に準拠して塗布液を調整した。
Figure 2005041938
塗布液10
製造例1で得られた化合物Aの代わりに製造例10で得られた化合物Jを用いた以外は塗布液1に準拠して塗布液を調整した。
Figure 2005041938
【0048】
実施例1
調製された塗布液1を、4インチシリコンウェハー上に約1ml滴下した。その後、このウェハーを500rpmで3秒間スピンさせてから、2000rpmの速度で15秒間スピンさせた。コーティングしたウェハーを150℃で1分間焼き付けた。次いで、その焼き付けたウェハーを炉内で、窒素雰囲気中、400℃/30分保持することにより硬化させた。得られた硬化膜の比誘電率は、水銀プローブ法で、動作周波数1MHzのC―V測定(エス・エス・エム社製、SSM495型)を用い測定した。また、硬度、弾性率は、HYSITRON社製Hysitoron TriboScope Micromechanical Test装置を用い測定した。結果を表1に示す。
【0049】
実施例2
塗布液1の代わりに塗布液2を用いた以外は実施例1に準拠して塗布膜を製造し、比誘電率、硬度、弾性率を測定した。結果を表1に示す。
【0050】
実施例3
塗布液1の代わりに塗布液3を用いた以外は実施例1に準拠して塗布膜を製造し、比誘電率、硬度、弾性率を測定した。結果を表1に示す。
【0051】
実施例4
塗布液1の代わりに塗布液4を用いた以外は実施例1に準拠して塗布膜を製造し、比誘電率、硬度、弾性率を測定した。結果を表1に示す。
【0052】
実施例5
塗布液1の代わりに塗布液5を用いた以外は実施例1に準拠して塗布膜を製造し、比誘電率、硬度、弾性率を測定した。結果を表1に示す。
【0053】
実施例6
塗布液1の代わりに塗布液6を用いた以外は実施例1に準拠して塗布膜を製造し、比誘電率、硬度、弾性率を測定した。結果を表1に示す。
【0054】
実施例7
塗布液1の代わりに塗布液7を用いた以外は実施例1に準拠して塗布膜を製造し、比誘電率、硬度、弾性率を測定した。結果を表1に示す。
【0055】
比較例1
塗布液1の代わりに塗布液8を用いた以外は実施例1に準拠して塗布膜を製造し、比誘電率、硬度、弾性率を測定した。結果を表1に示す。
【0056】
比較例2
塗布液1の代わりに塗布液9を用いた以外は実施例1に準拠して塗布膜を製造し、比誘電率、硬度、弾性率を測定した。結果を表1に示す。
【0057】
比較例3
塗布液1の代わりに塗布液10を用いた以外は実施例1に準拠して塗布膜を製造し、比誘電率、硬度、弾性率を測定した。結果を表1に示す。
【0058】
【表1】
Figure 2005041938
【0059】
実施例1〜7の硬化膜の硬度、弾性率は、それぞれ1GPa以上、10GPa以上であり、分子内にエチニル基を2個有するモノマーである比較例1〜3に比べて優れた値を示した。
【0060】
【発明の効果】
本発明によれば、高い機械強度を有する有機絶縁膜を形成し得る有機絶縁膜形成用組成物を提供することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composition for forming an organic insulating film.
[0002]
[Prior art]
In recent years, in the field of electronic materials, the delay time due to an increase in inter-wire resistance and an increase in electric capacity has become a serious problem as semiconductors are highly integrated, increased in speed, and improved in performance. In order to reduce the delay time and increase the speed of the device, it is necessary to use an insulating film having a low dielectric constant.
By the way, in the process of forming a fine wiring in an insulating film with a low dielectric constant, the wiring is formed after patterning on the insulating film, but chemical mechanical polishing (hereinafter referred to as chemical mechanical polishing) (hereinafter referred to as chemical mechanical polishing) is performed for planarization. CMP)) is performed. In this CMP, a high mechanical strength is required for the insulating film.
As a material for an insulating film having a low dielectric constant, for example, a composition comprising a polymer obtained by polymerizing 1,2-diiodobenzene and 4,4′-diethynyldiphenyl ether in the presence of a palladium catalyst is known. However, the mechanical strength of the insulating film obtained from the composition cannot be said to be sufficient.
[0003]
[Patent Document 1]
JP 2002-322246 A
[0004]
[Problems to be solved by the invention]
The objective of this invention is providing the composition for organic insulating film formation which can form the organic insulating film which has high mechanical strength.
[0005]
[Means for Solving the Problems]
As a result of intensive investigations to find a composition for forming an organic insulating film that can solve the above-described problems, the present inventors contain a compound having three or more —C≡CH groups in the molecule. The present inventors have found that the composition can form an organic insulating film having high mechanical strength, and have completed the present invention.
[0006]
That is, the present invention provides a composition for forming an organic insulating film characterized by containing a compound having at least three —C≡CH groups in the molecule.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The composition for forming an organic insulating film of the present invention contains a compound having at least three —C≡CH groups in the molecule. It is preferable that the composition for forming an organic insulating film of the present invention does not contain a heat transpiration compound and / or a heat decomposable compound used when forming an organic insulating film having a porous chamber.
[0008]
The compound having at least three —C≡CH groups in the molecule is preferably at least one compound selected from the group consisting of compounds represented by the following formulas (1) and (2).
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
[0009]
In the formula (1), n represents 3 or 4, and X1Has an alicyclic hydrocarbon group having 4 to 20 carbon atoms which may be substituted with a group other than —C≡CH group, or an aromatic ring which may be substituted with a group other than —C≡CH group Represents the group Y1, Z1Each independently represents a single bond, a group having an aromatic ring which may be substituted with a group other than —C≡CH group, —O— or —CO—.
[0010]
In formula (1), X1In C., the alicyclic hydrocarbon group having 4 to 20 carbon atoms includes, for example, a trivalent or tetravalent group having a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, an adamantane ring, a norbornene ring, or the like. It is done.
Examples of the substituent other than —C≡CH group include an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group having 3 to 10 carbon atoms, an aryl group, an optionally substituted trialkylsilyl group, and a hydroxyl group. Etc.
Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, and a hexyl group.
Examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group.
Examples of the alkenyl group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, a 2-methylallyl group, and a butadienyl group.
Examples of the alkynyl group having 3 to 10 carbon atoms include a propargyl group, a butynyl group, a pentynyl group, a butadiynyl group, and a heptynyl group.
Examples of the aryl group include a phenyl group, a diphenyl group, a naphthyl group, an anthracenyl group, and a fluorenyl group.
Examples of the trialkylsilyl group which may have a substituent include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, and a dimethylethylsilyl group.
[0011]
Examples of the group having an aromatic ring include a trivalent or tetravalent group having a benzene ring, a diphenyl ring, a naphthalene ring, an anthracene ring, a fluorene ring, and the like.
