JP2004292264A - Trimanganese tetroxide particle, its production method, nonaqueous electrolyte secondary battery, positive electrode active substance therefor and its preparation method - Google Patents

Trimanganese tetroxide particle, its production method, nonaqueous electrolyte secondary battery, positive electrode active substance therefor and its preparation method Download PDF

Info

Publication number
JP2004292264A
JP2004292264A JP2003089010A JP2003089010A JP2004292264A JP 2004292264 A JP2004292264 A JP 2004292264A JP 2003089010 A JP2003089010 A JP 2003089010A JP 2003089010 A JP2003089010 A JP 2003089010A JP 2004292264 A JP2004292264 A JP 2004292264A
Authority
JP
Japan
Prior art keywords
reaction
particles
manganese
trimanganese tetroxide
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003089010A
Other languages
Japanese (ja)
Other versions
JP4305629B2 (en
Inventor
Hideaki Maeda
英明 前田
Hitoshi Kanazukuri
整 金作
Masaichi Fujino
昌市 藤野
Akihisa Kajiyama
亮尚 梶山
Hiroyasu Watanabe
浩康 渡邊
Takayuki Yoshida
高行 吉田
Hideaki Sadamura
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2003089010A priority Critical patent/JP4305629B2/en
Publication of JP2004292264A publication Critical patent/JP2004292264A/en
Application granted granted Critical
Publication of JP4305629B2 publication Critical patent/JP4305629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve charge and discharge cycle characteristic of a secondary battery by using a positive electrode active material for a nonaqueous electrolyte secondary battery. <P>SOLUTION: The positive electrode active material for the nonaqueous electrolyte secondary battery comprises a lithium manganate particle which has a primary particle size of 3-15 μm, an Na content of ≤0.03%, an S content of ≤0.01% and an isotropic polyhedral particle shape. The lithium manganate particle is obtained by neutralizing an aqueous manganese salt solution with an aqueous alkaline solution to prepare an aqueous suspension containing a manganese hydroxide, performing a primary oxidation reaction to obtain a trimanganese tetroxide nuclear particle, adding an aqueous manganese salt solution to a reaction liquid obtained after the primary reaction, performing a secondary oxidation reaction to grow and obtain the trimanganese tetroxide particle, mixing the trimanganese tetroxide particle with a lithium compound and performing heat-treatment at 500-1,000°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、非水電解液二次電池用の正極活物質として二次電池の充放電サイクル特性に優れたマンガン酸リチウム粒子粉末に関するものである。
【0002】
【従来の技術】
近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、電気自動車、ハイブリット車、燃料電池等の自動車、バックアップ電源用などの中・大型電池においても期待されている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。
【0003】
従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、岩塩型層状構造のLiCoO、LiCo1−XNi、LiNiO等が一般的に知られており、なかでもLiCoOは高電圧と高容量を有する点で優れているが、コバルト原料の供給量が少ないことによる製造コスト高の問題や廃棄電池の環境安全上の問題及び構造が不安定なことによる熱安定性の問題が存在する。
【0004】
そこで、供給量が多く低コストで環境適性がよく安全面でも優れているマンガンを原料として作られるスピネル構造型のマンガン酸リチウム粒子粉末(基本組成:LiMn−以下、同じ−)の研究が盛んに行われている。
【0005】
周知の通り、マンガン酸リチウム粒子粉末は、マンガン化合物とリチウム化合物とを所定の割合で混合し、500〜1000℃の温度範囲で焼成することによって得ることができる。
【0006】
しかしながら、マンガン酸リチウム粒子粉末をリチウムイオン二次電池の正極活物質として用いた場合、高電圧と高エネルギー密度を有するものの、充放電サイクル特性が劣るという問題がある。この原因は、充放電中に結晶構造中のMnが溶出することに伴う構造の崩壊、また、マンガン酸リチウムは組成により特性が決まるため組成の不均一化による構造劣化等が挙げられる。
【0007】
マンガン酸リチウム粒子粉末を用いたリチウムイオン二次電池にあっては、充放電の繰り返しによる充放電容量の劣化を抑制し、充放電サイクル特性を向上させることが現在最も要求されている。
【0008】
充放電サイクル特性を向上させるためには、マンガン酸リチウム粒子粉末からなる正極活物質が充填性に優れ、適度な大きさを有することが必要である。その手段としては、マンガン酸リチウム粒子の粒子径及び粒度分布を制御する方法、焼成温度を制御して高結晶のマンガン酸リチウム粒子粉末を得る方法、異種元素を添加して結晶の結合力を強化する方法、表面処理を行ってMnの溶出を抑制する方法等が行われている。
【0009】
適度な大きさのマンガン酸リチウム粒子粉末を得る方法として、特許文献1乃至23記載の各方法が知られている。
【0010】
【特許文献1】
特開平10−162826号公報
【特許文献2】
特開平10−172567号公報
【特許文献3】
特開平10−182159号公報
【特許文献4】
特開平10−255797号公報
【特許文献5】
特開平10−321227号公報
【特許文献6】
特開平11−1323号公報
【特許文献7】
特開平11−71115号公報
【特許文献8】
特開平11−157841号公報
【特許文献9】
特開平11−180717号公報
【特許文献10】
特開平11−219705号公報
【特許文献11】
特開平11−233112号公報
【特許文献12】
特開2000−12031号公報
【特許文献13】
特開2000−143247号公報
【特許文献14】
特開2000−215895号公報
【特許文献15】
特開2000−223118号公報
【特許文献16】
特開2000−281349号公報
【特許文献17】
特開2000−281351号公報
【特許文献18】
特開2001−26425号公報
【特許文献19】
特開2001−93527号公報
【特許文献20】
特開2001−114521号公報
【特許文献21】
特開2001−122626号公報
【特許文献22】
特開2001−240417号公報
【特許文献23】
特開2002−198047号公報
【0011】
【発明が解決しようとする課題】
非水電解液二次電池用の正極活物質として二次電池の充放電サイクル特性に優れたマンガン酸リチウム粒子粉末は未だ得られていない。
【0012】
即ち、前出特許文献1には噴霧熱分解法によって粒度分布に優れたマンガン酸リチウム粒子粉末を得る製造法が開示されているが、得られるマンガン酸リチウム粒子粉末は多孔性であり比表面積が大きくなるため、Mnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。また、充填密度についても十分とは言い難いものである。
【0013】
また、前出特許文献2には、マンガン化合物とリチウム化合物とのスラリーをスプレードライヤーで乾燥した後、焼成する製造法が開示されているが、多数の一次粒子からなる凝集体を構成しており、比表面積が大きくなるためMnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。また、充填密度についても十分とは言い難いものである。
【0014】
また、前出特許文献3には、実施例として500ppmのS分を含む四酸化三マンガンを用いたマンガン酸リチウムが記載されているが、多量のSを含有しており、二次電池の充放電サイクル特性の改善には十分とは言い難いものである。
【0015】
また、前出特許文献4には平均板径1〜50μmであって平均板厚0.2〜2μmであって板径/板厚の比が3以上の板状粒子である酸化マンガン、オキシ水酸化マンガン、水酸化マンガンとリチウム塩とを混合し加熱することでサイクル耐久性に優れたリチウムマンガン複合酸化物を得る製造方法が開示されているが、得られるリチウムマンガン複合酸化物は粒子サイズが小さく比表面積が大きくなるためMnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。また、充填密度についても十分とは言い難いものである。
【0016】
また、前出特許文献5には一次粒子と二次粒子の平均粒子径を特定したマンガン酸リチウム粒子粉末が開示されているが、一次粒子が小さく二次粒子は多数の一次粒子によって構成されているため、比表面積が大きくなってMnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。また、充填密度についても十分とは言い難いものである。
【0017】
また、前出特許文献6には一次粒子と二次粒子の平均粒子径を特定したマンガン酸リチウム粒子粉末が記載されているが、凝集体であって、比表面積が大きくなるためMnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。また実施例では平均一次粒子径2.0μmであって平均二次粒子径2.0μmであるマンガン酸リチウム粒子粉末が記載されているが、平均粒子径が小さく充填性が十分とは言い難いものである。
【0018】
また、前出特許文献7には平均凝集粒子径が1〜50μmであって平均一次粒子径が3.0μm以下であるマンガン酸リチウム粒子粉末が開示されているが、実施例で得られているマンガン酸リチウム粒子の平均一次粒子径は1.0μm以下と小さく比表面積が大きくなるため、Mnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。
【0019】
また、前出特許文献8には比表面積が0.3〜0.7m/gであってSO含有量が0.4重量%以下であるマンガン酸リチウム粒子粉末が記載されているが、MnOを原料としているため、一次粒子が小さく、また、実施例で示されているS含有量では特性改善が十分とは言い難いものである。
【0020】
また、前出特許文献9にはキュービックな粒子形状を有し、0.01〜10μmの粒子径で、1〜100m2/gの範囲の比表面積を有するマンガン酸リチウム粒子粉末が開示されているが、粒子内に空隙を有しているので比表面積が大きく、また、水熱処理をしているため一次粒子が小さく特性改善が十分とは言い難いものである。
【0021】
また、前出特許文献10には平均粒子径が1.0μm以下の微細粒子の含有量が少ないマンガン酸リチウム粒子粉末が開示されているが、一次粒子については考慮されておらず、マンガン原料に電解MnOを用いていること及び平均粒子径に対する比表面積が大きいことから、凝集粒子であると推測され、Mnの溶出を抑制することは困難であり、結果として、二次電池の充放電サイクル特性が低下する。
【0022】
また、前出特許文献11には、MnSO水和物に水を加えて水溶液濃度を調整し、加熱した後、過酸化水素を滴下し、アンモニア水を加えて洗浄・乾燥を行うことで得られるオキシ水酸化マンガンと水酸化リチウムとを水熱処理することで充放電特性を改善したマンガン酸リチウムが得られることが開示してあるが、一次粒子が小さく比表面積が大きいため、Mnの溶出を抑制することが困難であり、結果として二次電池の充放電サイクル特性が低下する。また、充填密度についても十分とは言い難いものである。
【0023】
また、前出特許文献12には平均粒子径が1〜45μmのマンガン酸リチウム粒子粉末が開示されているが、一次粒子については考慮されておらず、得られたマンガン酸リチウム粒子は小さな一次粒子が凝集した二次粒子であるため、比表面積が大きくMnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。
【0024】
また、前出特許文献13には一次粒子径が0.5〜2.0μmであるマンガン酸リチウム粒子粉末が開示されているが、一次粒子が小さいため、充填密度が低くなり、また、比表面積も大きくなるためMnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。
【0025】
また、前出特許文献14には、Sの含有量がSOイオン換算で0.6重量%以下で比表面積0.5〜3m/g、平均粒径1〜45μmのスピネル型リチウムマンガン酸化物が開示されているが、CMD(化学合成二酸化マンガン)を用いているため一次粒子が小さく特性改善が十分とは言い難いものである。
【0026】
また、前出特許文献15には炭酸リチウムと二酸化マンガンを混合焼成して10μm以上100μm以下のリチウム酸化物が得られることが開示されているが、凝集粒子であり一次粒子が小さく比表面積が大きくなるため、Mnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。また、充填密度についても十分とは言い難いものである。
【0027】
また、前出特許文献16及び17には球状の炭酸マンガンを窒素雰囲気中で熱処理することで得られるメジアン径が10μm以下の酸化マンガンとリチウム化合物を混合・焼成し得られるメジアン径が10μm以下、タップ密度が1.8g/cm以上であるリチウムマンガン酸化物が得られることが開示されているが、炭酸マンガンを原料にしているため、一次粒子が小さく比表面積が大きくなってMnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。
【0028】
