JP4553095B2 - Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery - Google Patents

Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4553095B2
JP4553095B2 JP2002156224A JP2002156224A JP4553095B2 JP 4553095 B2 JP4553095 B2 JP 4553095B2 JP 2002156224 A JP2002156224 A JP 2002156224A JP 2002156224 A JP2002156224 A JP 2002156224A JP 4553095 B2 JP4553095 B2 JP 4553095B2
Authority
JP
Japan
Prior art keywords
cobalt oxide
positive electrode
particle powder
oxide particle
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002156224A
Other languages
Japanese (ja)
Other versions
JP2004002066A (en
Inventor
英明 前田
昌市 藤野
浩康 渡邊
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2002156224A priority Critical patent/JP4553095B2/en
Publication of JP2004002066A publication Critical patent/JP2004002066A/en
Application granted granted Critical
Publication of JP4553095B2 publication Critical patent/JP4553095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、二次電池としての初期放電容量を維持し、且つ、高温下での充放電サイクル特性が改善された非水電解質二次電池を得ることができる正極活物質及び該正極活物質の前駆体であるコバルト酸化物粒子粉末を提供する。
【0002】
【従来の技術】
近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。
【0003】
従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、層状岩塩型構造のLiCoO、LiCo1−XNi、LiNiO等が一般的に知られており、なかでもLiCoOを用いたリチウムイオン二次電池は高い充放電電圧と充放電容量を有する点で優れているが、更なる特性改善が求められている。
【0004】
即ち、LiCoOを用いたリチウムイオン二次電池は充放電の繰り返しを行うと放電容量が低下する傾向がある。この原因として、リチウムイオンのインサーション反応の際にLiCoOの格子が膨張・収縮することによって、LiCoOの結晶構造が崩壊し、充放電サイクル特性の劣化につながっているものと推定されている。
【0005】
ノートパソコンなど二次電池で作動する装置はその使用に伴って高温になるため、二次電池として高温下での充放電サイクル特性に優れた二次電池が要求されている。
【0006】
また、LiCoOを用いた二次電池は高い電圧で作動することができるが、高電圧のため電解液との反応が起こりやすく、充放電サイクル特性が低下しやすい。
【0007】
そこで、高温下での充放電サイクル特性に優れたLiCoOが要求されている。
【0008】
従来、結晶構造の安定化、充放電サイクル特性などの諸特性改善のために、コバルト酸リチウム粒子粉末にアルミニウムやニッケル、チタン、カルシウム、鉄を含有させる方法(特開昭62−264560号公報、特開昭63−211564号公報、特開昭63−299056号公報、特開平3−201368号公報、特開平11−7958号公報、特開2000−12022号公報、特開2000−123834号公報等)、湿式法によって異種金属元素を含有させる方法(特開平10−1316号公報)及びコバルト酸リチウムの格子定数を制御することによって特性を向上させる方法(特開平6−181062号公報)等が知られている。
【0009】
また、前記諸特性を満たすコバルト酸リチウム粒子粉末を得るためには、前駆体であるコバルト酸化物粒子粉末が反応性に優れていることが必要とされている。そこで、湿式反応によって微細な酸化コバルト粒子粉末を得る製造法(特開平10−324523号公報、特開2002−68750号公報)が知られている。
【0010】
【発明が解決しようとする課題】
前記諸特性を満たす正極活物質及びコバルト酸化物粒子粉末は、現在最も要求されているところであるが、未だ得られていない。
【0011】
即ち、前出特開昭62−264560号公報、特開昭63−211564号公報、特開昭63−299056号公報、特開平3−201368号公報、特開平11−7958号公報、特開2000−12022号公報及び特開2000−123834号公報には、コバルト化合物、リチウム化合物及び異種金属塩を乾式で混合させて、異種金属元素を含有するコバルト酸リチウム粒子粉末を得ることが記載されているが、異種金属の組成分布が不均一になり、リチウムイオンの出入りに伴い結晶構造の収縮膨張が起こって結晶格子が崩壊しやすく、充放電サイクル特性に優れるとは言い難いものである。
【0012】
また、前出特開平10−1316号公報には、コバルト化合物と、異種金属元素を水酸化リチウム水溶液中に分散させて、加熱処理を行ってコバルト酸リチウム粒子を得ることが記載されているが、水熱処理を行う必要があり粒子サイズが小さく粉体特性に優れるとは言い難いものである。
【0013】
また、特開平6−181062号公報には、c軸の格子定数が14.05Å以上であるコバルト酸リチウムが記載されているが、異種金属元素を含有させた場合と比較して充放電サイクル特性の改善効果が小さい。
【0014】
また、前出特開平10−324523号公報及び特開2002−68750号公報には湿式反応によって微細な酸化コバルト粒子粉末を得る製造法が記載されているが、酸化コバルト粒子粉末には、Ni、Al、Fe、Ti、Ca等の異種金属元素が含有されておらず、当該酸化コバルト粒子粉末を用いて得られるコバルト酸リチウム粒子粉末からなる正極活物質は、本発明に係る正極活物質に対して熱安定性が十分とは言い難いものである。
【0015】
そこで、本発明は、初期放電容量に優れ、且つ、高温下での充放電サイクル特性に優れた非水電解質二次電池用正極活物質及び該正極活物質の前駆体であるコバルト酸化物粒子粉末を得ることを技術的課題とする。
【0016】
【課題を解決する為の手段】
前記技術的課題は、次の通りの本発明によって達成できる。
【0017】
即ち、本発明は、Ni、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素を含有するコバルト酸化物粒子粉末であり、組成(Co(1−x)0.01≦x≦0.15、MはNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素である。)であって、BET比表面積値が0.5〜50m/g、平均粒子径が0.01〜0.1μmであることを特徴とするコバルト酸化物粒子粉末である(本発明1)。
【0018】
また、本発明は、コバルト塩とNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素の塩とを含有する溶液をアルカリ水溶液により中和し、次いで、酸化反応を行って前記異種金属元素を含有するコバルト酸化物粒子を得ることを特徴とする本発明1のコバルト酸化物粒子粉末の製造法である(本発明2)。
【0019】
また、本発明は、コバルト酸化物粒子の粒子表面が、Ni、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素の水酸化物で被覆されているコバルト酸化物粒子であり、組成(1−x)Co・3xM(OH)(0.001≦x≦0.15、MはNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素、yは異種金属元素Mの価数である。)であって、BET比表面積値が0.5〜50m/g、平均粒子径が0.01〜0.1μmであることを特徴とするコバルト酸化物粒子粉末である(本発明3)。
【0020】
また、本発明は、コバルト塩を含有する溶液をアルカリ水溶液により中和した後、酸化反応を行ってコバルト酸化物粒子を得、次いで、当該コバルト酸化物粒子を含有する水懸濁液にNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素の塩を添加し、次いで、水懸濁液のpHを調整してコバルト酸化物粒子の粒子表面にNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素の水酸化物を被覆処理することを特徴とする本発明3のコバルト酸化物粒子粉末の製造法である(本発明4)。
【0021】
また、本発明は、組成がLiCo(1−x)0.01≦x≦0.15、MはNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素である。)であり、平均粒子径が1.0〜20μmであり、c軸の格子定数が0.177x+14.051(Å)で示される値以上であることを特徴とする非水電解質二次電池用正極活物質である(本発明5)。
【0022】
また、本発明は、本発明1又は本発明3のコバルト酸化物粒子粉末とリチウム化合物とを混合し、600〜900℃の温度範囲で熱処理することを特徴とする本発明5の非水電解質二次電池用正極活物質の製造法である(本発明6)。
【0023】
また、本発明は、本発明5の非水電解質二次電池用正極活物質を含有する正極を用いたことを特徴とする非水電解質二次電池である(本発明7)。
【0024】
