JP2004307264A - Method of molding quartz glass - Google Patents

Method of molding quartz glass Download PDF

Info

Publication number
JP2004307264A
JP2004307264A JP2003103363A JP2003103363A JP2004307264A JP 2004307264 A JP2004307264 A JP 2004307264A JP 2003103363 A JP2003103363 A JP 2003103363A JP 2003103363 A JP2003103363 A JP 2003103363A JP 2004307264 A JP2004307264 A JP 2004307264A
Authority
JP
Japan
Prior art keywords
quartz glass
molding
temperature
mold
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003103363A
Other languages
Japanese (ja)
Other versions
JP4341277B2 (en
Inventor
Masashi Fujiwara
誠志 藤原
Tetsuya Abe
哲也 阿邊
Shoji Yajima
昭司 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003103363A priority Critical patent/JP4341277B2/en
Publication of JP2004307264A publication Critical patent/JP2004307264A/en
Application granted granted Critical
Publication of JP4341277B2 publication Critical patent/JP4341277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of homogeneously molding quartz glass having excellent laser durability and high purity with excellent productivity by reducing the time to expose quartz glass to high temperature. <P>SOLUTION: In the method of molding quartz glass 25 into a desired shape by housing the quartz glass 25 in a mold 25 and heating and pressing the quartz glass 25 by a pressing part 23, the quartz glass 25 is heated to a temperature equal to or above the crystallization temperature and equal to or below the softening temperature thereof. During heating, the quartz glass 25 is pressed by increasing the pressing force of the pressing part 23 to reach a maximum pressure of 2 to 50 kg/cm<SP>2</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、モールド内に石英ガラスを収容して加熱しつつ加圧して、石英ガラスを所定形状に均質に成形するための成形方法に関する。
【0002】
【従来の技術】
IC、LSI等の集積回路パターン転写には、主に投影露光装置(または光リソグラフィ装置)が用いられる。この装置に用いられる投影光学系には、集積回路の高集積化に伴い、広い露光領域と、その露光領域全体にわたって、より高い解像力が要求される。投影光学系の解像力の向上については、露光波長をより短くするか、あるいは投影光学系の開口数(NA)を大きくすることが行われる。
【0003】
露光波長については、g線(436nm)からi線(365nm)、KrF(248nm)やArF(193nm)エキシマレーザーへと短波長化が進められている。また、更に高集積化を進めるに当たって、現在、F(157nm)エキシマレーザ,X線,電子線を光源に用いる方法が検討されている。この中で、これまでの設計思想を生かして作製することが可能なFエキシマレーザを用いた縮小投影露光装置がにわかに脚光を浴びてきている。
【0004】
一般に、i線より長波長の光源を用いた縮小投影露光装置の照明光学系あるいは投影光学系のレンズ部材として用いられる光学ガラスは、i線よりも短い波長領域では光透過率が急激に低下し、特に250nm以下の波長領域ではほとんどの光学ガラスでは透過しなくなる。そのため、エキシマレーザを光源とした縮小投影露光装置の光学系を構成するレンズの材料には、石英ガラスとフッ化カルシウム結晶のみが使用可能である。この2つの材料はエキシマレーザの結像光学系で色収差補正を行う上で不可欠な材料である。
【0005】
縮小投影露光装置でウェハー上に回路を焼き付けるためのもう一つの重要な要素としてレチクルが挙げられる。このレチクルに用いられる材料としては、エキシマレーザ耐久性はもとより、基板の発熱による熱膨張が大きな問題になるため、耐久性が良好でなおかつ熱膨張係数の小さい、直接法と呼ばれる方法(火炎加水分解により透明石英ガラスを製造する方法)で合成された石英ガラスが用いられている。
【0006】
直接法では、石英ガラス製バーナにて支燃性ガス(酸素含有ガス、例えば酸素ガス)及び可燃性ガス(水素含有ガス、例えば水素ガスあるいは天然ガス)を混合・燃焼させ、前記バーナの中心部から原料ガスとして高純度のケイ素化合物(例えば四塩化ケイ素ガス)をキャリアガス(通常酸素ガス)で希釈して噴出させ、前記原料ガスを周囲の前記酸素ガス及び水素ガスの燃焼により反応(加水分解反応)させて石英ガラス微粒子を発生させ、その前記石英ガラス微粒子を、前記バーナ下方に配置され、回転および揺動および引き下げ運動を行う不透明石英ガラス板からなるターゲット上に堆積させ、同時に前記酸素ガス及び水素ガスの燃焼熱により溶融・ガラス化して石英ガラスインゴットを得ている。
【0007】
この方法によると、比較的大きな径の石英ガラスインゴットを得易いため、インゴットからブロックを切り出して所望の形状,大きさの光学部材を製造することができる。
【0008】
また、近年、大型のレンズやレチクル、或いは大型の液晶ディスプレイ等、広い面積の面を有する光学部材を得るため、予め形成されたインゴット等の石英ガラス塊を加熱加圧成形することにより扁平形状にして面積を拡大する成形方法が利用されている。
【0009】
この成形方法では、石英ガラス塊をモールド内に収容して加熱した状態で、加圧板により加圧することにより成形を行い、その後モールド内で徐冷したり、更にアニール処理を行い、1対向面の面積が拡大された所定形状の成形体を得ることができる。
【0010】
このような加熱加圧成形を行うものとして、例えば、グラファイト製のモールド内で、絶対圧が 0.1Torr以上大気圧以下のヘリウムガス雰囲気下に、1700℃以上の温度に加熱加圧成形し、ついで1100〜1300℃まで急冷する方法が知られている。また、石英ガラスとモールドの型材との熱膨張率差に起因する応力を緩和する構造を有するグラファイト製のモールドを用いて1600℃〜1700℃で加圧成形する方法(下記、特許文献1参照。)や、そのグラファイト製のモールドが2分割以上の縦型構造である成型装置が提案されている(下記、特許文献2及び3参照。)。更には、黒鉛製のモールド内面に石英粉末からなる被覆層を設けて、1550℃〜1700℃で加圧成形する方法(下記、特許文献4参照。)も知られている。
【0011】
【特許文献1】
特公平4−54626号公報。
【0012】
【特許文献2】
特開昭56−129621号公報。
【0013】
【特許文献3】
特開昭57−67031号公報。
【0014】
【特許文献4】
特開2002−22020号公報。
【0015】
【発明が解決しようとする課題】
しかしながら、従来の加熱加圧成形では、モールド内に収容された石英ガラスを十分に軟化させて加圧していたため、石英ガラスが高温に曝される時間が長くなり易く、特に大型の成形体ほど、高温に曝される時間も長くなり易かった。
【0016】
例えば、上記特許文献2、3では、1700℃以上の高温で加圧されるため、昇降温時及び成形時に長時間高温に曝され易かった。
【0017】
また、上記特許文献1、4では、前記よりも低い温度で成形するものの、石英ガラスの流動性が低く、加圧して石英ガラスを変形させるのに長時間を要するため、結局、成形時に石英ガラスが高温に曝される時間は長くなり易かった。
【0018】
このように石英ガラスが長時間高温に曝される成形方法では、石英ガラス中に溶存している水素分子が低減してレーザ耐久性が低下し易くなり、また、モールドを透過して石英ガラスに不純物が混入されて純度が低下し易くなるなどの問題点があった。更に、石英ガラスとモールドのグラファイトとが反応して炭化珪素が生成されることにより表面に凹凸が形成され、これが亀裂等の原因となって歩留まりを低下し易く、また、石英ガラスとモールドとの線膨張係数の相違に基づいて生じる冷却時の応力が大きくなり、石英ガラスやモールドの破損を生じて歩留まりが低下し易く、更に、昇温及び降温にも時間を要するなど、生産性を向上し難いなどの問題点があった。
【0019】
この発明は、このような問題点を解決するため、石英ガラスが高温に曝される時間を低減して、レーザ耐久性に優れるともに高純度の石英ガラスを、生産性よく、しかも、均質に石英ガラスを成形することができる方法を提供することを課題とする。
【0020】
【課題を解決するための手段】
上記課題を解決する請求項1に記載の発明は、石英ガラスをモールド内に収容して加熱し、該石英ガラスを加圧部により加圧して所定形状に成形する方法において、前記石英ガラスを結晶化温度以上軟化点以下の温度範囲に加熱し、前記加圧部の加圧力を増加させつつ、最大圧力が2〜50Kg/cmとなるように制御して前記石英ガラスを加圧することを特徴とする。
【0021】