また、前出特許文献18にはNa含有量を低減した平均粒径3〜20μmの電解二酸化マンガンをリチウム原料と混合・焼成することで良好な電池特性を有するマンガン酸リチウムが得られることが開示されているが、電解二酸化マンガンを原料に用いているため、平均粒子径に対する比表面積の値が大きく、Mnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。
【0029】
また、前出特許文献19には、マンガン錯塩を生成させてから水酸化マンガンを析出させ、40〜400℃の気流中で酸化させ、四酸化三マンガンを得た後リチウム化合物と混合・焼成することで得られる非水電解質二次電池用正極活物質が開示されているが、一次粒子が小さく特性改善が十分とは言い難いものである。
【0030】
また、前出特許文献20には、マンガンイオンと錯化剤を反応させマンガン錯塩を形成させ、次いでアルカリ金属水酸化物と反応させ水酸化マンガンを生成させたあと、酸化剤と反応させ四酸化三マンガンを得ることが開示されているが、一次粒子が小さく特性改善には十分とは言い難いものである。
【0031】
また、前出特許文献21には粒度分布を特定したマンガン酸リチウム粒子粉末が開示されているが、一次粒子については考慮されておらず、マンガン原料に電解二酸化マンガン(EMD)又はCMDを用いていること及び平均粒子径に対する比表面積が大きいことから、凝集粒子であると推測され、Mnの溶出を抑制することが困難となり、結果として充放電サイクル特性が低下する。
【0032】
また、前出特許文献22にはマンガン酸化物シードを溶液中で得、マンガン酸化物と塩基性化合物とを反応させ、酸化し粒子成長させ、その後、リチウム化合物と反応させるか、プロトン置換させて、結晶性に優れ粒子径が大きく粒度分布が均一であるマンガン酸リチウムの製造法が開示されているが、実施例で硫酸マンガンと水酸化ナトリウムを添加し、マンガン酸化物シードを成長させる工程が記載されているが、反応がpH6.4で終了しており、この領域ではS成分が吸着し、残存するS量が高いと推測され、また、粒子サイズに対する比表面積の値が大きいことから、Mnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。また、充填密度についても十分とは言い難いものである。
【0033】
また、前出特許文献23にはリチウムマンガン複合酸化物中の硫黄含有量が2%以下であることを特徴とするリチウム二次電池及びその製造法が開示されているが、実施例ではS含有量が1〜2%の電解二酸化マンガンを用いて正極を作製しており、特性改善には十分とは言い難いものである。
【0034】
そこで本発明は、非水電解液二次電池用の正極活物質として二次電池の充放電サイクル特性に優れたマンガン酸リチウム粒子粉末を提供することを技術的課題とする。
【0035】
【課題を解決するための手段】
前記技術的課題は、次の通りの本発明によって達成できる。
【0036】
即ち、本発明は、平均一次粒子が3.0〜15μmであり、Na含有量が0.02重量%以下、S含有量が0.01重量%以下であって、粒子形状が三角状、四角状又は六角状の面をもつ多面体である四酸化三マンガン粒子粉末である(本発明1)。
【0037】
また、本発明は、マンガン塩水溶液をアルカリ水溶液により中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液にマンガン塩水溶液を添加した後、酸化反応を行って前記四酸化三マンガン核粒子の成長反応を行う二次反応によって四酸化三マンガン粒子を得る製造法において、一次反応のマンガン濃度を1.5mol/L以下にするとともに、二次反応のマンガン添加量を一次反応のマンガン濃度の等モル以下にすることを特徴とする前記四酸化三マンガン粒子粉末の製造法である(本発明2)。
【0038】
また、本発明は、マンガン塩水溶液をアルカリ水溶液により中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液にマンガン塩水溶液を添加した後、酸化反応を行って前記四酸化三マンガン核粒子の成長反応を行う二次反応によって四酸化三マンガン粒子を得る製造法において、一次反応終了後の反応溶液を非酸化性雰囲気に切り替えた後、マンガン塩水溶液を添加し、次いで、3時間以内の熟成を行うことを特徴とする前記四酸化三マンガン粒子粉末の製造法である(本発明3)。
【0039】
また、本発明は、マンガン塩水溶液をアルカリ水溶液により中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液にマンガン塩水溶液を添加した後、酸化反応を行って前記四酸化三マンガン核粒子の成長反応を行う二次反応によって四酸化三マンガン粒子を得る製造法において、反応中にマンガンに対して0.5モル%以下の有機還元剤を存在させることを特徴とする前記四酸化三マンガン粒子粉末の製造法である(本発明4)。
【0040】
また、本発明は、マンガン塩水溶液をアルカリ水溶液により中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液にマンガン塩水溶液を添加した後、酸化反応を行って前記四酸化三マンガン核粒子の成長反応を行う二次反応によって四酸化三マンガン粒子を得る製造法において、過剰アルカリ濃度を1.0〜5.0mol/Lにすることを特徴とする前記四酸化三マンガン粒子粉末の製造法である(本発明5)。
【0041】
また、本発明は、マンガン塩水溶液をアルカリ水溶液により中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応終了後、非酸化性雰囲気に切り替えた後の反応溶液に一次反応で用いたマンガンに対して等モル以下のマンガン塩水溶液を添加し、3h以内の熟成を行った後、酸化反応を行って前記四酸化三マンガン核粒子の成長反応を行う二次反応によって四酸化三マンガン粒子を得る製造法において、一次反応のマンガン濃度を1.5mol/L以下にするとともに、反応中に有機還元剤をマンガンに対して0.5モル%以下存在させ、過剰アルカリ濃度を1.0〜5mol/Lとすることを特徴とする前記四酸化三マンガン粒子粉末の製造法である(本発明6)。
【0042】
また、本発明は、平均一次粒子径が3.0〜15μmであり、Na含有量が0.03重量%以下、S含有量が0.01重量%以下であって粒子形状が等方的多面体であるマンガン酸リチウム粒子粉末からなることを特徴とする非水電解質二次電池用正極活物質である(本発明7)。
【0043】
また、本発明は、前記四酸化三マンガン粒子粉末とリチウム化合物を混合し、500℃〜1000℃で熱処理することを特徴とする請求項8記載の非水電解質二次電池用正極活物質の製造方法である(本発明8)。
【0044】
また、本発明は、前記非水電解質二次電池用正極活物質を用いた非水電解質二次電池である(本発明9)。
【0045】
次に、本発明の構成をより詳しく説明すれば次の通りである。
【0046】
先ず、本発明1に係る四酸化三マンガン粒子粉末について述べる。
【0047】
なお、本発明において、「一次粒子」とは単独で存在することができる最小粒子を表す。
【0048】
本発明1に係る四酸化三マンガン粒子粉末は、平均一次粒子径が3.0〜15μmである。平均一次粒子径が3.0μm未満の場合には、該四酸化三マンガン粒子粉末を用いて得られるマンガン酸リチウム粒子粉末を二次電池の正極として製造する際に充填密度が低くなり、エネルギー密度が低下する。平均一次粒子径が15μm以上の場合には、該四酸化三マンガン粒子粉末を用いて得られるマンガン酸リチウム粒子粉末を二次電池の正極として用いた場合に電流密度を増加させた場合にLiの脱挿入反応が低下する傾向がある。好ましくは3.0〜12μmである。
【0049】
本発明1に係る四酸化三マンガン粒子粉末は、Na含有量が0.03重量%以下、S含有量が0.01重量%以下である。Na含有量及びS含有量が前記範囲を超える場合は、該四酸化三マンガン粒子粉末を用いて得られるマンガン酸リチウム粒子粉末を二次電池の正極として用いた場合に二次電池としてのサイクル特性が低下する傾向がある。好ましくはNa含有量が0.02重量%以下であり、S含有量が0.008重量%以下である
【0050】
本発明1に係る四酸化三マンガン粒子粉末のBET比表面積値は0.04〜2.0m/gが好ましく、より好ましくは0.05〜1.8m/gである。
【0051】
本発明1に係る四酸化三マンガン粒子粉末の粒子形状は多面体状であり、三角状、四角状又は六角状の面を有する多面体である。
【0052】
本発明1に係る四酸化三マンガン粒子粉末はMnを含んでいてもよい。
【0053】
次に、本発明に係る四酸化三マンガン粒子粉末の製造法について述べる。
【0054】
本発明に係る四酸化三マンガン粒子粉末は下記いずれかの製造法、または下記製造法を組み合わせて製造することができる。
【0055】
即ち、マンガン塩水溶液とアルカリ水溶液とを反応させマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液にマンガン塩水溶液を添加した後、酸化反応を行って前記四酸化三マンガン核粒子の成長反応を行う二次反応によって四酸化三マンガン粒子を得る製造法において、一次反応のマンガン濃度を1.5mol/L以下にするとともに、二次反応のマンガン添加量を一次反応のマンガン濃度の等モル以下にする製造法(本発明2)、前記四酸化三マンガン粒子を得る製造法において、一次反応終了後の反応溶液を非酸化性雰囲気に切り替えた後、マンガン塩水溶液を添加し、次いで、3時間以内の熟成を行う製造法(本発明3)、前記四酸化三マンガン粒子を得る製造法において、一次反応及び/又は二次反応中にマンガンに対して0.5モル%以下の有機還元剤を存在させる製造法(本発明4)、前記四酸化三マンガン粒子を得る製造法において、過剰アルカリ濃度を1.0〜5mol/Lとして四酸化三マンガン粒子粉末を得る製造法(本発明5)である。
【0056】
本発明においてはマンガン塩水溶液としては、硫酸マンガン水溶液、硝酸マンガン水溶液、蓚酸マンガン水溶液、酢酸マンガン水溶液等が挙げられ、これらは単独で又は必要に応じて2種以上組み合わせて用いてもよい。
【0057】
本発明におけるアルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア等のアルカリ水溶液を使用することができる。
【0058】
本発明2乃至6の四酸化三マンガン粒子粉末の製造法においては、四酸化三マンガン核粒子を得る一次反応と、該四酸化三マンガン核粒子を成長させる二次反応からなる。一次反応と二次反応とにすることによって、より一次粒子が大きくNa含有量の少ない四酸化三マンガン粒子粉末を得ることができる。
【0059】
本発明において、一次反応のマンガン濃度が1.5mol/L以上の場合には、反応溶液の濃度が高くなり安定的に生産することが困難である。二次反応のマンガン濃度が一次反応のマンガン濃度の等モルを越える場合には、粒子サイズの粒度分布が広がり、また、Na含有量が増加するため好ましくない。
【0060】
なお、必要により、二次反応の終了後、更に一次反応の等モル以下のマンガン塩を添加する三次反応を行ってもよい。
【0061】
本発明において、一次反応の終了後、水懸濁液の雰囲気を非酸化性雰囲気に切り替えるのは、二次反応における反応を容易に安定化させるためである。
【0062】
熟成は、中和反応後の懸濁液に対して、20〜100℃の温度範囲、好ましくは50〜95℃の温度範囲で行う。熟成を行うことによって粒子サイズの粒度分布の狭い四酸化三マンガン粒子が得られるとともに、Naを含有した不純物相(バーネサイト)の発生を抑制することができるので、Na含有量の低い四酸化三マンガン粒子粉末を得ることができる。3時間を超える熟成は、反応時間の増加につながり好ましくない。より好ましくは1〜3時間である。
【0063】
本発明においては、有機還元剤を添加することが好ましい。有機還元剤としては、アスコルビン酸、ラクトース、ホルマリン等であり、アスコルビン酸が好ましい。有機還元剤の添加量はマンガンに対してモル比で0.5モル%以下が好ましい。0.5モル%を越える場合には、異相が発生し、粒子サイズが小さくなる傾向がある。
【0064】
前記有機還元剤の添加時期は、マンガン塩水溶液、アルカリ水溶液、中和反応中、熟成中、酸化反応中等、特に限定されないが、好ましくはマンガン塩水溶液にあらかじめ添加しておくことが好ましい。
【0065】
本発明においてはマンガンの当量よりも過剰量のアルカリ水溶液を添加することによって、粒子サイズの大きな四酸化三マンガンを容易に得ることができる。殊に、過剰のアルカリ量は1.0〜5.0mol/lが好ましく、1.0mol/l未満の場合には、所望の粒子サイズを有する四酸化三マンガン粒子粉末を容易に得ることが困難となる。5.0mol/lの添加によって所望の粒子サイズ有する四酸化三マンガン粒子粉末を得ることができるので、必要以上に過剰にする意味はない。好ましくは1.5〜4.0mol/lである。
【0066】
酸化反応は、反応溶液に酸化性ガスを通気するか、或いは、酸化剤を添加することによって行うことができ、例えば空気の通気が好ましい。
【0067】
酸化反応の温度は60〜90℃が好ましい。
【0068】
二次反応の終了後、水洗、乾燥を行って四酸化三マンガン粒子粉末とする。
【0069】
次に、本発明に係る非水電解質二次電池用正極活物質(以下、単に「正極活物質」と言う。)について述べる。
【0070】
本発明に係る正極活物質は、平均一次粒子径が3.0〜15μmである。平均一次粒子径が3.0μm未満の場合には、二次電池の正極を製造する際に充填密度が低くなり、また、バインダー量を増加させる必要があるなど、二次電池のエネルギー密度の低下を招く。一方、15μmを超える場合には、電流密度を増加させた場合にLiの脱挿入反応が低下する傾向がある。好ましくは3.0〜12μmである。
【0071】
本発明に係る正極活物質は、Na含有量が0.03重量%以下、S含有量が0.01重量%以下である。Na含有量及びS含有量が前記範囲を超える場合は、二次電池としてのサイクル特性が低下する傾向がある。好ましくはNa含有量が0.025%以下、S含有量が0.008重量%以下である。
【0072】
本発明に係る正極活物質の粒子形状は等方的多面体である。鋭角部を有する粒子形状の場合には、導電材との接触が不均一となり好ましくない。
【0073】
本発明に係る正極活物質はLi1+xMn2−xの組成式で表されるマンガン酸リチウム粒子粉末であり、Li/Mnはモル比で0.52〜0.67であることが好ましい。0.52未満の場合には、充放電容量は高いがJahn−Teller効果による歪みの発生のためサイクル特性が低下する。また、0.67を越える場合には、初期放電容量が十分ではないため好ましくない。前記組成式において、原子番号が11以上の金属元素又は遷移金属元素をMnに対するモル比で0〜20%含有してもよい。
【0074】
なお、充放電容量及びサイクル特性に寄与しないMn、Mn、MnO2、LiMnO等の異相を含んでいても良い。
【0075】
本発明に係る正極活物質のBET比表面積値は、0.04〜1.5m/gが好ましい。0.04m/g未満の場合には、電流密度を増加させた場合にLiの脱挿入反応が低下すると考えられ電池特性が低下する。1.5m/gを超える場合には、正極活物質の充填密度が低下することや電解液との反応性が過剰となり安全性が低下する。より好ましくは0.06〜1.2m/gである。
【0076】
本発明に係る正極活物質は、一次粒子が単独で挙動することができるため、平均一次粒子径と平均二次粒子径はほぼ同程度であり、平均二次粒子径は3.0〜18μmが好ましい。平均二次粒子径が3.0μm未満の場合には、二次電池の正極を製造する際に充填密度が低くなり、また、バインダー量を増加させる必要があるなど、二次電池のエネルギー密度の低下を招く。一方、15μmを超える場合には、電流密度を増加させた場合にLiの脱挿入反応が低下する傾向がある。好ましくは3.0〜15μmである。
【0077】
本発明に係る正極活物質のタップ密度は2.0g/ml以上が好ましい。その上限値は3.0g/ml程度である。
【0078】
次に、本発明に係る正極活物質の製造法について述べる。
【0079】
リチウム原料としては炭酸リチウム、水酸化リチウム、硝酸リチウム、塩化リチウムなどが使用出来るが、炭酸リチウムが好ましい。
【0080】
四酸化三マンガン粒子粉末とリチウム原料との混合割合は、モル比でLi/Mn=0.52〜0.67程度とするのが好ましい。0.52以下の場合には容量は高いがJahn−Teller効果による歪みの発生のため充放電サイクル特性が低下する。また、0.67を越える場合には初期容量が十分ではない。