本発明の構成をより詳しく説明すれば次の通りである。
【0025】
先ず、本発明1に係るコバルト酸化物粒子粉末について述べる。
【0026】
本発明1に係るコバルト酸化物粒子粉末は、Ni、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素を含有するコバルト酸化物粒子粉末であり、組成は(Co(1−x)(0.001≦x≦0.15、MはNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素)である。
【0027】
本発明1に係るコバルト酸化物粒子粉末の異種金属元素の含有量xが0.001未満の場合には、コバルト酸化物粒子粉末を用いて得られる正極活物質の高温下での充放電サイクル特性が十分とは言い難いものとなる。0.15を越える場合には、コバルト酸リチウム単相を得ることが困難であり、工業的に生産するのが困難である。
【0028】
本発明1に係るコバルト酸化物粒子粉末の平均粒子径は0.01〜1.0μmであり、0.01μm未満及び1.0μmを越える場合には工業的に生産することが困難である。好ましくは0.01〜0.15μmであり、より好ましくは0.05〜0.12μmである。
【0029】
本発明1に係るコバルト酸化物粒子粉末のBET比表面積値は0.5〜50m/gであり、0.5m/g未満の場合には、工業的に生産することが困難であり、50m/gを越える場合には、混合及び熱処理等における工程での粉体特性が優れるとは言い難い。より好ましくは1.0〜40m/gであり、更により好ましくは5.0〜30m/gである。
【0030】
本発明1に係るコバルト酸化物粒子は、コバルトと異種金属元素が原子レベルで均一に分布しているため、リチウム化合物と混合し熱処理を行った場合、異種金属元素が均一にコバルトサイトに置換することが可能となる。
【0031】
まず、本発明1に係るコバルト酸化物粒子粉末の製造法(本発明2)について述べる。
【0032】
本発明1に係るコバルト酸化物粒子粉末は、コバルト塩を含有する溶液に異種金属元素塩の水溶液を添加し、更に、アルカリ水溶液を加えて中和反応を行った後、酸化反応を行って得ることができる。
【0033】
アルカリ水溶液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア等の水溶液であり、水酸化ナトリウム、炭酸ナトリウム又はそれらの混合溶液を用いるのが好ましい。
【0034】
異種金属元素の添加量は、コバルトに対して0.01〜20mol%である。好ましくは2〜18mol%である。
【0035】
中和反応に用いるアルカリ量は、含有する全金属塩の中和分に対して当量比1.0〜1.2を添加することが好ましい。
【0036】
酸化反応は、酸素含有ガスを通気することによって行う。反応温度は30℃以上が好ましく、より好ましくは30〜95℃である。反応時間は5〜20時間行うことが好ましい。
【0037】
次に、本発明3に係るコバルト酸化物粒子粉末について述べる。
【0038】
本発明3に係るコバルト酸化物粒子粉末は、粒子表面が異種金属元素の水酸化物で被覆されたコバルト酸化物粒子であって、組成(1−x)Co・3xM(OH)(0.001≦x≦0.15、MはNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素、yは異種金属元素Mの価数)である。
【0039】
本発明3に係るコバルト酸化物粒子粉末の異種金属元素の含有量xが0.001未満の場合には、コバルト酸化物粒子粉末を用いて得られる正極活物質の高温下での充放電サイクル特性が十分とは言い難いものとなる。0.15を越える場合には、コバルト酸リチウム単相を得ることが困難であり、工業的に生産するのが困難である。
【0040】
本発明3に係るコバルト酸化物粒子の平均粒子径は0.01〜5.0μmであり、0.01μm未満及び5.0μmを越える場合には工業的に生産するのが困難である。好ましくは0.01〜0.15μmであり、より好ましくは0.05〜0.12μmである。
【0041】
本発明3に係るコバルト酸化物粒子粉末のBET比表面積値は0.5〜50m/gであり、0.5m/g未満の場合には、工業的に生産するのが困難であり、50m/gを越える場合には、混合及び熱処理等における工程での粉体特性が優れるとは言い難い。より好ましくは1.0〜40m/gである。更により好ましくは5.0〜30m/gである。
【0042】
本発明3に係るコバルト酸化物粒子粉末は、異種金属元素の水酸化物をコバルト酸化物粒子に表面処理しており、サブミクロンのコバルト酸化物粒子を用いているので、リチウム化合物と混合し熱処理を行った場合、均一にコバルトサイトに置換することが可能となる。
【0043】
次に、本発明3に係るコバルト酸化物粒子粉末の製造法(本発明4)について述べる。
【0044】
本発明3に係るコバルト酸化物粒子は、コバルト塩を含有する水溶液に、アルカリ水溶液を加えて中和反応を行った後、酸化反応を行いコバルト酸化物粒子を得、次いで、前記コバルト酸化物粒子を含有する溶液に異種金属元素の水溶液を添加し、更に、アルカリ水溶液を加えて異種金属元素の水酸化物によってコバルト酸化物粒子の粒子表面を被覆することによって得ることができる。
【0045】
アルカリ水溶液としては、前記アルカリ水溶液と同様である。
【0046】
異種金属元素の添加量はコバルトに対して0.1〜20mol%である。好ましくは1〜18mol%である。
【0047】
コバルト酸化物粒子を得る中和反応に用いるアルカリ水溶液の添加量は、コバルト塩の中和分に対して当量比1.0〜1.2を添加することが好ましい。
【0048】
酸化反応は、酸素含有ガスを通気することによって行う。反応温度は30℃以上が好ましく、より好ましくは30〜95℃である。反応時間は5〜20時間が好ましい。
【0049】
また、異種金属元素の水酸化物の表面処理に用いるアルカリ水溶液の添加量は、異種金属塩の中和分に対して当量比1.0〜1.2を添加することが好ましい。
【0050】
表面処理を行う場合の反応溶液のpH値は8〜14が好ましい。
【0051】
次に、本発明5に係る非水電解質リチウム二次電池用正極活物質(以下、「正極活物質」という)について述べる。
【0052】
本発明においては、組成をLiCo(1−x)とした場合、異種金属元素含有量xは0.001〜0.15である。0.001未満の場合は充放電サイクル特性の向上に対する効果が小さく、0.15を超える場合には初期放電容量が著しく低下する。好ましくは0.01〜0.10である。
【0053】
本発明における異種金属元素は、Ni、Al、Fe、Ti、Caである。異種金属元素をコバルトサイトに置換することによって、c軸の格子定数が伸長し充放電サイクル特性が向上する。
【0054】
本発明に係る正極活物質のc軸の格子定数は0.177x+14.051(Å)で示される値以上である。c軸の格子定数が前記範囲未満の場合には、リチウムイオンの脱挿入反応に伴う格子の伸縮膨張が顕著になり、充放電サイクル特性が低下する。c軸の格子定数の上限値は14.180Å程度であり、異種元素の置換量を増加させることによって14.180Åを超える正極活物質を得ることができるが、初期放電容量も低下することになるため好ましくない。また、a軸の格子定数は2.810〜2.830Åが好ましく、より好ましくは2.815〜2.825Åである。
【0055】
本発明に係る正極活物質の平均粒子径は1.0〜20μmが好ましい。平均粒子径が1μm未満の場合には、充填密度の低下や電解液との反応性が増加するため好ましくない。20μmを超える場合には、工業的に生産することが困難となる。好ましくは2.0〜10μmである。
【0056】
本発明に係る正極活物質のBET比表面積は0.1〜2.5m/gが好ましい。BET比表面積値が0.1m/g未満の場合には、工業的に生産することが困難となる。2.5m/gを超える場合には充填密度の低下や電解液との反応性が増加するため好ましくない。より好ましくは0.1〜2.0m/g、更により好ましくは0.1〜1.7m/gである。
【0057】
本発明に係る正極活物質の結晶子サイズは、400〜1200Åであることが好ましい。
【0058】
次に、本発明5に係る正極活物質の製造法(本発明6)について述べる。
【0059】
本発明5に係る正極活物質は、前記本発明1又は本発明3のコバルト酸化物とリチウム化合物とを混合し、熱処理を行う。
【0060】
本発明1又は本発明3のコバルト酸化物とリチウム化合物の混合は、均一に混合することができれば乾式、湿式のどちらでもよい。
【0061】
リチウムの混合比は、コバルト及び異種金属元素に対してモル比で0.95〜1.05であることが好ましい。
【0062】
熱処理温度は、高温規則相であるLiCoOが生成する600℃〜900℃であることが好ましい。600℃未満の場合には擬スピネル構造を有する低温相であるLiCoOが生成し、900℃を超える場合にはリチウムとコバルトの位置がランダムである高温不規則相のLiCoOが生成する。
【0063】
次に、本発明7に係る二次電池について述べる。
【0064】
本発明に係る正極活物質を用いて正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。
【0065】
本発明に係る正極活物質を用いて二次電池を製造する場合には、前記正極、負極及び電解質から構成される。
【0066】
負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。
【0067】
また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。
【0068】
さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。
【0069】
本発明に係る正極活物質を用いて製造した二次電池は、初期放電容量が140〜160mAh/gが好ましく、より好ましくは145〜160mAh/g、60℃での50サイクル後の容量維持率が90%以上が好ましく、より好ましくは92〜99%である。
【0070】
【発明の実施の形態】
本発明の代表的な実施の形態は、次の通りである。