また、請求項2に記載の発明は、請求項1に記載の構成に加え、前記石英ガラスを所定形状にした後、前記石英ガラスを強制的に冷却することを特徴とする。
【0022】
更に、請求項3に記載の発明は、請求項2に記載の構成に加え、前記石英ガラスを1300℃〜1100℃の温度範囲で強制的に冷却することを特徴とする。
【0023】
また、請求項4に記載の発明は、請求項1乃至3の何れか一つに記載の構成に加え、1100℃から500℃まで冷却していく過程の任意の温度範囲内を、5〜20℃/hrの冷却速度で徐冷することを特徴とする。
【0024】
更に、請求項5に記載の発明は、請求項1乃至4の何れか一つに記載の構成に加え、前記石英ガラスを前記モールド内に収容する前に予め所定温度に加温することを特徴とする。
【0025】
また、請求項6に記載の発明は、請求項1乃至5の何れか一つに記載の構成に加え、前記所定温度が200℃〜300℃であることを特徴とする。
【0026】
【発明の実施の形態】
以下、この発明の実施の形態について説明する。
【0027】
図1はこの実施の形態の製造方法に用いる成形装置を示す。
【0028】
この成形装置10では、金属製の真空チャンバー11の内壁に、全面にわたって設けられた断熱材12と、断熱材12の縦壁内に設けられた加熱手段としてのカーボンヒータ13とが設けられ、更に、真空チャンバー11内部の略中央部に中空部21を有するモールド15が収容されている。
【0029】
モールド15は、底板16及び受板17を備えた底部18と、底部18の上部に筒状に形成された側壁部20とを備え、この筒状の側壁部20と底部18とにより中空部21が形成されている。
【0030】
この中空部21には、中空部21の形状に対応する形状の加圧部としての天板23が配置され、天板23の押圧面23b(上面)を、真空チャンバー11の外部に配設されたプレス装置としての油圧シリンダのシリンダロッド26で押圧することにより、モールド15の底部18側に移動可能となっている。
【0031】
なお、このシリンダロッド26を備えた油圧シリンダは、外部から供給する油圧を調整することにより加圧されて移動するように構成されているが、詳細な図示は省略されている。
【0032】
これらのモールド15及び天板23は、塊状の石英ガラス25の成形時の温度及び圧力に対する耐熱性及び強度を有し、且つ、成形時に塊状の石英ガラス25と接触しても不純物を混入し難い材料から形成されており、ここでは全てグラファイトにより形成されている。
【0033】
次に、このような成形装置10を用いて、石英ガラス25を成形する方法について説明する。
【0034】
まず、この成形方法により成形される石英ガラスは、各種の光学部材、好ましくは250nm以下の波長のレーザが照射されるレンズ、ミラー、レチクル用基板などを製造するために用いられる素材であり、特に、大型の液晶用マスク、半導体用マスク等のレチクル(フォトマスク)用基板、結像光学系の大型のレンズ材料などに用いられる広い面を有する板状体やその他の大型ガラスブロックであるのが好適である。
【0035】
このような石英ガラスは、予め各種の製造方法により合成された合成石英ガラス、好ましくは、四塩化ケイ素、シラン、有機ケイ素等のケイ素化合物を原料として合成された合成石英ガラスのインゴットやその一部、または、Ge、Ti、B、F、Al等の屈折率を変化させる成分を添加した合成石英ガラスのインゴットやその一部等の石英ガラス塊を用いて成形される。特に、屈折率を変化させる成分を混入した石英ガラスは、熱膨張係数や粘性が他の石英ガラスと異なるため、成形時に高温で気泡が発生したり、成形後の収縮が大きく、この成形方法を適用することにより成形するのが好ましい。
【0036】
まず、真空チャンバー11内に底板16、受板17、側壁部20を組合わせてモールド15を形成し、そして、モールド15の中空部21内に塊状の石英ガラス25を配置する。
【0037】
ここでは、モールド15内に収容する塊状の石英ガラス25を、予め図示しない加温手段により加温することにより、内部まで略均一に200℃〜300℃の温度範囲まで加温しておくのが好ましい。モールド15内において加熱する時間を短縮するためである。しかも、温度が200℃〜300℃であれば、加温時に石英ガラス25中の水素分子が低減しにくい。
【0038】
そして、中空部21内に収容した塊状の石英ガラス25の上部に天板23を配置し、更に、天板23の押圧面23bに油圧シリンダのシリンダロッド26の押圧部位26aを当接させてセットする。そして、真空チャンバー11内を不活性ガスで置換する。
【0039】
次に、カーボンヒータ13により、モールド15及びその中空部21に収容された塊状の石英ガラス25を加熱する。この加熱時には、カーボンヒータ13を発熱させ、前記加温温度から下記成形温度までの間を600〜800℃/hrの昇温速度で昇温し、所定温度で、塊状の石英ガラス25の内部まで十分に加熱される時間、例えば15〜60分間保持する。そして、これにより、塊状の石英ガラス25の全体の温度を、結晶化温度以上軟化点以下、例えば、1570℃〜1670℃の成形温度に昇温する。
【0040】
この昇温では、塊状の石英ガラス25の頂部25a付近を加圧する時点で、少なくとも頂部25a側がこの成形温度に到達していれば成形を開始することができる。
【0041】
また、この昇温では、塊状の石英ガラス25に加圧方向の温度分布を形成することが好ましく、天板23側の頂部25aとモールド15の底部18側の底面部25bとの温度差を、例えば5℃以上50℃以下とする。頂部25aの温度が高ければ、頂部25a側が底面部25b側より成形され易くなり、頂部25a側から順に成形することができて、成形途中で石英ガラス25に座屈が生じにくくなるからである。
【0042】
次に、このように塊状の石英ガラス25を加熱した状態で、油圧シリンダへの油圧を制御調整することにより、シリンダロッド26を下方へ移動させて、シリンダロッド26の押圧部位26aで天板23の押圧面23bを押圧する。これにより、天板23がモールド15の底部18側の加圧方向へ移動し、天板23の加圧面23aの底部18との間で塊状の石英ガラス25が加圧される。
【0043】
このとき、天板23から加える圧力を、成形初期の段階で小さくし、その後、好ましくは最終段階で最大加圧力となるように増加させつつ、加圧を行う。ここでは、例えば、天板23の下降に伴って徐々に加圧を増加したり、所定量の成形が進行するまで初期段階の小さい加圧力で加圧し、その後、所定の加圧力に増加するようにしてもよく、更に、多段階に加圧力を増加することも可能である。その場合、成形前の石英ガラス25の頂部25aの高さ方向位置(即ち、天板23の加圧面23aの位置)を変位0%、石英ガラス25が成形後に余すところなく正常に成形された場合の頂部の高さ方向位置を変位100%とすると、例えば塊状の石英ガラス25の高さの変位が0%〜70%の高さまでは成形初期の小さい加圧力で加圧することができる。
【0044】
成形初期、即ち、石英ガラス25に天板23の加圧面23aが石英ガラス25の頂部25aに接触する段階では、天板23に接触する面積が小さく、加圧により変形させる体積が小さく、小さい加圧力で加圧することができる。この加圧時の圧力の好ましい範囲は、石英ガラス25の状態によって変動するものであるため、成形時に適宜選択するのが好ましいが、例えば、天板23の下降速度を5〜15cm/minとなるように、押圧力を調整することにより行うことも可能である。
【0045】
この成形初期の段階では、石英ガラス25が変形し易くて、頂部25a側の変位量が多いため、大きな加圧力を負荷すると、軟化点以下の温度で流動性が低い石英ガラス25を無理に変形させることになり、石英ガラス25が不均一に成形され易いからである。
【0046】
そして、天板23の加圧を続け、成形が進行した段階では、石英ガラス25がモールド15の中空部21内に広がり、天板23の加圧面23aの広い部分で加圧することになる。この段階では、石英ガラス25の変形が小さくなるが、石英ガラス25を変形させるのに要する力が大きくなる。特に、軟化点以下の温度の石英ガラス25であるため流動性が小さくて変形に要する力が大きくなり易い。そのため、この実施の形態では、天板23の加圧面23aから石英ガラス25へ負荷する加圧力を大きくし、好ましくは3Kg/cm以上にする。これにより、石英ガラス25をより短時間で変形させることができ、成形時間の短縮化が図れる。
【0047】
更に、成形の最終段階では、石英ガラス25がモールド15の中空部21内の断面方向略全体に広がり、天板23の加圧面23aの略全体で加圧することになる。この段階では、天板23の加圧面23aから負荷する加圧力を、石英ガラス25やモールド15の破損を防止できる範囲内で、できるだけ大きくするのが好ましく、この状態で最大圧力が2Kg/cm以上、好ましくは5〜50Kg/cmとなるように加圧する。これにより、石英ガラス25を確実に所望の形状に成形でき、また、石英ガラス25の成形時間を最終段階まで短縮化させることが可能となる。
【0048】
そして、石英ガラス25が所定の板状体に成形された段階で、天板23による加圧を終了する。その後、成形された石英ガラス25を、モールド15内に配置した状態のままで冷却する。
【0049】
この冷却では、石英ガラス25が高温に曝される時間をできるだけ短縮することが好ましく、この実施の形態では、石英ガラス25を強制的に冷却する。
【0050】
ここで、強制的な冷却は、モールド15内でカーボンヒータ13による加熱を停止して自然放冷する際の冷却速度より速い冷却速度で冷却することであり、真空チャンバー11内に設けられた図示しない冷却媒体用の通路に冷却媒体を通液することにより行うことができる。
【0051】
この冷却過程において、1300℃〜1100℃の温度範囲では、強制的に冷却するのが好ましく、石英ガラス25の結晶化を防止することができる。
【0052】
また、この冷却では、軟化点以下の低い温度で2〜50Kg/cmの最大圧力を負荷して成形された石英ガラス25の歪みを低減するために、1100℃から500℃まで冷却していく過程の任意の温度範囲内を、5〜20℃/hrの冷却速度で徐冷するのが好ましい。ここでは、任意の温度範囲を広くすれば、より歪みを低減し易いが、高温に曝される時間が長くなり易いため、各種成形条件に応じて温度範囲を調整するのが好ましい。
【0053】
そして、このような冷却により石英ガラス25の温度が十分に低下した段階で、真空チャンバ11から板状体を取り出す。
【0054】
以上のようにして、塊状の石英ガラス25を成形すれば、軟化点以下の低い温度で、しかも、2〜50Kg/cmの高い圧力で短時間に成形するため、石英ガラス25が高温に曝される時間を短縮することができる。そのため、石英ガラス中の水素分子が低減され難くてレーザ耐久性を維持し易く、また、石英ガラスに不純物が混入され難くて純度が低下し難い。