【0081】
四酸化三マンガン粒子粉末とリチウム原料は均一な混合状態とする必要がある。均一に混合されていないと、部分的に組成比のズレが生じ容量及び可逆性の異なるマンガン酸リチウムが合成されることになり、また、マンガン酸リチウム以外の異相の発生原因にもなる。
【0082】
混合物の焼成温度は500〜1000℃である。500℃未満の場合には、高い結晶性を有するマンガン酸リチウム粒子粉末を得ることができない。1000℃以上では単一相を得ることが困難となり電池特性に影響がでる。
【0083】
焼成雰囲気は、酸素含有ガス、例えば空気中でよい。焼成時間は反応が均一に進行するように選択すればよいが、1〜48時間が好ましく、より好ましくは10〜24時間である。
【0084】
焼成後、粉砕してマンガン酸リチウム粒子粉末を得る。
【0085】
次に、本発明に係る非水電解質二次電池について述べる。
【0086】
本発明に係るマンガン酸リチウム粒子粉末を非水電解液二次電池用の正極活物質として用いて正極材を製造する場合には、アセチレンブラック、カーボンブラック等の導電剤及びポリテトラフルオロエチレン、ポリフッ化ビニリデン等の結着材などと混合して、所定の形状に成形して正極材とする。
【0087】
また、負極活物質は特に制限されないが、例えば、リチウム金属、リチウム合金、リチウムを吸蔵放出可能な物質を用いることができ、例えば、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等が挙げられる。
【0088】
また、電解質も特に制限されないが、例えば、炭酸プロピレン、炭酸ジエチル、炭酸ジメチル等のカーボネート類やジメトキシエタン等のエーテル類の少なくとも1種類の有機溶媒中に、過塩素酸リチウム、四フッ化ホウ酸リチウム、六フッ化リン酸リチウム等のリチウム塩の少なくとも1種を溶解したものを用いることができる。
【0089】
本発明に係る正極活物質を用いて製造した二次電池は、初期放電容量が60〜135mAh/g、60℃での100サイクル後の容量維持率が90%以上である。
【0090】
【発明の実施の形態】
本発明の代表的な実施の形態は次の通りである。
【0091】
粒子粉末の粒子径は下記2種類の方法で測定した。
【0092】
各粒子粉末の平均一次粒子径は、走査型電子顕微鏡(日立製作所製)で測定した。走査型電子顕微鏡写真の対角線上に存在する粒子から任意に一次粒子を10個選び、粒子径を測定して、その平均値を平均一次粒子径とした。走査型電子顕微鏡写真は対角線上に20〜40個の粒子が存在する倍率が粒子径を測定精度の点から好ましい。
【0093】
粒子粉末の平均二次粒子径は、レーザー散乱・回折方式「NIKKISO MICROTRAC HRA、MODEL9320−X100:日機装社製」を用いて各粒子粉末の体積換算の粒度分布から二次粒子のD50を測定して、平均二次粒子径とした。
【0094】
正極活物質の同定、結晶構造及び結晶子サイズは、X線回折(RIGAKU Cu−Kα 40kV 40mA)により調べた。
【0095】
また、粒子の形態については走査型電子顕微鏡(日立製作所製)により観察した。
【0096】
BET比表面積はBET法により測定した。
【0097】
タップ密度は、「SEISHIN TAPDENSER KYT−3000:(株)セイシン企業製」を用いて測定した。
【0098】
<正極の作製>
マンガン酸リチウム粒子粉末と導電剤であるアセチレンブラックと結着材であるポリフッ化ビニリデンとを重量比85:10:5の割合で混合し、N−メチル−2−ピロリドンを加えペースト化し、該ペーストをアルミニウム箔に0.15mm厚で塗布し、乾燥後、直径16mmの円盤に打ち抜いて正極を作製した。
【0099】
負極にはリチウム箔を用い、これを16mmの円盤状に打ち抜いた。
【0100】
<二次電池の作製>
セパレータはポリエチレン製からなり、これを19mmの円盤状に打ち抜いた。電解液にはLiPFを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比1:1で混合したものを用いた。そして、アルゴン雰囲気のグローブボックス中でコイン型セル電池を作製した。
【0101】
二次電池の充放電サイクル試験は、前記コイン型電池セルを用いて、正極に対する電流密度を0.5mA/cmとし、カットオフ電圧が4.5Vから3.0Vの間、60℃の温度下で充放電を100サイクル繰り返した後、放電容量を測定して初期放電容量に対する割合を求めた。
【0102】
<四酸化三マンガン粒子粉末の製造:(本発明2による製造)>
窒素通気のもと、18.2mol/lの水酸化ナトリウム水溶液157.8lに2.0mol/lの硫酸マンガン水溶液277.9lを加えて全量を700Lとし、中和反応を行って水酸化マンガン粒子を含有する水懸濁液を得た。このときのマンガン濃度は0.8mol/Lであり、過剰アルカリ濃度は2.5mol/lであった。得られた水酸化マンガン粒子を含む水懸濁液を窒素通気下、90℃まで昇温し、次いで、空気を通気させ90℃で酸化反応を行った。次いで、二次反応として0.4mol/lの硫酸マンガン水溶液138.9lを加えた後、空気を通気させ60℃で酸化反応を行い、水洗、乾燥後、酸化マンガン粒子粉末を得た。二次反応のマンガン塩添加量は、一次反応のマンガン濃度に対して半分であった。
【0103】
得られた四酸化三マンガン粒子粉末はMnであり、平均一次粒子径9.0μm、BET比表面積値0.4m/gであった。Na含有量は0.01重量%、S含有量は0.001重量%であった。得られた四酸化三マンガン粒子粉末の走査型電子顕微鏡写真の観察結果を図1に示す。同図に示す通り、その粒子形状は三角状又は四角状の面をもつ多面体又は八面体であった。
【0104】
<マンガン酸リチウム粒子粉末の製造>
ここに得た四酸化三マンガン粒子粉末と炭酸リチウムとをLi/Mnが0.62の割合になるように30分混合し、均一な混合物を得た。得られた混合物をアルミナサヤに入れ、845℃、空気雰囲気で6時間保持してマンガン酸リチウム粒子粉末を得た。
【0105】
得られたマンガン酸リチウム粒子粉末は平均一次粒子径9.0μmであって平均二次粒子径(D50)11.9μmであって、Na含有量は0.019%、S含有量は0.001%であった。BET比表面積値が0.3m/g、タップ密度が2.3g/mlであった。得られたマンガン酸リチウム粒子粉末の走査型電子顕微鏡写真の観察結果を図2に示す。同図に示す通り、その粒子形状は鋭角部を有していない等方的多面体であった。
【0106】
ここで得たマンガン酸リチウム粒子粉末からなる正極活物質を用いて作製したコイン型電池は、初期放電容量が91mAh/g、60℃での100サイクル後の容量維持率が98%/100cycleであった。
【0107】
【作用】
本発明において最も重要な点は、本発明に係る四酸化三マンガン粒子粉末、マンガン酸リチウムは、大きな一次粒子径を有し、しかも、凝集せず分散性に優れているという点である。
【0108】
本発明においては、理由は明らかではないが、一次反応と二次反応とに分けたことによって、不純物相であるNa−Mn系化合物の析出を抑制でき、更に、有機系還元剤を用いたこと、熟成工程を設けたこと、又は、高アルカリ領域で酸化反応を行ったことによって、一次粒子サイズが大きく粒度分布が均一で粒子の凝集が少なく、しかも、Na、S含有量の少ない四酸化三マンガン粒子を得ることができる。
【0109】
マンガン酸リチウム粒子の粒子径は前駆体になる四酸化三マンガン粒子の粒子径に大きく依存するので、前記四酸化三マンガン粒子を用いることによって、マンガン酸リチウム粒子粉末からなる正極活物質も大きな一次粒子となり、凝集粒子が少なく、粒度分布も優れ、Na、S含有量も低減できる。
【0110】
本発明に係る正極活物質を用いた二次電池の充放電サイクル特性が優れているのは、正極活物質の比表面積が小さく、また、等方的多面体であり鋭角部を有さない粒子形状であるため電解液との反応性が押さえられ、塗料化時の分散性及び充填性に優れることによるものと推定している。
【0111】
【実施例】
次に、実施例及び比較例を示す。
【0112】
実施例1〜4、比較例1〜4
一次反応及び二次反応のマンガン塩濃度を種々変化させた以外は前記発明の実施の形態と同様にして四酸化三マンガンを得た。
【0113】
このときの製造条件及び得られた四酸化三マンガン粒子粉末の諸特性を表1に示す。
【0114】
【表1】

Figure 2004292264
【0115】
実施例5:(本発明3による製造)
窒素通気のもと、18.2mol/lの水酸化ナトリウム水溶液157.8lに2.0mol/lの硫酸マンガン水溶液277.9lを加えて全量を700Lとし、中和反応を行って水酸化マンガン粒子を含有する水懸濁液を得た。このときのマンガン濃度は0.8mol/Lであり、過剰アルカリ濃度は2.5mol/lであった。得られた水酸化マンガン粒子を含む水懸濁液を窒素通気下、90℃まで昇温させ、次いで空気を通気させ90℃で酸化反応を行った。その後、窒素通気下で1時間熟成させた。次いで、二次反応として0.4mol/lの硫酸マンガン水溶液138.9lを加えた後、空気を通気させ60℃で酸化反応を行い、水洗、乾燥後、酸化マンガン粒子粉末を得た。
【0116】
得られた四酸化三マンガン粒子粉末はMnであり、平均一次粒子径9.0μm、BET比表面積値0.3m/gであった。Na含有量は0.005重量%、S含有量は0.001重量%であった。得られた四酸化三マンガン粒子粉末の走査型電子顕微鏡写真の観察の結果、その粒子形状は八面体又は四角乃至六角状の面をもつ等方的多面体であった。
【0117】
実施例6〜7、比較例5、6
熟成時間を種々変化させた以外は前記実施例5と同様にして四酸化三マンガンを得た。
【0118】
このときの製造条件及び得られた四酸化三マンガン粒子粉末の諸特性を表2に示す。
【0119】
【表2】
Figure 2004292264
【0120】
実施例8:(本発明4による製造)
窒素通気のもと、18.2mol/lの水酸化ナトリウム水溶液157.8lに2.0mol/lの硫酸マンガン水溶液277.9l及びアスコルビン酸98gを加えて全量を700Lとし、中和反応を行って水酸化マンガン粒子を含有する水懸濁液を得た。このときのマンガン濃度は0.8mol/Lであり、過剰アルカリ濃度は2.5mol/lであり、アスコルビン酸の添加量はマンガンに対して0.008mol%であった。得られた水酸化マンガン粒子を含む水懸濁液を窒素通気下、90℃で1時間熟成させた。熟成後、空気を通気させ90℃で酸化反応を行った。次いで、二次反応として0.4mol/lの硫酸マンガン水溶液138.9lを加えた後、空気を通気させ60℃で酸化反応を行い、水洗、乾燥後、酸化マンガン粒子粉末を得た。
【0121】
得られた四酸化三マンガン粒子粉末はMnであり、平均一次粒子径9.0μm、BET比表面積が0.3m/gであった。Na含有量は0.007重量%、S含有量は0.001重量%であった。得られた四酸化三マンガン粒子粉末の走査型電子顕微鏡写真の観察の結果、その粒子形状は八面体、又は、四角状乃至六角状の面をもつ等方的多面体であった。
【0122】
実施例9〜11、比較例7、8
マンガンに対するアスコルビン酸の量を種々変化させた以外は前記実施例8と同様にして四酸化三マンガン粒子粉末を得た。
【0123】
このときの製造条件及び得られた四酸化三マンガン粒子粉末の諸特性を表3に示す。
【0124】
【表3】
Figure 2004292264
【0125】
実施例12:(本発明5による製造)
窒素通気のもと、18.2mol/lの水酸化ナトリウム水溶液102.7lに2.0mol/lの硫酸マンガン水溶液277.9lを加えて全量を700Lとし、中和反応を行って水酸化マンガン粒子を含有する水懸濁液を得た。このときのマンガン濃度は0.8mol/Lであり、過剰アルカリ濃度は1.5mol/lであった。得られた水酸化マンガン粒子を含む水懸濁液に空気を通気させ90℃で酸化反応を行った。次いで、二次反応として0.4mol/lの硫酸マンガン水溶液138.9lを加えた後、空気を通気させ60℃で酸化反応を行い、水洗、乾燥後、酸化マンガン粒子粉末を得た。
【0126】
得られた四酸化三マンガン粒子粉末はMnであり、平均一次粒子径6.0μm、BET比表面積が0.5m/gであった。Na含有量は0.007重量%、S含有量は0.001重量%であった。得られた四酸化三マンガン粒子粉末の走査型電子顕微鏡写真の観察の結果、その粒子形状は八面体、又は、四角状乃至六角状の面をもつ等方的多面体であった。
【0127】
実施例13〜15、比較例9〜11
一次反応に対する過剰アルカリ量を種々変化させた以外は前記実施例12と同様にして四酸化三マンガンを得た。
【0128】
このときの製造条件及び得られた四酸化三マンガン粒子粉末の諸特性を表4に示す。なお、比較例11は電解二酸化マンガン(EMD)である。
【0129】
【表4】
Figure 2004292264
【0130】
実施例16:(本発明6による製造)
窒素通気のもと、18.2mol/lの水酸化ナトリウム水溶液157.8lに2.0mol/lの硫酸マンガン水溶液277.9l及びアスコルビン酸490gを加えて全量を700Lとし、中和反応を行って水酸化マンガン粒子を含有する水懸濁液を得た。このときのマンガン濃度は0.8mol/Lであり、過剰アルカリ濃度は2.5mol/l、アスコルビン酸の添加量はマンガンに対して0.05mol%であった。得られた水酸化マンガン粒子を含む水懸濁液を窒素通気下、90℃まで昇温させ、次いで空気を通気させ90℃で酸化反応を行った。その後、窒素通気下で2時間熟成させた。次いで、二次反応として0.4mol/lの硫酸マンガン水溶液138.9lを加えた後、空気を通気させ60℃で酸化反応を行い、水洗、乾燥後、酸化マンガン粒子粉末を得た。二次反応のマンガン塩添加量は、一次反応のマンガン濃度に対して半分であった。
【0131】
得られた四酸化三マンガン粒子粉末の諸特性を表5に示す。得られた四酸化三マンガン粒子粉末の走査型電子顕微鏡写真の観察の結果、その粒子形状は八面体、又は、四角状乃至六角状の面をもつ等方的多面体であった。
【0132】
実施例17
反応条件を種々変化させた以外は前記実施例16と同様にして四酸化三マンガンを得た。
【0133】
このときの製造条件及び得られた四酸化三マンガン粒子粉末の諸特性を表5に示す。
【0134】
【表5】
Figure 2004292264
【0135】
実施例18〜34、比較例12〜22
四酸化三マンガン粒子粉末の種類を種々変化させた以外は、前記発明の実施の形態の<マンガン酸リチウム粒子粉末の製造>と同様にしてマンガン酸リチウム粒子粉末を得た。
【0136】
このときの製造条件、マンガン酸リチウム粒子粉末の諸特性及び前記発明の実施の形態と同様にして行った電池評価の結果を表6に示す。
【0137】
実施例で得られたマンガン酸リチウム粒子粉末の粒子形状はいずれも、鋭角部のない等方的多面体であった。
【0138】
【表6】
Figure 2004292264
【0139】
【発明の効果】
本発明に係る四酸化三マンガン粒子粉末は、平均一次粒子径が大きく、Na含有量及びS含有量が少ないので、マンガン酸リチウム粒子粉末の前駆体として好適である。
【0140】
本発明に係る正極活物質は、平均一次粒子径が大きく、Na含有量及びS含有量が少なく、分散性及び充填性が優れているので、充放電サイクル特性に優れた非水電解液二次電池を提供することができる。
【0141】
本発明に係る二次電池は、前記正極活物質を用いることによって、理論値とほぼ同程度の初期放電容量を示し、しかも高温でのサイクル特性に優れているので、二次電池として好適である。
【図面の簡単な説明】
【図1】発明の実施の形態で得られた四酸化三マンガン粒子粉末の電子顕微鏡写真(3500倍)を示す。
【図2】発明の実施の形態で得られたマンガン酸リチウム粒子粉末からなる正極活物質の電子顕微鏡写真(3500倍)を示す。
【図3】比較例11で用いた電解二酸化マンガンの電子顕微鏡写真(3500倍)を示す。
【図4】比較例22で得られたマンガン酸リチウム粒子粉末の電子顕微鏡写真(3500倍)を示す。[0001]
[Industrial applications]
The present invention relates to lithium manganate particles having excellent charge / discharge cycle characteristics of a secondary battery as a positive electrode active material for a nonaqueous electrolyte secondary battery.