【0071】
正極活物質の同定は、粉末X線回折(RIGAKU Cu−Kα 40kV 40mA)を用いた。また、前記粉末X線回折の各々の回折ピークから格子定数を計算した。
【0072】
正極活物質の結晶子サイズは、前記粉末X線回折の各々の回折ピークから計算した。
【0073】
また、元素分析にはプラズマ発光分析装置(セイコー電子工業製 SPS4000)を用いた。
【0074】
正極活物質の電池特性は、下記製造法によって正極、負極及び電解液を調製しコイン型の電池セルを作製して評価した。
【0075】
<正極の作製>
正極活物質と導電剤であるアセチレンブラック及び結着剤のポリフッ化ビニリデンを重量比で85:10:5となるように精秤し、乳鉢で十分に混合してからN−メチル−2−ピロリドンに分散させて正極合剤スラリーを調整した。次に、このスラリーを集電体のアルミニウム箔に150μmの膜厚で塗布し、150℃で真空乾燥してからφ16mmの円板状に打ち抜き正極板とした。
【0076】
<負極の作製>
金属リチウム箔をφ16mmの円板状に打ち抜いて負極を作製した。
【0077】
<電解液の調製>
炭酸エチレンと炭酸ジエチルとの体積比50:50の混合溶液に電解質として六フッ化リン酸リチウム(LiPF)を1モル/リットル混合して電解液とした。
【0078】
<コイン型電池セルの組み立て>
アルゴン雰囲気のグローブボックス中でSUS316製のケースを用い、上記正極と負極の間にポリプロピレン製のセパレータを介し、さらに電解液を注入してCR2032型のコイン電池を作製した。
【0079】
<電池評価>
前記コイン型電池を用いて、二次電池の充放電試験を行った。測定条件としては、60℃の温度下で、正極に対する電流密度を0.2mA/cmとし、カットオフ電圧が3.0Vから4.25Vの間で充放電を繰り返した。
【0080】
<コバルト酸化物粒子粉末の製造(本発明2による製造)>
コバルトを含有する溶液に、硫酸アルミニウム(コバルトに対して5.3mol%)を添加し、コバルト及びアルミニウムの中和分に対して1.05当量の水酸化ナトリウム水溶液を添加し中和反応させた。次いで、空気を吹き込んで90℃で20時間酸化反応を行った。得られたアルミニウム含有コバルト酸化物粒子は、Co単相であり、Al含有量が5.3mol%((Co(1−x)Alにおけるxは、0.05)、平均粒子径が0.05μm、BET比表面積値が23m/gであった。
【0081】
<正極活物質の製造>
前記アルミニウム含有コバルト酸化物とリチウム化合物とを、リチウム/(コバルト+アルミニウム)のモル比が1.03となるよう所定量を十分混合し、混合粉を酸化雰囲気下、900℃で10時間焼成してアルミニウム含有コバルト酸リチウム粒子粉末を得た。
【0082】
得られたアルミニウム含有コバルト酸リチウム粒子粉末は、平均粒子径5.0μm、BET比表面積値は0.5m/g、a軸の格子定数が2.817Å、c軸の格子定数が14.064Å、結晶子サイズは642Åであった。Al含有量はLiCo(1−x)Alとした場合にxが0.05であった。
【0083】
前記正極活物質を用いて作製したコイン型電池は、初期放電容量が150mAh/g、60℃での50サイクル後の容量維持率が95%/50cycleであった。
【0084】
【作用】
本発明において最も重要な点は、異種金属元素を含有するコバルト酸リチウム粒子粉末からなる正極活物質を用いた二次電池は、二次電池としての初期放電容量を維持し、充放電反応に伴う充放電サイクル特性に優れ、しかも、高温下でも充放電サイクル特性が劣化しないという点である。
【0085】
本発明において正極活物質のc軸の格子定数が大きいのは、コバルト酸化物粒子を合成する段階であらかじめ異種金属元素を含有させるか、又は、異種金属元素の水酸化物をコバルト酸化物粒子の表面に付着させることによって、原子レベルでコバルトと異種金属元素が均一に分布し、該コバルト酸化物粒子を用いて得られる正極活物質は、異種金属元素がコバルトサイトに均一に置換することによるものと本発明者は推定している。
【0086】
また、正極活物質のc軸の格子定数があらかじめ大きいので、リチウムイオンの脱挿入反応が容易に行われ、リチウムイオンの脱挿入反応に伴う結晶構造のc軸方向の収縮膨張による格子の崩壊を抑制することができるものと推定している。従って、高温下での充放電サイクル特性も優れるものと考えている。
【0087】
一方、リチウム化合物、コバルト化合物及び異種金属元素を乾式混合し仮焼した場合には、異種金属元素の組成分布が不均一となり、本発明の効果は得られない。
【0088】
本発明において初期放電容量を保持できるのは、本来のLiCoOが有する初期放電容量を低下させない範囲で異種金属元素を含有させたことによる。
【0089】
【実施例】
次に、実施例並びに比較例を挙げる。
【0090】
実施例1〜6
異種金属元素の種類及び含有量を種々変化させた以外は前記発明の実施の形態と同様にしてコバルト酸化物粒子粉末を得た。
【0091】
このときの製造条件及び得られたコバルト酸化物粒子粉末の諸特性を表1に示す。
【0092】
【表1】

Figure 0004553095
【0093】
実施例7〜12
コバルト酸化物粒子粉末の種類、リチウムの混合割合及び焼成温度を種々変化させた以外は前記発明の実施の形態と同様にして正極活物質を得た。
【0094】
このときの製造条件を表2に、得られた正極活物質の諸特性及びコイン型電池の電池特性を表3に示す。
【0095】
比較例1は異種金属元素を含有しないコバルト酸化物粒子粉末であり、比較例3は異種金属元素を含有しないコバルト酸リチウムである。比較例4〜11は、比較例2に示した特性を有するコバルト酸化物粒子粉末、異種金属元素の原料及びリチウム原料を乾式法により混合し、900℃で焼成して異種金属元素を含有するコバルト酸リチウムを得た。
【0096】
このときの製造条件を表2に、得られた正極活物質の諸特性及びコイン型電池の電池特性を表3に示す。
【0097】
【表2】
Figure 0004553095
【0098】
【表3】
Figure 0004553095
【0099】
実施例13(本発明3による製造)
0.5mol/lのコバルトを含有する溶液に、コバルトの中和分に対して1.05当量の水酸化ナトリウム水溶液を添加し中和反応させた。次いで、空気を吹き込みながら90℃で20時間酸化反応を行ってコバルト酸化物粒子を得た。
得られたコバルト酸化物粒子を含有する溶液中に、硫酸ニッケルをコバルトに対して5.3mol%を添加し、さらに中和分の水酸化ナトリウム水溶液を添加してコバルト酸化物粒子の粒子表面を水酸化ニッケルによって表面処理した。このときの反応溶液のpHは11であった。得られた水酸化ニッケルを表面処理したコバルト酸化物粒子はCo単相であって、Ni含有量が5.3mol%((1−x)Co・3xNi(OH)におけるxは0.05)、平均粒子径が0.05μm、BET比表面積値が27.5m/gであった。
【0100】
実施例23
前記水酸化ニッケルを表面処理したコバルト酸化物粒子とリチウム化合物とを、リチウム/(コバルト+ニッケル)のモル比が1.03mol%となるように所定量を十分混合し、混合粉を酸化雰囲気下、900℃で10時間焼成してニッケル含有コバルト酸リチウム粒子粉末を得た。
【0101】
得られたニッケル含有コバルト酸リチウム粒子粉末はX線回折の結果、コバルト酸リチウム単相であり不純物相は存在しなかった。また、平均粒子径5.0μm、BET比表面積値は0.5m/g、a軸の格子定数が2.820Å、c軸の格子定数が14.075Å、結晶子サイズは653Åであった。Ni含有量はLiCo1−xNiとした場合にxが0.05であった。
【0102】
前記正極活物質を用いて作製したコイン型電池は、初期放電容量が158mAh/g、60℃での50サイクル後の容量維持率が98%/50cycleであった。
【0103】
実施例14〜22
各種金属元素の水酸化物による表面処理における異種金属元素の種類及び含有量を種々変化させた以外は前記実施例13と同様にしてコバルト酸化物粒子粉末を得た。
【0104】
このときの製造条件及び得られたコバルト酸化物粒子粉末の諸特性を表4に示す。
【0105】
実施例24〜32
コバルト酸化物粒子粉末の種類及びリチウムの混合割合を種々変化させた以外は前記実施例23と同様にして正極活物質を得た。
【0106】
このときの製造条件を表5に、得られた正極活物質の諸特性及びコイン型電池の電池特性を表6に示す。
【0107】
【表4】
Figure 0004553095
【0108】
【表5】
Figure 0004553095
【0109】
【表6】
Figure 0004553095
【0110】
本発明に係る正極活物質を用いて作製したコイン型電池は、初期放電容量140〜160mAh/gを保持し、60℃での50サイクル後の容量維持率が91%以上と高いレベルにある。
【0111】
また、比較例に示す通り、各元素を乾式法により混合して含有した場合では、高温時の充放電サイクル特性の改善効果が見られない。
【0112】
【発明の効果】
本発明に係る正極活物質を用いることで、二次電池としての初期放電容量を維持し、且つ、高温下での充放電サイクル特性が改善された非水電解質二次電池を得ることができる。[0001]
[Industrial application fields]
The present invention provides a positive electrode active material capable of obtaining a non-aqueous electrolyte secondary battery that maintains an initial discharge capacity as a secondary battery and has improved charge / discharge cycle characteristics at high temperatures, and the positive electrode active material Provided is a cobalt oxide particle powder that is a precursor.