Examples of the substituent other than —C≡CH group include an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group having 3 to 10 carbon atoms, an aryl group, an optionally substituted trialkylsilyl group, and a hydroxyl group. Etc.
Here, as the alkyl group, the alkoxy group, the alkenyl group, the alkynyl group having 3 to 10 carbon atoms, the aryl group, and the trialkylsilyl group which may have a substituent, the same ones as described above may be mentioned.
[0012]
In formula (1), Y1, Z1Examples of the group having an aromatic ring include a divalent group having a benzene ring, a diphenyl ring, a naphthalene ring, an anthracene ring, and a fluorene ring.
Examples of the substituent other than —C≡CH group include an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group having 3 to 10 carbon atoms, an aryl group, an optionally substituted trialkylsilyl group, and a hydroxyl group. Etc.
Examples of the alkyl group, alkoxy group, alkenyl group, alkynyl group having 3 to 10 carbon atoms, aryl group, and trialkylsilyl group which may have a substituent include the same groups as described above.
[0013]
From the viewpoint of heat resistance, X in the formula (1)1Is preferably a trivalent or tetravalent group having a benzene ring, diphenyl ring, naphthalene ring, anthracene ring or adamantane ring, more preferably a trivalent or tetravalent group having a benzene ring or an adamantane ring. preferable.
[0014]
Further, from the viewpoint of heat resistance, Y in the formula (1)1Is a divalent group having a benzene ring, diphenyl ring, naphthalene ring, anthracene ring, adamantane ring,1Is an oxygen atom or Y1And Z1Are preferably single bonds, Y1Is a divalent group having a benzene ring and Z1Is an oxygen atom or Y1And Z1Are more preferably a single bond.
[0015]
Among these, X in the formula (1)1Is a trivalent or tetravalent group having a benzene ring or an adamantane ring,1Is a divalent group having a benzene ring and Z1Is an oxygen atom or X1Is a trivalent or tetravalent group having a benzene ring or an adamantane ring,1, Z1More preferably, both are single bonds.
[0016]
The compound represented by the formula (1) is particularly preferably at least one of the following compounds.
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
[0017]
In the formula (2), m represents 2 or 3, and X2Is -C (R1) (R2)-,> C (R3)-, A group having an alicyclic hydrocarbon having 4 to 20 carbon atoms which may be substituted with a group other than -C≡CH group, an aromatic ring which may be substituted with a group other than -C≡CH group Represents a group having-, -O- or -CO-, R1~ R3Each independently represents a hydrogen atom, a hydroxyl group, or an optionally substituted alkyl group having 1 to 10 carbon atoms;2, Z2Each independently represents a single bond, a group having an aromatic ring which may be substituted with a group other than —C≡CH group, —O— or —CO—.
[0018]
In formula (2), X2As the alicyclic hydrocarbon group having 4 to 20 carbon atoms, for example, a divalent or trivalent group having a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, an adamantane ring, a norbornene ring, etc. Can be mentioned.
Examples of the group having an aromatic ring include a divalent or trivalent group having a benzene ring, a diphenyl ring, a naphthalene ring, an anthracene ring, a fluorene ring, and the like.
Examples of the substituent other than —C≡CH group include an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group having 3 to 10 carbon atoms, an aryl group, an optionally substituted trialkylsilyl group, and a hydroxyl group. Etc.
Here, as the alkyl group, the alkoxy group, the alkenyl group, the alkynyl group having 3 to 10 carbon atoms, the aryl group, and the trialkylsilyl group which may have a substituent, the same ones as described above may be mentioned.
[0019]
In formula (2), R1~ R3Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, and hexyl group.
Examples of the alkyl group substituent having 1 to 10 carbon atoms include an alkoxy group, an alkenyl group, an alkynyl group having 3 to 10 carbon atoms, an aryl group, an optionally substituted trialkylsilyl group, and a hydroxyl group. Can be mentioned.
Here, the same thing as the above is mentioned as an alkoxy group, an alkenyl group, a C3-C10 alkynyl group, an aryl group, and the trialkylsilyl group which may have a substituent.
[0020]
In formula (2), Y2, Z2In the above, examples of the group having an aromatic ring include a divalent group having a benzene ring, a diphenyl ring, a naphthalene ring, an anthracene ring, a fluorene ring, and the like.
Examples of the substituent other than —C≡CH group include an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group having 3 to 10 carbon atoms, an aryl group, an optionally substituted trialkylsilyl group, and a hydroxyl group. Etc.
Here, as the alkyl group, the alkoxy group, the alkenyl group, the alkynyl group having 3 to 10 carbon atoms, the aryl group, and the trialkylsilyl group which may have a substituent, the same ones as described above may be mentioned.
[0021]
From the viewpoint of heat resistance, X in the formula (2)2Is preferably a divalent or trivalent group having a benzene ring, diphenyl ring, naphthalene ring, anthracene ring, fluorene ring, cyclohexane ring, adamantane ring, carbonyl group, alkylidene group, alkylidyne group, fluorene ring, cyclohexane It is more preferably a ring, a divalent or trivalent group having an adamantane ring, a carbonyl group, an alkylidene group, or an alkylidine group.
[0022]
Further, from the viewpoint of heat resistance, Y in the formula (2)2Is a divalent group having a benzene ring group, a diphenyl ring or a naphthalene ring, an anthracene ring or an adamantane ring;2Is an oxygen atom or Y2And Z2Are preferably single bonds, Y2Is a divalent group having a benzene ring and Z2Is an oxygen atom or Y2And Z2Are more preferably a single bond.
[0023]
Among these, X in the formula (2)2Is a divalent or trivalent group having a fluorene ring, a cyclohexane ring or an adamantane ring, a carbonyl group, an alkylidene group or an alkylidine group,2Is a divalent group having a benzene ring and Z2Is an oxygen atom or X2Is a divalent or trivalent group having a fluorene ring, a cyclohexane ring or an adamantane ring, a carbonyl group, an alkylidene group or an alkylidine group,2, Z2More preferably, both are single bonds.
[0024]
The compound represented by the formula (2) is particularly preferably at least one of the following compounds.
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
[0025]
The weight average molecular weight in terms of polystyrene by GPC of a compound having at least three —C≡CH groups in the molecule is preferably 5000 or less, more preferably 3000 or less, and even more preferably 1500 or less.
When the molecular weight exceeds 5000, the proportion of —C≡CH groups in the molecule decreases, so that the crosslinking density decreases, and the hardness and elastic modulus tend to be insufficient.
[0026]
The composition for forming an organic insulating film of the present invention contains a compound having at least three —C≡CH groups in the molecule, but may further contain an organic solvent to form a coating solution.
The organic solvent is not particularly limited as long as it can dissolve a compound having at least three —C≡CH groups in the molecule.
