JP2004307267A - Molding apparatus of quartz glass - Google Patents

Molding apparatus of quartz glass Download PDF

Info

Publication number
JP2004307267A
JP2004307267A JP2003103366A JP2003103366A JP2004307267A JP 2004307267 A JP2004307267 A JP 2004307267A JP 2003103366 A JP2003103366 A JP 2003103366A JP 2003103366 A JP2003103366 A JP 2003103366A JP 2004307267 A JP2004307267 A JP 2004307267A
Authority
JP
Japan
Prior art keywords
quartz glass
pressing
plate
pressure
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003103366A
Other languages
Japanese (ja)
Other versions
JP4465974B2 (en
Inventor
Shoji Yajima
昭司 矢島
Tetsuya Abe
哲也 阿邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003103366A priority Critical patent/JP4465974B2/en
Priority to KR1020040023657A priority patent/KR101096477B1/en
Priority to TW093109546A priority patent/TW200502183A/en
Publication of JP2004307267A publication Critical patent/JP2004307267A/en
Application granted granted Critical
Publication of JP4465974B2 publication Critical patent/JP4465974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/69Controlling the pressure applied to the glass via the dies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding apparatus for a quartz glass which is capable of homogeneously molding the quartz glass having a wide surface by the heating, pressing and molding of the quartz glass. <P>SOLUTION: The molding apparatus 10 for the quartz glass is provided with a mold 15 having a hollow part 21 capable of housing the quartz glass 25, a pressing plate 23 arranged movably inside the hollow part 21, a heating means 13 for heating the quartz glass 25 housed in the hollow part 21 and a molding means 26 capable of pressing a part of the pressing plate 23 in the pressing direction and is for molding the quartz glass 25 inside the hollow part 21 into a desired shape by pressing with the pressing plate 23 while heating with the heating means 13. A plurality of the molding means 26 are provided and the respective pressing parts 26a of a plurality of the molding means 26 independently press the pressing plate 23. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、石英ガラスをモールド内に収容して加熱加圧することにより、石英ガラスを広い面積の面を有する所定形状に成形するための石英ガラスの成形装置に関する。
【0002】
【従来の技術】
【従来の技術】
i線より長波長の光源を用いた投影露光装置の照明光学系あるいは投影光学系のレンズ、ミラー、レチクル等の光学部材では、材料として石英ガラスが多用されている。この石英ガラスは、例えば、火炎加水分解により透明石英ガラスを製造する直接法などの方法で合成されている。
【0003】
直接法では、石英ガラス製バーナにて支燃性ガス(酸素含有ガス、例えば酸素ガス)及び可燃性ガス(水素含有ガス、例えば水素ガスあるいは天然ガス)を混合・燃焼させ、前記バーナの中心部から原料ガスとして高純度のケイ素化合物(例えば四塩化ケイ素ガス)をキャリアガス(通常酸素ガス)で希釈して噴出させ、前記原料ガスを周囲の前記酸素ガス及び水素ガスの燃焼により反応(加水分解反応)させて石英ガラス微粒子を発生させ、その前記石英ガラス微粒子を、前記バーナ下方に配置され、回転および揺動および引き下げ運動を行う不透明石英ガラス板からなるターゲット上に堆積させ、同時に前記酸素ガス及び水素ガスの燃焼熱により溶融・ガラス化して石英ガラスインゴットを得ている。
【0004】
この方法によると、比較的大きな径の石英ガラスインゴットを得易いため、インゴットからブロックを切り出して所望の形状,大きさの光学部材を製造することができる。
【0005】
また、近年、大型のレンズやレチクル、或いは大型の液晶ディスプレイ等、広い面積の面を有する光学部材を得るため、予め形成されたインゴット等の石英ガラス塊を加熱加圧成形することにより扁平形状にして面積を拡大する成形方法が利用されている。
【0006】
この成形方法では、石英ガラス塊をモールド内に収容して加熱した状態で、加圧板により加圧することにより広い面積の面を成形する。
【0007】
このような加熱加圧成形を行うものとして、例えば、グラファイト製のモールド内で、絶対圧が 0.1Torr以上大気圧以下へのヘリウムガス雰囲気下に、1700℃以上の温度に加熱加圧成形し、ついで1100〜1300℃まで急冷する方法が知られている。また、石英ガラスとモールドの型材との熱膨張率差に起因する応力を緩和する構造を有するグラファイト製のモールドを用いて1600℃〜1700℃で加圧成形する方法(下記、特許文献1参照。)や、そのグラファイト製のモールドが2分割以上の縦型構造である成型装置が提案されている(下記、特許文献2及び3参照。)。更には、黒鉛製のモールド内面に石英粉末からなる被覆層を設けて、1550℃〜1700℃で加圧成形する方法(下記、特許文献4参照。)も知られている。
【0008】
【特許文献1】
特公平4−54626号公報。
【0009】
【特許文献2】
特開昭56−129621号公報。
【0010】
【特許文献3】
特開昭57−67031号公報。
【0011】
【特許文献4】
特開2002−22020号公報。
【0012】
【発明が解決しようとする課題】
しかしながら、近年、著しく広い面積の面を有する光学部材の要求が高まっているが、このような光学部材を加熱加圧成形する場合、広い面積の面全体にわたり均質な石英ガラス部材を得ることが容易でないという問題点が明らかになった。
【0013】
そこで、この発明は、石英ガラスの加熱加圧成形により、広い面積の面を均質に成形することが可能な石英ガラスの成形装置を提供することを課題とする。
【0014】
【課題を解決するための手段】
石英ガラスの加熱加圧成形で広い面積を均質に成形できない原因を調べたところ、グラファイトからなる加圧板が、高温条件下で石英ガラスを高圧で加圧すると変形を生じ、広い面積を均一な圧力で加圧できないことに起因していることが明らかになった。
【0015】
即ち、広い面積を加圧板により加圧すると、加圧板の加圧面の面積に応じた高い圧力が負荷されることになる。ところが、加圧面の面積が大きい程、その圧力が加圧板の一部に負荷され易くなる。その結果、広い面積の場合には加圧板が変形し易くなるのである。
【0016】
このような変形を防止するために、加圧板を厚くすることも考えられるが、高圧であるため、加圧板を著しく厚く形成しなければならず、装置全体の高さが著しく高くなるため好ましくない。
【0017】
そこで、上記のような課題を解決する請求項1に記載の発明は、石英ガラスを収容可能な中空部を有するモールドと、前記中空部の内部に移動可能に配置された加圧板と、前記中空部に収容された前記石英ガラスを加熱する加熱手段と、該加圧板の一部を加圧方向に押圧可能な成形手段とを備え、前記中空部内の石英ガラスを前記加熱手段で加熱しつつ、前記加圧板で加圧して所定形状に成形する装置であって、前記成形手段を複数設け、該複数の成形手段の押圧部位がそれぞれ独立に前記加圧板を加圧可能であることを特徴とする。