[0002]
[Prior art]
In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having advantages such as a high charge / discharge voltage and a large charge / discharge capacity has attracted attention.
[0003]
Conventionally, as positive electrode active substances useful for high energy-type lithium ion secondary batteries having 4V-grade voltage, LiMn 2 O 4 of spinel structure, LiMnO 2 having a zigzag layer structure, LiCoO 2 of layered rock-salt structure, LiCo 1-X Ni X O 2 , LiNiO 2 and the like are generally known, and among them, a lithium ion secondary battery using LiCoO 2 is excellent in that it has a high charge / discharge voltage and charge / discharge capacity. There is a need for further improvement in characteristics.
[0004]
That is, a lithium ion secondary battery using LiCoO 2 tends to have a reduced discharge capacity when charging and discharging are repeated. As this cause, by the LiCoO 2 lattice is expanded and contracted upon insertion reactions of lithium ions, the crystal structure of LiCoO 2 is collapsed, and is presumed to have led to the deterioration of the charge-discharge cycle characteristics .
[0005]
Since devices operating on secondary batteries such as notebook computers become hot as they are used, secondary batteries that are excellent in charge / discharge cycle characteristics at high temperatures are required as secondary batteries.
[0006]
In addition, a secondary battery using LiCoO 2 can operate at a high voltage, but due to the high voltage, a reaction with the electrolytic solution is likely to occur, and charge / discharge cycle characteristics are likely to be deteriorated.
[0007]
Therefore, LiCoO 2 having excellent charge / discharge cycle characteristics at high temperatures is required.
[0008]
Conventionally, in order to stabilize various crystal structures and improve various characteristics such as charge / discharge cycle characteristics, a method in which lithium cobaltate particles contain aluminum, nickel, titanium, calcium, and iron (Japanese Patent Laid-Open No. 62-264560, JP 63-2111564 A, JP 63-299056 A, JP 3-201368 A, JP 11-7958 A, JP 2000-12222 A, JP 2000-123834 A, etc. ), A method of incorporating a different metal element by a wet method (JP-A-10-1316), a method of improving characteristics by controlling the lattice constant of lithium cobaltate (JP-A-6-181062), and the like. It has been.
[0009]
Further, in order to obtain lithium cobalt oxide particle powder satisfying the above-mentioned various properties, it is necessary that the cobalt oxide particle powder as a precursor is excellent in reactivity. Therefore, a production method (Japanese Patent Laid-Open Nos. 10-324523 and 2002-68750) for obtaining fine cobalt oxide particle powder by a wet reaction is known.
[0010]
[Problems to be solved by the invention]
The positive electrode active material and the cobalt oxide particle powder that satisfy the above-mentioned characteristics are currently most demanded, but have not yet been obtained.
[0011]
That is, the above-mentioned JP-A-62-264560, JP-A-62-211564, JP-A-62-299056, JP-A-3-201368, JP-A-11-7958, JP-A-2000. JP-A No. 12022 and JP-A No. 2000-123834 describe that a cobalt compound, a lithium compound and a different metal salt are mixed in a dry process to obtain lithium cobalt oxide particle powder containing a different metal element. However, the composition distribution of dissimilar metals becomes non-uniform, the crystal structure shrinks and expands as lithium ions come in and out, and the crystal lattice easily collapses, and it is difficult to say that the charge / discharge cycle characteristics are excellent.
[0012]
Further, the above-mentioned JP-A-10-1316 discloses that a cobalt compound and a different metal element are dispersed in a lithium hydroxide aqueous solution and subjected to heat treatment to obtain lithium cobalt oxide particles. It is difficult to say that the particle size is small and the powder characteristics are excellent because hydrothermal treatment is required.
[0013]
Japanese Patent Application Laid-Open No. 6-181062 describes lithium cobalt oxide having a c-axis lattice constant of 14.05% or more. Compared with the case where a different metal element is contained, charge / discharge cycle characteristics are disclosed. The improvement effect is small.
[0014]
In addition, in the above-mentioned JP-A-10-324523 and JP-A-2002-68750, a production method for obtaining fine cobalt oxide particle powder by a wet reaction is described. A positive electrode active material that does not contain different metal elements such as Al, Fe, Ti, and Ca and that is made of the cobalt oxide particle powder obtained by using the cobalt oxide particle powder corresponds to the positive electrode active material according to the present invention. Therefore, it is difficult to say that the thermal stability is sufficient.
[0015]
Accordingly, the present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery that has excellent initial discharge capacity and excellent charge / discharge cycle characteristics at high temperatures, and cobalt oxide particle powder that is a precursor of the positive electrode active material. Is a technical issue.
[0016]
[Means for solving the problems]
The technical problem can be achieved by the present invention as follows.
[0017]
That is, the present invention is a cobalt oxide particle powder containing one or more different metal elements selected from Ni, Al, Fe, Ti, and Ca, and has a composition (Co (1-x) M x ) 3. O 4 ( 0.01 ≦ x ≦ 0.15, M is one or more dissimilar metal elements selected from Ni, Al, Fe, Ti, and Ca), and the BET specific surface area value is 0 cobalt oxide particles, wherein .5~50m 2 / g, an average particle diameter of 0.01 to 0.1 m (invention 1).
[0018]
Further, the present invention neutralizes a solution containing a cobalt salt and a salt of one or more different metal elements selected from Ni, Al, Fe, Ti, and Ca with an alkaline aqueous solution, and then performs an oxidation reaction. It is a manufacturing method of the cobalt oxide particle powder of this invention 1 characterized by performing and obtaining the cobalt oxide particle containing the said different metal element (this invention 2).
[0019]
Further, the present invention is a cobalt oxide particle in which the particle surface of the cobalt oxide particle is coated with a hydroxide of one kind or two or more kinds of different metal elements selected from Ni, Al, Fe, Ti, and Ca. Yes, composition (1-x) Co 3 O 4 .3xM (OH) y (0.001 ≦ x ≦ 0.15, where M is one or more kinds selected from Ni, Al, Fe, Ti, and Ca The metal element, y is the valence of the different metal element M.), and has a BET specific surface area value of 0.5 to 50 m 2 / g and an average particle diameter of 0.01 to 0.1 μm. Cobalt oxide particle powder (Invention 3).
[0020]
In the present invention, a solution containing a cobalt salt is neutralized with an aqueous alkali solution, and then an oxidation reaction is performed to obtain cobalt oxide particles. Next, Ni, A salt of one or more different metal elements selected from Al, Fe, Ti, and Ca is added, and then the pH of the aqueous suspension is adjusted to form Ni, Al, Fe on the surface of the cobalt oxide particles. It is the manufacturing method of the cobalt oxide particle powder of this invention 3 which coat | covers the hydroxide of the 1 type, or 2 or more types of different metal element chosen from Ti, Ca (invention 4).