Examples of the organic solvent include alcohol solvents such as methanol, ethanol, isopropanol, 1-butanol, 2-ethoxymethanol, 3-methoxypropanol, acetylacetone, methylethylketone, methylisobutylketone, 3-pentanone, 2-heptanone, 3 -Ketone solvents such as heptanone and cyclohexanone, propyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, methyl propionate, ethyl propionate, methyl butyrate, propylene glycol monomethyl ether acetate, ethyl lactate and other ester solvents, diisopropyl ether, Ether solvents such as dibutyl ether, dioxane, anisole, phenetol, veratrol, diphenyl ether, benzene, toluene, mesitylene, ethylbenzene Aromatic hydrocarbon solvents, halogen solvents such as chloroform, chlorobenzene, dichloroethylene, trichloroethylene, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methylpropionamide, N- Examples include amide solvents such as methylpyrrolidone, and aliphatic hydrocarbon solvents such as pentane, hexane, and heptane, and these are preferably used because they are easily available industrially.
[0027]
These organic solvents can be arbitrarily selected as long as the solubility of the compound having at least three —C≡CH groups in the molecule and the coating property of the coating solution itself can be maintained satisfactorily. Two or more kinds may be used in combination.
[0028]
When used as a coating liquid in which the organic solvent is blended, the total solid content concentration, that is, [a compound having at least three —C≡CH groups in the molecule / [having at least three —C≡CH groups in the molecule] Compound + amount of organic solvent]] × 100 is preferably 5 to 50%. The concentration can be appropriately adjusted in accordance with the purpose of improving the film thickness of the obtained coating film and the step embedding property.
[0029]
You may mix | blend an additive further with the composition for organic insulating film formation of this invention.
Examples of the additive include coupling agents such as silane coupling agents and titanium coupling agents, catalysts such as surfactants, foam stabilizers, and organic peroxides.
Coupling agents may be added to improve adhesion to the substrate, surfactants may be added to stabilize coatability, and organic peroxides and other catalysts may be added to reduce the crosslinking temperature of the monomers. Good.
[0030]
Examples of the substrate used for forming the organic insulating film include glass, quartz, metal, ceramic, silicon, GaAs, and SiO.2, SiN, SiC and the like.
[0031]
Examples of the method for applying the composition for forming an organic insulating film to the substrate include spin coating, roller coating, dip coating, and spraying.
[0032]
Examples of the method for crosslinking a composition containing a compound having at least three —C≡CH groups in the molecule applied to the substrate include a heat treatment method and an ultraviolet irradiation method.
Examples of the heat treatment method include a method using an oven, a hot plate, a furnace, and the like, and light irradiation heating using a xenon lamp by an RTP (lamp heater).
[0033]
The heat treatment is preferably performed in an atmosphere having an oxygen concentration of less than 1%, and more preferably performed in an atmosphere having an oxygen concentration of less than 100 ppm.
Examples of the atmosphere having an oxygen concentration of less than 1% include a reduced pressure atmosphere, an inert gas atmosphere, and a vacuum.
The reduced pressure atmosphere is preferably about 1 to 20 Pa.
Examples of the inert gas include helium, nitrogen, and argon.
It is preferable that the temperature of heat processing is 400 degrees C or less. By heating at 400 ° C. or lower, there is a tendency that decomposition of a compound having at least three —C≡CH groups in the molecule applied to the substrate can be suppressed.
[0034]
The hardness and elastic modulus of the obtained organic insulating film are the hardness and elastic modulus in the vicinity of the surface of the organic insulating film, and are values measured by a nanoindentation method using a Hysitron TriScope Micromechanical Test apparatus manufactured by HYSITRON. The vicinity of the surface means a depth of 1/10 to 1/6 of the thickness of the organic insulating film, specifically, 15 nm to 50 nm. In addition, a Belkovic indenter (manufactured by Diamond) was used for measurement of hardness and elastic modulus.
The organic insulating film preferably has a hardness of 1 GPa or more and an elastic modulus of 10 GPa or more.
[0035]
Since the organic insulating film obtained from the composition for forming an organic insulating film of the present invention can be crosslinked at a relatively low temperature, it can be easily produced in a short time.
The organic insulating film has a low dielectric constant, high hardness, high elastic modulus, and excellent heat resistance and chemical resistance. Therefore, it is suitably used as an insulating film for electronic materials such as semiconductors. The
[0036]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, it cannot be overemphasized that this invention is not limited by an Example.
[0037]
Production Example 1
Production of Compound A
A 1000 mL four-necked flask was charged with 30.0 g (102 mmol) of dibromoadamantane, 160.2 g (1.02 mol) of bromobenzene and 570 g of dichloromethane, and cooled to 5 ° C. with ice water. To this, 0.83 g (5.1 mmol) of anhydrous iron (III) chloride was added, and stirring was continued while raising the temperature to room temperature over 12 hours. The reaction solution was added to 300 g of 1N hydrochloric acid, and the aqueous layer was removed after stirring. The organic layer was washed once with 100 g of 1N hydrochloric acid and further washed four times with 100 g of ion-exchanged water. Dichloromethane and excess bromobenzene were removed by distillation under reduced pressure, and then 300 g of methanol was added to the residue and stirred. The precipitated oily substance was taken out, dissolved by adding 30 g of tetrahydrofuran, and dropped into 300 g of methanol. The precipitated oily substance was taken out and dried under reduced pressure to obtain 38.5 g of an oily substance. 37.4 g of this oily substance was charged into a 1000 mL four-necked flask, and 4.36 g of tetrakis (triphenylphosphine) palladium, 1.44 g of copper (I) iodide and 374 g of triethylamine were added to dissolve the oily substance. The trimethylsilyl acetylene 41.2g was dripped here over 1 hour, and it heated up to 80 degreeC. The mixture was reacted at the same temperature for 8 hours, further cooled to room temperature, and then stirred for 16 hours. Insoluble matter was filtered off and washed with 150 g of toluene. The filtrate and washings were mixed and concentrated, and the residue was purified with a column (stationary phase; silica gel 60, developing solution; hexane / toluene). 7.80 g of the main product was dissolved in a mixed solvent of 78 g of methanol and 234 g of tetrahydrofuran, 1.65 g of potassium carbonate was added, and the mixture was stirred at room temperature for 10 hours. The solvent was distilled off under reduced pressure, and 80 g of toluene and 30 g of 1N hydrochloric acid were added to the residue. After stirring, the aqueous layer was removed. Further, 20 g of 1N hydrochloric acid was added, and after stirring, the aqueous layer was removed. The organic layer was washed 3 times with 30 mL of ion-exchanged water, further washed twice with 30 g of 1% oxalic acid water and 4 times with 30 mL of ion-exchanged water, and toluene was distilled off under reduced pressure. 4.2 g of 1,3,5-tris (4-ethynylphenyl) adamantane was obtained. This is designated Compound A.