【0018】
また、請求項2に記載の発明は、請求項1に記載の構成に加え、前記複数の成形手段の前記加圧板の押圧部位の位置を検出する検出手段と、該検出手段の検出値に基づいて前記押圧部位の位置を制御する制御手段とを設けたことを特徴とする。
【0019】
更に、請求項3に記載の発明は、請求項1に記載の構成に加え、前記複数の成形手段の前記加圧板の傾斜を検出する検出手段と、該検出手段の検出値に基づいて前記押圧部位の位置を制御する制御手段とを設けたことを特徴とする。
【0020】
また、請求項4に記載の発明は、請求項2又は3に記載の構成に加え、前記制御手段が、前記加圧板により前記石英ガラスを加圧する圧力を調整するものであることを特徴とする。
【0021】
更に、請求項5に記載の発明は、請求項4に記載の構成に加え、前記複数の成形手段は、前記加圧板の一部を押圧するシリンダロッドを有する流体圧シリンダからなり、前記制御手段は、該流体圧シリンダに供給される流体圧力を調整するものであることを特徴とする。
【0022】
また、請求項6に記載の発明は、請求項1乃至5の何れか一つに記載の構成に加え、大きさの異なる複数の前記加圧板と、該複数の加圧板のそれぞれに対応する大きさの複数の前記モールドとを有し、該複数の加圧板及び複数のモールドの中の少なくとも一つを選択して装着することにより、該選択された前記加圧板の大きさに応じた数の前記成形手段で該加圧板が加圧可能に構成されていることを特徴とする。
【0023】
【発明の実施の形態】
[実施の形態1]
以下、この発明の実施の形態について説明する。
【0024】
図1乃至図3はこの実施の形態の成形装置を示す。
【0025】
この成形装置10は、四塩化ケイ素、シラン、有機ケイ素等のケイ素化合物を原料して製造される合成石英ガラスのインゴットやその一部、または、Ge、Ti、B、F、Al等の屈折率を変化させる成分を添加した合成石英ガラスのインゴットやその一部等の石英ガラス塊から、例えば、大型の液晶用マスク、半導体用マスク等のレチクル(フォトマスク)用基板、結像光学系の大型のレンズ材料のように、広い面積の面を有する板状体やその他の大型ガラスブロックを成形するための装置である。特に、この実施の形態では700cm以上、即ち、26.5cm×26.5cm以上の角形、φ300mm以上の丸形等の広い面を成形するのに好適な装置となっている。
【0026】
この成形装置10では、金属製の真空チャンバー11の内壁に、全面にわたって設けられた断熱材12と、断熱材12の縦壁内に設けられた加熱手段としてのカーボンヒータ13とが設けられ、更に、真空チャンバー11内部の略中央部に中空部21を有するモールド15が収容されている。
【0027】
モールド15は、底板16及び受板17を備えた底部18と、底部18の上部に複数の側板19を組み合わせて筒状に形成された側壁部20とを備え、この筒状の側壁部20と底部18とにより中空部21が形成されている。
【0028】
中空部21には、加圧板としての天板23が移動可能に配置され、中空部21内に収容された塊状の石英ガラス25を天板23の加圧面23aで加圧可能に構成されている。
【0029】
これらのモールド15及び天板23は、石英ガラス25の成形時の温度及び圧力に対する耐熱性及び強度を有し、且つ、成形時に石英ガラス25と接触しても不純物を混入し難い材料から形成されており、ここでは全てグラファイトにより形成されている。
【0030】
また、図3に示すように、側壁部20の内壁面には、加圧方向に延長する溝27が設けられ、天板23には該溝27に対応した凸部28が設けられ、この凸部28が溝27内を移動することにより天板23の加圧方向のガイド部となるように構成されている。
【0031】
この天板23の押圧面23b(上面)が、真空チャンバ11の外部に配設された成形手段としての油圧シリンダのシリンダロッド26で押圧されるようになっている。このシリンダロッド26は、先端部分(下端部)が天板23の押圧部位26aであり、5本のシリンダロッド26の押圧部位26aが天板23の押圧面23bに略均等に分散配置されて、当接した状態となっている。ここでは、シリンダロッド26が、四角形の天板23の中央位置と、この中央位置を囲む周辺4箇所に配置されている。
【0032】
また、シリンダロッド26の押圧部位26aの面積は、著しく小さ過ぎると天板23の変形が生じやすいため、天板23の押圧面23bの面積に応じて適宜設定するのが好ましい。
【0033】
なお、これらのシリンダロッド26を備えた油圧シリンダは、外部から供給する油圧を調整することにより、それぞれ独立にシリンダロッド26が加圧されて移動するように構成されているが、詳細な図示は省略されている。
【0034】
また、この成形装置10では、各シリンダロッド26の押圧部位26aの加圧方向の位置を検出するためのエンコーダが配設されている。このエンコーダは、シリンダロッド26の中段の基準となる位置に取付けられたワイヤー26bと、このワイヤー26bの変位量を検出する図示しないワイヤースケールエンコーダ本体とを備えている。このエンコーダで検出される各押圧部位26aの位置は天板23の加圧面23aの位置に対応する値であり、この検出値により天板23の各部位の位置(高さ)が検出可能となっている。
【0035】
更に、この成形装置10には、図4に示すように、天板23の複数の位置の加圧方向の傾斜を検出するための傾斜計29が、シリンダロッド26の上部に接続された基準板31に配設されている。この傾斜計29は、各シリンダロッド26間に配置され、天板23の加圧面23aの複数箇所で傾斜を検出可能となっている。なお、基準板31は、各シリンダロッド26に取外し可能に接続されている。
【0036】
そして、このエンコーダ及び傾斜計29により測定された天板23の加圧面23aの複数箇所の加圧方向の位置及び傾斜は、シリンダロッド26の押圧動作を制御するために利用可能となっている。例えば、これらの検出値が図示しない演算処理装置に入力され、その演算結果に基づいて各シリンダロッド26の油圧シリンダに供給する油圧が、独立に調整されるように制御手段が構成されている。
【0037】
次に、以上のような構成の成形装置10により、塊状の石英ガラス25を加熱加圧成形する場合について説明する。まず、真空チャンバ11内に底板16、受板17、及び側板19を組合わせてモールド15を形成する。そして、モールド15の中空部21内に塊状の石英ガラス25を配置し、その上部に天板23を配置し、更に、天板23の押圧面23bに油圧シリンダのシリンダロッド26の押圧部位26aを当接させてセットする。この実施の形態では、塊状の石英ガラス25として合成石英ガラスインゴットを用い、モールド15の中空部21の中央部分に配置している。
【0038】
そして、真空チャンバー11内を不活性ガスで置換し、カーボンヒータ13により中空部21内の塊状の石英ガラス25を加熱して、結晶化温度以上軟化点以下、具体的には1570℃〜1670℃に昇温して成形を行う。
【0039】
成形時には、各油圧シリンダの油圧を独立に調整することにより、シリンダロッド26を下方へ移動させて、各シリンダロッド26の押圧部位26aで天板23の押圧面23bを押圧する。これにより、天板23が底部側の加圧方向に移動し、天板23の加圧面23aにより塊状の石英ガラス25が加圧される。
【0040】
成形の初期段階では、天板23の加圧面23aの一部(ここでは中央部)が塊状の石英ガラス25に接触した状態となるため、その部分に対応したシリンダロッド26に他のシリンダロッド26より高い圧力を負荷する。特に、石英ガラス25の粘度が高い場合には、中央部のシリンダロッド26と周辺位置のシリンダロッド26との圧力差が大きくなる。この実施の形態では、天板23の加圧面23aが塊状の石英ガラス25と中央部分で接触し、周辺部分では接触しないため、中央位置に対応するシリンダロッド26に他の周辺位置のシリンダロッド26より高い圧力を負荷している。
【0041】
その後、成形が進行した段階で、各シリンダロッド26の圧力を増加するとともに、周辺位置のシリンダロッド26に中央位置のシリンダロッド26と同等の圧力を負荷し、成形の最終段階で全ての圧力が最も高くなるようにしている。
【0042】
ここでは、成形初期の段階では天板23の圧力を小さくし、最終段階で最大加圧力となるようにしている。例えば、初期の段階では天板23の加圧面23aの単位面積当りに換算した圧力を0.3〜1.5Kg/cmとし、成形の最終段階では1.0〜5.0Kg/cmとする。
【0043】
この成形時には、天板23の加圧面23aの加圧方向の位置と傾斜とに相当する各シリンダロッド26の押圧部位26aの位置と天板23の傾斜が検出され、これらの検出値に基づいて各シリンダロッド26の押圧部位26aの位置が制御されている。そのため、天板23の加圧面23aが加圧方向に対して垂直となるように制御されている。
【0044】
この制御においては、各押圧部位26aの位置が同じで傾斜が検出されない場合には、各シリンダロッド26を駆動する油圧シリンダへの供給圧力を維持又は均等に増加して、所定の天板23の下降速度で成形を続ける。この天板23の下降速度としては、例えば5〜20cm/minとすることができる。
【0045】
天板23全体が傾斜したり、一部が変形することにより一部が傾斜し、押圧部位26a間の加圧方向の位置ずれと傾斜とが検出された場合には、この位置ずれ及び傾斜を修正して全てのシリンダロッド26の押圧部位26aの位置が一致するように、各油圧シリンダへの供給圧力を調整する。
【0046】
また、全ての押圧部位26a間のずれが検出されないで傾斜が検出された場合には、各シリンダロッド26の油圧シリンダへの供給圧力を減少させる等により天板23の変形を修正する。
【0047】