[0002]
[Prior art]
2. Description of the Related Art In recent years, portable and cordless electronic devices such as AV devices and personal computers have been rapidly advancing, and there is an increasing demand for small, lightweight, high-energy-density secondary batteries as drive power supplies for these devices. It is also expected to be used in vehicles such as electric vehicles, hybrid vehicles, and fuel cells, and in middle- and large-sized batteries for backup power sources. Under such circumstances, attention has been paid to a lithium ion secondary battery that has advantages of high charge / discharge voltage and large charge / discharge capacity.
[0003]
Conventionally, a positive electrode active material useful for a high energy type lithium ion secondary battery having a voltage of 4 V class is LiMn having a spinel structure. 2 O 4 , LiMnO with zigzag layered structure 2 , Rock salt type layered structure LiCoO 2 , LiCo 1-X Ni X O 2 , LiNiO 2 Are generally known, and among them, LiCoO 2 Is superior in that it has a high voltage and a high capacity, but the production cost is high due to the small supply of cobalt raw material, the environmental safety of waste batteries, and the thermal stability due to the unstable structure. The problem exists.
[0004]
Therefore, lithium manganate particles having a spinel structure and made from manganese, which has a large supply amount, is low in cost, has good environmental suitability, and is excellent in safety (basic composition: LiMn 2 O 4 -The same applies to the following-).
[0005]
As is well known, the lithium manganate particles can be obtained by mixing a manganese compound and a lithium compound at a predetermined ratio and baking the mixture in a temperature range of 500 to 1000 ° C.
[0006]
However, when lithium manganate particles are used as a positive electrode active material of a lithium ion secondary battery, there is a problem in that although they have a high voltage and a high energy density, they have poor charge / discharge cycle characteristics. This may be caused by the collapse of the structure due to the elution of Mn in the crystal structure during charge / discharge, and the deterioration of the structure due to the non-uniform composition of lithium manganate because its properties are determined by its composition.
[0007]
In a lithium ion secondary battery using lithium manganate particles, it is the most demanded at present to suppress deterioration of charge / discharge capacity due to repeated charge / discharge and to improve charge / discharge cycle characteristics.
[0008]
In order to improve the charge / discharge cycle characteristics, it is necessary that the positive electrode active material composed of the lithium manganate particles is excellent in filling properties and has an appropriate size. The methods include controlling the particle size and particle size distribution of lithium manganate particles, controlling the firing temperature to obtain high-crystalline lithium manganate particles, and strengthening the bonding strength of crystals by adding different elements. And a method of performing a surface treatment to suppress the elution of Mn.
[0009]
As methods for obtaining lithium manganate particles having an appropriate size, various methods described in Patent Documents 1 to 23 are known.
[0010]
[Patent Document 1]
JP-A-10-162826
[Patent Document 2]
JP-A-10-172567
[Patent Document 3]
JP-A-10-182159
[Patent Document 4]
JP-A-10-255797
[Patent Document 5]
JP-A-10-322227
[Patent Document 6]
JP-A-11-1323
[Patent Document 7]
JP-A-11-71115
[Patent Document 8]
JP-A-11-157841
[Patent Document 9]
JP-A-11-180717
[Patent Document 10]
JP-A-11-219705
[Patent Document 11]
JP-A-11-233112
[Patent Document 12]
JP-A-2000-12031
[Patent Document 13]
JP 2000-143247 A
[Patent Document 14]
JP-A-2000-215895
[Patent Document 15]
JP 2000-223118 A
[Patent Document 16]
JP-A-2000-281349
[Patent Document 17]
JP 2000-281351 A
[Patent Document 18]
JP 2001-26425 A
[Patent Document 19]
JP 2001-93527 A
[Patent Document 20]
JP 2001-114521 A
[Patent Document 21]
JP 2001-122626 A
[Patent Document 22]
JP 2001-240417 A
[Patent Document 23]
JP 2002-198047 A
[0011]
[Problems to be solved by the invention]
As a positive electrode active material for a nonaqueous electrolyte secondary battery, lithium manganate particles having excellent charge / discharge cycle characteristics of a secondary battery have not yet been obtained.
[0012]
That is, Patent Document 1 mentioned above discloses a production method for obtaining lithium manganate particles having excellent particle size distribution by spray pyrolysis, but the obtained lithium manganate particles are porous and have a specific surface area. As a result, it becomes difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. In addition, the packing density is hardly sufficient.
[0013]
Patent Document 2 discloses a production method in which a slurry of a manganese compound and a lithium compound is dried with a spray drier and then fired, but constitutes an aggregate composed of a large number of primary particles. In addition, since the specific surface area is increased, it is difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. In addition, the packing density is hardly sufficient.
[0014]
Patent Literature 3 mentioned above describes lithium manganate using trimanganese tetroxide containing 500 ppm of S as an example. However, it contains a large amount of S, and is charged with a secondary battery. It is hardly enough to improve the discharge cycle characteristics.
[0015]
Patent Document 4 discloses that manganese oxide and oxywater are plate-like particles having an average plate diameter of 1 to 50 μm, an average plate thickness of 0.2 to 2 μm, and a plate diameter / plate thickness ratio of 3 or more. Manganese oxide, a production method of obtaining a lithium manganese composite oxide having excellent cycle durability by mixing and heating manganese hydroxide and a lithium salt is disclosed, but the obtained lithium manganese composite oxide has a particle size of Since the specific surface area is small, it is difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. In addition, the packing density is hardly sufficient.
[0016]
Patent Literature 5 discloses a lithium manganate particle powder in which the average particle diameter of primary particles and secondary particles is specified. However, the primary particles are small, and the secondary particles are composed of a large number of primary particles. As a result, the specific surface area becomes large, and it becomes difficult to suppress the elution of Mn. As a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. In addition, the packing density is hardly sufficient.
[0017]
Patent Literature 6 mentioned above describes a lithium manganate particle powder in which the average particle diameter of primary particles and secondary particles is specified. However, since it is an aggregate and has a large specific surface area, the elution of Mn occurs. It becomes difficult to suppress this, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. Further, in the examples, lithium manganate particles having an average primary particle diameter of 2.0 μm and an average secondary particle diameter of 2.0 μm are described, but the average particle diameter is small and it is difficult to say that the filling property is sufficient. It is.
[0018]
Patent Literature 7 discloses lithium manganate particles having an average agglomerated particle diameter of 1 to 50 µm and an average primary particle diameter of 3.0 µm or less, which is obtained in Examples. Since the average primary particle diameter of the lithium manganate particles is as small as 1.0 μm or less and the specific surface area is large, it is difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate.
[0019]
Patent Document 8 mentioned above has a specific surface area of 0.3 to 0.7 m. 2 / G and SO 4 Lithium manganate particles having a content of 0.4% by weight or less are described. 2 As a raw material, the primary particles are small, and it is hard to say that the characteristics are sufficiently improved with the S content shown in the examples.
[0020]
Patent Literature 9 discloses lithium manganate particles having a cubic particle shape, a particle diameter of 0.01 to 10 μm, and a specific surface area in the range of 1 to 100 m2 / g. Since the particles have voids, the specific surface area is large, and since the particles are subjected to hydrothermal treatment, the primary particles are small and the improvement in characteristics is not sufficient.
[0021]
Further, Patent Literature 10 mentioned above discloses lithium manganate particles having a small content of fine particles having an average particle diameter of 1.0 μm or less, but primary particles are not considered. Electrolytic MnO 2 Is used, and the specific surface area with respect to the average particle diameter is large, it is estimated that the particles are aggregated particles, and it is difficult to suppress the elution of Mn. As a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. I do.
[0022]
Patent Document 11 mentioned above discloses that MnSO 4 Water is added to the hydrate to adjust the concentration of the aqueous solution, and after heating, hydrogen peroxide is added dropwise, ammonia water is added, and washing and drying are performed. Although it is disclosed that lithium manganate having improved charge / discharge characteristics can be obtained by heat treatment, it is difficult to suppress the elution of Mn because the primary particles are small and the specific surface area is large. Battery charge / discharge cycle characteristics are degraded. In addition, the packing density is hardly sufficient.
[0023]
Patent Literature 12 discloses lithium manganate particles having an average particle diameter of 1 to 45 μm, but does not consider primary particles, and the obtained lithium manganate particles are small primary particles. Are secondary particles that are agglomerated, so that the specific surface area is large and it is difficult to suppress the elution of Mn. As a result, the charge / discharge cycle characteristics of the secondary battery deteriorate.
[0024]
Patent Literature 13 discloses lithium manganate particles having a primary particle diameter of 0.5 to 2.0 μm. However, since the primary particles are small, the packing density is low, and the specific surface area is low. Therefore, it is difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate.
[0025]
Patent Document 14 discloses that the content of S is SO 4 Specific surface area 0.5 to 3m at 0.6% by weight or less in ion conversion 2 / G, a spinel-type lithium manganese oxide having an average particle diameter of 1 to 45 μm is disclosed. However, since CMD (chemically synthesized manganese dioxide) is used, the primary particles are small, and it is hard to say that the characteristics are sufficiently improved. .
[0026]
Patent Document 15 discloses that lithium carbonate having a size of 10 μm or more and 100 μm or less can be obtained by mixing and firing lithium carbonate and manganese dioxide. Therefore, it is difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. In addition, the packing density is hardly sufficient.
[0027]
Patent Documents 16 and 17 have a median diameter of 10 μm or less obtained by mixing and firing a lithium compound with manganese oxide having a median diameter of 10 μm or less obtained by heat-treating spherical manganese carbonate in a nitrogen atmosphere. Tap density 1.8 g / cm 3 Although it is disclosed that a lithium manganese oxide as described above can be obtained, since manganese carbonate is used as a raw material, it is difficult to suppress the elution of Mn because the primary particles are small and the specific surface area is large, and as a result, In addition, the charge / discharge cycle characteristics of the secondary battery deteriorate.
[0028]
Patent Document 18 discloses that lithium manganate having good battery characteristics can be obtained by mixing and firing electrolytic manganese dioxide having a reduced Na content and having an average particle size of 3 to 20 μm with a lithium raw material. However, since electrolytic manganese dioxide is used as a raw material, the value of the specific surface area with respect to the average particle diameter is large, and it is difficult to suppress the elution of Mn. As a result, the charge / discharge cycle characteristics of the secondary battery are reduced. descend.