[0038]
Production Example 2
Production of compound B
A 200 mL four-necked flask was charged with 5.0 g (17 mmol) of dibromoadamantane, 2.3 g (9 mmol) of aluminum bromide and 100 mL of m-dibromobenzene, and stirred at 60 ° C. for 10 hours. After cooling, the reaction solution was added to 150 g of ice water in which 10 g of concentrated hydrochloric acid was dissolved, and the aqueous phase was removed after stirring. After excess dibromobenzene was removed by distillation under reduced pressure, 100 mL of methylene chloride was added to and dissolved in the residue, washed with water and brine, and then dried over magnesium sulfate. After filtering off the desiccant, methylene chloride was concentrated with an evaporator, and 100 mL of methanol was added and stirred. The precipitated crystals were filtered off and dried under reduced pressure. 6.0 g of this crystal was charged into a 200 mL four-necked flask, 200 mg of dichlorobis (triphenylphosphine) palladium, 400 mg of triphenylphosphine, 180 mg of copper (I) iodide and 100 mL of triethylamine were added, and the temperature was raised to 70 to 80 ° C. Trimethylsilylacetylene 6.7g was dripped over 1 hour, and it was made to react at the same temperature for 4 hours. After cooling, the solvent was distilled off, 200 mL of diethyl ether was added to the residue, and the insoluble salt was filtered off. The filtrate was washed with 1N hydrochloric acid, saturated brine and ultrapure water, and the ether phase was dried over magnesium sulfate. The desiccant was filtered off, the ether was distilled off, and the residue was produced on a column (stationary phase; silica gel 60, developing solution; hexane / methylene chloride). 5.9 g of the main product was dissolved in 150 mL of methanol and 100 mL of tetrahydrofuran, 0.5 g of potassium carbonate was added, and the mixture was stirred at room temperature for 4 hours. The solvent was distilled off under reduced pressure, and 200 mL of methylene chloride and 100 mL of 1N hydrochloric acid were added to the residue. After stirring, the hydrochloric acid phase was removed. The methylene chloride phase was washed 3 times with 100 mL of ultrapure water, and the solvent was distilled off from the methylene chloride phase and dried under reduced pressure to obtain 3.2 g of bis (diethynylphenyl) adamantane. This is designated Compound B.
[0039]
Production Example 3
Production of Compound C
In a 500 mL four-necked flask, 6.4 g (20 mmol) of 1,3-bis (4-hydroxyphenyl) adamantane, 10.4 g (41 mmol) of 1,3-dibromo-5-fluorobenzene and 22.4 g (60 mmol) of potassium carbonate, 168 g of toluene and 84 g of dimethyl sulfoxide were charged, the temperature was gradually raised to 120 ° C., and the temperature was kept at this temperature for 45 hours. After cooling to room temperature, 150 g of ion-exchanged water and 21 g of acetic acid were added, and after stirring, the aqueous layer was removed. The organic layer was further washed with 100 g of ion exchange water and concentrated under reduced pressure. 20 g of toluene was added thereto, the temperature was raised to 60 ° C., 70 g of methanol was added, and the mixture was gradually cooled to room temperature. The precipitated crystals were collected by filtration and washed with 100 g of methanol. As a white crystal, 15.4 g (yield 98%) of 1,3-bis (4- (3,5-dibromophenyloxy) phenyl) adamantane was obtained.
14.3 g (18 mmol) of 1,3-bis (4- (3,5-dibromophenyloxy) phenyl) adamantane was charged into a 500 mL four-necked flask, and 0.62 g of tetrakis (triphenylphosphine) palladium, copper iodide (I ) 0.21 g, 142 g triethylamine and 100 g toluene. Here, 10.6 g of trimethylsilylacetylene was added dropwise over 1 hour, and the temperature was raised to 80 ° C. The reaction was carried out at the same temperature for 40 hours. During this time, 3.7 g and 3.6 g of trimethylsilylacetylene were added at 12 and 26 hours, respectively. After cooling to room temperature, insoluble matters were filtered off and washed with 120 g of toluene. The filtrate and washings were mixed and concentrated, and the residue was purified with a column (stationary phase; silica gel 60, developing solution; hexane / toluene). As the main product, 12.6 g (yield 82%) of 1,3-bis (4- (3,5-bis (trimethylsilylethynyl) phenyloxy) phenyl) adamantane was obtained.
12.0 g (14 mmol) of 1,3-bis (4- (3,5-bis (trimethylsilylethynyl) phenyloxy) phenyl) adamantane is dissolved in a mixed solvent of 120 g of methanol and 240 g of tetrahydrofuran, and 1.93 g of potassium carbonate is added. And stirred at room temperature for 10 hours. The solvent was distilled off under reduced pressure, and 50 g of toluene was added to the residue, followed by neutralization by adding 2.4 g of acetic acid and 25 g of ion-exchanged water, and the aqueous layer was removed. The organic layer was washed once with 20 g of 1N hydrochloric acid and four times with 25 mL of ion-exchanged water. Furthermore, it was washed twice with 30 g of 1% oxalic acid water and four times with 20 mL of ion-exchanged water, and toluene was distilled off under reduced pressure. 50 g of methanol was added to the residue. The crystals were collected by filtration and washed with 50 g of methanol. 6.4 g (yield 80%) of 1,3-bis (4- (3,5-diethynylphenyloxy) phenyl) adamantane was obtained. This is designated Compound C.
[0040]
Production Example 4
Production of compound D
In a 500 mL four-necked flask, 4,4 ′-(9H-fluorene-9-ylidene) bisphenol (8.8 g), 1,3-dibromo-5-fluorobenzene (12.7 g), potassium carbonate (13.8 g) , Toluene (100 g) and DMSO (200 g) were charged, and the mixture was stirred while maintaining a temperature of 120 ° C./5 hr under a nitrogen stream. Toluene, acetic acid and water were added for liquid separation, and the oil layer was distilled off under reduced pressure to obtain a tetrabromo intermediate D1.
A 500 mL four-necked flask was charged with a part (11.6 g) of intermediate D1 obtained above, triethylamine (200 g), and CuI (I) (0.5 g), and stirred at room temperature for 30 minutes under an Ar stream. Went. Pd (0) (TPP)4(1.8 g) and trimethylsilylacetylene (7.9 g) were charged, and the mixture was heated to 80 ° C. and stirred for 5 hours while maintaining the temperature. After filtering the reaction mass and concentrating the filtrate, column treatment was performed with toluene and concentration was performed to obtain an intermediate D2 which is a tetra (trimethylsilylethynyl) isomer.
Intermediate D2 obtained above was charged as it was into a 300 mL four-necked flask, 50 g of toluene, 50 g of methanol, and 11.6 g of potassium carbonate were charged, and the mixture was stirred at room temperature for 18 hours. The reaction mass was neutralized with acetic acid as it was, and after adding toluene and washing with water, toluene was distilled off under reduced pressure. The obtained tetraethynyl monomer is referred to as Compound D.