そして、このような制御を行いつつ、成形の最終段階の圧力をシリンダロッド26に負荷し、塊状の石英ガラス25が所定形状の板状体に成形された段階で、天板23による加圧を終了する。その後、冷却して真空チャンバ11のモールド15から成形品の板状体を取り出すことにより成形が完了する。
【0048】
以上のような石英ガラス25の成形装置10によれば、天板23を押圧するシリンダロッド26が複数設けられ、その押圧部位26aがそれぞれ独立に天板23を加圧できるので、天板23の異なる位置をそれぞれ別のシリンダロッド26で、別の圧力で押圧することができる。そのため、天板23を押圧する圧力を各部位毎に調整することができ、成形の際に天板23の変形を防止して、広い面積を均一に加圧することが可能となる。そのため、広い面積の面を有する所定の板状の石英ガラス25を均質に、例えば、板状の石英ガラス25の厚さのばらつきをできるだけ小さく抑えて成形することが容易になる。
【0049】
しかも、成形時に天板23に負荷される力を複数のシリンダロッド26の押圧部位26aに分散するとともに、部分毎に圧力を調整するため、天板23が変形しにくく、天板23の厚さを十分に薄くすることができる。そのため、成形装置全体の装置高さを低くすることが可能となり、成形装置10の小型化が図り易い。
【0050】
また、複数のシリンダロッド26の押圧部位26aの位置を検出したり、天板23の傾斜を検出し、その検出値に基づいて各シリンダロッド26の押圧部位26aの位置を制御するようにしたので、天板23の加圧面23aに傾斜や変形が生じた場合に、その量に応じて正確にシリンダロッド26の押圧部位26aの位置を制御することができる。
【0051】
更に、天板23で石英ガラス25を加圧する圧力を制御して調整しているので、天板23から塊状の石英ガラス25に過剰な圧力が負荷されにくく、天板23の変形を防止して、バランスよく天板23を押圧し易い。
【0052】
なお、上記の実施の形態1では、板状の石英ガラス25を成形する例について説明したが、板状体以外の広い面積の面を有する成形体であっても、この発明は適宜適用可能である。
【0053】
また、上記では、加圧時に天板23の加圧方向の位置と傾斜との両方を検出して、各シリンダロッド26の圧力を制御するように制御装置を構成したが、位置だけを検出して制御してもよく、傾斜だけを検出して制御を行うことも可能である。
【0054】
更に、上記では、天板23の位置の制御を油圧シリンダに供給する油圧の調整により行ったが、成形手段として機械的に位置を調整可能なエンコーダを用いた装置により、精度良く位置を制御するようにしてもよい。
【0055】
また、上記では、成形時に結晶化温度以上軟化点温度以下の温度にした例について説明したが、石英ガラス25の結晶化温度以上であればよく、例えば軟化点より高い温度で成形することも可能である。
【0056】
[実施の形態2]
次に、図5に示す実施の形態2の成形装置10について説明する。
【0057】
この実施の形態2の成形装置10では、実施の形態1の天板23と大きさの異なる交換用天板31と、この交換用天板31に対応する交換用モールド32とを、天板23及びモールド15の代わりに任意に選択して装着可能に構成し、基準板31を取外した他は、実施の形態1の成形装置10と同一である。ここでは、大きさの異なる交換用天板31と、それに対応する大きさの交換用モールド32とを複数有していてもよく、更に、複数の交換用天板31及び交換用モールド32が同一の大きさであっても、互いに異なる大きさであってもよい。
【0058】
この交換用天板31及び交換用モールド32は、モールド15及び天板23を真空チャンバ11から取り外して装着されており、交換用天板31の押圧面31bには、押圧面31bの大きさに対応した数の1本のシリンダロッド26の押圧部位26aが当接した状態で配置されている。
【0059】
この成形装置10では、交換用モールド32の中空部33内に配置された塊状の石英ガラス25を加熱し、交換用天板31により加圧すれば、実施の形態1により得られる板状体より小さい所定形状の板状体を成形することができる。
【0060】
このような成形装置10によれば、実施の形態1の効果に加え、1つの成形装置10で異なる大きさの所定形状に石英ガラス25を成形することが可能となり、しかも、何れの大きさであっても交換用天板31の変形を防止して均質な面を成形することが可能である。
【0061】
【実施例】
以下、この発明の実施例について説明する。
【0062】
実施例1
図1乃至2に示すような成形装置10を用い、直径50cmで高さが70cmの合成石英ガラスインゴットからなる石英ガラス25から、一辺が100cmの正方形形状で厚さが14cmの板状の石英ガラス25を成形した。
【0063】
この成形においては、最大荷重5tonで、押圧部位の面積が78cmの油圧シリンダを5本用いるとともに、厚さ3cmのグラファイトからなる天板23を用いた。また、この天板23及びモールド15には、図3に示すような凸部28及び溝27からなるガイド部を設けた。
【0064】
成形時には、塊状の石英ガラス25の温度を1630℃に保持した。また、初期段階で、中央位置のシリンダロッド26の荷重を700Kg、周辺位置のシリンダロッド26の荷重をそれぞれ300Kgとし、成形の最終段階で、全てのシリンダロッド26の圧力を3tonとした。
【0065】
更に、成形時には、油圧シリンダに供給する油圧を調整することにより、シリンダロッド26の押圧部位26aの位置を制御した。
【0066】
成形により得られた板状体を周辺10mm、深さ10mmでテストプレートを採取し、二面研削、研磨し、歪の測定を周辺から3mmの位置で行った。その結果、最大値は2nm/mmであった。
【0067】
実施例2
シリンダロッド26の押圧部位26aの位置を、シリンダロッド26の押圧部位26aの絶対位置を調整するように制御した他は、実施例1と同一にして、板状体を得た。
【0068】
成形により得られた板状体を周辺10mm、深さ10mmでテストプレートを採取し、二面研削、研磨し、歪の測定を周辺から3mmの位置で行った。その結果、最大値は4nm/mmであった。
【0069】
実施例3
天板23及びモールド15に凸部28及び溝27からなるガイド部を設けない他は、実施例1と同一にして成形品を成形した。
【0070】
成形により得られた板状体を周辺10mm、深さ10mmでテストプレートを採取し、二面研削、研磨し、歪の測定を周辺から3mmの位置で行った。その結果、最大値は7nm/mmであった。
【0071】
実施例4
2本のシリンダロッド26により加圧する交換用天板31と、この交換用天板31に対応する交換用モールド32とを、真空チャンバ11内に2組配置し、50cm×50cmの正方形で厚さが15cmの板状体を2枚成形した。交換用天板31及び交換用モールド32には、実施例1の凸部28及び溝27と同一のガイド部を設けた。
【0072】
各モールドの成形条件は、2本のシリンダロッド26の荷重を実施例1の中央位置の荷重と同じにした他は、実施例1と同様にした。
【0073】
成形により得られた板状体を周辺10mm、深さ10mmでテストプレートを採取し、二面研削、研磨し、歪の測定を周辺から3mmの位置で行った。その結果、最大値は5nm/mmであった。
【0074】
実施例5
交換用天板31及びモールド32の内壁にガイド部を設けない他は、実施例4と同一にして2枚の成形品を成形した。
【0075】
成形により得られた板状体を周辺10mm、深さ10mmでテストプレートを採取し、二面研削、研磨し、歪の測定を周辺から3mmの位置で行った。その結果、最大値は9nm/mmであった。
【0076】
比較例1
1本のシリンダロッド26を用いて、成形の最終段階に5tonの荷重で加圧する他は、実施例1と同一にして成形を行った。
【0077】
成形により得られた板状体を周辺10mm、深さ10mmでテストプレートを採取し、二面研削、研磨し、歪の測定を周辺から3mmの位置で行った。その結果、最大値は20nm/mmであり、実施例1〜5に比べて、歪量が大きかった。
【0078】
比較例2
天板23及びモールド15に凸部28及び溝27を設けない他は、比較例1と同一にして成形を行った。
【0079】
成形により得られた板状体を周辺10mm、深さ10mmでテストプレートを採取し、二面研削、研磨し、歪の測定を周辺から3mmの位置で行った。その結果、最大値は25nm/mmであり、実施例に比べて、更に、歪量が大きくなった。
【0080】
【発明の効果】
以上詳述の通り、請求項1に記載の発明によれば、加圧板を押圧する成形手段が複数設けられ、その押圧部位がそれぞれ独立に加圧板を加圧可能であるので、加圧板の異なる位置をそれぞれ別々の成形手段の押圧部位により、別々の圧力で押圧することが可能となる。そのため、加圧板の圧力を部分毎に調整することができ、石英ガラスの成形時に加圧板の変形を防止して、広い面積を均一に加圧し易い。その結果、広い面積の面を有する所定形状の石英ガラスを均質に成形し易くなる。
【0081】
また、請求項2又は3に記載の発明によれば、複数の成形手段の加圧板の押圧部位の位置を検出したり、加圧板の傾斜を検出し、その検出値に基づいて押圧部位の位置を制御するように構成したので、加圧板に傾斜や変形が生じた場合にその量に応じて正確に押圧部位の位置を制御することができ、広い面積をより均一に加圧し易。
【0082】
更に、請求項4に記載の発明によれば、制御手段が加圧板により石英ガラスを加圧する圧力を調整するものであるので、加圧板から石英ガラスに過剰な圧力が負荷されにくく、加圧板の変形を防止してバランス良く加圧板を押圧し易い。
【0083】
更に、請求項5に記載の発明によれば、成形手段が加圧板の一部を加圧するシリンダロッドを有する流体圧シリンダからなり、制御手段が流体圧シリンダの流体圧力を制御するものであるので、流体圧シリンダの流体圧力を調整することで石英ガラスを加圧する圧力を調整できるため、圧力の制御が容易である。