【0055】
さらに、この成形時の温度が軟化温度以下の低温であるため、石英ガラス25とモールド15のグラファイトとの反応を抑制でき、成形体の表面に凹凸が形成されにくい。また、石英ガラス25とモールド15との線膨張係数の相違に基づいて、生じる冷却時の熱収縮の差が、成形温度が低い分だけ少なくなり、モールド15により石英ガラス25を圧縮する応力を少なくできる。そのため、大型の成形品であっても、歩留まりを低下し易く、生産性を向上できる。しかも、成形温度が低い分、昇温及び降温に要する時間を短縮できるため、生産性を相乗的に向上することができる。
【0056】
そして、このような成形方法では、天板23の加圧力を増加させつつ成形するので、石英ガラス25の変位量が大きい成形初期には低い圧力で加圧でき、軟化点以下の流動性が低い状態の石英ガラス25を不均一に変形させることを防止し易い。
【0057】
また、石英ガラス25を板状体に成形した後、石英ガラス25を強制的に冷却するため、石英ガラス25を高温に曝す時間をより短縮して、石英ガラス25中の水素分子の低減や不純物の混入をより防止し易いとともに、降温に要する時間を短縮でき、更に生産性を向上することが可能である。
【0058】
更に、1100℃から500℃まで冷却していく過程の任意の温度範囲内を、5〜20℃/hrの冷却速度で徐冷するので、成形により生じた歪みを低減して、石英ガラス25の均質化をより図り易い。
【0059】
また、石英ガラス25をモールド15内に収容する前に予め加温するため、モールド15内の加熱時間を短縮して、生産性を向上し易く、しかも、その加温を200℃〜300℃で行うため、加温時に石英ガラス25中の水素分子が低減することも抑制できる。
【0060】
【実施例】
以下、この発明の実施例について説明する。
【0061】
実施例1
図1に示すような成形装置を用い、直径50cmで高さが70cmの合成石英ガラスインゴットからなる塊状の石英ガラス25から、一辺が100cmの正方形形状で厚さが13.7cmの板状の石英ガラス25を成形した。
【0062】
この成形では、真空ポンプにて、真空チャンバー11内の圧力を50Paまで減圧した後、純粋な窒素ガスを圧力3×10Paまで充填した。600℃/hrの昇温速度で昇温し、表1に示すような保持温度にして45分間保持して石英ガラス25を前記保持温度にした。
【0063】
次に、シリンダロッド26により天板23を加圧し、成形初期の高さ方向の変位0〜50%の段階では天板23を加圧する加圧力を2Kg/cmとし、その後、同変位50〜80%では加圧力を4Kg/cmとし、更に同変位80〜100%では7〜50Kg/cmと加圧力を増加し、表1に示す最大圧力で石英ガラス25を加圧することにより成形を行った。
【0064】
成形後、カーボンヒータ13の発熱を停止し、20時間放置して自然放冷を行って、石英ガラス25の板状体を得た。
【0065】
この板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した。
【0066】
得られた結果を表2に示す。
【0067】
実施例2
実施例1と同様の成形装置を用い、モールド15に収容する前に表1に示す加温を行い、その後、表1に示す成形条件で成形する他は実施例1と同様にして板状体を得た。
【0068】
得られた板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した結果を表2に示す。
【0069】
実施例3
実施例1と同様の成形装置を用い、モールド15に収容する前に表1に示す加温を行い、表1の成形条件で成形を行い、成形後に表1に示す徐冷を行うとともに、400℃/hrの冷却速度で強制冷却を行う他は、実施例1と同様にして板状体を得た。
【0070】
得られた板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した結果を表2に示す。
【0071】
実施例4
実施例1と同様の成形装置を用い、表1の成形条件で成形を行い、成形後に実施例3と同様の強制冷却を行う他は、実施例1と同様にして板状体を得た。
【0072】
得られた板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した結果を表2に示す。
【0073】
実施例5
実施例1と同様の成形装置を用い、モールド15に収容する前に表1に示す加温を行い、表1の成形条件で成形を行い、成形後に表1に示す徐冷を行う他は、実施例1と同様にして板状体を得た。
【0074】
得られた板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した結果を表2に示す。
【0075】
比較例1
実施例1と同様の成形装置を用い、表1の成形条件で、一定の加圧力で成形する他は、実施例1と同様に成形を行った。
【0076】
その結果、 加圧の最大圧力が0.1Kg/cmと著しく弱いため、石英ガラス25の変位が十分行なわれず、高さ方向の変位が30%で止まり、板状体が得られなかった。
【0077】
比較例2
実施例1と同様の成形装置を用い、表1の成形条件で成形を行う他は、実施例1と同様にして板状体を得た。
【0078】
得られた板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した結果を表2に示す。
【0079】
比較例3
実施例1と同様の成形装置を用い、モールド15に収容する前に表1に示す加温を行い、表1の成形条件で、一定の加圧力で成形し、成形後に400℃/hrの冷却速度で強制冷却を行う他は、実施例1と同様にして板状体を得た。
【0080】
得られた板状体の透過率分布(Δn)、複屈折率、透過率、レーザ耐久性、及び不純物の混入による変質層の厚さを測定した結果を表2に示す。
【0081】
【表1】

Figure 2004307264
【0082】
【表2】
Figure 2004307264
【0083】
表2の結果から明らかなように、実施例1〜5では、何れも比較例2、3に比べて石英ガラス25が高温に曝される時間が短く、レーザ耐久性及び透過率がよいとともに変質層の厚さが薄くなっていた。
【0084】
また、予め加温を行った実施例2、3、5は、何れも昇温時間が実施例1、4や比較例1、2に比べて短かった。
【0085】
更に、徐冷を行った実施例3は、実施例1に比べて屈折率分布が小さかった。
【0086】
そして、成形時に天板23により石英ガラス25を加圧する際の最大圧力が2Kg/cmより低すぎる比較例1では、板状体が成形できず、また、最大圧力が十分ではなく成形時間が長い比較例3、保持温度が高くて、強制冷却も行わない比較例2では、石英ガラス25が高温に曝される時間が長く、実施例1〜5に比べて各測定結果が劣っていた。
【0087】
【発明の効果】
以上詳述の通り、請求項1に記載の発明によれば、石英ガラスを結晶化温度以上軟化点以下の温度範囲に加熱して、加圧部の加圧力を増加させつつ、最大圧力が2〜50Kg/cmとなるように加圧するので、成形時の温度を軟化点以下の低い温度にして、2〜50Kg/cmの高い圧力で短時間に成形することにより、石英ガラスが高温に曝される時間を短縮することができる。そのため、石英ガラス中の水素分子が低減され難くてレーザ耐久性を維持し易く、また、石英ガラスに不純物が混入され難くて純度が低下し難くく、同時に生産性も向上し易い。
【0088】
それとともに、加圧部の加圧力を増加させつつ成形するため、石英ガラスの変位量が大きい成形初期に低い圧力で加圧することによって穏やかに変形でき、軟化点以下で流動性が低い状態の石英ガラスが不均一に成形されることを防止し易い。
【0089】
また、請求項2に記載の発明によれば、石英ガラスを所定形状にした後、石英ガラスを強制的に冷却するので、成形後に石英ガラスを高温に曝す時間を短縮することができ、石英ガラス中の水素分子の低下や不純物の混入をより防止し易いとともに、降温に要する時間を短縮できて生産性も向上し易い。
【0090】
更に、請求項3に記載の発明によれば、石英ガラスを1300℃〜1100℃の温度範囲で強制的に冷却するので、石英ガラスを高温に曝す時間を短縮することができるとともに、結晶化を防止することができる。
【0091】
また、請求項4に記載の発明によれば、1100℃から500℃まで冷却していく過程の任意の温度範囲内を、5〜20℃/hrの冷却速度で徐冷するので、軟化点以下の石英ガラスを高い最大圧力により成形して生じた歪みを低減することができ、石英ガラスの均質化を図り易い。
【0092】
更に、請求項5に記載の発明によれば、石英ガラスをモールド内に収容する前に予め所定温度に加温するので、モールド内で加熱する加熱時間を短縮することができて、生産性を向上させ易い。
【0093】
また、請求項6に記載の発明によれば、モールド内に収容する前に加温する温度が200℃〜300℃であるので、加温時に石英ガラス中の水素分子が低減しにくく、レーザ耐久性を維持し易い。
【図面の簡単な説明】
【図1】この発明の実施の形態1の成形装置の一部を示す概略縦断面図である。
【符号の説明】
10 成形装置
11 真空チャンバ
13 カーボンヒータ
15 モールド
18 底部
20 側壁部
21 中空部
23 天板(加圧部)
25 石英ガラス
26 シリンダロッド[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a molding method for uniformly pressing quartz glass into a predetermined shape while heating and pressurizing the quartz glass in a mold.
[0002]
[Prior art]
A projection exposure apparatus (or an optical lithography apparatus) is mainly used for transferring an integrated circuit pattern such as an IC or LSI. The projection optical system used in this apparatus is required to have a wider exposure area and higher resolution over the entire exposure area as the integration of integrated circuits becomes higher. In order to improve the resolution of the projection optical system, the exposure wavelength is shortened or the numerical aperture (NA) of the projection optical system is increased.