[0041]
Production Example 5
Production of Compound E
The same treatment as in Production Example 2 was carried out except that dibromoadamantane was changed to tribromoadamantane to obtain 4.5 g of tris (diethynylphenyl) adamantane. This is designated Compound E.
[0042]
Production Example 6
Production of compound F
In a 500 mL four-necked flask, 1,1 ′, 1 ″ -trihydroxyphenylethane (6.1 g), 1,3-dibromo-5-fluorobenzene (15.2 g), potassium carbonate (13.8 g), toluene ( 100 g) and DMSO (200 g) were added, and the mixture was stirred under a nitrogen stream at 120 ° C. for 5 hr, and separated by adding toluene, acetic acid, and water, and the oil layer was distilled off under reduced pressure to obtain an intermediate F1 that is a hexabromo compound. Using this hexabromo compound, ethynyl coupling and elimination of the protecting group were carried out in the same manner as in Production Example 4 to obtain compound F.
[0043]
Production Example 7
Production of compound G
A 500 mL four-necked flask is charged with 4,4′-difluorobenzophenone (5.5 g), 2,4-dibromophenol (12.6 g), potassium carbonate (13.8 g), toluene (100 g), DMSO (200 g). Then, the mixture was stirred while maintaining a temperature of 120 ° C./5 hr under a nitrogen stream. Toluene, acetic acid and water were added for liquid separation, and the oil layer was distilled off under reduced pressure to obtain Intermediate G1. Using this tetrabromo compound, ethynyl coupling and removal of the protecting group were carried out in the same manner as in Production Example 4 to obtain compound G.
[0044]
Production Example 8
Production of compound H
A 500 mL four-necked flask was charged with 5.03 g (19 mmol) of anhydrous aluminum bromide and cooled to 5 ° C. A mixture of 15.0 g (51 mmol) of dibromoadamantane and 260.2 g (1.28 mol) of iodobenzene was charged. Stirring was continued while raising the temperature to room temperature over 12 hours. The temperature was further raised to 60 ° C., and the temperature was kept at this temperature for 4 hours. After cooling, the reaction solution was poured into a mixed solution of 20 g of concentrated hydrochloric acid and 120 g of ion exchange water. The mixture was separated, and the organic layer was washed 3 times with 100 g of a 10% aqueous sodium sulfite solution and 3 times with 100 g of ion-exchanged water. To the obtained organic layer, 400 g of methanol was added and stirred. The precipitated oily matter was taken out, 200 g of methanol was added and stirred. The precipitated oily substance was taken out, and 200 g of methanol was further added and stirred. The obtained oily substance was dissolved in 40 g of tetrahydrofuran and dropped into 200 g of methanol. The precipitated crystals were collected by filtration, dissolved in 40 g of tetrahydrofuran, and dropped into 200 g of methanol. The precipitated crystals were collected by filtration and dried to obtain 18.5 g of white crystals. 17.8 g of this crystal was charged into a 500 mL four-necked flask, and 0.57 g of tetrakis (triphenylphosphine) palladium, 0.19 g of copper (I) iodide and 178 g of triethylamine were added. To this, 13.0 g of trimethylsilylacetylene was added dropwise, and the temperature was raised to 80 ° C. The reaction was carried out at the same temperature for 4 hours, and after further cooling to room temperature, stirring was continued for 16 hours. Insoluble material was filtered off and washed with 75 g of toluene. The filtrate and washings were mixed and concentrated, and the residue was purified with a column (stationary phase; silica gel 60, developing solution; hexane / toluene). 12.2 g of the main product was dissolved in a mixed solvent of 122 g of methanol and 244 g of tetrahydrofuran, 1.16 g of potassium carbonate was added, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure, and 150 g of dichloromethane and 100 g of 1N hydrochloric acid were added to the residue. After stirring, the aqueous layer was removed. Further, the organic layer was washed with 100 mL of ion exchange water, further washed twice with 75 g of 1% oxalic acid water and 3 times with 75 mL of ion exchange water, and dichloromethane was distilled off under reduced pressure. The obtained crystal is referred to as Compound H.
[0045]
Production Example 9
Preparation of Compound I
A 500 mL four-necked flask was charged with 10.0 g (34 mmol) of dibromoadamantane, 84.7 g (0.34 mol) of 4-bromodiphenyl ether and 170 g of dichloromethane, and cooled to 5 ° C. with ice water. To this, 0.28 g (1.7 mmol) of anhydrous iron (III) chloride was added. Stirring was continued at this temperature for 6 hours, the temperature was further raised to room temperature, and stirring was continued at this temperature for 10 hours. 80 g of dichloromethane was added to the reaction solution, and the mixture was washed twice with 200 g of ion-exchanged water and further twice with 100 g. After the dichloromethane was removed by distillation under reduced pressure, the residue was purified with a column (stationary phase; silica gel 60, developing solution; hexane / toluene). 9.2 g of 1,3-bis (4- (4-bromophenyloxy) phenyl) adamantane was obtained as an oil. This oily substance was charged into a 200 mL four-necked flask, and 0.50 g of tetrakis (triphenylphosphine) palladium, 0.17 g of copper (I) iodide and 92 g of triethylamine were added to dissolve the oily substance. Here, 4.3 g of trimethylsilylacetylene was dropped over 1 hour, and the temperature was raised to 80 ° C. The reaction was carried out at the same temperature for 55 hours. During this time, 6.5 g and 5.8 g of trimethylsilylacetylene were added at 20 and 34 hours, respectively. After cooling to room temperature, the insoluble material was filtered off and washed with 70 g of toluene. The filtrate and washings were mixed and concentrated, and the residue was purified with a column (stationary phase; silica gel 60, developing solution; hexane / toluene). 4.0 g of the main product was dissolved in a mixed solvent of 40 g of methanol and 120 g of tetrahydrofuran, 0.83 g of potassium carbonate was added, and the mixture was stirred at room temperature for 28 hours. The solvent was distilled off under reduced pressure, and 30 g of toluene, 7 g of 2N hydrochloric acid and 10 g of ion-exchanged water were added to the residue, and the aqueous layer was removed after stirring. Further, 3 g of 1N hydrochloric acid and 10 g of ion-exchanged water were added, and after stirring, the aqueous layer was removed. The organic layer was washed 3 times with 10 mL of ion-exchanged water, further washed twice with 10 g of 1% oxalic acid water and 3 times with 10 mL of ion-exchanged water, and toluene was distilled off under reduced pressure. 2.7 g of 1,3-bis (4- (4-ethynylphenyloxy) phenyl) adamantane was obtained. This is designated Compound I.