【0084】
また、請求項6に記載の発明によれば、大きさの異なる複数の加圧板と、それに対応する大きさの複数のモールドとの中から少なくとも一つの組を選択して装着することにより、加圧板の大きさに応じた数の成形手段で加圧板を加圧可能に構成されているので、1つの成形装置で異なる大きさに石英ガラスを成形することが可能となる。
【図面の簡単な説明】
【図1】この発明の実施の形態1の成形装置の一部を示す概略縦断面図である。
【図2】同実施の形態1の成形装置の一部を示す概略横断面図である。
【図3】同実施の形態1の成形装置のモールド及び天板のガイド部を示す図である。
【図4】同実施の形態1の成形装置の傾斜計の配置を示す配置図である。
【図5】この発明の実施の形態2の成形装置の一部を示す概略縦断面図である。
【符号の説明】
10 成形装置
11 真空チャンバ
13 カーボンヒータ
15 モールド
18 底部
20 側壁部
21 中空部
23 天板(加圧板)
25 石英ガラス塊
26 シリンダロッド(成形手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a quartz glass forming apparatus for forming quartz glass into a predetermined shape having a wide area by heating and pressurizing quartz glass in a mold.
[0002]
[Prior art]
[Prior art]
For an illumination optical system of a projection exposure apparatus using a light source having a wavelength longer than i-line or an optical member of a projection optical system such as a lens, a mirror, and a reticle, quartz glass is frequently used as a material. This quartz glass is synthesized by a method such as a direct method of producing transparent quartz glass by flame hydrolysis.
[0003]
In the direct method, a combustible gas (oxygen-containing gas, for example, oxygen gas) and a combustible gas (hydrogen-containing gas, for example, hydrogen gas or natural gas) are mixed and burned in a quartz glass burner, and the center of the burner is burned. A high-purity silicon compound (for example, silicon tetrachloride gas) is diluted with a carrier gas (usually oxygen gas) as a raw material gas and ejected, and the raw material gas is reacted (hydrolyzed) by burning the surrounding oxygen gas and hydrogen gas. Reaction) to generate quartz glass fine particles, and the quartz glass fine particles are deposited on a target formed of an opaque quartz glass plate which is arranged below the burner and rotates, swings and pulls down, and simultaneously the oxygen gas In addition, a quartz glass ingot is obtained by melting and vitrification by the heat of combustion of hydrogen gas.
[0004]
According to this method, since a quartz glass ingot having a relatively large diameter is easily obtained, an optical member having a desired shape and size can be manufactured by cutting a block from the ingot.
[0005]
In recent years, in order to obtain an optical member having a large area, such as a large lens or reticle, or a large liquid crystal display, a preformed quartz glass block such as an ingot is formed into a flat shape by heating and pressing. A molding method for enlarging the area is used.
[0006]
In this forming method, a large area surface is formed by pressing a quartz glass lump in a mold in a heated state with a pressing plate.
[0007]
As a method for performing such heat and pressure molding, for example, heat and pressure molding is performed to a temperature of 1700 ° C. or more in a helium gas atmosphere having an absolute pressure of 0.1 Torr or more and an atmospheric pressure or less in a graphite mold. Then, a method of rapidly cooling to 1100 to 1300 ° C is known. In addition, a method of press-molding at 1600 ° C. to 1700 ° C. using a graphite mold having a structure for relaxing stress caused by a difference in thermal expansion coefficient between quartz glass and a mold material of the mold (see Patent Document 1 below). ) Or a molding apparatus in which the graphite mold has a vertical structure of two or more divisions (see Patent Documents 2 and 3 below). Furthermore, there is also known a method in which a coating layer made of quartz powder is provided on the inner surface of a graphite mold and pressed at 1550 ° C. to 1700 ° C. (see Patent Document 4 below).
[0008]
[Patent Document 1]
Japanese Patent Publication No. 4-54626.
[0009]
[Patent Document 2]
JP-A-56-129621.
[0010]
[Patent Document 3]
JP-A-57-67031.
[0011]
[Patent Document 4]
JP-A-2002-22020.
[0012]
[Problems to be solved by the invention]
However, in recent years, there has been an increasing demand for an optical member having a surface with a remarkably large area. When such an optical member is formed by heating and pressing, it is easy to obtain a uniform quartz glass member over the entire surface with a large area. The problem that is not clear became clear.