[0003]
The exposure wavelength has been shortened from g-line (436 nm) to i-line (365 nm), KrF (248 nm) and ArF (193 nm) excimer lasers. In addition, in pursuing higher integration, 2 A method using an excimer laser (157 nm), an X-ray, and an electron beam as a light source is being studied. Among them, F that can be manufactured by utilizing the design concept 2 A reduction projection exposure apparatus using an excimer laser has been spotlighted.
[0004]
In general, optical glass used as an illumination optical system or a lens member of a projection optical system of a reduction projection exposure apparatus using a light source having a wavelength longer than the i-line has a sharp decrease in light transmittance in a wavelength region shorter than the i-line. In particular, in the wavelength region of 250 nm or less, almost no optical glass transmits light. Therefore, only quartz glass and calcium fluoride crystal can be used as a material of a lens constituting an optical system of a reduction projection exposure apparatus using an excimer laser as a light source. These two materials are indispensable materials for performing chromatic aberration correction in an imaging optical system of an excimer laser.
[0005]
A reticle is another important element for printing a circuit on a wafer in a reduction projection exposure apparatus. As a material used for this reticle, not only excimer laser durability but also thermal expansion due to heat generation of the substrate becomes a major problem. Therefore, a method called a direct method that has good durability and a small coefficient of thermal expansion (flame hydrolysis) A method for producing a transparent quartz glass by the method described above) is used.
[0006]
In the direct method, a combustible gas (oxygen-containing gas, for example, oxygen gas) and a combustible gas (hydrogen-containing gas, for example, hydrogen gas or natural gas) are mixed and burned in a quartz glass burner, and the center of the burner is burned. A high-purity silicon compound (for example, silicon tetrachloride gas) is diluted with a carrier gas (usually oxygen gas) as a raw material gas and ejected, and the raw material gas is reacted (hydrolyzed) by burning the surrounding oxygen gas and hydrogen gas. Reaction) to generate quartz glass fine particles, and the quartz glass fine particles are deposited on a target formed of an opaque quartz glass plate which is arranged below the burner and rotates, swings and pulls down, and simultaneously the oxygen gas In addition, a quartz glass ingot is obtained by melting and vitrification by the heat of combustion of hydrogen gas.
[0007]
According to this method, since a quartz glass ingot having a relatively large diameter is easily obtained, an optical member having a desired shape and size can be manufactured by cutting a block from the ingot.
[0008]
In recent years, in order to obtain an optical member having a large area, such as a large lens or reticle, or a large liquid crystal display, a preformed quartz glass block such as an ingot is formed into a flat shape by heating and pressing. A molding method for enlarging the area is used.
[0009]
In this molding method, while the quartz glass block is housed in a mold and heated, the molding is performed by pressing with a pressurizing plate, and then the mold is gradually cooled or further annealed to perform the annealing on the one facing surface. A molded article having a predetermined shape with an enlarged area can be obtained.
[0010]
As a method for performing such heat and pressure molding, for example, in a graphite mold, under a helium gas atmosphere having an absolute pressure of 0.1 Torr or more and atmospheric pressure or less, heat and pressure molding is performed at a temperature of 1700 ° C. or more, Then, a method of rapidly cooling to 1100 to 1300 ° C is known. In addition, a method of press-molding at 1600 ° C. to 1700 ° C. using a graphite mold having a structure for relaxing stress caused by a difference in thermal expansion coefficient between quartz glass and a mold material of the mold (see Patent Document 1 below). ) Or a molding apparatus in which the graphite mold has a vertical structure of two or more divisions (see Patent Documents 2 and 3 below). Furthermore, there is also known a method in which a coating layer made of quartz powder is provided on the inner surface of a graphite mold and pressed at 1550 ° C. to 1700 ° C. (see Patent Document 4 below).