[0046]
Production Example 10
Production of Compound J
20.8 g (0.1 mol) of bromoadamantane, 8.5 g (0.05 mol) of diphenyl ether and 50 mL of carbon tetrachloride were charged into a 200 mL four-necked flask, and cooled with an ice bath, 10.8 g (0.08 mol) of aluminum chloride. Was charged in small portions over an hour. Under cooling, the temperature was returned to room temperature for 1 hour, an oil bath was further installed, and the reaction was carried out at an internal temperature of 40 ° C. for 4 hours. Once again, an ice bath was set to bring the internal temperature to 10 ° C. or lower, and 80 mL of 1N HCl was added dropwise. Next, 50 mL of THF was charged to dissolve the product, and then the insoluble salt was filtered through a filter precoated with Celite 515, and the aqueous phase was removed from the filtrate. Next, the carbon tetrachloride phase was washed with a saturated saline solution and then dried over magnesium sulfate. The desiccant was filtered off and the solvent was distilled off under reduced pressure. To the residue, 250 g of methanol was added and stirred, and the precipitated crystals were filtered and dried under reduced pressure to obtain 21 g of bisadamantyl diphenyl ether. This was charged into a 100 mL four-necked flask together with 5.0 g (11 mmol) and bromine 12 mL (23 mmol), and reacted for 4 hours while cooling in an ice bath. After 150 mL of methylene chloride was added to dissolve the contents, the solution was added dropwise to 500 mL of a 10% aqueous sodium sulfite solution. After removing the aqueous phase and washing with ion exchange water, methylene chloride was removed. After adding 25 g of THF to the residue and dissolving it, it was poured into 300 mL of methanol to precipitate crystals. The crystals were filtered and dried under intraocular pressure to obtain 5.2 g of bisadamantyl dibromodiphenyl ether. 3 g of this was collected and put into a 100 mL four-necked flask together with 20 mg of bis (triphenylphosphine) dichloropalladium, 80 mg of copper iodide, 40 mg of triphenylphosphine and 50 mL of triethylamine, and the temperature was raised to 75 ° C. 1.48 g of trimethylsilylacetylene was added dropwise over 30 minutes and reacted at the same temperature for 6 hours. After cooling, insoluble salts were filtered off from the reaction mass, triethylamine was distilled off from the filtrate, 100 mL of methylene chloride was added to the residue, washed with 50 mL of 1N HCl, and the organic phase was further washed with ion-exchanged water. Methylene chloride was distilled off from the organic phase, and the residue was purified by silica gel column chromatography (stationary phase: silica gel 60, developing phase methylene chloride / n-hexane = 1/2). The main component fractions were collected, the developing phase was distilled off, 50 mL of methanol, 50 mL of THF and 0.5 g of sodium carbonate were added to the residue and stirred at room temperature for 4 hours. The solvent was distilled off, 100 mL of methylene chloride was added to the residue, washed with 50 mL of 1N HCl, and further washed with ion-exchanged water. The organic phase was concentrated to about 20 mL and poured into 200 mL of methanol to obtain 1.2 g of bisadamantyldiethynyl diphenyl ether. This is designated Compound J.
[0047]
Preparation of coating solution
Coating liquid 1
Compound A obtained in Production Example 1 was adjusted with anisole to a solid content of 10% by weight. Further, the prepared solution was filtered by a known method with a 0.1 μm PTFE filter to prepare a coating solution.
Coating liquid 2
A coating solution was prepared according to the coating solution 1 except that the compound B obtained in Production Example 2 was used instead of the compound A obtained in Production Example 1.
Coating liquid 3
A coating solution was prepared according to the coating solution 1 except that the compound C obtained in Production Example 3 was used instead of the compound A obtained in Production Example 1.
Coating liquid 4
A coating solution was prepared according to the coating solution 1 except that the compound D obtained in Production Example 4 was used instead of the compound A obtained in Production Example 1.
Coating liquid 5
A coating solution was prepared according to the coating solution 1 except that the compound E obtained in Production Example 5 was used instead of the compound A obtained in Production Example 1.
Coating liquid 6
A coating solution was prepared according to the coating solution 1 except that the compound F obtained in Production Example 6 was used instead of the compound A obtained in Production Example 1.
Coating liquid 7
Instead of the compound A obtained in Production Example 1, the compound G obtained in Production Example 7 was adjusted with NMP to a solid content of 10% by weight. Further, the prepared solution was filtered by a known method with a 0.1 μm PTFE filter to prepare a coating solution.
Coating liquid 8
A coating solution was prepared according to the coating solution 1 except that the compound H obtained in Production Example 8 was used instead of the compound A obtained in Production Example 1.
Figure 2005041938
Coating liquid 9
A coating solution was prepared according to the coating solution 1 except that the compound I obtained in Production Example 9 was used instead of the compound A obtained in Production Example 1.
Figure 2005041938
Coating solution 10
A coating solution was prepared according to the coating solution 1 except that the compound J obtained in Production Example 10 was used instead of the compound A obtained in Production Example 1.
Figure 2005041938
[0048]
Example 1
About 1 ml of the prepared coating solution 1 was dropped on a 4-inch silicon wafer. The wafer was then spun at 500 rpm for 3 seconds and then spun at 2000 rpm for 15 seconds. The coated wafer was baked at 150 ° C. for 1 minute. The baked wafer was then cured in a furnace by holding it at 400 ° C./30 minutes in a nitrogen atmosphere. The relative dielectric constant of the obtained cured film was measured by a mercury probe method using CV measurement (SSM 495, manufactured by SSM Co.) having an operating frequency of 1 MHz. The hardness and elastic modulus were measured using a Hysitron TriboScope Micromechanical Test apparatus manufactured by HYSITRON. The results are shown in Table 1.
[0049]
Example 2
A coating film was produced according to Example 1 except that the coating solution 2 was used instead of the coating solution 1, and the relative dielectric constant, hardness, and elastic modulus were measured. The results are shown in Table 1.
[0050]
Example 3
A coating film was produced according to Example 1 except that the coating solution 3 was used instead of the coating solution 1, and the relative dielectric constant, hardness, and elastic modulus were measured. The results are shown in Table 1.
[0051]
Example 4
A coating film was produced according to Example 1 except that the coating solution 4 was used instead of the coating solution 1, and the relative dielectric constant, hardness, and elastic modulus were measured. The results are shown in Table 1.
[0052]
Example 5
A coating film was produced according to Example 1 except that the coating solution 5 was used instead of the coating solution 1, and the relative dielectric constant, hardness, and elastic modulus were measured. The results are shown in Table 1.
[0053]
Example 6
A coating film was produced according to Example 1 except that the coating solution 6 was used instead of the coating solution 1, and the relative dielectric constant, hardness, and elastic modulus were measured. The results are shown in Table 1.
[0054]
Example 7
A coating film was produced according to Example 1 except that the coating solution 7 was used instead of the coating solution 1, and the relative dielectric constant, hardness, and elastic modulus were measured. The results are shown in Table 1.
[0055]
Comparative Example 1
A coating film was produced according to Example 1 except that the coating solution 8 was used instead of the coating solution 1, and the relative dielectric constant, hardness, and elastic modulus were measured. The results are shown in Table 1.