[0021]
In the present invention, the composition is LiCo (1-x) M x O 2 ( 0.01 ≦ x ≦ 0.15, where M is one or more kinds selected from Ni, Al, Fe, Ti, and Ca. A non-aqueous electrolyte characterized in that the average particle diameter is 1.0 to 20 μm and the lattice constant of the c-axis is not less than the value represented by 0.177x + 14.051 (Å). It is a positive electrode active material for secondary batteries (Invention 5).
[0022]
The present invention also provides the non-aqueous electrolyte 2 of the present invention 5, wherein the cobalt oxide particle powder of the present invention 1 or the present invention 3 and a lithium compound are mixed and heat-treated in a temperature range of 600 to 900 ° C. It is a manufacturing method of the positive electrode active material for secondary batteries (this invention 6).
[0023]
Further, the present invention is a nonaqueous electrolyte secondary battery using the positive electrode containing the positive electrode active material for a nonaqueous electrolyte secondary battery of the present invention 5 (Invention 7).
[0024]
The configuration of the present invention will be described in more detail as follows.
[0025]
First, the cobalt oxide particle powder according to the present invention 1 will be described.
[0026]
The cobalt oxide particle powder according to the first aspect of the present invention is a cobalt oxide particle powder containing one or more different metal elements selected from Ni, Al, Fe, Ti, and Ca, and has a composition of (Co (1 -x) M x) 3 O 4 (0.001 ≦ x ≦ 0.15, M is Ni, Al, Fe, Ti, one or two or more different metal elements selected from Ca).
[0027]
When the content x of the dissimilar metal element in the cobalt oxide particle powder according to the first aspect of the present invention is less than 0.001, charge / discharge cycle characteristics of the positive electrode active material obtained using the cobalt oxide particle powder at high temperature Is hard to say. When it exceeds 0.15, it is difficult to obtain a lithium cobaltate single phase, and it is difficult to produce industrially.
[0028]
The average particle diameter of the cobalt oxide particle powder according to the present invention 1 is 0.01 to 1.0 μm, and it is difficult to industrially produce it when it is less than 0.01 μm and exceeds 1.0 μm. Preferably it is 0.01-0.15 micrometer, More preferably, it is 0.05-0.12 micrometer.
[0029]
BET specific surface area of the cobalt oxide particles according to the present invention 1 is 0.5~50m 2 / g, in the case of less than 0.5 m 2 / g, it is difficult to produce industrially, If it exceeds 50 m 2 / g, it is difficult to say that the powder characteristics in the steps of mixing and heat treatment are excellent. More preferably, it is 1.0-40 m < 2 > / g, More preferably, it is 5.0-30 m < 2 > / g.
[0030]
In the cobalt oxide particles according to the first aspect of the present invention, cobalt and different metal elements are uniformly distributed at the atomic level. Therefore, when mixed with a lithium compound and subjected to heat treatment, the different metal elements are uniformly replaced with cobalt sites. It becomes possible.
[0031]
First, a method for producing a cobalt oxide particle powder according to the present invention 1 (present invention 2) will be described.
[0032]
The cobalt oxide particle powder according to the present invention 1 is obtained by adding an aqueous solution of a foreign metal element salt to a solution containing a cobalt salt, and further performing an neutralization reaction by adding an alkaline aqueous solution, followed by an oxidation reaction. be able to.
[0033]
Examples of the alkaline aqueous solution include aqueous solutions of sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia and the like, and it is preferable to use sodium hydroxide, sodium carbonate or a mixed solution thereof.
[0034]
The amount of the different metal element added is 0.01 to 20 mol% with respect to cobalt. Preferably it is 2-18 mol%.
[0035]
The alkali amount used for the neutralization reaction is preferably added in an equivalent ratio of 1.0 to 1.2 with respect to the neutralized content of the total metal salt contained.
[0036]
The oxidation reaction is performed by venting oxygen-containing gas. The reaction temperature is preferably 30 ° C. or higher, more preferably 30 to 95 ° C. The reaction time is preferably 5 to 20 hours.
[0037]
Next, the cobalt oxide particle powder according to the present invention 3 will be described.
[0038]
The cobalt oxide particle powder according to the present invention 3 is a cobalt oxide particle whose particle surface is coated with a hydroxide of a different metal element, and has a composition (1-x) Co 3 O 4 .3xM (OH) y. (0.001 ≦ x ≦ 0.15, M is one or more dissimilar metal elements selected from Ni, Al, Fe, Ti, and Ca, and y is the valence of the dissimilar metal element M).
[0039]
When the content x of the dissimilar metal element in the cobalt oxide particle powder according to the present invention 3 is less than 0.001, the charge / discharge cycle characteristics of the positive electrode active material obtained using the cobalt oxide particle powder at a high temperature Is hard to say. When it exceeds 0.15, it is difficult to obtain a lithium cobaltate single phase, and it is difficult to produce industrially.
[0040]
The average particle diameter of the cobalt oxide particle which concerns on this invention 3 is 0.01-5.0 micrometers, and when it is less than 0.01 micrometer and exceeds 5.0 micrometers, it is difficult to produce industrially. Preferably it is 0.01-0.15 micrometer, More preferably, it is 0.05-0.12 micrometer.
[0041]
BET specific surface area of the cobalt oxide particles according to the present invention 3 is 0.5~50m 2 / g, in the case of less than 0.5 m 2 / g is difficult to industrially produce, If it exceeds 50 m 2 / g, it is difficult to say that the powder characteristics in the steps of mixing and heat treatment are excellent. More preferably, it is 1.0-40 m < 2 > / g. More preferably, it is 5.0-30 m < 2 > / g.
[0042]
The cobalt oxide particle powder according to the present invention 3 is obtained by surface-treating a hydroxide of a dissimilar metal element to cobalt oxide particles, and using submicron cobalt oxide particles. When this is performed, it is possible to uniformly replace the cobalt site.
[0043]
Next, a method for producing cobalt oxide particle powder according to the present invention 3 (present invention 4) will be described.
[0044]
The cobalt oxide particles according to the present invention 3 are obtained by adding an alkaline aqueous solution to an aqueous solution containing a cobalt salt to carry out a neutralization reaction, followed by an oxidation reaction to obtain cobalt oxide particles, and then the cobalt oxide particles. It can be obtained by adding an aqueous solution of a dissimilar metal element to a solution containing, and further adding an aqueous alkali solution to coat the particle surface of the cobalt oxide particles with a hydroxide of the dissimilar metal element.
[0045]
The alkaline aqueous solution is the same as the alkaline aqueous solution.
[0046]
The added amount of the different metal element is 0.1 to 20 mol% with respect to cobalt. Preferably it is 1-18 mol%.
[0047]
As for the addition amount of the alkaline aqueous solution used for the neutralization reaction for obtaining the cobalt oxide particles, it is preferable to add an equivalent ratio of 1.0 to 1.2 with respect to the neutralized content of the cobalt salt.
[0048]
The oxidation reaction is performed by venting oxygen-containing gas. The reaction temperature is preferably 30 ° C. or higher, more preferably 30 to 95 ° C. The reaction time is preferably 5 to 20 hours.
[0049]
Moreover, it is preferable that the addition amount of the aqueous alkali solution used for the surface treatment of the hydroxide of the foreign metal element is an equivalent ratio of 1.0 to 1.2 with respect to the neutralized part of the foreign metal salt.
[0050]
The pH value of the reaction solution when performing the surface treatment is preferably 8 to 14.
[0051]
Next, the positive electrode active material for non-aqueous electrolyte lithium secondary batteries according to the present invention 5 (hereinafter referred to as “positive electrode active material”) will be described.
[0052]
In the present invention, when the composition is LiCo (1-x) M x O 2 , the dissimilar metal element content x is 0.001 to 0.15. If it is less than 0.001, the effect for improving the charge / discharge cycle characteristics is small, and if it exceeds 0.15, the initial discharge capacity is significantly reduced. Preferably it is 0.01-0.10.
[0053]
The different metal elements in the present invention are Ni, Al, Fe, Ti, and Ca. By substituting the dissimilar metal element with cobalt sites, the lattice constant of the c-axis is extended and the charge / discharge cycle characteristics are improved.