[0029]
Further, in the above-mentioned Patent Document 19, manganese hydroxide is precipitated after forming a manganese complex salt, oxidized in a stream of air at 40 to 400 ° C., mixed with a lithium compound after obtaining trimanganese tetroxide, and calcined. Although a positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the above is disclosed, it is difficult to say that the primary particles are small and the characteristics are not sufficiently improved.
[0030]
Patent Document 20 discloses that a manganese ion is reacted with a complexing agent to form a manganese complex salt, which is then reacted with an alkali metal hydroxide to produce manganese hydroxide, and then reacted with an oxidizing agent to form tetroxide. Although it is disclosed that trimanganese is obtained, it is difficult to say that the primary particles are small enough to improve the characteristics.
[0031]
Patent Literature 21 discloses a lithium manganate particle powder having a specified particle size distribution, but does not consider primary particles, and uses electrolytic manganese dioxide (EMD) or CMD as a manganese raw material. And the specific surface area with respect to the average particle diameter is large, it is presumed that the particles are aggregated particles, and it is difficult to suppress the elution of Mn. As a result, the charge / discharge cycle characteristics are reduced.
[0032]
Further, in the above-mentioned Patent Document 22, a manganese oxide seed is obtained in a solution, manganese oxide and a basic compound are reacted, oxidized to grow particles, and then reacted with a lithium compound or subjected to proton substitution. Although a method for producing lithium manganate having excellent crystallinity and a large particle size and a uniform particle size distribution is disclosed, a step of adding manganese sulfate and sodium hydroxide in the example and growing a manganese oxide seed is included. As described, the reaction was completed at pH 6.4, and in this region, the S component was adsorbed and the amount of remaining S was estimated to be high, and the value of the specific surface area with respect to the particle size was large. It becomes difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. In addition, the packing density is hardly sufficient.
[0033]
Patent Literature 23 discloses a lithium secondary battery characterized in that the sulfur content in the lithium manganese composite oxide is 2% or less and a method for producing the same. A positive electrode is produced using electrolytic manganese dioxide in an amount of 1 to 2%, which is not sufficient for improving characteristics.
[0034]
Therefore, an object of the present invention is to provide a lithium manganate particle powder having excellent charge / discharge cycle characteristics of a secondary battery as a positive electrode active material for a nonaqueous electrolyte secondary battery.
[0035]
[Means for Solving the Problems]
The technical problem can be achieved by the present invention as described below.
[0036]
That is, according to the present invention, the average primary particles are 3.0 to 15 μm, the Na content is 0.02% by weight or less, the S content is 0.01% by weight or less, and the particle shape is triangular or square. Trimanganese tetroxide particles which are polyhedrons having a hexagonal or hexagonal surface (Invention 1).
[0037]
The present invention also provides a manganese hydroxide-containing aqueous suspension obtained by neutralizing an aqueous manganese salt solution with an alkaline aqueous solution, and then performing an oxidation reaction in a temperature range of 60 to 100 ° C. to form a trimanganese tetroxide nucleus. A primary reaction for obtaining particles, a manganese salt aqueous solution is added to the reaction solution after the primary reaction, and an oxidation reaction is performed to perform a growth reaction of the trimanganese tetroxide core particles. Wherein the manganese concentration in the primary reaction is 1.5 mol / L or less and the amount of manganese added in the secondary reaction is equal to or less than the manganese concentration in the primary reaction. This is a method for producing manganese particles (Invention 2).
[0038]
The present invention also provides a manganese hydroxide-containing aqueous suspension obtained by neutralizing an aqueous manganese salt solution with an alkaline aqueous solution, and then performing an oxidation reaction in a temperature range of 60 to 100 ° C. to form a trimanganese tetroxide nucleus. A primary reaction for obtaining particles, a manganese salt aqueous solution is added to the reaction solution after the primary reaction, and an oxidation reaction is performed to perform a growth reaction of the trimanganese tetroxide core particles. Wherein the reaction solution after the completion of the primary reaction is switched to a non-oxidizing atmosphere, an aqueous manganese salt solution is added, and then aging is performed within 3 hours. This is a method for producing a powder (the present invention 3).
[0039]
The present invention also provides a manganese hydroxide-containing aqueous suspension obtained by neutralizing an aqueous manganese salt solution with an alkaline aqueous solution, and then performing an oxidation reaction in a temperature range of 60 to 100 ° C. to form a trimanganese tetroxide nucleus. A primary reaction for obtaining particles, a manganese salt aqueous solution is added to the reaction solution after the primary reaction, and an oxidation reaction is performed to perform a growth reaction of the trimanganese tetroxide core particles. Wherein the organic reducing agent is present in an amount of 0.5 mol% or less with respect to manganese during the reaction (the present invention 4).
[0040]
The present invention also provides a manganese hydroxide-containing aqueous suspension obtained by neutralizing an aqueous manganese salt solution with an alkaline aqueous solution, and then performing an oxidation reaction in a temperature range of 60 to 100 ° C. to form a trimanganese tetroxide nucleus. A primary reaction for obtaining particles, a manganese salt aqueous solution is added to the reaction solution after the primary reaction, and an oxidation reaction is performed to perform a growth reaction of the trimanganese tetroxide core particles. Wherein the excess alkali concentration is set to 1.0 to 5.0 mol / L (the present invention 5).
[0041]
The present invention also provides a manganese hydroxide-containing aqueous suspension obtained by neutralizing an aqueous manganese salt solution with an alkaline aqueous solution, and then performing an oxidation reaction in a temperature range of 60 to 100 ° C. to form a trimanganese tetroxide nucleus. A primary reaction for obtaining particles is performed, and after the completion of the primary reaction, an aqueous solution of a manganese salt in an equimolar amount or less with respect to manganese used in the primary reaction is added to the reaction solution after switching to a non-oxidizing atmosphere, and aging within 3 hours. After performing the oxidation reaction, the manganese concentration in the primary reaction is reduced to 1.5 mol / L or less in a production method of obtaining trimanganese tetroxide particles by a secondary reaction in which a growth reaction of the trimanganese tetroxide core particles is performed by performing an oxidation reaction. Wherein the organic reducing agent is present in an amount of 0.5 mol% or less based on manganese during the reaction, and the excess alkali concentration is adjusted to 1.0 to 5 mol / L. A method for producing particles (Invention 6).
[0042]
The present invention also provides an isotropic polyhedron having an average primary particle diameter of 3.0 to 15 μm, an Na content of 0.03% by weight or less, an S content of 0.01% by weight or less, and a particle shape of isotropic. The present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a lithium manganate particle powder of the present invention (Invention 7).
[0043]
The method according to claim 8, wherein the trimanganese tetroxide particles and the lithium compound are mixed and heat-treated at 500C to 1000C. A method (Invention 8).
[0044]
Further, the present invention is a non-aqueous electrolyte secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery (Invention 9).
[0045]
Next, the configuration of the present invention will be described in more detail.
[0046]
First, the trimanganese tetroxide particles according to the present invention 1 will be described.
[0047]
In the present invention, the “primary particles” represent the smallest particles that can exist alone.
[0048]
The trimanganese tetroxide particle powder according to the first aspect of the present invention has an average primary particle diameter of 3.0 to 15 μm. When the average primary particle diameter is less than 3.0 μm, the packing density becomes low when the lithium manganate particles obtained using the trimanganese tetroxide particles are manufactured as a positive electrode of a secondary battery, and the energy density becomes low. Decreases. When the average primary particle size is 15 μm or more, when the lithium manganate particles obtained using the trimanganese tetroxide particles are used as a positive electrode of a secondary battery and the current density is increased, Li Deinsertion reactions tend to decrease. Preferably it is 3.0 to 12 μm.
[0049]
The trimanganese tetroxide particles according to the first aspect of the present invention have a Na content of 0.03% by weight or less and an S content of 0.01% by weight or less. When the Na content and the S content exceed the above ranges, when the lithium manganate particles obtained by using the trimanganese tetroxide particles are used as a positive electrode of a secondary battery, the cycle characteristics as a secondary battery are obtained. Tends to decrease. Preferably, the Na content is 0.02% by weight or less, and the S content is 0.008% by weight or less.
[0050]
The BET specific surface area of the trimanganese tetroxide particles according to the present invention 1 is 0.04 to 2.0 m. 2 / G is preferable, and more preferably 0.05 to 1.8 m 2 / G.
[0051]
The particle shape of the trimanganese tetroxide particles according to the first aspect of the present invention is a polyhedron having a triangular, quadrangular or hexagonal surface.
[0052]
Trimanganese tetroxide particles according to the first aspect of the present invention contain Mn. 2 O 3 May be included.
[0053]
Next, a method for producing trimanganese tetroxide particles according to the present invention will be described.
[0054]
The trimanganese tetroxide particles according to the present invention can be produced by any of the following production methods or a combination of the following production methods.
[0055]
That is, a manganese salt aqueous solution is reacted with an alkali aqueous solution to form a water suspension containing manganese hydroxide, and then an oxidation reaction is performed at a temperature in the range of 60 to 100 ° C. to obtain primary manganese tetroxide core particles. After adding a manganese salt aqueous solution to the reaction solution after the primary reaction, a secondary reaction of performing an oxidation reaction to perform a growth reaction of the trimanganese tetroxide core particles to obtain trimanganese tetroxide particles by a secondary reaction. A production method (the present invention 2) in which the manganese concentration in the primary reaction is 1.5 mol / L or less and the amount of manganese added in the secondary reaction is equal to or less than the molar amount of manganese in the primary reaction (the present invention 2); In the production method, the reaction solution after the completion of the primary reaction is switched to a non-oxidizing atmosphere, an aqueous solution of manganese salt is added, and then ripening is performed within 3 hours ( Invention 3), a method for producing trimanganese tetroxide particles, wherein an organic reducing agent is present in an amount of 0.5 mol% or less based on manganese during the primary reaction and / or the secondary reaction (Invention 4). A method for producing trimanganese tetroxide particles by setting the excess alkali concentration to 1.0 to 5 mol / L in the method for producing trimanganese tetroxide particles (the present invention 5).
[0056]
In the present invention, examples of the manganese salt aqueous solution include a manganese sulfate aqueous solution, a manganese nitrate aqueous solution, a manganese oxalate aqueous solution, a manganese acetate aqueous solution, and the like, and these may be used alone or in combination of two or more as needed.
[0057]
As the aqueous alkali solution in the present invention, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or an aqueous alkali solution such as ammonia can be used.
[0058]
The method for producing trimanganese tetroxide particles of the present invention 2 to 6 comprises a primary reaction for obtaining trimanganese tetroxide core particles and a secondary reaction for growing the trimanganese tetroxide core particles. By performing the primary reaction and the secondary reaction, trimanganese tetroxide particles having larger primary particles and less Na content can be obtained.
[0059]
In the present invention, when the manganese concentration in the primary reaction is 1.5 mol / L or more, the concentration of the reaction solution becomes high, and it is difficult to stably produce. If the manganese concentration of the secondary reaction exceeds the equimolar concentration of the manganese concentration of the primary reaction, the particle size distribution of the particle size broadens and the Na content increases, which is not preferable.
[0060]
If necessary, after the completion of the secondary reaction, a tertiary reaction in which an equimolar or less manganese salt of the primary reaction is further added may be performed.
[0061]
In the present invention, the reason for switching the atmosphere of the aqueous suspension to the non-oxidizing atmosphere after the completion of the primary reaction is to stabilize the reaction in the secondary reaction easily.
[0062]
The aging is performed on the suspension after the neutralization reaction in a temperature range of 20 to 100 ° C, preferably 50 to 95 ° C. By performing aging, trimanganese tetroxide particles having a narrow particle size distribution of the particle size can be obtained and the generation of an impurity phase (burnesite) containing Na can be suppressed. Particle powder can be obtained. Aging for more than 3 hours is not preferable because it leads to an increase in the reaction time. More preferably, it is 1 to 3 hours.
[0063]
In the present invention, it is preferable to add an organic reducing agent. Examples of the organic reducing agent include ascorbic acid, lactose, and formalin, and ascorbic acid is preferable. The amount of the organic reducing agent to be added is preferably not more than 0.5% by mole relative to manganese. When the content exceeds 0.5 mol%, a hetero phase is generated and the particle size tends to be reduced.
[0064]
The timing of adding the organic reducing agent is not particularly limited, such as an aqueous manganese salt solution, an aqueous alkaline solution, during a neutralization reaction, during aging, or during an oxidation reaction, but it is preferable to add the organic reducing agent to the aqueous manganese salt solution in advance.
[0065]
In the present invention, trimanganese tetroxide having a large particle size can be easily obtained by adding an aqueous alkali solution in excess of the equivalent of manganese. In particular, the amount of excess alkali is preferably 1.0 to 5.0 mol / l, and if it is less than 1.0 mol / l, it is difficult to easily obtain trimanganese tetroxide particles having a desired particle size. It becomes. By adding 5.0 mol / l, trimanganese tetroxide particles having a desired particle size can be obtained. Preferably, it is 1.5 to 4.0 mol / l.
[0066]
The oxidation reaction can be carried out by passing an oxidizing gas through the reaction solution or by adding an oxidizing agent. For example, air ventilation is preferable.
[0067]
The temperature of the oxidation reaction is preferably from 60 to 90C.
[0068]
After completion of the secondary reaction, washing and drying are performed to obtain trimanganese tetroxide particles.
[0069]
Next, the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention (hereinafter, simply referred to as “positive electrode active material”) will be described.
[0070]
The positive electrode active material according to the present invention has an average primary particle diameter of 3.0 to 15 μm. When the average primary particle diameter is less than 3.0 μm, the packing density becomes low when manufacturing the positive electrode of the secondary battery, and the energy density of the secondary battery decreases, for example, the binder amount needs to be increased. Invite. On the other hand, if it exceeds 15 μm, the Li insertion / removal reaction tends to decrease when the current density is increased. Preferably it is 3.0 to 12 μm.