[0056]
Comparative Example 2
A coating film was produced according to Example 1 except that the coating solution 9 was used instead of the coating solution 1, and the relative dielectric constant, hardness, and elastic modulus were measured. The results are shown in Table 1.
[0057]
Comparative Example 3
A coating film was produced according to Example 1 except that the coating solution 10 was used instead of the coating solution 1, and the relative dielectric constant, hardness, and elastic modulus were measured. The results are shown in Table 1.
[0058]
[Table 1]
Figure 2005041938
[0059]
The hardness and elastic modulus of the cured films of Examples 1 to 7 were 1 GPa or more and 10 GPa or more, respectively, and showed superior values as compared with Comparative Examples 1 to 3 which are monomers having two ethynyl groups in the molecule. .
[0060]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the composition for organic insulating film formation which can form the organic insulating film which has high mechanical strength.

Claims (11)

分子内に−C≡CH基を少なくとも3個有する化合物を含有することを特徴とする有機絶縁膜形成用組成物。A composition for forming an organic insulating film, comprising a compound having at least three —C≡CH groups in the molecule. 分子内に−C≡CH基を少なくとも3個有する化合物が、以下の式(1)で示される化合物及び式(2)で示される化合物からなる群から選ばれる少なくとも1種の化合物である請求項1記載の組成物。
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
(式中、nは3または4を表わし、mは2または3を表わし、Xは、−C≡CH基以外の基で置換されていてもよい炭素数4〜20の脂環式炭化水素基、または−C≡CH基以外の基で置換されていてもよい芳香環を有する基を表わし、Y、Zは、それぞれ独立に、単結合、−C≡CH基以外の基で置換されていてもよい芳香環を有する基、−O−、または−CO−を表わし、Xは、−C(R)(R)−、>C(R)−、−C≡CH基以外の基で置換されていてもよい炭素数4〜20の脂環式炭化水素基、−C≡CH基以外の基で置換されていてもよい芳香環を有する基、−O−、または−CO−を表わし、R〜Rは、それぞれ独立に、水素原子を表わすか、ヒドロキシル基、または置換されていてもよい炭素数1〜10のアルキル基を表わし、Y、Zは、それぞれ独立に、単結合、−C≡CH基以外の基で置換されていてもよい芳香環を有する基、−O−、または−CO−を表わす。)
The compound having at least three -C≡CH groups in the molecule is at least one compound selected from the group consisting of a compound represented by the following formula (1) and a compound represented by the formula (2): The composition according to 1.
Figure 2005041938
Figure 2005041938
Figure 2005041938
Figure 2005041938
(In the formula, n represents 3 or 4, m represents 2 or 3, and X 1 represents an alicyclic hydrocarbon having 4 to 20 carbon atoms which may be substituted with a group other than —C≡CH group. Represents a group having an aromatic ring which may be substituted with a group or a group other than —C≡CH group, and Y 1 and Z 1 are each independently a single bond, substituted with a group other than —C≡CH group Represents an optionally substituted aromatic ring group, —O—, or —CO—, and X 2 represents —C (R 1 ) (R 2 ) —,> C (R 3 ) —, —C≡CH. An alicyclic hydrocarbon group having 4 to 20 carbon atoms which may be substituted with a group other than the group, a group having an aromatic ring which may be substituted with a group other than —C≡CH group, —O—, or represents -CO-, R 1 to R 3 each independently represent a hydrogen atom, a hydroxyl group or an optionally substituted carbon, Represent 1-10 alkyl group, Y 2, Z 2 are each independently a single bond, a group having an aromatic ring which may be substituted with a group other than a -C≡CH group, -O-, or - Represents CO-)
が、ベンゼン環を有する基、またはアダマンタン環を有する基である請求項2記載の組成物。The composition according to claim 2, wherein X 1 is a group having a benzene ring or a group having an adamantane ring. がベンゼン環を有する基で、Zが酸素原子であるか、YとZがともに単結合である請求項2または3記載の組成物。The composition according to claim 2 or 3, wherein Y 1 is a group having a benzene ring, Z 1 is an oxygen atom, or Y 1 and Z 1 are both single bonds. が、カルボニル基、アダマンタン環を有する基、フルオレン環を有する基、シクロヘキサン環を有する基、炭素数1〜20のアルキリデン基、または炭素数1〜20のアルキリジン基である請求項2〜4のいずれかに記載の組成物。X 2 is a carbonyl group, a group having an adamantane ring, a group having a fluorene ring, a group having a cyclohexane ring, an alkylidene group having 1 to 20 carbon atoms, or an alkylidine group having 1 to 20 carbon atoms. The composition in any one of. がベンゼン環を有する基で、Zが酸素原子であるか、YとZがともに単結合である請求項2〜5のいずれかに記載の組成物。The composition according to any one of claims 2 to 5, wherein Y 2 is a group having a benzene ring, Z 2 is an oxygen atom, or Y 2 and Z 2 are both single bonds. 請求項1〜6のいずれかに記載の組成物を基板に塗布し、酸素濃度1%未満で加熱処理する工程を含むことを特徴とする有機絶縁膜の製造方法。A method for producing an organic insulating film, comprising a step of applying the composition according to any one of claims 1 to 6 to a substrate and performing a heat treatment at an oxygen concentration of less than 1%. 減圧下、不活性ガス雰囲気下、または真空下で加熱処理する請求項7記載の製造方法。The manufacturing method of Claim 7 which heat-processes under pressure reduction, an inert gas atmosphere, or a vacuum. 400℃以下で加熱処理する請求項7または8記載の製造方法。The manufacturing method of Claim 7 or 8 which heat-processes below 400 degreeC. 請求項7〜9のいずれかに記載の製造方法により得られることを特徴とする有機絶縁膜。An organic insulating film obtained by the manufacturing method according to claim 7. 硬度が1GPa以上で、弾性率が10GPa以上である請求項10記載の有機絶縁膜。The organic insulating film according to claim 10, having a hardness of 1 GPa or more and an elastic modulus of 10 GPa or more.