[0054]
The c-axis lattice constant of the positive electrode active material according to the present invention is not less than the value represented by 0.177x + 14.051 (Å). When the c-axis lattice constant is less than the above range, the expansion and contraction of the lattice accompanying the lithium ion deinsertion reaction becomes significant, and the charge / discharge cycle characteristics deteriorate. The upper limit value of the c-axis lattice constant is about 14.180 mm, and a positive electrode active material exceeding 14.180 mm can be obtained by increasing the amount of substitution of different elements, but the initial discharge capacity is also reduced. Therefore, it is not preferable. Further, the lattice constant of the a-axis is preferably 2.810 to 2.830 mm, more preferably 2.815 to 2.825 mm.
[0055]
The average particle diameter of the positive electrode active material according to the present invention is preferably 1.0 to 20 μm. An average particle diameter of less than 1 μm is not preferable because the packing density is lowered and the reactivity with the electrolyte is increased. When it exceeds 20 μm, it is difficult to produce industrially. Preferably it is 2.0-10 micrometers.
[0056]
The BET specific surface area of the positive electrode active material according to the present invention is preferably 0.1 to 2.5 m 2 / g. When the BET specific surface area value is less than 0.1 m 2 / g, it is difficult to produce industrially. If it exceeds 2.5 m 2 / g, the filling density is lowered and the reactivity with the electrolytic solution is increased. More preferably 0.1~2.0m 2 / g, still more preferably 0.1~1.7m 2 / g.
[0057]
The crystallite size of the positive electrode active material according to the present invention is preferably 400 to 1200 mm.
[0058]
Next, a method for producing a positive electrode active material according to the present invention 5 (present invention 6) will be described.
[0059]
The positive electrode active material according to the fifth aspect of the present invention is heat-treated by mixing the cobalt oxide of the first or third aspect of the present invention and the lithium compound.
[0060]
Mixing of the cobalt oxide and the lithium compound of the present invention 1 or the present invention 3 may be either dry or wet as long as it can be uniformly mixed.
[0061]
The mixing ratio of lithium is preferably 0.95 to 1.05 in terms of molar ratio with respect to cobalt and the different metal element.
[0062]
The heat treatment temperature is preferably 600 ° C. to 900 ° C. at which LiCoO 2 that is a high-temperature ordered phase is generated. If it is less than 600 ° C. is LiCoO 2 is produced a low-temperature phase having a pseudo-spinel structure, the position of lithium and cobalt to produce the LiCoO 2 hot disordered phase is random in the case of more than 900 ° C..
[0063]
Next, a secondary battery according to the seventh aspect of the present invention will be described.
[0064]
When a positive electrode is produced using the positive electrode active material according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
[0065]
When manufacturing a secondary battery using the positive electrode active material which concerns on this invention, it is comprised from the said positive electrode, a negative electrode, and electrolyte.
[0066]
As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite, or the like can be used.
[0067]
In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.
[0068]
Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.
[0069]
The secondary battery manufactured using the positive electrode active material according to the present invention preferably has an initial discharge capacity of 140 to 160 mAh / g, more preferably 145 to 160 mAh / g, and a capacity retention rate after 50 cycles at 60 ° C. It is preferably 90% or more, more preferably 92 to 99%.
[0070]
DETAILED DESCRIPTION OF THE INVENTION
A typical embodiment of the present invention is as follows.
[0071]
For identification of the positive electrode active material, powder X-ray diffraction (RIGAKU Cu-Kα 40 kV 40 mA) was used. The lattice constant was calculated from each diffraction peak of the powder X-ray diffraction.
[0072]
The crystallite size of the positive electrode active material was calculated from each diffraction peak of the powder X-ray diffraction.
[0073]
In addition, a plasma emission analyzer (SEPS Electronics SPS4000) was used for elemental analysis.
[0074]
The battery characteristics of the positive electrode active material were evaluated by preparing a positive electrode, a negative electrode, and an electrolytic solution by the following production method to produce a coin-type battery cell.
[0075]
<Preparation of positive electrode>
A positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are precisely weighed so that the weight ratio is 85: 10: 5, and thoroughly mixed in a mortar, and then N-methyl-2-pyrrolidone. The positive electrode mixture slurry was prepared by dispersing in the mixture. Next, this slurry was applied to an aluminum foil as a current collector with a film thickness of 150 μm, vacuum-dried at 150 ° C., and then punched into a disk shape of φ16 mm to obtain a positive electrode plate.
[0076]
<Production of negative electrode>
A metal lithium foil was punched into a disk shape of φ16 mm to produce a negative electrode.
[0077]
<Preparation of electrolyte>
An electrolyte solution was prepared by mixing 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 50:50.
[0078]
<Assembly of coin-type battery cells>
A case made of SUS316 was used in a glove box in an argon atmosphere, and a CR2032-type coin battery was manufactured by injecting an electrolyte solution through a polypropylene separator between the positive electrode and the negative electrode.
[0079]
<Battery evaluation>
A charge / discharge test of a secondary battery was performed using the coin-type battery. As measurement conditions, under a temperature of 60 ° C., the current density with respect to the positive electrode was set to 0.2 mA / cm 2, and charging / discharging was repeated between a cutoff voltage of 3.0 V and 4.25 V.
[0080]
<Production of Cobalt Oxide Particle Powder (Production According to Invention 2)>
Aluminum sulfate (5.3 mol% with respect to cobalt) was added to the solution containing cobalt, and 1.05 equivalents of an aqueous sodium hydroxide solution was added to the neutralized content of cobalt and aluminum for neutralization reaction. . Subsequently, air was blown in and an oxidation reaction was performed at 90 ° C. for 20 hours. The obtained aluminum-containing cobalt oxide particles are a Co 3 O 4 single phase, and the Al content is 5.3 mol% ( x in (Co (1-x) Al x ) 3 O 4 is 0.05). The average particle size was 0.05 μm, and the BET specific surface area value was 23 m 2 / g.
[0081]
<Manufacture of positive electrode active material>
The aluminum-containing cobalt oxide and lithium compound are sufficiently mixed in a predetermined amount so that the molar ratio of lithium / (cobalt + aluminum) is 1.03, and the mixed powder is fired at 900 ° C. for 10 hours in an oxidizing atmosphere. Thus, aluminum-containing lithium cobalt oxide particle powder was obtained.
[0082]
The obtained aluminum-containing lithium cobalt oxide particle powder has an average particle diameter of 5.0 μm, a BET specific surface area value of 0.5 m 2 / g, an a-axis lattice constant of 2.817Å, and a c-axis lattice constant of 14.064Å. The crystallite size was 642 mm. When the Al content was LiCo (1-x) Al x O 2 , x was 0.05.
[0083]
The coin-type battery produced using the positive electrode active material had an initial discharge capacity of 150 mAh / g, and a capacity retention rate of 50% after 50 cycles at 60 ° C. was 95% / 50 cycle.
[0084]
[Action]
The most important point in the present invention is that a secondary battery using a positive electrode active material made of lithium cobaltate particles containing a different metal element maintains an initial discharge capacity as a secondary battery and accompanies a charge / discharge reaction. The charge / discharge cycle characteristics are excellent, and the charge / discharge cycle characteristics do not deteriorate even at high temperatures.
[0085]
In the present invention, the positive electrode active material has a large c-axis lattice constant because it contains a different metal element in advance at the stage of synthesizing the cobalt oxide particle, or a hydroxide of a different metal element is added to the cobalt oxide particle. By adhering to the surface, cobalt and dissimilar metal elements are uniformly distributed at the atomic level, and the positive electrode active material obtained using the cobalt oxide particles is due to the dissimilar metal elements being uniformly substituted by cobalt sites. The inventor presumes.
[0086]
In addition, since the c-axis lattice constant of the positive electrode active material is large in advance, the lithium ion deinsertion reaction is easily performed, and the lattice collapse due to the contraction expansion in the c-axis direction of the crystal structure associated with the lithium ion deinsertion reaction occurs. It is estimated that it can be suppressed. Therefore, it is considered that the charge / discharge cycle characteristics at high temperatures are also excellent.
[0087]
On the other hand, when a lithium compound, a cobalt compound, and a dissimilar metal element are dry mixed and calcined, the composition distribution of the dissimilar metal element becomes non-uniform, and the effect of the present invention cannot be obtained.
[0088]
The reason why the initial discharge capacity can be maintained in the present invention is that different metal elements are contained within a range that does not reduce the initial discharge capacity of the original LiCoO 2 .
[0089]
【Example】
Next, examples and comparative examples are given.
[0090]
Examples 1-6
Cobalt oxide particle powder was obtained in the same manner as in the above embodiment except that the kind and content of different metal elements were variously changed.