[0071]
The positive electrode active material according to the present invention has a Na content of 0.03% by weight or less and an S content of 0.01% by weight or less. When the Na content and the S content exceed the above ranges, the cycle characteristics of the secondary battery tend to decrease. Preferably, the Na content is 0.025% or less and the S content is 0.008% by weight or less.
[0072]
The particle shape of the positive electrode active material according to the present invention is an isotropic polyhedron. In the case of a particle shape having an acute angle portion, the contact with the conductive material is not uniform, which is not preferable.
[0073]
The positive electrode active material according to the present invention is Li 1 + x Mn 2-x O 4 It is preferable that Li / Mn is 0.52 to 0.67 in molar ratio. If it is less than 0.52, the charge / discharge capacity is high, but the cycle characteristics deteriorate due to the occurrence of distortion due to the Jahn-Teller effect. On the other hand, if it exceeds 0.67, the initial discharge capacity is not sufficient, which is not preferable. In the above composition formula, a metal element or a transition metal element having an atomic number of 11 or more may be contained in a molar ratio of 0 to 20% with respect to Mn.
[0074]
In addition, Mn which does not contribute to charge / discharge capacity and cycle characteristics 2 O 3 , Mn 3 O 4 , MnO 2, Li 2 MnO 3 Etc. may be included.
[0075]
The BET specific surface area of the positive electrode active material according to the present invention is 0.04 to 1.5 m. 2 / G is preferred. 0.04m 2 If it is less than / g, it is considered that the Li insertion / removal reaction is reduced when the current density is increased, and the battery characteristics are reduced. 1.5m 2 If it exceeds / g, the packing density of the positive electrode active material decreases and the reactivity with the electrolytic solution becomes excessive, resulting in a decrease in safety. More preferably 0.06 to 1.2 m 2 / G.
[0076]
In the positive electrode active material according to the present invention, since the primary particles can behave independently, the average primary particle size and the average secondary particle size are substantially the same, and the average secondary particle size is 3.0 to 18 μm. preferable. When the average secondary particle diameter is less than 3.0 μm, the packing density becomes low when manufacturing the positive electrode of the secondary battery, and the energy density of the secondary battery needs to be increased. Causes a decline. On the other hand, if it exceeds 15 μm, the Li insertion / removal reaction tends to decrease when the current density is increased. Preferably it is 3.0 to 15 μm.
[0077]
The tap density of the positive electrode active material according to the present invention is preferably 2.0 g / ml or more. Its upper limit is about 3.0 g / ml.
[0078]
Next, a method for producing the positive electrode active material according to the present invention will be described.
[0079]
As a lithium raw material, lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride and the like can be used, but lithium carbonate is preferable.
[0080]
The mixing ratio of the trimanganese tetroxide particles and the lithium raw material is preferably about Li / Mn = 0.52 to 0.67 in molar ratio. When it is 0.52 or less, the capacity is high, but the charge / discharge cycle characteristics are deteriorated due to the occurrence of distortion due to the Jahn-Teller effect. If it exceeds 0.67, the initial capacity is not sufficient.
[0081]
The trimanganese tetroxide particles and the lithium raw material need to be in a uniform mixed state. If they are not mixed uniformly, the composition ratio will be partially deviated, and lithium manganate having different capacity and reversibility will be synthesized, and it will also cause a different phase other than lithium manganate.
[0082]
The firing temperature of the mixture is 500-1000 ° C. When the temperature is lower than 500 ° C., lithium manganate particles having high crystallinity cannot be obtained. If the temperature is higher than 1000 ° C., it is difficult to obtain a single phase, which affects the battery characteristics.
[0083]
The firing atmosphere may be an oxygen-containing gas, for example, air. The firing time may be selected so that the reaction proceeds uniformly, but is preferably 1 to 48 hours, more preferably 10 to 24 hours.
[0084]
After firing, the powder is pulverized to obtain lithium manganate particles.
[0085]
Next, the nonaqueous electrolyte secondary battery according to the present invention will be described.
[0086]
When a positive electrode material is produced using the lithium manganate particles according to the present invention as a positive electrode active material for a non-aqueous electrolyte secondary battery, a conductive agent such as acetylene black and carbon black, and polytetrafluoroethylene and polyfluoroethylene are used. It is mixed with a binder such as vinylidene fluoride and shaped into a predetermined shape to form a positive electrode material.
[0087]
The negative electrode active material is not particularly limited, and for example, a lithium metal, a lithium alloy, or a substance capable of inserting and extracting lithium can be used, and examples thereof include a lithium / aluminum alloy, a lithium / tin alloy, graphite, and graphite. Can be
[0088]
Further, the electrolyte is not particularly limited. For example, lithium perchlorate, tetrafluoroboric acid, and the like are contained in at least one organic solvent such as carbonates such as propylene carbonate, diethyl carbonate, and dimethyl carbonate, and ethers such as dimethoxyethane. A solution in which at least one lithium salt such as lithium and lithium hexafluorophosphate is dissolved can be used.
[0089]
The secondary battery manufactured using the positive electrode active material according to the present invention has an initial discharge capacity of 60 to 135 mAh / g and a capacity retention after 100 cycles at 60 ° C of 90% or more.
[0090]
BEST MODE FOR CARRYING OUT THE INVENTION
A typical embodiment of the present invention is as follows.
[0091]
The particle diameter of the particle powder was measured by the following two methods.
[0092]
The average primary particle diameter of each particle powder was measured with a scanning electron microscope (manufactured by Hitachi, Ltd.). Ten primary particles were arbitrarily selected from the particles present on the diagonal line of the scanning electron microscope photograph, the particle diameter was measured, and the average value was defined as the average primary particle diameter. In the scanning electron micrograph, the magnification at which 20 to 40 particles are present on a diagonal line is preferable from the viewpoint of measuring accuracy of the particle diameter.
[0093]
The average secondary particle diameter of the particle powder is determined by the laser scattering / diffraction method "NIKKISO MICROTRAC HRA, Model 9320-X100: manufactured by Nikkiso Co., Ltd." 50 Was measured to obtain an average secondary particle diameter.
[0094]
The identification, crystal structure and crystallite size of the positive electrode active material were examined by X-ray diffraction (RIGAKU Cu-Kα 40 kV 40 mA).
[0095]
The morphology of the particles was observed with a scanning electron microscope (manufactured by Hitachi, Ltd.).
[0096]
The BET specific surface area was measured by the BET method.
[0097]
The tap density was measured by using "SEISHIN TADENSER KYT-3000: manufactured by Seishin Enterprise Co., Ltd."
[0098]
<Preparation of positive electrode>
Lithium manganate particles, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a weight ratio of 85: 10: 5, and N-methyl-2-pyrrolidone is added to form a paste. Was applied to an aluminum foil to a thickness of 0.15 mm, dried and punched out into a 16 mm-diameter disk to produce a positive electrode.
[0099]
A lithium foil was used as the negative electrode, and this was punched into a 16 mm disk shape.
[0100]
<Preparation of secondary battery>
The separator was made of polyethylene, and was punched into a 19 mm disk shape. LiPF for electrolyte 6 A mixture obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 1 using as a supporting salt was used. Then, a coin cell battery was manufactured in a glove box in an argon atmosphere.
[0101]
In the charge / discharge cycle test of the secondary battery, the current density with respect to the positive electrode was 0.5 mA / cm. 2 After charge / discharge was repeated 100 cycles at a temperature of 60 ° C. with a cutoff voltage of 4.5 V to 3.0 V, the discharge capacity was measured to determine the ratio to the initial discharge capacity.
[0102]
<Production of trimanganese tetroxide particle powder: (Production according to the present invention 2)>
Under nitrogen aeration, 277.9 l of a 2.0 mol / l manganese sulfate aqueous solution was added to 157.8 l of an 18.2 mol / l aqueous sodium hydroxide solution to make the total amount 700 L, and a neutralization reaction was carried out to perform manganese hydroxide particles. Was obtained. At this time, the manganese concentration was 0.8 mol / L, and the excess alkali concentration was 2.5 mol / L. The temperature of the obtained aqueous suspension containing manganese hydroxide particles was increased to 90 ° C. under nitrogen aeration, and then air was passed to perform an oxidation reaction at 90 ° C. Next, 138.9 l of a 0.4 mol / l manganese sulfate aqueous solution was added as a secondary reaction, and then the air was ventilated to carry out an oxidation reaction at 60 ° C, washed with water and dried to obtain manganese oxide particle powder. The amount of manganese salt added in the secondary reaction was half of the manganese concentration in the primary reaction.
[0103]
The obtained trimanganese tetroxide particle powder is Mn. 3 O 4 Having an average primary particle diameter of 9.0 μm and a BET specific surface area of 0.4 m. 2 / G. The Na content was 0.01% by weight and the S content was 0.001% by weight. FIG. 1 shows the observation results of a scanning electron microscope photograph of the obtained trimanganese tetroxide particles. As shown in the figure, the particle shape was a polyhedron or an octahedron having triangular or square faces.
[0104]
<Production of lithium manganate particles>
The thus obtained trimanganese tetroxide particles powder and lithium carbonate were mixed for 30 minutes so that the ratio of Li / Mn was 0.62, to obtain a uniform mixture. The obtained mixture was placed in an alumina sheath and kept at 845 ° C. in an air atmosphere for 6 hours to obtain lithium manganate particles.
[0105]
The obtained lithium manganate particles had an average primary particle size of 9.0 μm and an average secondary particle size (D 50 ) 11.9 μm, the Na content was 0.019%, and the S content was 0.001%. 0.3m BET specific surface area 2 / G and tap density was 2.3 g / ml. FIG. 2 shows the observation results of the scanning electron micrograph of the obtained lithium manganate particles. As shown in the figure, the particle shape was an isotropic polyhedron without an acute angle portion.
[0106]
The coin battery manufactured using the positive electrode active material comprising the lithium manganate particles obtained here had an initial discharge capacity of 91 mAh / g and a capacity retention rate of 98% / 100 cycles after 100 cycles at 60 ° C. Was.
[0107]
[Action]
The most important point in the present invention is that the trimanganese tetroxide particles and lithium manganate according to the present invention have a large primary particle diameter and are excellent in dispersibility without aggregation.
[0108]
In the present invention, although the reason is not clear, by separating the reaction into a primary reaction and a secondary reaction, it is possible to suppress the precipitation of a Na-Mn-based compound which is an impurity phase, and further, an organic-based reducing agent is used. By providing an aging step or performing an oxidation reaction in a high alkali region, tri-oxides having a large primary particle size, a uniform particle size distribution, small particle agglomeration, and a low Na and S content are provided. Manganese particles can be obtained.
[0109]
Since the particle size of the lithium manganate particles largely depends on the particle size of the trimanganese tetroxide particles serving as the precursor, by using the trimanganese tetroxide particles, the positive electrode active material composed of the lithium manganate particles also has a large primary It becomes particles, has few aggregated particles, has excellent particle size distribution, and can reduce the content of Na and S.
[0110]
The charge / discharge cycle characteristics of the secondary battery using the positive electrode active material according to the present invention are excellent because the specific surface area of the positive electrode active material is small, and the particle shape is an isotropic polyhedron and does not have an acute angle portion. Therefore, it is presumed that the reactivity with the electrolytic solution is suppressed, and the dispersibility and the filling property during coating are excellent.
[0111]
【Example】
Next, examples and comparative examples will be described.
[0112]
Examples 1-4, Comparative Examples 1-4
Trimanganese tetroxide was obtained in the same manner as in the embodiment of the invention except that the manganese salt concentration in the primary reaction and the secondary reaction was variously changed.
[0113]
Table 1 shows the production conditions at this time and various characteristics of the obtained trimanganese tetroxide particles.
[0114]
[Table 1]
Figure 2004292264
[0115]
Example 5: (Production according to the present invention 3)
Under nitrogen aeration, 277.9 l of a 2.0 mol / l manganese sulfate aqueous solution was added to 157.8 l of an 18.2 mol / l aqueous sodium hydroxide solution to make the total amount 700 L, and a neutralization reaction was carried out to perform manganese hydroxide particles. Was obtained. At this time, the manganese concentration was 0.8 mol / L, and the excess alkali concentration was 2.5 mol / L. The temperature of the obtained aqueous suspension containing manganese hydroxide particles was increased to 90 ° C. under aeration of nitrogen, and then the air was passed to perform an oxidation reaction at 90 ° C. Thereafter, the mixture was aged for 1 hour under nitrogen aeration. Next, 138.9 l of a 0.4 mol / l manganese sulfate aqueous solution was added as a secondary reaction, and then the air was ventilated to carry out an oxidation reaction at 60 ° C, washed with water and dried to obtain manganese oxide particle powder.
[0116]
The obtained trimanganese tetroxide particle powder is Mn. 3 O 4 Having an average primary particle diameter of 9.0 μm and a BET specific surface area of 0.3 m. 2 / G. The Na content was 0.005% by weight, and the S content was 0.001% by weight. As a result of observing the obtained trimanganese tetroxide particles in a scanning electron microscope photograph, the particle shape was an octahedron or an isotropic polyhedron having square to hexagonal surfaces.
[0117]
Examples 6 to 7, Comparative Examples 5 and 6
Trimanganese tetroxide was obtained in the same manner as in Example 5 except that the aging time was variously changed.
[0118]
Table 2 shows the production conditions at this time and various characteristics of the obtained trimanganese tetroxide particles.