[0013]
Accordingly, an object of the present invention is to provide a quartz glass forming apparatus capable of uniformly forming a wide area surface by heating and pressing the quartz glass.
[0014]
[Means for Solving the Problems]
Investigating the reason why a large area could not be formed uniformly by heating and pressing of quartz glass, the pressing plate made of graphite deformed when the quartz glass was pressed at high pressure under high temperature conditions, and the large area was pressed uniformly. It became clear that this was due to the inability to pressurize.
[0015]
That is, when a large area is pressed by the pressing plate, a high pressure corresponding to the area of the pressing surface of the pressing plate is applied. However, as the area of the pressing surface is larger, the pressure is more likely to be applied to a part of the pressing plate. As a result, in the case of a large area, the pressing plate is easily deformed.
[0016]
In order to prevent such deformation, it is conceivable to increase the thickness of the pressure plate. However, since the pressure is high, the pressure plate must be formed extremely thick, which is not preferable because the height of the entire apparatus is significantly increased. .
[0017]
Therefore, the invention according to claim 1, which solves the above-described problem, includes a mold having a hollow portion capable of accommodating quartz glass, a pressing plate movably disposed inside the hollow portion, and the hollow plate. Heating means for heating the quartz glass housed in the portion, and forming means capable of pressing a part of the pressing plate in a pressing direction, while heating the quartz glass in the hollow portion by the heating means, An apparatus for forming into a predetermined shape by pressing with the pressing plate, wherein a plurality of the forming means are provided, and pressing portions of the plurality of forming means can press the pressing plate independently of each other. .
[0018]
According to a second aspect of the present invention, in addition to the configuration of the first aspect, a detecting means for detecting a position of a pressing portion of the plurality of forming means on the pressing plate and a detection value of the detecting means. And control means for controlling the position of the pressing portion.
[0019]
Further, according to a third aspect of the present invention, in addition to the configuration of the first aspect, detecting means for detecting the inclination of the pressing plate of the plurality of forming means, and the pressing based on a detection value of the detecting means. Control means for controlling the position of the part.
[0020]
According to a fourth aspect of the present invention, in addition to the configuration of the second or third aspect, the control means adjusts a pressure for pressing the quartz glass by the pressing plate. .
[0021]
Further, according to a fifth aspect of the present invention, in addition to the configuration of the fourth aspect, the plurality of forming means comprises a fluid pressure cylinder having a cylinder rod for pressing a part of the pressure plate, and the control means Is characterized by adjusting a fluid pressure supplied to the fluid pressure cylinder.
[0022]
According to a sixth aspect of the present invention, in addition to the configuration according to any one of the first to fifth aspects, a plurality of the pressure plates having different sizes and a size corresponding to each of the plurality of the pressure plates are provided. A plurality of the molds, and by selecting and mounting at least one of the plurality of press plates and the plurality of molds, a number corresponding to the size of the selected press plate. The pressure plate is configured to be pressurizable by the molding means.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
[Embodiment 1]
Hereinafter, embodiments of the present invention will be described.
[0024]
1 to 3 show a molding apparatus according to this embodiment.
[0025]
The molding apparatus 10 is a synthetic quartz glass ingot manufactured from silicon compounds such as silicon tetrachloride, silane, and organosilicon, and a part thereof, or a refractive index of Ge, Ti, B, F, Al, or the like. From ingots of synthetic quartz glass added with components that change the size of the ingots and quartz glass chunks such as a part thereof, for example, a substrate for a reticle (photomask) such as a large-sized liquid crystal mask or a semiconductor mask, and a large-sized imaging optical system. This is an apparatus for forming a plate-like body having a large area surface or another large glass block like the lens material of (1). In particular, in this embodiment, the apparatus is suitable for forming a wide surface such as a square having a size of 700 cm 2 or more, that is, a square having a size of 26.5 cm × 26.5 cm or more and a round shape having a diameter of 300 mm or more.
[0026]
In the forming apparatus 10, a heat insulating material 12 provided over the entire surface of an inner wall of a metal vacuum chamber 11 and a carbon heater 13 as heating means provided in a vertical wall of the heat insulating material 12 are provided. A mold 15 having a hollow portion 21 is housed at a substantially central portion inside the vacuum chamber 11.
[0027]
The mold 15 includes a bottom portion 18 having a bottom plate 16 and a receiving plate 17, and a side wall portion 20 formed in a cylindrical shape by combining a plurality of side plates 19 on the bottom portion 18. A hollow portion 21 is formed by the bottom portion 18.
[0028]
A top plate 23 as a pressing plate is movably disposed in the hollow portion 21, and the massive quartz glass 25 housed in the hollow portion 21 can be pressed by a pressing surface 23 a of the top plate 23. .
[0029]
The mold 15 and the top plate 23 are formed of a material having heat resistance and strength against the temperature and pressure at the time of molding the quartz glass 25 and hardly mixing impurities even when the quartz glass 25 contacts the quartz glass 25 at the time of molding. Here, all are made of graphite.
[0030]
As shown in FIG. 3, a groove 27 extending in the pressing direction is provided on the inner wall surface of the side wall 20, and a convex portion 28 corresponding to the groove 27 is provided on the top plate 23. The portion 28 moves in the groove 27 so as to serve as a guide portion of the top plate 23 in the pressing direction.
[0031]
The pressing surface 23b (upper surface) of the top plate 23 is pressed by a cylinder rod 26 of a hydraulic cylinder as a forming means provided outside the vacuum chamber 11. In the cylinder rod 26, the tip portion (lower end portion) is a pressing portion 26 a of the top plate 23, and the pressing portions 26 a of the five cylinder rods 26 are substantially uniformly distributed on the pressing surface 23 b of the top plate 23. It is in contact. Here, the cylinder rods 26 are arranged at the central position of the square top plate 23 and at four places around the central position.
[0032]
If the area of the pressing portion 26a of the cylinder rod 26 is extremely small, the top plate 23 is likely to be deformed. Therefore, it is preferable to appropriately set the area according to the area of the pressing surface 23b of the top plate 23.
[0033]
The hydraulic cylinders provided with these cylinder rods 26 are configured such that the cylinder rods 26 are independently pressurized and moved by adjusting the hydraulic pressure supplied from the outside. Omitted.
[0034]
Further, in the molding apparatus 10, an encoder for detecting the position of the pressing portion 26a of each cylinder rod 26 in the pressing direction is provided. The encoder includes a wire 26b attached to a reference position in the middle of the cylinder rod 26, and a wire scale encoder body (not shown) for detecting the displacement of the wire 26b. The position of each pressed portion 26a detected by this encoder is a value corresponding to the position of the pressing surface 23a of the top plate 23, and the position (height) of each portion of the top plate 23 can be detected from the detected value. ing.
[0035]
Further, as shown in FIG. 4, the molding apparatus 10 includes an inclinometer 29 for detecting inclinations of the top plate 23 at a plurality of positions in the pressing direction, and a reference plate connected to an upper portion of the cylinder rod 26. 31. The inclinometer 29 is arranged between the cylinder rods 26, and can detect inclination at a plurality of positions on the pressing surface 23a of the top plate 23. The reference plate 31 is detachably connected to each cylinder rod 26.
[0036]
The positions and inclinations of the pressing surface 23 a of the top plate 23 in the pressing direction measured by the encoder and the inclinometer 29 can be used to control the pressing operation of the cylinder rod 26. For example, the control means is configured such that these detected values are input to an arithmetic processing device (not shown), and the hydraulic pressure supplied to the hydraulic cylinder of each cylinder rod 26 is independently adjusted based on the calculation results.