[0091]
Table 1 shows the production conditions and the characteristics of the obtained cobalt oxide particle powder.
[0092]
[Table 1]
Figure 0004553095
[0093]
Examples 7-12
A positive electrode active material was obtained in the same manner as in the above embodiment except that the type of cobalt oxide particle powder, the mixing ratio of lithium, and the firing temperature were variously changed.
[0094]
The production conditions at this time are shown in Table 2, and the characteristics of the obtained positive electrode active material and the battery characteristics of the coin-type battery are shown in Table 3.
[0095]
Comparative Example 1 is a cobalt oxide particle powder containing no different metal element, and Comparative Example 3 is lithium cobalt oxide containing no different metal element. In Comparative Examples 4 to 11, cobalt oxide particles having the characteristics shown in Comparative Example 2, a different metal element raw material and a lithium raw material are mixed by a dry method, and calcined at 900 ° C. to contain a different metal element. Lithium acid was obtained.
[0096]
The production conditions at this time are shown in Table 2, and the characteristics of the obtained positive electrode active material and the battery characteristics of the coin-type battery are shown in Table 3.
[0097]
[Table 2]
Figure 0004553095
[0098]
[Table 3]
Figure 0004553095
[0099]
Example 13 (Production according to Invention 3)
To a solution containing 0.5 mol / l of cobalt, 1.05 equivalent of an aqueous sodium hydroxide solution was added to neutralize the cobalt and neutralized. Next, an oxidation reaction was performed at 90 ° C. for 20 hours while blowing air to obtain cobalt oxide particles.
In the obtained solution containing cobalt oxide particles, 5.3 mol% of nickel sulfate is added to cobalt, and further, a neutralized sodium hydroxide aqueous solution is added to the surface of the cobalt oxide particles. Surface treated with nickel hydroxide. The pH of the reaction solution at this time was 11. The obtained cobalt oxide particles obtained by surface-treating nickel hydroxide have a single phase of Co 3 O 4 and have a Ni content of 5.3 mol% ((1-x) Co 3 O 4 .3xNi (OH) 2 . x was 0.05), the average particle size was 0.05 μm, and the BET specific surface area value was 27.5 m 2 / g.
[0100]
Example 23
The cobalt oxide particles surface-treated with nickel hydroxide and the lithium compound are sufficiently mixed in a predetermined amount so that the molar ratio of lithium / (cobalt + nickel) is 1.03 mol%, and the mixed powder is subjected to an oxidizing atmosphere. And calcining at 900 ° C. for 10 hours to obtain nickel-containing lithium cobalt oxide particle powder.
[0101]
As a result of X-ray diffraction, the obtained nickel-containing lithium cobalt oxide particle powder was a lithium cobaltate single phase and no impurity phase was present. The average particle size was 5.0 μm, the BET specific surface area value was 0.5 m 2 / g, the a-axis lattice constant was 2.820 2, the c-axis lattice constant was 14.075 Å, and the crystallite size was 653 Å. When the Ni content was LiCo 1-x Ni x O 2 , x was 0.05.
[0102]
The coin-type battery produced using the positive electrode active material had an initial discharge capacity of 158 mAh / g, and a capacity retention rate of 50% after 50 cycles at 60 ° C. was 98% / 50 cycle.
[0103]
Examples 14-22
Cobalt oxide particle powder was obtained in the same manner as in Example 13 except that various kinds and contents of different metal elements in the surface treatment with various metal element hydroxides were changed.
[0104]
Table 4 shows the production conditions and the characteristics of the obtained cobalt oxide particle powder.
[0105]
Examples 24-32
A positive electrode active material was obtained in the same manner as in Example 23 except that the type of cobalt oxide particle powder and the mixing ratio of lithium were variously changed.
[0106]
Table 5 shows the manufacturing conditions at this time, and Table 6 shows the characteristics of the obtained positive electrode active material and the battery characteristics of the coin-type battery.
[0107]
[Table 4]
Figure 0004553095
[0108]
[Table 5]
Figure 0004553095
[0109]
[Table 6]
Figure 0004553095
[0110]
The coin-type battery manufactured using the positive electrode active material according to the present invention maintains an initial discharge capacity of 140 to 160 mAh / g, and has a high capacity maintenance rate of 91% or more after 50 cycles at 60 ° C.
[0111]
Moreover, as shown in the comparative example, when each element is mixed and contained by the dry method, the effect of improving the charge / discharge cycle characteristics at high temperature is not observed.
[0112]
【The invention's effect】
By using the positive electrode active material according to the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery that maintains an initial discharge capacity as a secondary battery and that has improved charge / discharge cycle characteristics at high temperatures.

Claims (6)

コバルト酸化物粒子粉末の製造法であって、コバルト塩とNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素の塩とを含有する溶液をアルカリ水溶液により中和し、次いで、30〜95℃の反応温度で酸化反応を行って前記異種金属元素を含有するコバルト酸化物粒子を得るものであり、得られるコバルト酸化物粒子粉末はNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素を含有し、組成(Co(1−x)(0.01≦x≦0.15、MはNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素である。)であって、BET比表面積値が0.5〜50m/g、平均粒子径が0.01〜0.1μmであることを特徴とするコバルト酸化物粒子粉末の製造法。A method for producing cobalt oxide particle powder, comprising neutralizing a solution containing a cobalt salt and a salt of one or more different metal elements selected from Ni, Al, Fe, Ti, and Ca with an aqueous alkaline solution. Then, an oxidation reaction is performed at a reaction temperature of 30 to 95 ° C. to obtain cobalt oxide particles containing the dissimilar metal element, and the obtained cobalt oxide particle powder is Ni, Al, Fe, Ti, Ca. One or two or more different metal elements selected from the group consisting of a composition (Co (1-x) M x ) 3 O 4 (0.01 ≦ x ≦ 0.15, where M is Ni, Al, Fe, Ti , One or two or more different metal elements selected from Ca.), having a BET specific surface area value of 0.5 to 50 m 2 / g and an average particle diameter of 0.01 to 0.1 μm. Cobalt oxide particle powder characterized by Method of production. コバルト酸化物粒子の粒子表面が、Ni、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素の水酸化物で被覆されているコバルト酸化物粒子であり、組成(1−x)Co・3xM(OH)(0.001≦x≦0.15、MはNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素、yは異種金属元素Mの価数である。)であって、BET比表面積値が0.5〜50m/g、平均粒子径が0.01〜0.1μmであることを特徴とするコバルト酸化物粒子粉末。The cobalt oxide particles are coated with a hydroxide of one kind or two or more kinds of different metal elements selected from Ni, Al, Fe, Ti and Ca, and the composition (1- x) Co 3 O 4 · 3xM (OH) y (0.001 ≦ x ≦ 0.15, M is one or more dissimilar metal elements selected from Ni, Al, Fe, Ti, Ca, and y is dissimilar Cobalt oxide particles having a BET specific surface area value of 0.5 to 50 m 2 / g and an average particle diameter of 0.01 to 0.1 μm. Powder. コバルト塩を含有する溶液をアルカリ水溶液により中和した後、30〜95℃の反応温度で酸化反応を行ってコバルト酸化物粒子を得、次いで、当該コバルト酸化物粒子を含有する水懸濁液にNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素の塩を添加し、次いで、水懸濁液のpHを調整してコバルト酸化物粒子の粒子表面にNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素の水酸化物を被覆処理することを特徴とする請求項2記載のコバルト酸化物粒子粉末の製造法。After neutralizing the solution containing the cobalt salt with an alkaline aqueous solution, an oxidation reaction is performed at a reaction temperature of 30 to 95 ° C. to obtain cobalt oxide particles, and then to an aqueous suspension containing the cobalt oxide particles. A salt of one or more different metal elements selected from Ni, Al, Fe, Ti, and Ca is added, and then the pH of the aqueous suspension is adjusted to form Ni, Al on the surface of the cobalt oxide particles. The method for producing a cobalt oxide particle powder according to claim 2, wherein a hydroxide of one or more different metal elements selected from Fe, Ti and Ca is coated. 組成がLiCo(1−x)(0.01≦x≦0.15、MはNi、Al、Fe、Ti、Caから選ばれる一種又は二種以上の異種金属元素である。)であり、平均粒子径が1.0〜20μmであり、c軸の格子定数が0.177x+14.051(Å)で示される値以上であることを特徴とする非水電解質二次電池用正極活物質。The composition is LiCo (1-x) M x O 2 (0.01 ≦ x ≦ 0.15, where M is one or more different metal elements selected from Ni, Al, Fe, Ti, and Ca.) A positive electrode active for a non-aqueous electrolyte secondary battery, wherein the average particle size is 1.0 to 20 μm, and the c-axis lattice constant is not less than the value represented by 0.177x + 14.051 (Å) material. 請求項1記載の製造法によって得られたコバルト酸化物粒子粉末又は請求項2記載のコバルト酸化物粒子粉末とリチウム化合物とを混合し、600〜900℃の温度範囲で熱処理することを特徴とする請求項4記載の非水電解質二次電池用正極活物質の製造法。The cobalt oxide particle powder obtained by the manufacturing method according to claim 1 or the cobalt oxide particle powder according to claim 2 and a lithium compound are mixed and heat-treated in a temperature range of 600 to 900 ° C. The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries of Claim 4. 請求項4記載の非水電解質二次電池用正極活物質を含有する正極を用いたことを特徴とする非水電解質二次電池。A nonaqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 4.