[0011]
[Patent Document 1]
Japanese Patent Publication No. 4-54626.
[0012]
[Patent Document 2]
JP-A-56-129621.
[0013]
[Patent Document 3]
JP-A-57-67031.
[0014]
[Patent Document 4]
JP-A-2002-22020.
[0015]
[Problems to be solved by the invention]
However, in the conventional heat and pressure molding, since the quartz glass housed in the mold was sufficiently softened and pressed, the time during which the quartz glass was exposed to a high temperature was likely to be long. Exposure to high temperatures also tended to be long.
[0016]
For example, in Patent Documents 2 and 3, since pressure is applied at a high temperature of 1700 ° C. or more, it is easy to be exposed to a high temperature for a long time during temperature rise and fall and during molding.
[0017]
Further, in the above Patent Documents 1 and 4, although the quartz glass is molded at a lower temperature than the above, the flowability of the quartz glass is low, and it takes a long time to deform the quartz glass by applying pressure. Exposure to high temperatures was likely to be prolonged.
[0018]
In the molding method in which the quartz glass is exposed to a high temperature for a long time, hydrogen molecules dissolved in the quartz glass are reduced, so that the laser durability is easily reduced. There was a problem that impurities were mixed and the purity was easily lowered. Furthermore, the quartz glass and the graphite of the mold react with each other to generate silicon carbide, so that irregularities are formed on the surface, and this causes cracks and the like, so that the yield is likely to be reduced. The stress at the time of cooling generated due to the difference in linear expansion coefficient increases, the quartz glass and the mold are damaged, and the yield is likely to decrease.In addition, it takes time to raise and lower the temperature, thereby improving productivity. There were problems such as difficulty.
[0019]
In order to solve such problems, the present invention reduces the time required for the quartz glass to be exposed to a high temperature, and provides high-purity quartz glass having excellent laser durability and high productivity, and at the same time, uniformly producing quartz. It is an object to provide a method capable of forming glass.
[0020]
[Means for Solving the Problems]
The invention according to claim 1, which solves the above-mentioned problem, is a method of forming a quartz glass in a predetermined shape by housing the quartz glass in a mold, heating the quartz glass, and pressing the quartz glass by a pressing unit to form the quartz glass into a predetermined shape. Heating to a temperature range from the softening point to the softening point, and while increasing the pressing force of the pressurizing section, the maximum pressure is 2 to 50 kg / cm 2 The quartz glass is pressurized by controlling so that
[0021]
According to a second aspect of the present invention, in addition to the configuration of the first aspect, the quartz glass is forcibly cooled after the quartz glass is formed into a predetermined shape.
[0022]
Further, the invention according to a third aspect is characterized in that, in addition to the configuration according to the second aspect, the quartz glass is forcibly cooled in a temperature range of 1300 ° C. to 1100 ° C.
[0023]
In addition, the invention according to claim 4 provides, in addition to the configuration according to any one of claims 1 to 3, an optional temperature range in the process of cooling from 1100 ° C. to 500 ° C. by 5 to 20 ° C. It is characterized by gradually cooling at a cooling rate of ° C / hr.
[0024]
Further, the invention according to claim 5 is characterized in that, in addition to the configuration according to any one of claims 1 to 4, the quartz glass is heated to a predetermined temperature before the quartz glass is housed in the mold. And
[0025]
The invention according to a sixth aspect is characterized in that, in addition to the configuration according to any one of the first to fifth aspects, the predetermined temperature is 200 ° C. to 300 ° C.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0027]
FIG. 1 shows a molding apparatus used in the manufacturing method of this embodiment.
[0028]
In the forming apparatus 10, a heat insulating material 12 provided over the entire surface of an inner wall of a metal vacuum chamber 11 and a carbon heater 13 as heating means provided in a vertical wall of the heat insulating material 12 are provided. A mold 15 having a hollow portion 21 is housed at a substantially central portion inside the vacuum chamber 11.
[0029]
The mold 15 includes a bottom 18 having a bottom plate 16 and a receiving plate 17, and a side wall 20 formed in a cylindrical shape on the top of the bottom 18. The hollow portion 21 is formed by the cylindrical side wall 20 and the bottom 18. Is formed.
[0030]
In the hollow portion 21, a top plate 23 as a pressing portion having a shape corresponding to the shape of the hollow portion 21 is disposed, and a pressing surface 23b (upper surface) of the top plate 23 is disposed outside the vacuum chamber 11. By pressing with a cylinder rod 26 of a hydraulic cylinder as a pressing device, it is possible to move to the bottom 18 side of the mold 15.
[0031]
The hydraulic cylinder provided with the cylinder rod 26 is configured to move by being pressurized by adjusting the hydraulic pressure supplied from the outside, but is not shown in detail.
[0032]
The mold 15 and the top plate 23 have heat resistance and strength against the temperature and pressure at the time of forming the massive quartz glass 25, and hardly mix impurities even when contacting the massive quartz glass 25 at the time of molding. It is formed of a material, and here is entirely formed of graphite.
[0033]
Next, a method of forming the quartz glass 25 using such a forming apparatus 10 will be described.
[0034]
First, quartz glass molded by this molding method is a material used for manufacturing various optical members, preferably a lens irradiated with a laser having a wavelength of 250 nm or less, a mirror, a reticle substrate, and the like. Reticle (photomask) substrates such as large-sized liquid crystal masks and semiconductor masks; large-sized plate-like bodies and other large glass blocks used for large-size lens materials for imaging optics. It is suitable.
[0035]
Such quartz glass is a synthetic quartz glass previously synthesized by various manufacturing methods, preferably, an ingot of synthetic quartz glass synthesized using a silicon compound such as silicon tetrachloride, silane, or organosilicon, or a part thereof. Alternatively, it is formed using a quartz glass block such as a synthetic quartz glass ingot or a part thereof to which a component that changes the refractive index such as Ge, Ti, B, F, or Al is added. In particular, quartz glass mixed with a component that changes the refractive index has a different coefficient of thermal expansion and viscosity than other quartz glass, so bubbles are generated at high temperature during molding and shrinkage after molding is large. It is preferable to form by applying.
[0036]
First, the mold 15 is formed by combining the bottom plate 16, the receiving plate 17, and the side wall portion 20 in the vacuum chamber 11, and the massive quartz glass 25 is arranged in the hollow portion 21 of the mold 15.
[0037]
Here, the bulk quartz glass 25 housed in the mold 15 is preliminarily heated to a temperature range of 200 ° C. to 300 ° C. by heating it by a heating means (not shown) so as to be substantially uniform inside. preferable. This is for shortening the heating time in the mold 15. In addition, if the temperature is 200 ° C. to 300 ° C., it is difficult to reduce hydrogen molecules in the quartz glass 25 during heating.
[0038]
Then, the top plate 23 is disposed above the massive quartz glass 25 housed in the hollow portion 21, and further, the pressing portion 23 a of the cylinder rod 26 of the hydraulic cylinder is brought into contact with the pressing surface 23 b of the top plate 23. I do. Then, the inside of the vacuum chamber 11 is replaced with an inert gas.
[0039]
Next, the bulk quartz glass 25 housed in the mold 15 and its hollow portion 21 is heated by the carbon heater 13. At the time of this heating, the carbon heater 13 is heated to raise the temperature from the above-mentioned heating temperature to the following molding temperature at a heating rate of 600 to 800 ° C./hr, and at a predetermined temperature to the inside of the massive quartz glass 25. Hold for a sufficient heating time, for example, 15 to 60 minutes. Thus, the entire temperature of the massive quartz glass 25 is raised to a molding temperature equal to or higher than the crystallization temperature and equal to or lower than the softening point, for example, 1570 ° C. to 1670 ° C.