[0119]
[Table 2]
Figure 2004292264
[0120]
Example 8: (Production according to the present invention 4)
Under nitrogen aeration, 277.9 l of a 2.0 mol / l manganese sulfate aqueous solution and 98 g of ascorbic acid were added to 157.8 l of an 18.2 mol / l aqueous sodium hydroxide solution to make the total amount 700 L, and a neutralization reaction was carried out. An aqueous suspension containing manganese hydroxide particles was obtained. At this time, the manganese concentration was 0.8 mol / L, the excess alkali concentration was 2.5 mol / l, and the added amount of ascorbic acid was 0.008 mol% based on manganese. The resulting aqueous suspension containing the manganese hydroxide particles was aged at 90 ° C. for 1 hour under nitrogen aeration. After aging, air was passed through to carry out an oxidation reaction at 90 ° C. Next, 138.9 l of a 0.4 mol / l manganese sulfate aqueous solution was added as a secondary reaction, and then the air was ventilated to carry out an oxidation reaction at 60 ° C, washed with water and dried to obtain manganese oxide particle powder.
[0121]
The obtained trimanganese tetroxide particle powder is Mn. 3 O 4 Having an average primary particle diameter of 9.0 μm and a BET specific surface area of 0.3 m. 2 / G. The Na content was 0.007% by weight, and the S content was 0.001% by weight. As a result of observing a scanning electron microscope photograph of the obtained trimanganese tetroxide particles, the particle shape was octahedron or isotropic polyhedron having square to hexagonal surfaces.
[0122]
Examples 9 to 11, Comparative Examples 7 and 8
Trimanganese tetroxide particles were obtained in the same manner as in Example 8 except that the amount of ascorbic acid with respect to manganese was variously changed.
[0123]
Table 3 shows the production conditions at this time and various properties of the obtained trimanganese tetroxide particles.
[0124]
[Table 3]
Figure 2004292264
[0125]
Example 12: (Production according to Invention 5)
Under nitrogen aeration, 277.9 liters of a 2.0 mol / l aqueous solution of manganese sulfate were added to 102.7 liters of an aqueous solution of 18.2 mol / l sodium hydroxide to make the total amount 700 L, and a neutralization reaction was carried out to perform manganese hydroxide particles. Was obtained. At this time, the manganese concentration was 0.8 mol / L, and the excess alkali concentration was 1.5 mol / L. Air was passed through the obtained aqueous suspension containing manganese hydroxide particles to perform an oxidation reaction at 90 ° C. Next, 138.9 l of a 0.4 mol / l manganese sulfate aqueous solution was added as a secondary reaction, and then the air was ventilated to carry out an oxidation reaction at 60 ° C, washed with water and dried to obtain manganese oxide particle powder.
[0126]
The obtained trimanganese tetroxide particle powder is Mn. 3 O 4 Having an average primary particle diameter of 6.0 μm and a BET specific surface area of 0.5 m. 2 / G. The Na content was 0.007% by weight, and the S content was 0.001% by weight. As a result of observing a scanning electron microscope photograph of the obtained trimanganese tetroxide particles, the particle shape was octahedron or isotropic polyhedron having square to hexagonal surfaces.
[0127]
Examples 13 to 15, Comparative Examples 9 to 11
Trimanganese tetroxide was obtained in the same manner as in Example 12 except that the amount of excess alkali for the primary reaction was variously changed.
[0128]
Table 4 shows the production conditions at this time and various characteristics of the obtained trimanganese tetroxide particles. Comparative Example 11 is electrolytic manganese dioxide (EMD).
[0129]
[Table 4]
Figure 2004292264
[0130]
Example 16: (Production according to the present invention 6)
Under nitrogen aeration, 277.9 l of 2.0 mol / l manganese sulfate aqueous solution and 490 g of ascorbic acid were added to 157.8 l of 18.2 mol / l sodium hydroxide aqueous solution to make the total amount 700 L, and a neutralization reaction was performed. An aqueous suspension containing manganese hydroxide particles was obtained. At this time, the manganese concentration was 0.8 mol / L, the excess alkali concentration was 2.5 mol / l, and the amount of ascorbic acid added was 0.05 mol% based on manganese. The temperature of the obtained aqueous suspension containing manganese hydroxide particles was increased to 90 ° C. under aeration of nitrogen, and then the air was passed to perform an oxidation reaction at 90 ° C. Thereafter, the mixture was aged for 2 hours under nitrogen aeration. Next, 138.9 l of a 0.4 mol / l manganese sulfate aqueous solution was added as a secondary reaction, and then the air was ventilated to carry out an oxidation reaction at 60 ° C, washed with water and dried to obtain manganese oxide particle powder. The amount of manganese salt added in the secondary reaction was half of the manganese concentration in the primary reaction.
[0131]
Table 5 shows properties of the obtained trimanganese tetroxide particles. As a result of observing a scanning electron microscope photograph of the obtained trimanganese tetroxide particles, the particle shape was octahedron or isotropic polyhedron having square to hexagonal surfaces.
[0132]
Example 17
Trimanganese tetroxide was obtained in the same manner as in Example 16 except that the reaction conditions were variously changed.
[0133]
Table 5 shows the production conditions at this time and various characteristics of the obtained trimanganese tetroxide particles.
[0134]
[Table 5]
Figure 2004292264
[0135]
Examples 18 to 34, Comparative Examples 12 to 22
Lithium manganate particles were obtained in the same manner as in <Production of lithium manganate particles> of the embodiment of the present invention, except that the type of trimanganese tetroxide particles was variously changed.
[0136]
Table 6 shows the production conditions at this time, various characteristics of the lithium manganate particles, and the results of battery evaluation performed in the same manner as in the embodiment of the invention.
[0137]
Each of the lithium manganate particles obtained in the examples had an isotropic polyhedron without sharp corners.
[0138]
[Table 6]
Figure 2004292264
[0139]
【The invention's effect】
The trimanganese tetroxide particle powder according to the present invention has a large average primary particle diameter and a small Na content and a small S content, and thus is suitable as a precursor of the lithium manganate particles.
[0140]
The positive electrode active material according to the present invention has a large average primary particle diameter, a low Na content and a small S content, and excellent dispersibility and filling properties. A battery can be provided.
[0141]
The secondary battery according to the present invention, by using the positive electrode active material, exhibits an initial discharge capacity substantially equal to a theoretical value, and is excellent in cycle characteristics at high temperatures, and thus is suitable as a secondary battery. .
[Brief description of the drawings]
FIG. 1 shows an electron micrograph (× 3500) of trimanganese tetroxide particles obtained in an embodiment of the present invention.
FIG. 2 shows an electron micrograph (× 3500) of a positive electrode active material composed of lithium manganate particles obtained in the embodiment of the present invention.
FIG. 3 shows an electron micrograph (× 3500) of electrolytic manganese dioxide used in Comparative Example 11.
FIG. 4 shows an electron micrograph (× 3500) of the lithium manganate particles obtained in Comparative Example 22.

Claims (9)

平均一次粒子径が3.0〜15μmであり、Na含有量が0.02重量%以下、S含有量が0.01重量%以下であって、粒子形状が三角状、四角状又は六角状の面をもつ多面体である四酸化三マンガン粒子粉末。The average primary particle diameter is 3.0 to 15 μm, the Na content is 0.02% by weight or less, the S content is 0.01% by weight or less, and the particle shape is triangular, square or hexagonal. Trimanganese tetroxide particle powder which is a polyhedron having a surface. マンガン塩水溶液をアルカリ水溶液により中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液にマンガン塩水溶液を添加した後、酸化反応を行って前記四酸化三マンガン核粒子の成長反応を行う二次反応によって四酸化三マンガン粒子を得る製造法において、一次反応のマンガン濃度を1.5mol/L以下にするとともに、二次反応のマンガン添加量を一次反応のマンガン濃度の等モル以下にすることを特徴とする請求項1記載の四酸化三マンガン粒子粉末の製造法。A manganese salt aqueous solution is neutralized with an alkali aqueous solution to form a water suspension containing manganese hydroxide, and then an oxidation reaction is performed in a temperature range of 60 to 100 ° C. to perform a primary reaction to obtain trimanganese tetroxide core particles. Performing, after adding a manganese salt aqueous solution to the reaction solution after the primary reaction, in a production method of obtaining trimanganese tetroxide particles by a secondary reaction of performing an oxidation reaction and performing a growth reaction of the trimanganese tetroxide nucleus particles, 3. The manganese trioxide particles according to claim 1, wherein the manganese concentration in the primary reaction is 1.5 mol / L or less, and the manganese addition amount in the secondary reaction is equal to or less than the manganese concentration in the primary reaction. Powder manufacturing method. マンガン塩水溶液をアルカリ水溶液により中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液にマンガン塩水溶液を添加した後、酸化反応を行って前記四酸化三マンガン核粒子の成長反応を行う二次反応によって四酸化三マンガン粒子を得る製造法において、一次反応終了後の反応溶液を非酸化性雰囲気に切り替えた後、マンガン塩水溶液を添加し、次いで、3時間以内の熟成を行うことを特徴とする請求項1記載の四酸化三マンガン粒子粉末の製造法。A manganese salt aqueous solution is neutralized with an alkali aqueous solution to form a water suspension containing manganese hydroxide, and then an oxidation reaction is performed in a temperature range of 60 to 100 ° C. to perform a primary reaction to obtain trimanganese tetroxide core particles. Performing, after adding a manganese salt aqueous solution to the reaction solution after the primary reaction, in a production method of obtaining trimanganese tetroxide particles by a secondary reaction of performing an oxidation reaction and performing a growth reaction of the trimanganese tetroxide nucleus particles, The reaction solution after the completion of the primary reaction is switched to a non-oxidizing atmosphere, an aqueous solution of manganese salt is added, and then ripening is performed within 3 hours. Manufacturing method. マンガン塩水溶液をアルカリ水溶液により中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液にマンガン塩水溶液を添加した後、酸化反応を行って前記四酸化三マンガン核粒子の成長反応を行う二次反応によって四酸化三マンガン粒子を得る製造法において、反応中にマンガンに対して0.5モル%以下の有機還元剤を存在させることを特徴とする請求項1記載の四酸化三マンガン粒子粉末の製造法。A manganese salt aqueous solution is neutralized with an alkali aqueous solution to form a water suspension containing manganese hydroxide, and then an oxidation reaction is performed in a temperature range of 60 to 100 ° C. to perform a primary reaction to obtain trimanganese tetroxide core particles. Performing, after adding a manganese salt aqueous solution to the reaction solution after the primary reaction, in a production method of obtaining trimanganese tetroxide particles by a secondary reaction of performing an oxidation reaction and performing a growth reaction of the trimanganese tetroxide nucleus particles, 2. The process for producing trimanganese tetroxide particles according to claim 1, wherein an organic reducing agent is present in an amount of 0.5 mol% or less based on manganese during the reaction. マンガン塩水溶液をアルカリ水溶液により中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応後の反応溶液にマンガン塩水溶液を添加した後、酸化反応を行って前記四酸化三マンガン核粒子の成長反応を行う二次反応によって四酸化三マンガン粒子を得る製造法において、過剰アルカリ濃度を1.0〜5.0mol/Lにすることを特徴とする請求項1記載の四酸化三マンガン粒子粉末の製造法。A manganese salt aqueous solution is neutralized with an alkali aqueous solution to form a water suspension containing manganese hydroxide, and then an oxidation reaction is performed in a temperature range of 60 to 100 ° C. to perform a primary reaction to obtain trimanganese tetroxide core particles. Performing, after adding a manganese salt aqueous solution to the reaction solution after the primary reaction, in a production method of obtaining trimanganese tetroxide particles by a secondary reaction of performing an oxidation reaction and performing a growth reaction of the trimanganese tetroxide nucleus particles, The method for producing trimanganese tetroxide particles according to claim 1, wherein the excess alkali concentration is set to 1.0 to 5.0 mol / L. マンガン塩水溶液をアルカリ水溶液により中和してマンガン水酸化物を含有する水懸濁液とし、次いで、60〜100℃の温度範囲で酸化反応を行って四酸化三マンガン核粒子を得る一次反応を行い、該一次反応終了後、非酸化性雰囲気に切り替えた後の反応溶液に一次反応で用いたマンガンに対して等モル以下のマンガン塩水溶液を添加し、3時間以内の熟成を行った後、酸化反応を行って前記四酸化三マンガン核粒子の成長反応を行う二次反応によって四酸化三マンガン粒子を得る製造法において、一次反応のマンガン濃度を1.5mol/L以下にするとともに、反応中に有機還元剤をマンガンに対して0.5モル%以下存在させ、過剰アルカリ濃度を1.0〜5mol/Lとすることを特徴とする請求項1記載の四酸化三マンガン粒子粉末の製造法。A manganese salt aqueous solution is neutralized with an alkali aqueous solution to form a water suspension containing manganese hydroxide, and then an oxidation reaction is performed in a temperature range of 60 to 100 ° C. to perform a primary reaction to obtain trimanganese tetroxide core particles. After the completion of the primary reaction, an aqueous solution of a manganese salt in an equimolar amount or less with respect to manganese used in the primary reaction is added to the reaction solution after switching to the non-oxidizing atmosphere, and aging is performed within 3 hours. In a production method of obtaining trimanganese tetroxide particles by a secondary reaction in which an oxidation reaction is performed to grow the trimanganese tetroxide core particles, the manganese concentration in the primary reaction is set to 1.5 mol / L or less, and 2. The trimanganese tetroxide particles according to claim 1, wherein an organic reducing agent is present in an amount of 0.5 mol% or less based on manganese, and the excess alkali concentration is set to 1.0 to 5 mol / L. Process for the preparation of powder. 平均一次粒子径が3.0〜15μmであり、Na含有量が0.03重量%以下、S含有量が0.01重量%以下であって粒子形状が等方的多面体であるマンガン酸リチウム粒子粉末からなることを特徴とする非水電解質二次電池用正極活物質。Lithium manganate particles having an average primary particle diameter of 3.0 to 15 μm, an Na content of 0.03% by weight or less, an S content of 0.01% by weight or less, and an isotropic polyhedral particle shape A positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a powder. 請求項1記載の四酸化三マンガン粒子粉末とリチウム化合物を混合し、500℃〜1000℃で熱処理することを特徴とする請求項8記載の非水電解質二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 8, wherein the trimanganese tetroxide particles according to claim 1 and a lithium compound are mixed and heat-treated at 500 ° C to 1000 ° C. 請求項7記載の非水電解質二次電池用正極活物質を用いた非水電解質二次電池。A non-aqueous electrolyte secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 7.