[0037]
Next, a case where the bulky quartz glass 25 is heated and pressed by the forming apparatus 10 having the above-described configuration will be described. First, the mold 15 is formed by combining the bottom plate 16, the receiving plate 17, and the side plate 19 in the vacuum chamber 11. Then, a massive quartz glass 25 is disposed in the hollow portion 21 of the mold 15, a top plate 23 is disposed thereon, and a pressing portion 26 a of a cylinder rod 26 of a hydraulic cylinder is further disposed on a pressing surface 23 b of the top plate 23. Set it in contact. In this embodiment, a synthetic quartz glass ingot is used as the bulk quartz glass 25, and is disposed at the center of the hollow portion 21 of the mold 15.
[0038]
Then, the inside of the vacuum chamber 11 is replaced with an inert gas, and the massive quartz glass 25 in the hollow portion 21 is heated by the carbon heater 13 so that the crystallization temperature is higher than the crystallization temperature and lower than the softening point, specifically, 1570 ° C. to 1670 ° C. The temperature is raised to perform molding.
[0039]
During molding, the cylinder rod 26 is moved downward by independently adjusting the hydraulic pressure of each hydraulic cylinder, and the pressing surface 26b of the top plate 23 is pressed by the pressing portion 26a of each cylinder rod 26. As a result, the top plate 23 moves in the pressing direction on the bottom side, and the massive quartz glass 25 is pressed by the pressing surface 23a of the top plate 23.
[0040]
In the initial stage of the molding, a part (here, the center part) of the pressing surface 23a of the top plate 23 comes into contact with the massive quartz glass 25, so that the cylinder rod 26 corresponding to the part has another cylinder rod 26. Apply higher pressure. In particular, when the viscosity of the quartz glass 25 is high, the pressure difference between the cylinder rod 26 at the center and the cylinder rod 26 at the peripheral position increases. In this embodiment, since the pressing surface 23a of the top plate 23 contacts the massive quartz glass 25 at the central portion and does not contact at the peripheral portion, the cylinder rod 26 corresponding to the central position is connected to the cylinder rod 26 at another peripheral position. Applying higher pressure.
[0041]
Thereafter, at the stage where the molding has progressed, the pressure of each cylinder rod 26 is increased, and a pressure equivalent to that of the cylinder rod 26 at the center position is applied to the cylinder rod 26 at the peripheral position. I try to be the highest.
[0042]
Here, the pressure of the top plate 23 is reduced in the early stage of molding, and is set to the maximum pressing force in the final stage. For example, in the initial stage, the pressure per unit area of the pressing surface 23a of the top plate 23 is set to 0.3 to 1.5 kg / cm 2, and in the final stage of molding, it is 1.0 to 5.0 kg / cm 2 . I do.
[0043]
During this molding, the position of the pressing portion 26a of each cylinder rod 26 corresponding to the position and the inclination of the pressing surface 23a of the top plate 23 in the pressing direction and the inclination of the top plate 23 are detected, and based on these detected values, The position of the pressing portion 26a of each cylinder rod 26 is controlled. Therefore, control is performed so that the pressing surface 23a of the top plate 23 is perpendicular to the pressing direction.
[0044]
In this control, when the position of each pressing portion 26a is the same and the inclination is not detected, the supply pressure to the hydraulic cylinder driving each cylinder rod 26 is maintained or uniformly increased, and the predetermined top plate 23 Continue molding at the descending speed. The lowering speed of the top plate 23 can be, for example, 5 to 20 cm / min.
[0045]
When the entire top plate 23 is inclined or partially deformed, a part of the top plate 23 is inclined, and when the positional deviation and the inclination in the pressing direction between the pressing portions 26a are detected, the positional deviation and the inclination are detected. The pressure to be supplied to each hydraulic cylinder is adjusted so that the positions of the pressing portions 26a of all the cylinder rods 26 coincide with each other.
[0046]
When the inclination is detected without detecting the displacement between all the pressing portions 26a, the deformation of the top plate 23 is corrected by reducing the supply pressure of each cylinder rod 26 to the hydraulic cylinder.
[0047]
Then, while performing such control, the pressure of the final stage of the molding is applied to the cylinder rod 26, and the pressing by the top plate 23 is performed at the stage where the massive quartz glass 25 is formed into a plate having a predetermined shape. finish. Thereafter, the molding is completed by cooling and taking out the plate-like body of the molded product from the mold 15 of the vacuum chamber 11.
[0048]
According to the above-described quartz glass 25 forming apparatus 10, a plurality of cylinder rods 26 for pressing the top plate 23 are provided, and the pressing portions 26a can independently press the top plate 23. Different positions can be pressed by different cylinder rods 26 with different pressures. Therefore, the pressure for pressing the top plate 23 can be adjusted for each part, and deformation of the top plate 23 during molding can be prevented, and a wide area can be uniformly pressed. Therefore, it becomes easy to form the predetermined plate-shaped quartz glass 25 having a wide area surface uniformly, for example, with the thickness variation of the plate-shaped quartz glass 25 kept as small as possible.
[0049]
Moreover, since the force applied to the top plate 23 during molding is distributed to the pressing portions 26a of the plurality of cylinder rods 26 and the pressure is adjusted for each part, the top plate 23 is not easily deformed, and the thickness of the top plate 23 is small. Can be made sufficiently thin. Therefore, the height of the entire molding apparatus can be reduced, and the molding apparatus 10 can be easily reduced in size.
[0050]
Further, since the positions of the pressing parts 26a of the plurality of cylinder rods 26 are detected, the inclination of the top plate 23 is detected, and the positions of the pressing parts 26a of the cylinder rods 26 are controlled based on the detected values. When the pressing surface 23a of the top plate 23 is inclined or deformed, the position of the pressing portion 26a of the cylinder rod 26 can be accurately controlled according to the amount.
[0051]
Further, since the pressure for pressing the quartz glass 25 by the top plate 23 is controlled and adjusted, excessive pressure is hardly applied from the top plate 23 to the massive quartz glass 25, and the top plate 23 is prevented from being deformed. It is easy to press the top plate 23 in a well-balanced manner.
[0052]
In the above-described first embodiment, the example in which the plate-shaped quartz glass 25 is formed has been described. However, the present invention can be appropriately applied to a formed body having a surface with a large area other than the plate-shaped body. is there.
[0053]
In the above description, the control device is configured to detect both the position and the inclination of the top plate 23 in the pressing direction and control the pressure of each cylinder rod 26 at the time of pressing, but only the position is detected. Alternatively, the control may be performed by detecting only the inclination.
[0054]
Further, in the above description, the position of the top plate 23 is controlled by adjusting the hydraulic pressure supplied to the hydraulic cylinder. However, the position is controlled with high precision by a device using an encoder capable of mechanically adjusting the position as a forming unit. You may do so.
[0055]
Further, in the above description, an example was described in which the temperature was set to be equal to or higher than the crystallization temperature and equal to or lower than the softening point at the time of molding. It is.
[0056]
[Embodiment 2]
Next, the molding apparatus 10 according to the second embodiment shown in FIG. 5 will be described.
[0057]
In the molding apparatus 10 of the second embodiment, a replacement top plate 31 having a different size from the top plate 23 of the first embodiment and a replacement mold 32 corresponding to the replacement top plate 31 are combined with the top plate 23. The molding apparatus 10 is the same as the molding apparatus 10 of the first embodiment except that it is configured to be arbitrarily selectable and mountable instead of the mold 15 and the reference plate 31 is removed. Here, a plurality of replacement top plates 31 having different sizes and a plurality of replacement molds 32 having corresponding sizes may be provided, and the plurality of replacement top plates 31 and the replacement molds 32 may be the same. Or different sizes from each other.