[0040]
In this temperature increase, when the vicinity of the top 25a of the massive quartz glass 25 is pressed, molding can be started if at least the top 25a reaches this molding temperature.
[0041]
In this temperature rise, it is preferable to form a temperature distribution in the pressing direction on the massive quartz glass 25. The temperature difference between the top 25a on the top plate 23 side and the bottom surface 25b on the bottom 18 side of the mold 15 is calculated as follows. For example, the temperature is 5 ° C. or more and 50 ° C. or less. If the temperature of the top portion 25a is high, the top portion 25a side is more easily formed from the bottom portion 25b side, and the top portion 25a can be formed in order, and buckling of the quartz glass 25 hardly occurs during forming.
[0042]
Next, while the massive quartz glass 25 is heated in this manner, the cylinder rod 26 is moved downward by controlling and controlling the hydraulic pressure to the hydraulic cylinder, and the top plate 23 is pressed by the pressing portion 26a of the cylinder rod 26. Is pressed on the pressing surface 23b. Accordingly, the top plate 23 moves in the pressing direction on the bottom portion 18 side of the mold 15, and the massive quartz glass 25 is pressed between the top plate 23 and the bottom portion 18 of the pressing surface 23 a.
[0043]
At this time, the pressure applied from the top plate 23 is reduced at the early stage of molding, and thereafter, is preferably increased at the final stage so as to have the maximum pressing force. Here, for example, the pressurization is gradually increased with the lowering of the top plate 23, or the pressurization is performed at a small pressing force in an initial stage until a predetermined amount of molding proceeds, and then the pressure is increased to a predetermined pressing force. Alternatively, the pressing force can be increased in multiple stages. In this case, when the position in the height direction of the top 25a of the quartz glass 25 before molding (that is, the position of the pressing surface 23a of the top plate 23) is 0%, and the quartz glass 25 is molded normally without any excess after molding. Assuming that the height direction position of the top portion is 100%, for example, when the displacement of the height of the massive quartz glass 25 is 0% to 70%, it is possible to apply pressure with a small pressing force at the beginning of molding.
[0044]
At the initial stage of molding, that is, at the stage where the pressing surface 23a of the top plate 23 contacts the top 25a of the quartz glass 25, the area of contact with the top plate 23 is small, the volume deformed by pressing is small, and It can be pressurized with pressure. Since the preferable range of the pressure at the time of pressurization varies depending on the state of the quartz glass 25, it is preferable to appropriately select the range during molding. For example, the descending speed of the top plate 23 is 5 to 15 cm / min. As described above, it is also possible to adjust the pressing force.
[0045]
In the early stage of molding, the quartz glass 25 is easily deformed and the amount of displacement on the side of the top 25a is large. Therefore, when a large pressing force is applied, the quartz glass 25 having low fluidity at a temperature below the softening point is forcibly deformed. This is because the quartz glass 25 is likely to be formed unevenly.
[0046]
Then, the pressing of the top plate 23 is continued, and at the stage where the forming has progressed, the quartz glass 25 spreads in the hollow portion 21 of the mold 15 and is pressed on a wide portion of the pressing surface 23 a of the top plate 23. At this stage, the deformation of the quartz glass 25 is small, but the force required to deform the quartz glass 25 is large. In particular, since the quartz glass 25 has a temperature lower than the softening point, the fluidity is small and the force required for deformation is likely to be large. Therefore, in this embodiment, the pressing force applied from the pressing surface 23a of the top plate 23 to the quartz glass 25 is increased, and is preferably 3 kg / cm. 2 Above. Thereby, the quartz glass 25 can be deformed in a shorter time, and the molding time can be shortened.
[0047]
Further, in the final stage of the molding, the quartz glass 25 spreads over substantially the entire cross section in the hollow portion 21 of the mold 15 and is pressed on substantially the entire pressing surface 23 a of the top plate 23. At this stage, it is preferable that the pressing force applied from the pressing surface 23a of the top plate 23 be as large as possible within a range that can prevent breakage of the quartz glass 25 and the mold 15, and in this state, the maximum pressure is 2 kg / cm. 2 Above, preferably 5 to 50 kg / cm 2 Pressurize so that Thereby, the quartz glass 25 can be reliably formed into a desired shape, and the forming time of the quartz glass 25 can be reduced to the final stage.
[0048]
Then, when the quartz glass 25 is formed into a predetermined plate-like body, the pressing by the top plate 23 is finished. Thereafter, the formed quartz glass 25 is cooled while being placed in the mold 15.
[0049]
In this cooling, it is preferable to minimize the time during which the quartz glass 25 is exposed to a high temperature. In this embodiment, the quartz glass 25 is forcibly cooled.
[0050]
Here, the forced cooling is to stop the heating by the carbon heater 13 in the mold 15 and to cool at a cooling rate higher than the cooling rate at the time of natural cooling, and the cooling provided in the vacuum chamber 11 is performed. This can be performed by passing the cooling medium through a passage for the cooling medium that is not used.
[0051]
In this cooling process, it is preferable to forcibly cool in a temperature range of 1300 ° C. to 1100 ° C., and crystallization of the quartz glass 25 can be prevented.
[0052]
In addition, this cooling is performed at a low temperature equal to or lower than the softening point of 2 to 50 kg / cm. 2 At a cooling rate of 5 to 20 ° C./hr within an arbitrary temperature range in the process of cooling from 1100 ° C. to 500 ° C. in order to reduce the distortion of the quartz glass 25 formed by applying the maximum pressure of Slow cooling is preferred. Here, if an arbitrary temperature range is widened, the distortion can be reduced more easily, but the time of exposure to a high temperature tends to be long. Therefore, it is preferable to adjust the temperature range according to various molding conditions.
[0053]
Then, when the temperature of the quartz glass 25 is sufficiently lowered by such cooling, the plate-like body is taken out from the vacuum chamber 11.
[0054]
As described above, if the massive quartz glass 25 is formed, it can be formed at a low temperature equal to or lower than the softening point and at 2 to 50 kg / cm. 2 Since the molding is performed in a short time at a high pressure, the time during which the quartz glass 25 is exposed to a high temperature can be shortened. Therefore, the hydrogen molecules in the quartz glass are not easily reduced, and the laser durability is easily maintained. Further, the impurities are hardly mixed in the quartz glass and the purity is hardly reduced.
[0055]
Further, since the temperature at the time of molding is a low temperature equal to or lower than the softening temperature, the reaction between the quartz glass 25 and the graphite of the mold 15 can be suppressed, and irregularities are hardly formed on the surface of the molded body. Further, based on the difference in the coefficient of linear expansion between the quartz glass 25 and the mold 15, the difference in thermal shrinkage during cooling that occurs is reduced by the lower molding temperature, and the stress that causes the mold 15 to compress the quartz glass 25 is reduced. it can. Therefore, even if it is a large-sized molded product, the yield is easily reduced, and the productivity can be improved. Moreover, the time required for raising and lowering the temperature can be shortened by the lower molding temperature, so that the productivity can be synergistically improved.
[0056]
In such a molding method, since the molding is performed while increasing the pressing force of the top plate 23, the quartz glass 25 can be pressurized at a low pressure in the initial stage of molding where the displacement amount is large, and the fluidity below the softening point is low. It is easy to prevent the quartz glass 25 in the state from being deformed unevenly.
[0057]
Further, since the quartz glass 25 is forcibly cooled after the quartz glass 25 is formed into a plate-like body, the time for exposing the quartz glass 25 to a high temperature is further shortened to reduce hydrogen molecules in the quartz glass 25 and reduce impurities. Can be more easily prevented, the time required for cooling can be shortened, and the productivity can be further improved.
[0058]
Furthermore, since the temperature is gradually cooled at a cooling rate of 5 to 20 ° C./hr in an arbitrary temperature range in a process of cooling from 1100 ° C. to 500 ° C., distortion generated by molding is reduced, and quartz glass 25 is cooled. It is easier to homogenize.