JP2003089010A 2003-03-27 2003-03-27 Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery Expired - Lifetime JP4305629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089010A JP4305629B2 (en) 2003-03-27 2003-03-27 Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089010A JP4305629B2 (en) 2003-03-27 2003-03-27 Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004292264A true JP2004292264A (en) 2004-10-21
JP4305629B2 JP4305629B2 (en) 2009-07-29

Family

ID=33402991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089010A Expired - Lifetime JP4305629B2 (en) 2003-03-27 2003-03-27 Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4305629B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018634A1 (en) * 2006-08-09 2008-02-14 Kanto Denka Kogyo Co., Ltd. Spinel lithium manganate, method for producing the same, positive electrode active material using spinel lithium manganate, and nonaqueous electrolyte battery
KR100814814B1 (en) 2005-12-21 2008-03-20 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
JP2010108926A (en) * 2008-10-01 2010-05-13 Toda Kogyo Corp Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2010212261A (en) * 2009-09-29 2010-09-24 Ngk Insulators Ltd Positive electrode active material and lithium secondary battery using the same
JP2010212260A (en) * 2009-09-29 2010-09-24 Ngk Insulators Ltd Positive electrode active material and lithium secondary battery
JP2010212262A (en) * 2009-09-29 2010-09-24 Ngk Insulators Ltd Positive electrode active material and lithium secondary battery
WO2010101307A3 (en) * 2009-06-25 2010-11-11 日本碍子株式会社 Positive electrode active material and lithium secondary battery using same
WO2010101306A3 (en) * 2009-06-25 2010-11-11 日本碍子株式会社 Positive electrode active material and lithium secondary battery
WO2010101308A3 (en) * 2009-06-25 2010-11-11 日本碍子株式会社 Positive electrode active material and lithium secondary battery
WO2011105361A1 (en) * 2010-02-23 2011-09-01 戸田工業株式会社 Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery
KR101171962B1 (en) 2010-04-02 2012-08-08 주식회사 이엔드디 Process for preparing manganese composite oxide
JP2012188341A (en) * 2010-10-06 2012-10-04 Tosoh Corp Manganese oxide, method for producing the same, and method for producing lithium manganese based composite oxide using manganese oxide
JP2012216548A (en) * 2011-03-31 2012-11-08 Toda Kogyo Corp Active material powder for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2012216549A (en) * 2011-03-31 2012-11-08 Toda Kogyo Corp Active material powder for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012216547A (en) * 2011-03-31 2012-11-08 Toda Kogyo Corp Manganese-nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013028523A (en) * 2011-06-23 2013-02-07 Tosoh Corp Method for producing manganese oxide
WO2013157587A1 (en) 2012-04-20 2013-10-24 東ソー株式会社 Manganese(iii, iv) oxide and method for producing same
JP2014005191A (en) * 2012-06-26 2014-01-16 Guizhou Redstar Developing Co Ltd Methods for preparing and controlling particle size of low-bet trimanganese tetroxide, and trimanganese tetroxide
CN103570072A (en) * 2012-07-27 2014-02-12 比亚迪股份有限公司 Trimanganese tetroxide preparation method and trimanganese tetroxide prepared therethrough
CN104211122A (en) * 2014-08-14 2014-12-17 重庆上甲电子股份有限公司 Decomposition deposition cycle technology for preparing trimanganese tetroxide through using manganese sulfate solution
JP2015515442A (en) * 2012-11-15 2015-05-28 ポスコ イーエス マテリアルス カンパニー リミテッドPOSCO ES Materials Co., Ltd. Lithium manganese composite oxide in which the size of the vertical angle of primary particles is adjusted, and a method for producing the same
WO2016055911A1 (en) * 2014-10-08 2016-04-14 Umicore Impurity containing cathode material with preferred morphology and method to prepare from impurity containing metal carbonate
WO2016055910A1 (en) * 2014-10-08 2016-04-14 Umicore Carbonate precursors for lithium nickel manganese cobalt oxide cathode material and the method of making same
CN111342045A (en) * 2020-03-21 2020-06-26 青岛红星新能源技术有限公司 Preparation method of high-performance power type lithium manganate positive electrode material
CN112993241A (en) * 2021-04-02 2021-06-18 中南大学 Preparation method of single-crystal lithium manganate material
CN114044539A (en) * 2021-10-30 2022-02-15 湖南海利锂电科技股份有限公司 Preparation method of high-cycle power type lithium manganate
CN115520900A (en) * 2022-09-30 2022-12-27 广东邦普循环科技有限公司 Phosphorus-doped nanoscale trimanganese tetroxide, preparation method thereof and battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2693534T3 (en) 2011-03-31 2022-10-31 Toda Kogyo Corp. Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
CN102328960B (en) * 2011-09-02 2013-04-03 上海大学 Synthesis method of trimanganese tetroxide material with 3D (three-dimensional) flower-shaped structure

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814814B1 (en) 2005-12-21 2008-03-20 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
WO2008018634A1 (en) * 2006-08-09 2008-02-14 Kanto Denka Kogyo Co., Ltd. Spinel lithium manganate, method for producing the same, positive electrode active material using spinel lithium manganate, and nonaqueous electrolyte battery
JP2008041577A (en) * 2006-08-09 2008-02-21 Kanto Denka Kogyo Co Ltd Spinel type manganate lithium and its manufacturing method, and cathode active material using spinel type manganate lithium and nonaqueous electrolyte battery
KR101594200B1 (en) * 2008-10-01 2016-02-15 도다 고교 가부시끼가이샤 Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
US10056612B2 (en) 2008-10-01 2018-08-21 Toda Kogyo Corporation Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
CN105789612A (en) * 2008-10-01 2016-07-20 户田工业株式会社 Lithium manganate particles for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
CN102171862A (en) * 2008-10-01 2011-08-31 户田工业株式会社 Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2010108926A (en) * 2008-10-01 2010-05-13 Toda Kogyo Corp Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
CN102482117A (en) * 2009-06-25 2012-05-30 日本碍子株式会社 Positive electrode active material and lithium secondary battery
WO2010101307A3 (en) * 2009-06-25 2010-11-11 日本碍子株式会社 Positive electrode active material and lithium secondary battery using same
WO2010101306A3 (en) * 2009-06-25 2010-11-11 日本碍子株式会社 Positive electrode active material and lithium secondary battery
WO2010101308A3 (en) * 2009-06-25 2010-11-11 日本碍子株式会社 Positive electrode active material and lithium secondary battery
CN102459087A (en) * 2009-06-25 2012-05-16 日本碍子株式会社 Positive electrode active material and lithium secondary battery using same
US8790830B2 (en) 2009-09-29 2014-07-29 Ngk Insulators, Ltd. Positive electrode active element and lithium secondary battery
JP2010212261A (en) * 2009-09-29 2010-09-24 Ngk Insulators Ltd Positive electrode active material and lithium secondary battery using the same
JP2010212260A (en) * 2009-09-29 2010-09-24 Ngk Insulators Ltd Positive electrode active material and lithium secondary battery
JP2010212262A (en) * 2009-09-29 2010-09-24 Ngk Insulators Ltd Positive electrode active material and lithium secondary battery
CN102770990A (en) * 2010-02-23 2012-11-07 户田工业株式会社 Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery
WO2011105361A1 (en) * 2010-02-23 2011-09-01 戸田工業株式会社 Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery
KR101171962B1 (en) 2010-04-02 2012-08-08 주식회사 이엔드디 Process for preparing manganese composite oxide
JP2012188341A (en) * 2010-10-06 2012-10-04 Tosoh Corp Manganese oxide, method for producing the same, and method for producing lithium manganese based composite oxide using manganese oxide
JP2012216548A (en) * 2011-03-31 2012-11-08 Toda Kogyo Corp Active material powder for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2012216549A (en) * 2011-03-31 2012-11-08 Toda Kogyo Corp Active material powder for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012216547A (en) * 2011-03-31 2012-11-08 Toda Kogyo Corp Manganese-nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013028523A (en) * 2011-06-23 2013-02-07 Tosoh Corp Method for producing manganese oxide
EP2840068A4 (en) * 2012-04-20 2016-01-06 Tosoh Corp Manganese(iii, iv) oxide and method for producing same
WO2013157587A1 (en) 2012-04-20 2013-10-24 東ソー株式会社 Manganese(iii, iv) oxide and method for producing same
KR20150010705A (en) 2012-04-20 2015-01-28 도소 가부시키가이샤 Manganese(iii, iv) oxide and method for producing same
US9487883B2 (en) 2012-04-20 2016-11-08 Tosoh Corporation Trimanganese tetraoxide and its production process
JP2014005191A (en) * 2012-06-26 2014-01-16 Guizhou Redstar Developing Co Ltd Methods for preparing and controlling particle size of low-bet trimanganese tetroxide, and trimanganese tetroxide
KR101493147B1 (en) 2012-06-26 2015-02-12 구이쩌우 레드스타 디벨로핑 코포레이션 리미티드 Methods for preparing trimanganese tetroxide with low BET specific surface area, methods for controlling particle size of trimanganese tetroxide and trimanganese tetroxide product
CN103570072A (en) * 2012-07-27 2014-02-12 比亚迪股份有限公司 Trimanganese tetroxide preparation method and trimanganese tetroxide prepared therethrough
JP2017061409A (en) * 2012-11-15 2017-03-30 ポスコ イーエス マテリアルス カンパニー リミテッドPOSCO ES Materials Co., Ltd. Method for producing lithium-manganese composite oxide
US20150329374A1 (en) * 2012-11-15 2015-11-19 Posco Es Materials Co., Ltd. Lithium-manganese composite oxide in which size of vertical angle of primary particle is adjusted, and method for preparing same
JP2015515442A (en) * 2012-11-15 2015-05-28 ポスコ イーエス マテリアルス カンパニー リミテッドPOSCO ES Materials Co., Ltd. Lithium manganese composite oxide in which the size of the vertical angle of primary particles is adjusted, and a method for producing the same
CN104211122A (en) * 2014-08-14 2014-12-17 重庆上甲电子股份有限公司 Decomposition deposition cycle technology for preparing trimanganese tetroxide through using manganese sulfate solution
US11380882B2 (en) 2014-10-08 2022-07-05 Umicore Carbonate precursors for lithium nickel manganese cobalt oxide cathode material and the method of making same
CN106795008A (en) * 2014-10-08 2017-05-31 尤米科尔公司 Impure cathode material with preferred configuration and the preparation method from contaminating metal carbonate
WO2016055911A1 (en) * 2014-10-08 2016-04-14 Umicore Impurity containing cathode material with preferred morphology and method to prepare from impurity containing metal carbonate
CN106795008B (en) * 2014-10-08 2018-11-27 尤米科尔公司 Impure cathode material with preferred configuration and the preparation method from contaminating metal carbonate
US10411258B2 (en) 2014-10-08 2019-09-10 Umicore Impurity containing cathode material with preferred morphology and method to prepare from impurity containing metal carbonate
WO2016055910A1 (en) * 2014-10-08 2016-04-14 Umicore Carbonate precursors for lithium nickel manganese cobalt oxide cathode material and the method of making same
US11462735B2 (en) 2014-10-08 2022-10-04 Umicore Impurity containing cathode material with preferred morphology and method to prepare from impurity containing metal carbonate
CN111342045A (en) * 2020-03-21 2020-06-26 青岛红星新能源技术有限公司 Preparation method of high-performance power type lithium manganate positive electrode material
CN112993241A (en) * 2021-04-02 2021-06-18 中南大学 Preparation method of single-crystal lithium manganate material
CN112993241B (en) * 2021-04-02 2022-06-10 中南大学 Preparation method of single-crystal lithium manganate material
CN114044539A (en) * 2021-10-30 2022-02-15 湖南海利锂电科技股份有限公司 Preparation method of high-cycle power type lithium manganate
CN115520900A (en) * 2022-09-30 2022-12-27 广东邦普循环科技有限公司 Phosphorus-doped nanoscale trimanganese tetroxide, preparation method thereof and battery
CN115520900B (en) * 2022-09-30 2024-02-09 广东邦普循环科技有限公司 Phosphorus doped nano-grade manganous-manganic oxide, preparation method thereof and battery

Also Published As

Publication number Publication date
JP4305629B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4305629B2 (en) Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
JP6089433B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP4998753B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR101787141B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
KR101762980B1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP5817143B2 (en) Positive electrode active material precursor particle powder, positive electrode active material particle powder, and non-aqueous electrolyte secondary battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
KR100420034B1 (en) A method of preparing a positive active material for a lithium secondary battery
TWI526397B (en) A lithium manganate powder for a nonaqueous electrolyte storage battery and a method for producing the same, and a nonaqueous electrolyte battery
JP5610178B2 (en) Lithium composite compound particle powder and method for producing the same, non-aqueous electrolyte secondary battery
JP5716923B2 (en) Nonaqueous electrolyte secondary battery active material powder and nonaqueous electrolyte secondary battery
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4620926B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2003168428A (en) Nonaqueous electrolyte secondary battery
JP4250886B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2023523668A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
CN111954947A (en) Positive electrode active material particle for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2009263176A (en) Spinel type lithium manganate surface-coated with magnesium-aluminum multiple oxide, method for producing the same, and positive electrode active material and nonaqueous electrolyte battery using the same
EP1211741A2 (en) Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4305629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term