JP2003200961A 2003-07-24 2003-07-24 Organic insulating film-forming composition Pending JP2005041938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200961A JP2005041938A (en) 2003-07-24 2003-07-24 Organic insulating film-forming composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200961A JP2005041938A (en) 2003-07-24 2003-07-24 Organic insulating film-forming composition

Publications (1)

Publication Number Publication Date
JP2005041938A true JP2005041938A (en) 2005-02-17

Family

ID=34261180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200961A Pending JP2005041938A (en) 2003-07-24 2003-07-24 Organic insulating film-forming composition

Country Status (1)

Country Link
JP (1) JP2005041938A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257279A (en) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd Composition for film forming, insulator film prepared from the composition and electronic device containing the film
JP2007070597A (en) * 2005-08-12 2007-03-22 Fujifilm Corp Polymer, film-forming composition comprising the polymer, and insulating film and electronic device formed using the composition
JP2007161788A (en) * 2005-12-09 2007-06-28 Fujifilm Corp Polymer and film-forming composition
WO2008114880A1 (en) * 2007-03-19 2008-09-25 Sumitomo Bakelite Co., Ltd. Compound having polyadamantane structure
WO2008114705A1 (en) 2007-03-20 2008-09-25 Sumitomo Bakelite Co., Ltd. Organic insulating material, varnish for resin film using the same, resin film and semiconductor device
JP2010181605A (en) * 2009-02-05 2010-08-19 Jsr Corp Composition for forming resist underfilm, resist underfilm, method for forming the resist underfilm, and method for forming pattern
WO2011010527A1 (en) * 2009-07-21 2011-01-27 住友ベークライト株式会社 Composition for film formation, insulating film, and semiconductor device
JP2011026375A (en) * 2009-07-21 2011-02-10 Sumitomo Bakelite Co Ltd Film-forming composition, insulating film, and semiconductor device
JP2011129789A (en) * 2009-12-18 2011-06-30 Sumitomo Bakelite Co Ltd Film forming composition, insulating film, and semiconductor device
JP2011138821A (en) * 2009-12-25 2011-07-14 Sumitomo Bakelite Co Ltd Composition for forming film, insulating film, and semiconductor device
JP2011171572A (en) * 2010-02-19 2011-09-01 Sumitomo Bakelite Co Ltd Insulating film, laminate, semiconductor device, and method of manufacturing semiconductor device
EP4043448A1 (en) 2021-02-15 2022-08-17 Shin-Etsu Chemical Co., Ltd. Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film
EP4187320A1 (en) 2021-11-25 2023-05-31 Shin-Etsu Chemical Co., Ltd. Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process
TWI843289B (en) 2021-11-25 2024-05-21 日商信越化學工業股份有限公司 Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542927B2 (en) * 2005-03-17 2010-09-15 富士フイルム株式会社 Film forming composition, insulating film obtained from the composition, and electronic device having the same
JP2006257279A (en) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd Composition for film forming, insulator film prepared from the composition and electronic device containing the film
JP2007070597A (en) * 2005-08-12 2007-03-22 Fujifilm Corp Polymer, film-forming composition comprising the polymer, and insulating film and electronic device formed using the composition
JP2007161788A (en) * 2005-12-09 2007-06-28 Fujifilm Corp Polymer and film-forming composition
WO2008114880A1 (en) * 2007-03-19 2008-09-25 Sumitomo Bakelite Co., Ltd. Compound having polyadamantane structure
JPWO2008114880A1 (en) * 2007-03-19 2010-07-08 住友ベークライト株式会社 Compound having polyadamantane structure
US8524847B2 (en) 2007-03-20 2013-09-03 Sumitomo Bakelite Co., Ltd. Organic insulating material, varnish for resin film using the same, resin film and semiconductor device
WO2008114705A1 (en) 2007-03-20 2008-09-25 Sumitomo Bakelite Co., Ltd. Organic insulating material, varnish for resin film using the same, resin film and semiconductor device
JP2010181605A (en) * 2009-02-05 2010-08-19 Jsr Corp Composition for forming resist underfilm, resist underfilm, method for forming the resist underfilm, and method for forming pattern
WO2011010527A1 (en) * 2009-07-21 2011-01-27 住友ベークライト株式会社 Composition for film formation, insulating film, and semiconductor device
JP2011026375A (en) * 2009-07-21 2011-02-10 Sumitomo Bakelite Co Ltd Film-forming composition, insulating film, and semiconductor device
JP2011129789A (en) * 2009-12-18 2011-06-30 Sumitomo Bakelite Co Ltd Film forming composition, insulating film, and semiconductor device
JP2011138821A (en) * 2009-12-25 2011-07-14 Sumitomo Bakelite Co Ltd Composition for forming film, insulating film, and semiconductor device
JP2011171572A (en) * 2010-02-19 2011-09-01 Sumitomo Bakelite Co Ltd Insulating film, laminate, semiconductor device, and method of manufacturing semiconductor device
EP4043448A1 (en) 2021-02-15 2022-08-17 Shin-Etsu Chemical Co., Ltd. Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film
EP4187320A1 (en) 2021-11-25 2023-05-31 Shin-Etsu Chemical Co., Ltd. Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process
KR20230077675A (en) 2021-11-25 2023-06-01 신에쓰 가가꾸 고교 가부시끼가이샤 Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process
TWI843289B (en) 2021-11-25 2024-05-21 日商信越化學工業股份有限公司 Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process

Similar Documents

Publication Publication Date Title
US20050025892A1 (en) Composition for porous organic film
US8053173B2 (en) Multi-functional linear siloxane compound, a siloxane polymer prepared from the compound, and a process for forming a dielectric film by using the polymer
JP2005041938A (en) Organic insulating film-forming composition
US7198823B2 (en) Siloxane-based resin containing germanium and an interlayer insulating film for a semiconductor device using the same
TW200423256A (en) Insulating film material containing an organic silane compound, its production method and semiconductor device
JP7102519B2 (en) Aromatic aminosiloxane functionalized material used for capping porous dielectrics
US7646081B2 (en) Low-K dielectric material
JP2008088415A (en) Acyloxy group-containing silicone copolymer, and manufacturing method thereof
US7534292B2 (en) Film-forming composition, insulating film obtained from the composition and electronic device having the same
JP2011153213A (en) Method for producing cage silsesquioxane compound
JP2007211138A (en) Alicyclic polyether, its production method, and its use
JP5012372B2 (en) Organic insulating film and semiconductor device
US8216647B2 (en) Insulating film, process for producing the same and electronic device using the same
KR20010062667A (en) Coating solution for forming porous organic film
JP2006249256A (en) Film-forming composition, insulation film using the same, and electronic device
JP2006249255A (en) Membrane forming composition, insulating membrane and electronic device using same
TW200304455A (en) Polyether and its production method
JP2004217677A (en) Low dielectric constant polymer
JP4186590B2 (en) Aromatic polymer composition and insulating film
JP4061132B2 (en) Fluorine-containing polysilane compound
JP2010070618A (en) Composition for forming insulating film, the insulating film, and electronic device
WO2023190386A1 (en) Sulfur-containing siloxane, composition for forming silicon-containing film comprising said sulfur-containing siloxane, sulfur-containing siloxane production method, silicon-containing film, and silicon-containing film production method
JP2007005394A (en) Method of manufacturing insulating film
JP2010138376A (en) Polymerization method for polymer for forming insulating film, polymer for forming insulating film, material for organic insulating film, organic insulating film, and electronic device
JP2006225293A (en) Reactive monomer, method for producing the same, heat-resistant polymer, coating liquid for forming heat-resistant organic film, and method for producing heat-resistant organic film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Effective date: 20080513

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Effective date: 20091027

Free format text: JAPANESE INTERMEDIATE CODE: A02