[0059]
In addition, since the quartz glass 25 is pre-heated before being housed in the mold 15, the heating time in the mold 15 is shortened, and the productivity is easily improved, and the heating is performed at 200 to 300 ° C. Therefore, the reduction of hydrogen molecules in the quartz glass 25 during heating can be suppressed.
[0060]
【Example】
Hereinafter, embodiments of the present invention will be described.
[0061]
Example 1
Using a molding apparatus as shown in FIG. 1, a lump of quartz glass 25 made of a synthetic quartz glass ingot having a diameter of 50 cm and a height of 70 cm is converted to a plate-like quartz having a square shape of 100 cm on a side and a thickness of 13.7 cm. Glass 25 was formed.
[0062]
In this molding, after the pressure in the vacuum chamber 11 was reduced to 50 Pa by a vacuum pump, pure nitrogen gas was supplied at a pressure of 3 × 10 4 Filled up to Pa. The temperature was raised at a temperature rising rate of 600 ° C./hr, and the holding temperature was maintained as shown in Table 1 for 45 minutes to bring the quartz glass 25 to the above-mentioned holding temperature.
[0063]
Next, the top plate 23 is pressurized by the cylinder rod 26, and the pressing force for pressing the top plate 23 is 2 kg / cm at the stage of the displacement in the height direction of 0 to 50% at the initial stage of molding. 2 After that, at the same displacement of 50 to 80%, the pressing force is 4 kg / cm. 2 And 7 to 50 kg / cm at the same displacement of 80 to 100%. 2 And the pressing force was increased, and the quartz glass 25 was pressed at the maximum pressure shown in Table 1 to perform molding.
[0064]
After the molding, the heating of the carbon heater 13 was stopped, and the plate was allowed to stand for 20 hours to be naturally cooled to obtain a plate-like body of quartz glass 25.
[0065]
The transmittance distribution (Δn), the birefringence, the transmittance, the laser durability, and the thickness of the altered layer due to mixing of impurities were measured for the plate-like body.
[0066]
Table 2 shows the obtained results.
[0067]
Example 2
Using the same molding apparatus as in Example 1, heating was carried out as shown in Table 1 before being accommodated in the mold 15, and thereafter, the plate-like body was molded in the same manner as in Example 1 except that molding was performed under the molding conditions shown in Table 1. Got.
[0068]
Table 2 shows the measurement results of the transmittance distribution (Δn), the birefringence, the transmittance, the laser durability, and the thickness of the altered layer due to the mixing of impurities of the obtained plate-like body.
[0069]
Example 3
Using the same molding apparatus as in Example 1, heating was performed as shown in Table 1 before being housed in the mold 15, molding was performed under the molding conditions shown in Table 1, and after the molding, slow cooling shown in Table 1 was performed. A plate was obtained in the same manner as in Example 1, except that forced cooling was performed at a cooling rate of ° C / hr.
[0070]
Table 2 shows the measurement results of the transmittance distribution (Δn), the birefringence, the transmittance, the laser durability, and the thickness of the altered layer due to the mixing of impurities of the obtained plate-like body.
[0071]
Example 4
A plate-like body was obtained in the same manner as in Example 1 except that molding was performed using the same molding apparatus as in Example 1 under the molding conditions shown in Table 1, and forced cooling was performed as in Example 3 after molding.
[0072]
Table 2 shows the measurement results of the transmittance distribution (Δn), the birefringence, the transmittance, the laser durability, and the thickness of the altered layer due to the mixing of impurities of the obtained plate-like body.
[0073]
Example 5
Using the same molding apparatus as in Example 1, except that the heating shown in Table 1 is performed before being housed in the mold 15, the molding is performed under the molding conditions of Table 1, and the slow cooling shown in Table 1 is performed after the molding. A plate was obtained in the same manner as in Example 1.
[0074]
Table 2 shows the measurement results of the transmittance distribution (Δn), the birefringence, the transmittance, the laser durability, and the thickness of the altered layer due to the mixing of impurities of the obtained plate-like body.
[0075]
Comparative Example 1
The molding was performed in the same manner as in Example 1 except that molding was performed using a molding apparatus similar to that of Example 1 under a constant pressing force under the molding conditions shown in Table 1.
[0076]
As a result, the maximum pressurized pressure is 0.1 kg / cm 2 Therefore, the quartz glass 25 was not sufficiently displaced, the displacement in the height direction stopped at 30%, and a plate-like body was not obtained.
[0077]
Comparative Example 2
A plate-like body was obtained in the same manner as in Example 1 except that molding was performed under the molding conditions shown in Table 1 using the same molding apparatus as in Example 1.
[0078]
Table 2 shows the measurement results of the transmittance distribution (Δn), the birefringence, the transmittance, the laser durability, and the thickness of the altered layer due to the mixing of impurities of the obtained plate-like body.
[0079]
Comparative Example 3
Using the same molding apparatus as in Example 1, heating was performed as shown in Table 1 before being housed in the mold 15, molding was performed under a constant pressure under the molding conditions shown in Table 1, and cooling was performed at 400 ° C./hr after molding. A plate was obtained in the same manner as in Example 1 except that forced cooling was performed at a speed.
[0080]
Table 2 shows the measurement results of the transmittance distribution (Δn), the birefringence, the transmittance, the laser durability, and the thickness of the altered layer due to the mixing of impurities of the obtained plate-like body.
[0081]
[Table 1]
Figure 2004307264
[0082]
[Table 2]
Figure 2004307264
[0083]
As is clear from the results in Table 2, in each of Examples 1 to 5, the time during which the quartz glass 25 was exposed to a high temperature was shorter than that in Comparative Examples 2 and 3, and the laser durability and transmittance were good and the quality was altered. The layer thickness was thin.
[0084]
In Examples 2, 3, and 5 in which heating was performed in advance, the heating time was shorter than in Examples 1 and 4 and Comparative Examples 1 and 2.
[0085]
Further, Example 3 in which the slow cooling was performed had a smaller refractive index distribution than Example 1.
[0086]
The maximum pressure when pressing the quartz glass 25 with the top plate 23 during molding is 2 kg / cm. 2 In Comparative Example 1 which is too low, the plate-like body could not be formed, and in Comparative Example 3 in which the maximum pressure was not sufficient and the molding time was long, and in Comparative Example 2 in which the holding temperature was high and the forced cooling was not performed, quartz glass was used. 25 was exposed to a high temperature for a long time, and each measurement result was inferior to Examples 1 to 5.
[0087]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, the quartz glass is heated to a temperature range from the crystallization temperature to the softening point to increase the pressing force of the pressurizing section while maintaining the maximum pressure at 2 mm. ~ 50Kg / cm 2 Pressure, so that the temperature during molding is set to a low temperature below the softening point, and 2 to 50 kg / cm 2 By molding at a high pressure in a short time, the time during which the quartz glass is exposed to a high temperature can be reduced. Therefore, the hydrogen molecules in the quartz glass are hardly reduced, and the laser durability is easily maintained. Further, the impurities are hardly mixed in the quartz glass, the purity is hardly reduced, and the productivity is easily improved at the same time.
[0088]
At the same time, since the quartz glass is formed while increasing the pressing force of the pressing section, the quartz glass can be deformed gently by applying a low pressure in the early stage of forming, where the displacement of the quartz glass is large, and the quartz glass with low fluidity below the softening point It is easy to prevent the glass from being formed unevenly.
[0089]
According to the second aspect of the present invention, since the quartz glass is forcibly cooled after the quartz glass is formed into a predetermined shape, the time for exposing the quartz glass to a high temperature after molding can be shortened. It is easier to prevent lowering of hydrogen molecules therein and contamination of impurities, and it is also possible to shorten the time required for lowering the temperature and improve the productivity.
[0090]
Furthermore, according to the third aspect of the present invention, since the quartz glass is forcibly cooled in the temperature range of 1300 ° C. to 1100 ° C., the time for exposing the quartz glass to a high temperature can be reduced, and the crystallization can be performed. Can be prevented.