[0058]
The replacement top plate 31 and the replacement mold 32 are mounted by removing the mold 15 and the top plate 23 from the vacuum chamber 11, and the pressing surface 31b of the replacement top plate 31 has the size of the pressing surface 31b. The pressing portions 26a of the corresponding number of one cylinder rod 26 are arranged in contact with each other.
[0059]
In this forming apparatus 10, if the massive quartz glass 25 arranged in the hollow portion 33 of the replacement mold 32 is heated and pressed by the replacement top plate 31, the plate-like body obtained in the first embodiment can be obtained. A small plate-shaped body having a predetermined shape can be formed.
[0060]
According to such a forming apparatus 10, in addition to the effect of the first embodiment, it is possible to form the quartz glass 25 into a predetermined shape having a different size with one forming apparatus 10, and furthermore, in any size. Even with this, it is possible to prevent the deformation of the replacement top plate 31 and form a uniform surface.
[0061]
【Example】
Hereinafter, embodiments of the present invention will be described.
[0062]
Example 1
A quartz glass 25 made of a synthetic quartz glass ingot having a diameter of 50 cm and a height of 70 cm using a molding apparatus 10 as shown in FIGS. 25 was molded.
[0063]
In this molding, five hydraulic cylinders with a maximum load of 5 ton and a pressing area of 78 cm 2 were used, and a top plate 23 made of graphite having a thickness of 3 cm was used. Further, the top plate 23 and the mold 15 were provided with a guide portion including a convex portion 28 and a groove 27 as shown in FIG.
[0064]
During molding, the temperature of the massive quartz glass 25 was maintained at 1630 ° C. In the initial stage, the load on the cylinder rod 26 at the center position was set at 700 kg, and the load on the cylinder rod 26 at the peripheral position was set at 300 kg, and the pressure on all the cylinder rods 26 was set at 3 ton at the final stage of molding.
[0065]
Further, at the time of molding, the position of the pressing portion 26a of the cylinder rod 26 was controlled by adjusting the hydraulic pressure supplied to the hydraulic cylinder.
[0066]
A test plate was sampled from the plate obtained by molding at a periphery of 10 mm and a depth of 10 mm, and two surfaces were ground and polished, and strain was measured at a position of 3 mm from the periphery. As a result, the maximum value was 2 nm / mm.
[0067]
Example 2
A plate-like body was obtained in the same manner as in Example 1 except that the position of the pressing portion 26a of the cylinder rod 26 was controlled to adjust the absolute position of the pressing portion 26a of the cylinder rod 26.
[0068]
A test plate was sampled from the plate obtained by molding at a periphery of 10 mm and a depth of 10 mm, and two surfaces were ground and polished, and strain was measured at a position of 3 mm from the periphery. As a result, the maximum value was 4 nm / mm.
[0069]
Example 3
A molded product was formed in the same manner as in Example 1 except that the top plate 23 and the mold 15 were not provided with a guide portion including the convex portion 28 and the groove 27.
[0070]
A test plate was sampled from the plate obtained by molding at a periphery of 10 mm and a depth of 10 mm, and two surfaces were ground and polished, and strain was measured at a position of 3 mm from the periphery. As a result, the maximum value was 7 nm / mm.
[0071]
Example 4
Two sets of a replacement top plate 31 pressurized by two cylinder rods 26 and a replacement mold 32 corresponding to the replacement top plate 31 are arranged in the vacuum chamber 11 and have a square shape of 50 cm × 50 cm. Were formed into two plate-like bodies having a size of 15 cm. The replacement top plate 31 and the replacement mold 32 were provided with the same guide portions as the protrusions 28 and the grooves 27 of the first embodiment.
[0072]
The molding conditions for each mold were the same as in Example 1 except that the load on the two cylinder rods 26 was the same as the load at the center position in Example 1.
[0073]
A test plate was sampled from the plate obtained by molding at a periphery of 10 mm and a depth of 10 mm, and two surfaces were ground and polished, and strain was measured at a position of 3 mm from the periphery. As a result, the maximum value was 5 nm / mm.
[0074]
Example 5
Two molded articles were formed in the same manner as in Example 4 except that the guide part was not provided on the replacement ceiling plate 31 and the inner wall of the mold 32.
[0075]
A test plate was sampled from the plate obtained by molding at a periphery of 10 mm and a depth of 10 mm, and two surfaces were ground and polished, and strain was measured at a position of 3 mm from the periphery. As a result, the maximum value was 9 nm / mm.
[0076]
Comparative Example 1
The molding was performed in the same manner as in Example 1 except that a single cylinder rod 26 was used to apply a pressure of 5 ton at the final stage of molding.
[0077]
A test plate was sampled from the plate obtained by molding at a periphery of 10 mm and a depth of 10 mm, and two surfaces were ground and polished, and strain was measured at a position of 3 mm from the periphery. As a result, the maximum value was 20 nm / mm, and the strain amount was larger than in Examples 1 to 5.
[0078]
Comparative Example 2
The molding was performed in the same manner as in Comparative Example 1 except that the convex portion 28 and the groove 27 were not provided on the top plate 23 and the mold 15.
[0079]
A test plate was sampled from the plate obtained by molding at a periphery of 10 mm and a depth of 10 mm, and two surfaces were ground and polished, and strain was measured at a position of 3 mm from the periphery. As a result, the maximum value was 25 nm / mm, and the strain amount was further increased as compared with the example.
[0080]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, a plurality of forming means for pressing the pressing plate are provided, and the pressing portions can press the pressing plate independently of each other. The positions can be pressed with different pressures by the pressing portions of the respective different molding means. Therefore, the pressure of the pressing plate can be adjusted for each part, and the pressing plate can be prevented from being deformed during the formation of quartz glass, so that a large area can be easily pressed uniformly. As a result, it becomes easier to uniformly form quartz glass having a predetermined area and a surface having a large area.
[0081]
According to the second or third aspect of the present invention, the position of the pressing portion of the pressing plate of the plurality of forming means is detected, or the inclination of the pressing plate is detected, and the position of the pressing portion is determined based on the detected value. When the pressure plate is inclined or deformed, the position of the pressed portion can be accurately controlled in accordance with the amount of the pressure plate, so that a large area can be pressed more uniformly.
[0082]
Furthermore, according to the invention as set forth in claim 4, since the control means adjusts the pressure for pressing the quartz glass by the pressing plate, excessive pressure is hardly applied to the quartz glass from the pressing plate, and It is easy to press the pressure plate with good balance by preventing deformation.
[0083]
Further, according to the fifth aspect of the present invention, the forming means comprises a fluid pressure cylinder having a cylinder rod for pressurizing a part of the pressure plate, and the control means controls the fluid pressure of the fluid pressure cylinder. Since the pressure for pressing the quartz glass can be adjusted by adjusting the fluid pressure of the fluid pressure cylinder, the pressure can be easily controlled.
[0084]
According to the sixth aspect of the present invention, at least one set is selected from a plurality of pressing plates having different sizes and a plurality of molds having a size corresponding to the pressing plates. Since the pressing plate is configured to be pressurizable by a number of forming means corresponding to the size of the pressing plate, it is possible to form quartz glass into different sizes with one forming device.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a part of a molding apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a schematic transverse sectional view showing a part of the molding apparatus according to the first embodiment.
FIG. 3 is a diagram showing a guide portion of a mold and a top plate of the molding apparatus according to the first embodiment.
FIG. 4 is an arrangement diagram showing an arrangement of an inclinometer of the molding apparatus according to the first embodiment.