JP2002156224A 2002-05-29 2002-05-29 Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery Expired - Lifetime JP4553095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156224A JP4553095B2 (en) 2002-05-29 2002-05-29 Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156224A JP4553095B2 (en) 2002-05-29 2002-05-29 Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004002066A JP2004002066A (en) 2004-01-08
JP4553095B2 true JP4553095B2 (en) 2010-09-29

Family

ID=30428332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156224A Expired - Lifetime JP4553095B2 (en) 2002-05-29 2002-05-29 Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4553095B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092820A (en) * 2004-09-22 2006-04-06 Sanyo Electric Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, cathode, and the nonaqueous electrolyte secondary battery
JP4969051B2 (en) * 2005-03-30 2012-07-04 三洋電機株式会社 Method for producing lithium cobaltate positive electrode active material
JP5082204B2 (en) * 2005-05-27 2012-11-28 ソニー株式会社 Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery
JP2007048711A (en) * 2005-08-12 2007-02-22 Sony Corp Anode active material, manufacturing method of the same, and battery
JP5082308B2 (en) * 2006-07-03 2012-11-28 ソニー株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181062A (en) * 1992-12-14 1994-06-28 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPH06325791A (en) * 1993-05-14 1994-11-25 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH101316A (en) * 1996-06-10 1998-01-06 Sakai Chem Ind Co Ltd Lithium-cobalt multiple oxide and production thereof, and lithium ion secondary battery
JPH10259027A (en) * 1996-10-29 1998-09-29 Honjiyou Chem Kk Production of lithium/cobalt and/or nickel multiple oxide
JPH10324522A (en) * 1997-03-25 1998-12-08 Toda Kogyo Corp Production of lithium cobalt oxide particulate powder
JPH10324523A (en) * 1997-03-25 1998-12-08 Toda Kogyo Corp Production of cobalt oxide fine particulate powder
JPH117958A (en) * 1997-04-25 1999-01-12 Sony Corp Manufacture of positive electrode active material, and non-aqueous electrolyte secondary battery
JPH1116573A (en) * 1997-06-26 1999-01-22 Sumitomo Metal Mining Co Ltd Lithium cobalt double oxide for lithium ion secondary battery and its manufacture
JPH11162465A (en) * 1997-11-28 1999-06-18 Nippon Chem Ind Co Ltd Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery
JP2000268821A (en) * 1999-03-18 2000-09-29 Seimi Chem Co Ltd Production of lithium-containing composite oxide for lithium secondary battery positive electrode active material
JP2000327339A (en) * 1999-05-17 2000-11-28 Mitsubishi Cable Ind Ltd Li-Co-BASED COMPOUND OXIDE AND ITS PRODUCTION
JP2001223008A (en) * 1999-12-02 2001-08-17 Honjo Chemical Corp Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JP2001283851A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2001092158A1 (en) * 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Lithium-transition metal composite oxide
JP2002008651A (en) * 2000-06-16 2002-01-11 Gs-Melcotec Co Ltd Non-aqueous electrolyte secondary battery
JP2002068750A (en) * 2000-08-24 2002-03-08 Ishihara Sangyo Kaisha Ltd Method of producing tricobalt tetraoxide
JP2002110167A (en) * 2000-09-14 2002-04-12 Ilion Technology Corp Lithium oxide material and method for manufacturing the same
JP2002151078A (en) * 2000-11-14 2002-05-24 Toda Kogyo Corp Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process
JP2002151077A (en) * 2000-11-14 2002-05-24 Toda Kogyo Corp Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process
JP2002298846A (en) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2003123756A (en) * 2001-10-17 2003-04-25 Tohoku Techno Arch Co Ltd Positive electrode material for lithium ion secondary battery, method of preparing the same, and lithium secondary battery
JP2003516297A (en) * 1999-12-10 2003-05-13 エフエムシー・コーポレイション Lithium cobalt oxide and method for producing the same

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181062A (en) * 1992-12-14 1994-06-28 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPH06325791A (en) * 1993-05-14 1994-11-25 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH101316A (en) * 1996-06-10 1998-01-06 Sakai Chem Ind Co Ltd Lithium-cobalt multiple oxide and production thereof, and lithium ion secondary battery
JPH10259027A (en) * 1996-10-29 1998-09-29 Honjiyou Chem Kk Production of lithium/cobalt and/or nickel multiple oxide
JPH10324522A (en) * 1997-03-25 1998-12-08 Toda Kogyo Corp Production of lithium cobalt oxide particulate powder
JPH10324523A (en) * 1997-03-25 1998-12-08 Toda Kogyo Corp Production of cobalt oxide fine particulate powder
JPH117958A (en) * 1997-04-25 1999-01-12 Sony Corp Manufacture of positive electrode active material, and non-aqueous electrolyte secondary battery
JPH1116573A (en) * 1997-06-26 1999-01-22 Sumitomo Metal Mining Co Ltd Lithium cobalt double oxide for lithium ion secondary battery and its manufacture
JPH11162465A (en) * 1997-11-28 1999-06-18 Nippon Chem Ind Co Ltd Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery
JP2000268821A (en) * 1999-03-18 2000-09-29 Seimi Chem Co Ltd Production of lithium-containing composite oxide for lithium secondary battery positive electrode active material
JP2000327339A (en) * 1999-05-17 2000-11-28 Mitsubishi Cable Ind Ltd Li-Co-BASED COMPOUND OXIDE AND ITS PRODUCTION
JP2001223008A (en) * 1999-12-02 2001-08-17 Honjo Chemical Corp Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JP2003516297A (en) * 1999-12-10 2003-05-13 エフエムシー・コーポレイション Lithium cobalt oxide and method for producing the same
JP2001283851A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2001092158A1 (en) * 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Lithium-transition metal composite oxide
JP2002008651A (en) * 2000-06-16 2002-01-11 Gs-Melcotec Co Ltd Non-aqueous electrolyte secondary battery
JP2002068750A (en) * 2000-08-24 2002-03-08 Ishihara Sangyo Kaisha Ltd Method of producing tricobalt tetraoxide
JP2002110167A (en) * 2000-09-14 2002-04-12 Ilion Technology Corp Lithium oxide material and method for manufacturing the same
JP2002151078A (en) * 2000-11-14 2002-05-24 Toda Kogyo Corp Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process
JP2002151077A (en) * 2000-11-14 2002-05-24 Toda Kogyo Corp Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process
JP2002298846A (en) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2003123756A (en) * 2001-10-17 2003-04-25 Tohoku Techno Arch Co Ltd Positive electrode material for lithium ion secondary battery, method of preparing the same, and lithium secondary battery

Also Published As

Publication number Publication date
JP2004002066A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP4998753B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR102168980B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
JP6089433B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP4211865B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP3691279B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4574877B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
KR101989760B1 (en) Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
US6531220B1 (en) Positive active material for rechargeable lithium battery and method of preparing same
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP4305629B2 (en) Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
JP5482977B2 (en) Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
WO2011065423A1 (en) Li-ni composite oxide particle powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP4620926B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2019168160A1 (en) Li-ni composite oxide particle powder and nonaqueous electrolyte secondary battery
JP2023523668A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
KR100490613B1 (en) A positive active material for a lithium secondary battery and a method of preparing the same
JP2002151078A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
CN111954947A (en) Positive electrode active material particle for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
US20040208818A1 (en) Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4305613B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4553095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term