[0091]
According to the fourth aspect of the present invention, an optional temperature range in the process of cooling from 1100 ° C. to 500 ° C. is gradually cooled at a cooling rate of 5 to 20 ° C./hr. Can be reduced by shaping the quartz glass with a high maximum pressure, and the quartz glass can be easily homogenized.
[0092]
Furthermore, according to the fifth aspect of the invention, since the quartz glass is heated to a predetermined temperature before being housed in the mold, the heating time for heating in the mold can be shortened, and the productivity can be reduced. Easy to improve.
[0093]
According to the invention of claim 6, since the temperature to be heated before being housed in the mold is 200 ° C. to 300 ° C., hydrogen molecules in the quartz glass are hardly reduced at the time of heating, and the laser durability is improved. It is easy to maintain the quality.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a part of a molding apparatus according to Embodiment 1 of the present invention.
[Explanation of symbols]
10 Molding equipment
11 Vacuum chamber
13 Carbon heater
15 Mold
18 bottom
20 Side wall
21 hollow part
23 Top plate (Pressing part)
25 quartz glass
26 Cylinder rod

Claims (6)

石英ガラスをモールド内に収容して加熱し、該石英ガラスを加圧部により加圧して所定形状に成形する方法において、
前記石英ガラスを結晶化温度以上軟化点以下の温度範囲に加熱し、
前記加圧部の加圧力を増加させつつ、最大圧力が2〜50Kg/cmとなるように制御して前記石英ガラスを加圧することを特徴とする石英ガラスの成形方法。
In a method in which quartz glass is housed in a mold and heated, and the quartz glass is pressed into a predetermined shape by a pressing unit,
Heating the quartz glass to a temperature range from the crystallization temperature to the softening point,
A method for forming quartz glass, wherein the quartz glass is pressurized while controlling the maximum pressure to be 2 to 50 kg / cm2 while increasing the pressing force of the pressurizing section.
前記石英ガラスを所定形状にした後、前記石英ガラスを強制的に冷却することを特徴とする請求項1に記載の石英ガラスの成形方法。The method according to claim 1, wherein the quartz glass is forcibly cooled after the quartz glass is formed into a predetermined shape. 前記石英ガラスを1300℃〜1100℃の温度範囲で強制的に冷却することを特徴とする請求項2に記載の石英ガラスの成形方法。The method according to claim 2, wherein the quartz glass is forcibly cooled in a temperature range of 1300 ° C. to 1100 ° C. 4. 1100℃から500℃まで冷却していく過程の任意の温度範囲内を、5〜20℃/hrの冷却速度で徐冷することを特徴とする請求項1乃至3の何れか一つに記載の石英ガラスの成形方法。The cooling method according to any one of claims 1 to 3, wherein an arbitrary temperature range in the process of cooling from 1100 ° C to 500 ° C is gradually cooled at a cooling rate of 5 to 20 ° C / hr. A method for forming quartz glass. 前記石英ガラスを前記モールド内に収容する前に予め所定温度に加温することを特徴とする請求項1乃至4の何れか一つに記載の石英ガラスの成形方法。The method for forming quartz glass according to claim 1, wherein the quartz glass is heated to a predetermined temperature before the quartz glass is housed in the mold. 前記所定温度が200℃〜300℃であることを特徴とする請求項1乃至5の何れか一つに記載の石英ガラスの成形方法。The method according to claim 1, wherein the predetermined temperature is 200 ° C. to 300 ° C. 7.
JP2003103363A 2003-04-07 2003-04-07 Method of forming quartz glass Expired - Lifetime JP4341277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103363A JP4341277B2 (en) 2003-04-07 2003-04-07 Method of forming quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103363A JP4341277B2 (en) 2003-04-07 2003-04-07 Method of forming quartz glass

Publications (2)

Publication Number Publication Date
JP2004307264A true JP2004307264A (en) 2004-11-04
JP4341277B2 JP4341277B2 (en) 2009-10-07

Family

ID=33466523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103363A Expired - Lifetime JP4341277B2 (en) 2003-04-07 2003-04-07 Method of forming quartz glass

Country Status (1)

Country Link
JP (1) JP4341277B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003912A1 (en) * 2004-07-02 2006-01-12 Nikon Corporation Method for forming quartz glass
JP2006327884A (en) * 2005-05-27 2006-12-07 Nikon Corp Pretreatment method of quartz glass and method for molding quartz glass
JP2010030863A (en) * 2008-07-30 2010-02-12 Nikon Corp Method of judgement of deterioration of mold and method and apparatus of molding quartz glass
JP2010241622A (en) * 2009-04-02 2010-10-28 Sumitomo Electric Ind Ltd Method and apparatus for heat-forming silica glass
JP2012148976A (en) * 2012-05-17 2012-08-09 Nikon Corp Method for determining if shaping die is deteriorated or not, and method and apparatus for shaping quartz glass
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9027365B2 (en) 2013-01-08 2015-05-12 Heraeus Quartz America Llc System and method for forming fused quartz glass
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
WO2006003912A1 (en) * 2004-07-02 2006-01-12 Nikon Corporation Method for forming quartz glass
JP4835998B2 (en) * 2004-07-02 2011-12-14 株式会社ニコン Method of forming quartz glass
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2006327884A (en) * 2005-05-27 2006-12-07 Nikon Corp Pretreatment method of quartz glass and method for molding quartz glass
JP4655761B2 (en) * 2005-05-27 2011-03-23 株式会社ニコン Pretreatment method of quartz glass and molding method of quartz glass
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010030863A (en) * 2008-07-30 2010-02-12 Nikon Corp Method of judgement of deterioration of mold and method and apparatus of molding quartz glass
JP2010241622A (en) * 2009-04-02 2010-10-28 Sumitomo Electric Ind Ltd Method and apparatus for heat-forming silica glass
JP2012148976A (en) * 2012-05-17 2012-08-09 Nikon Corp Method for determining if shaping die is deteriorated or not, and method and apparatus for shaping quartz glass
US9027365B2 (en) 2013-01-08 2015-05-12 Heraeus Quartz America Llc System and method for forming fused quartz glass

Also Published As

Publication number Publication date
JP4341277B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
JP4341277B2 (en) Method of forming quartz glass
JP4288413B2 (en) Quartz glass molding method and molding apparatus
US6480518B1 (en) Synthetic quartz glass member for use in ArF excimer laser lithography
JP2005336047A (en) Optical member made of synthetic quartz glass and process for its production
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP2009530217A (en) Production of large articles with synthetic vitreous silica
JP4835998B2 (en) Method of forming quartz glass
JP4170719B2 (en) Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member
US20080006056A1 (en) Process for producing synthetic quartz and synthetic quartz glass for optical member
JP4415367B2 (en) Method of forming quartz glass
JP4374964B2 (en) Quartz glass molding method and molding apparatus
JP4011217B2 (en) Manufacturing method of optical quartz glass for excimer laser
JP4760137B2 (en) Method of forming quartz glass
JP2000219523A (en) Forming method of quartz glass, forming device and quartz glass produced by the method
JP2004307267A (en) Molding apparatus of quartz glass
JP2007022847A (en) Molding apparatus of quartz glass and method of molding quartz glass using the same
JP2006169033A (en) Forming method and forming apparatus for quartz glass
JP2985540B2 (en) Manufacturing method of quartz glass
JP3163857B2 (en) Method for producing quartz glass and quartz glass member produced thereby
JP3965552B2 (en) Method for producing synthetic quartz glass
JP4655761B2 (en) Pretreatment method of quartz glass and molding method of quartz glass
JP5418428B2 (en) Heat treatment method for synthetic quartz glass block
JP5208677B2 (en) Method for producing synthetic quartz glass member for ArF excimer laser lithography
JP2004123439A (en) Process for manufacturing optical glass
JP4744046B2 (en) Method for producing synthetic quartz glass material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4341277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term