FIG. 5 is a schematic longitudinal sectional view showing a part of a molding apparatus according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Forming apparatus 11 Vacuum chamber 13 Carbon heater 15 Mold 18 Bottom part 20 Side wall part 21 Hollow part 23 Top plate (pressure plate)
25 Quartz glass block 26 Cylinder rod (forming means)

Claims (6)

石英ガラスを収容可能な中空部を有するモールドと、前記中空部の内部に移動可能に配置された加圧板と、前記中空部に収容された前記石英ガラスを加熱する加熱手段と、該加圧板の一部を加圧方向に押圧可能な成形手段とを備え、前記中空部内の石英ガラスを前記加熱手段で加熱しつつ、前記加圧板で加圧して所定形状に成形する装置であって、
前記成形手段を複数設け、該複数の成形手段の押圧部位がそれぞれ独立に前記加圧板を加圧可能であることを特徴とする石英ガラスの成形装置。
A mold having a hollow portion capable of accommodating quartz glass, a pressing plate movably disposed inside the hollow portion, a heating unit for heating the quartz glass accommodated in the hollow portion, An apparatus for forming a predetermined shape by pressurizing the quartz glass in the hollow portion with the heating means, while pressing the quartz glass in the hollow portion with the heating means,
An apparatus for forming quartz glass, wherein a plurality of the forming means are provided, and pressing portions of the plurality of forming means can independently press the pressing plate.
前記複数の成形手段の前記加圧板の押圧部位の位置を検出する検出手段と、該検出手段の検出値に基づいて前記押圧部位の位置を制御する制御手段とを設けたことを特徴とする請求項1に記載の石英ガラスの成形装置。A detecting means for detecting a position of a pressed part of the pressing plate of the plurality of forming means, and a control means for controlling a position of the pressed part based on a detection value of the detecting means are provided. Item 4. A quartz glass forming apparatus according to Item 1. 前記複数の成形手段の前記加圧板の傾斜を検出する検出手段と、該検出手段の検出値に基づいて前記押圧部位の位置を制御する制御手段とを設けたことを特徴とする請求項1に記載の石英ガラスの成形装置。2. The apparatus according to claim 1, further comprising: a detection unit configured to detect an inclination of the pressure plate of the plurality of forming units; and a control unit configured to control a position of the pressed portion based on a detection value of the detection unit. 3. The quartz glass molding apparatus according to the above. 前記制御手段が、前記加圧板により前記石英ガラスを加圧する圧力を調整するものであることを特徴とする請求項2又は3に記載の石英ガラスの成形装置。The quartz glass forming apparatus according to claim 2, wherein the control unit adjusts a pressure at which the quartz glass is pressed by the pressure plate. 前記複数の成形手段は、前記加圧板の一部を押圧するシリンダロッドを有する流体圧シリンダからなり、前記制御手段は、該流体圧シリンダに供給される流体圧力を調整するものであることを特徴とする請求項4に記載の石英ガラスの成形装置。The plurality of forming means include a fluid pressure cylinder having a cylinder rod for pressing a part of the pressure plate, and the control means adjusts fluid pressure supplied to the fluid pressure cylinder. The quartz glass forming apparatus according to claim 4, wherein: 大きさの異なる複数の前記加圧板と、該複数の加圧板のそれぞれに対応する大きさの複数の前記モールドとを有し、該複数の加圧板及び複数のモールドの中の少なくとも一つを選択して装着することにより、該選択された前記加圧板の大きさに応じた数の前記成形手段で該加圧板が加圧可能に構成されていることを特徴とする請求項1乃至5の何れか一つに記載の石英ガラスの成形装置。A plurality of pressure plates having different sizes and a plurality of molds having sizes corresponding to the plurality of pressure plates, respectively, and at least one of the plurality of pressure plates and the plurality of molds is selected. 6. The pressure plate according to claim 1, wherein the pressure plate is configured to be pressurized by a number of the forming means corresponding to the size of the selected pressure plate. An apparatus for forming quartz glass according to any one of the preceding claims.
JP2003103366A 2003-04-07 2003-04-07 Quartz glass molding equipment Expired - Fee Related JP4465974B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003103366A JP4465974B2 (en) 2003-04-07 2003-04-07 Quartz glass molding equipment
KR1020040023657A KR101096477B1 (en) 2003-04-07 2004-04-07 Method and apparatus for forming a quartz glass
TW093109546A TW200502183A (en) 2003-04-07 2004-04-07 Molding apparatus and method of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103366A JP4465974B2 (en) 2003-04-07 2003-04-07 Quartz glass molding equipment

Publications (2)

Publication Number Publication Date
JP2004307267A true JP2004307267A (en) 2004-11-04
JP4465974B2 JP4465974B2 (en) 2010-05-26

Family

ID=33466526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103366A Expired - Fee Related JP4465974B2 (en) 2003-04-07 2003-04-07 Quartz glass molding equipment

Country Status (1)

Country Link
JP (1) JP4465974B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018658A (en) * 2011-07-07 2013-01-31 Tosoh Quartz Corp Method of assembling mold material for manufacturing quartz glass compact
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9027365B2 (en) 2013-01-08 2015-05-12 Heraeus Quartz America Llc System and method for forming fused quartz glass
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN113264663A (en) * 2020-10-20 2021-08-17 连云港睿晶石英材料有限公司 High-temperature forming device for quartz glass processing

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2013018658A (en) * 2011-07-07 2013-01-31 Tosoh Quartz Corp Method of assembling mold material for manufacturing quartz glass compact
US9027365B2 (en) 2013-01-08 2015-05-12 Heraeus Quartz America Llc System and method for forming fused quartz glass
CN113264663A (en) * 2020-10-20 2021-08-17 连云港睿晶石英材料有限公司 High-temperature forming device for quartz glass processing
CN113264663B (en) * 2020-10-20 2023-11-17 连云港睿晶石英材料有限公司 High-temperature forming device for quartz glass processing

Also Published As

Publication number Publication date
JP4465974B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4639274B2 (en) Method and apparatus for producing glass ingots from synthetic silica
JP2004307267A (en) Molding apparatus of quartz glass
JP4288413B2 (en) Quartz glass molding method and molding apparatus
JP4341277B2 (en) Method of forming quartz glass
JP4281397B2 (en) Quartz glass molding equipment
TWI600629B (en) SiO 2 -TiO 2 A method of manufacturing a glass, and a method of manufacturing a mask substrate made of the glass
JP4374964B2 (en) Quartz glass molding method and molding apparatus
US20080006056A1 (en) Process for producing synthetic quartz and synthetic quartz glass for optical member
JP4760137B2 (en) Method of forming quartz glass
JP4415367B2 (en) Method of forming quartz glass
JP4419701B2 (en) Quartz glass molding equipment
EP1783103B1 (en) Method for forming quartz glass
JP2007022847A (en) Molding apparatus of quartz glass and method of molding quartz glass using the same
JP2000219523A (en) Forming method of quartz glass, forming device and quartz glass produced by the method
JP2006169033A (en) Forming method and forming apparatus for quartz glass
KR101096477B1 (en) Method and apparatus for forming a quartz glass
JP2814795B2 (en) Manufacturing method of quartz glass
JP5763612B2 (en) Rod lens manufacturing method and manufacturing apparatus
JP4473653B2 (en) Manufacturing method of high purity quartz glass
JP4655761B2 (en) Pretreatment method of quartz glass and molding method of quartz glass
JPS632421Y2 (en)
JP2002053332A (en) Method and device for molding synthetic quartz glass
JP4000349B2 (en) Glass member forming apparatus and glass member forming method
JP4443908B2 (en) Silica glass molding method and silica glass molded product
JP5387036B2 (en) Glass mold and method for producing glass molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4465974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees