JP2004277266A - Method for manufacturing compound semiconductor single crystal - Google Patents

Method for manufacturing compound semiconductor single crystal Download PDF

Info

Publication number
JP2004277266A
JP2004277266A JP2003074679A JP2003074679A JP2004277266A JP 2004277266 A JP2004277266 A JP 2004277266A JP 2003074679 A JP2003074679 A JP 2003074679A JP 2003074679 A JP2003074679 A JP 2003074679A JP 2004277266 A JP2004277266 A JP 2004277266A
Authority
JP
Japan
Prior art keywords
crystal
temperature
single crystal
growth
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003074679A
Other languages
Japanese (ja)
Inventor
Shunsuke Yamamoto
俊輔 山本
Michinori Wachi
三千則 和地
Takeshi Nakazawa
健 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003074679A priority Critical patent/JP2004277266A/en
Publication of JP2004277266A publication Critical patent/JP2004277266A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a compound semiconductor single crystal, which is effective for enhancing the speed of crystal growth and for obtaining a long size crystal in VB and VGF methods. <P>SOLUTION: The growth speed and the yield of the single crystal can be enhanced by, after melting a polycrystal raw material and completing seeding, growing the single crystal up to a time point of a cross sectional area increasing part 3b from the seed crystal part 3a subjected to seeding or up to a time point of not longer than 1/4 of the total length in the longitudinal direction of growing crystal part 3c from the seed crystal part 3a subjected to seeding by lowering the temperature at the inside of a furnace (VGF method), then stopping the lowering of the temperature of the furnace, and relatively moving a growth vessel 3 to the growth furnace (VGF method). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、原料融液を結晶成長容器内で下方から上方に向けて徐々に固化させて単結晶を成長する垂直ブリッジマン法(VB法)および垂直温度勾配凝固法(VGF法)による化合物半導体結晶の製造方法に関するものである。
【0002】
【従来の技術】
直径φ3インチを超える大型で、しかも転位密度の低い化合物半導体単結晶(GaAs、InPなど)が得られる方法として、液体封止型チョクラルスキー法(LEC法)に代わって、垂直ブリッジマン法(VB法)及び垂直温度勾配凝固法(VGF法)が注目されている。VB法及びVGF法は、原料融液を容器内で下部から上方に向けて徐々に固化させることにより単結晶を成長する縦型の容器内成長法である。LEC法では、低温度勾配下で成長を行うと液体封止剤通過後の結晶からIII−V族化合物半導体ではV族の解離、II−VI族化合物半導体ではVI族の解離が問題になるが、VB法及びVGF法は縦型の容器内成長であるため、容器の上方を液体封止剤で覆うことによって解離を防止することができる。従って、VB法及びVGF法では、LEC法に比べて低温度勾配下で成長できるため、転位密度の低い化合物半導体単結晶を製造することができる。
【0003】
垂直ブリッジマン法(VB法)も垂直温度勾配凝固法(VGF法)も、半導体原料融液を容器(るつぼ)内に収納し、容器の底部に予め配置した種結晶より結晶成長を開始して、徐々に上方に固化させことにより結晶化を進行せしめ、ついには原料融液全体を結晶化させるという点で共通する。ただし、VB法は、成長容器をヒーターの位置に対して相対的に降下させて成長させる方法であり、VGF法は、温度降下のみで成長させる方法である。
【0004】
このVB法及びVGF法では、種結晶載置部(種結晶部)が最下部にあり、種結晶載置部から上方に向けて直径が大きくなる増径部(断面積増大部)、増径部から上方に続く直胴部(成長結晶部)を有している成長容器を、支持部材により支持して加熱装置内に配置する。そして、成長容器下部の種結晶載置部内に種結晶を設置し、その上に多結晶原料を置き、上部が高く、下部が低い温度分布を設けた加熱装置の中で、種結晶の下部から上部に向かって結晶固化させる。
【0005】
従来、まず、結晶成長の前半において、VB法と同様、温度勾配をつけた炉内で、原料を収容した縦型容器を下降させて、原料の下端から結晶を育成して行き、次に、容器の下降を停止し、VGF法と同様にして、炉の温度を下げて行き引き続いて結晶を成長させて行く化合物半導体結晶の育成方法が知られている(例えば、特許文献1参照)。
【0006】
この特許文献1の方法には、次のような長所がある。まず、温度が高く設定される結晶成長初期においてVB法を採用することで、高温部の温度をあまり高くせずに済む。これによって構成元素の解離を防止する。このため組成ずれが防止される。次に、成長の中後期にVGF法を採用することで、炉長を短くすることができる。また、最初にVB法を行っているため、VB法からVGF法に移行する段階において、温度勾配は比較的大きい。したがって、成長の中後期でもVGF法において成長速度の制御が容易になる。
【0007】
【特許文献1】
特開平4−325485号公報
【0008】
【発明が解決しようとする課題】
しかしながら、結晶の長尺化において、結晶育成速度の高速化を図りつつ、固液界面を融液側に凸面又は平坦となるようにして、低転位単結晶を高歩留り、且つ安価に製造するという観点からは、更なる改善がなされた化合物半導体結晶の製造方法の提供が望まれていた。
【0009】
VB法及びVGF法の特長である低転位化を実現するためには、(i) 結晶固化後に発生する熱的な歪の抑制、(ii) 固液界面(結晶成長時の結晶固化形状を示す)が融液側へ凹面形状(図4)となってしまうことによる機械的な歪みの抑制が必要となる。
【0010】
上記(i) の点については熱的な歪み対策の一つとして、低温度勾配下での結晶成長が挙げられる。これは、結晶固化部及び成長部を低温度勾配下でゆっくり冷却することで冷却時の熱歪みにより発生する転位を抑制することができるためである。
【0011】
上記(ii) の点については、固液界面形状が融液側へ凹面になると発生した転位が結晶の内部に向かって集まり多結晶化しやすい条件となるため、VB法及びVGF法においては凹面成長による転位の抑制、つまり固液界面形状が融液側に凸面(図5)又は平坦となるようにすることが不可欠である。
【0012】
しかし、上述した理由から、VB法及びVGF法での結晶成長時は、低温度勾配下での結晶成長となるため、種結晶部からの放熱量を多くすることができない。そのため、結晶成長速度を高速化すると、種結晶部からの放熱量が不足し、固液界面形状が融液側に凹面(図4)となってしまう。従って、VB法及びVGF法で高速成長を実施した場合、単結晶化、低転位化することが非常に困難となる。また結晶を長尺化した場合にも、原料融液からの流入熱が増大するため、種結晶部からの放熱量が不足し、固液界面形状が融液側に凹面となるため、単結晶化、低転位化が困難である。
【0013】
そこで、本発明の目的は上記課題を解決し、VB法及びVGF法による結晶の成長速度の高速化、結晶の長尺化に有効な化合物半導体結晶の製造方法を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するため、本発明は、次のように構成したものである。
【0015】
請求項1の発明に係る化合物半導体単結晶の製造方法は、断面積が小さい種結晶部と、これに続く徐々に断面積が増大する断面積増大部と、これに続く断面積が大きくほぼ一定の成長結晶部とを有する容器を用いて、該容器に原料融液を収納し、温度勾配を設けた成長炉内で該容器の底部に予め配置した種結晶より結晶成長を開始して、徐々に上方に結晶化を進行させて、ついには原料融液全体を結晶化させる化合物半導体単結晶の製造方法において、多結晶原料を融解し、種付けを完了した後、炉内温度を降温することで、種付け完了後の種結晶部から断面積増大部のある時点まで単結晶の育成を行い、次いで、炉内温度の降下を停止して、上記容器を成長炉に対し相対的に移動させることで単結晶の育成を行うことを特徴とする。
【0016】
請求項2の発明に係る化合物半導体単結晶の製造方法は、断面積が小さい種結晶部と、これに続く徐々に断面積が増大する断面積増大部と、これに続く断面積が大きくほぼ一定の成長結晶部とを有する容器を用いて、該容器に原料融液を収納し、温度勾配を設けた成長炉内で該容器の底部に予め配置した種結晶より結晶成長を開始して、徐々に上方に結晶化を進行させて、ついには原料融液全体を結晶化させる化合物半導体単結晶の製造方法において、多結晶原料を融解し、種付けを完了した後、炉内温度を降温することで、種付け完了後の種結晶部から成長結晶部の長手方向全体の長さの1/4以下のある時点まで単結晶の育成を行い、次いで、炉内温度の降下を停止して、上記容器を成長炉に対し相対的に移動させることで単結晶の育成を行うことを特徴とする。
【0017】
請求項3の発明は、請求項1又は2記載の化合物半導体単結晶の製造方法において、多結晶原料を融解し、種付けを完了した後、炉内温度を降温することで、種付け完了後の種結晶部から単結晶を育成し、炉内温度の降下を停止した時点の原料融液の平均温度を、融点に対して5℃高い温度より低くすることを特徴とする。
【0018】
<発明の要点>
本発明の要旨は、化合物半導体単結晶の製造方法において、固液界面が融液側へ凸または平坦となり、且つ成長速度を高速化または長尺化できる以下の方法である。
【0019】
すなわち、円形あるいは任意形状の直径あるいは断面積が小さい種結晶部と、円形あるいは任意形状の直径あるいは断面積が大きくほぼ一定の成長結晶部と、徐々に直径あるいは断面積が増大する増径部あるいは断面積増大部とを有する容器を用いて、該容器に原料融液を収納し、温度勾配を設けた成長炉内で該容器の底部に予め配置した種結晶より結晶成長を開始し、徐々に上方に結晶化を進行させて、ついには原料融液全体を結晶化させる化合物半導体単結晶の製造方法において、多結晶原料を融解し、種付けを完了した後、種結晶部から増径部あるいは断面積増大部のある時点までを、炉内の温度を降温することで単結晶を育成する方法(VGF法)の利用を行った後、次に該容器を成長炉に対し相対的に移動させることで単結晶を育成する方法(VB法)の利用を行い、単結晶の育成速度と歩留りを上げるようにした化合物半導体単結晶の製造方法である。
【0020】
多結晶原料を短時間で完全に融解し、短時間で安定して種付けを行うためには、多結晶原料配置部の炉内の平均温度を融点よりある程度高めにする必要がある。しかし、完全に多結晶原料を融解した後は、融点付近まで融液の温度を下げても固化しない。本発明では、この点に着目し、多結晶原料配置部の炉内の平均温度を融点よりある程度高め(例えば、融点より15℃高くする)にして(図1(a))、炉内多結晶原料を完全に融解し、安定して種付けを行った後、炉内温度を降温すること(VGF法)で、種付け完了後の種結晶部から増径部あるいは断面積増大部のある時点まで又は種付け完了後の種結晶部から成長結晶部長手方向全体の1/4以下のある時点まで、単結晶を育成した時点の原料融液の平均温度を融点付近まで低くする(例えば、融点より5℃高い温度より低くする)(図1(b))。
【0021】
このように原料融液の平均温度を融点に対して融点付近まで低くすると、これによって、原料融液からの流入熱が少なくなり、その後のVB法においては、固液界面の平坦化及び、結晶成長速度の高速化を図ることが可能となる。また、結晶を長尺化することにより、単結晶育成時の原料融液からの流入熱が増大するが、本発明により原料融液からの流入熱を少なくすることができるので、長尺低転位単結晶を製造することが可能となる。
【0022】
【発明の実施の形態】
以下、本発明の実施形態を図示の実施例に基づいて説明する。
【0023】
本発明の化合物半導体単結晶の製造方法は、種結晶から炉内温度を降下させること(VGF法)により、単結晶を育成しながら原料融液の温度を融点付近まで下げた後、炉内温度の降下を停止してから原料容器を下方に移動させること(VB法)により単結晶を育成することで、育成速度及び歩留りを上げるものである。化合物半導体単結晶の一つであるGaAsを例にとって説明する。
【0024】
図1は本発明の化合物半導体単結晶の製造方法の一部を示したもので、(a)は、原料を融解し、種付けを完了した後の温度分布を表す概略図、(b)は、種付けを完了した後、温度勾配を維持しながら炉内の温度を降温させる事によって種結晶部から単結晶を育成し、原料融液の平均温度が融点に対して5℃高い温度より低くなった時点で、炉内温度の降温を停止した時の温度分布を表す概略図である。
【0025】
[実施例1]
GaAs単結晶成長を、図2に示すように、チャンバ1内の不活性ガス2中でグラファイト製加熱装置(上部ヒーター8、中部ヒーター9、下部ヒーター10)で加熱処理する成長炉を用いて成長を行った。
【0026】
結晶成長容器としては、下部に形成した直径が小さい円形の種結晶収容部たる種結晶部3aと、これに続く上方に徐々に直径が増大する増径部(断面積増大部3b)と、これに続く円形の直径が大きくほぼ一定の直胴部(結晶育成部3c)とを有するPBN製るつぼ3を用いた。
【0027】
PBN製るつぼ3にGaAs多結晶原料4と液体封止剤である三酸化ホウ素(B)5と種結晶6を収容した。その後、グラファイト製結晶受け台7にPBN製るつぼ3をセットする。セット完了後、炉内を真空引きし、不活性ガスで置換し、上部ヒーター8、中部ヒーター9、下部ヒーター10により昇温する。上部ヒーター8を1256℃、中部ヒーター9を約1252℃、下部ヒーター10を1217℃になるまで昇温する。昇温後15時間設定温度を保持する事によって、多結晶原料を完全に融解し、種付けを行う(図1(a)参照)。種付け完了後の原料融液の平均温度は約1254℃(GaAs融点に対して16℃高い温度)であった。
【0028】
上部ヒーター8を1240℃、中部ヒーター9を約1243℃、下部ヒーター10を1208℃になるまで温度を降温すること(VGF法)で、種付け完了後の種結晶部3aから単結晶を育成させる(図1(b)参照)。温度を降温する事(VGF法)で、増径部(断面積増大部3b)の全体の長さの4/5の位置までを単結晶で育成させた時点において、原料融液の平均温度が約1242℃(GaAs融点に対して4℃高い温度)になった。
【0029】
その後、炉内の温度降下を停止して、PBN製るつぼ3を4mm/時の速度で下方に移動させる事(VB法)によって、最後まで結晶成長を行った。
【0030】
上記の方法で、直径φ4インチ結晶長200mmの低転位GaAs単結晶を得ることができた。
【0031】
VB法のみまたはVGF法のみでは、直径φ4インチ結晶長200mmのGaAs単結晶得るのに170時間かかっていたが、本実施例1の方法では、150時間で低転位GaAs単結晶を成長させることができた。VB法のみまたはVGF法のみに対して本実施例1の方法では成長速度を上げているにも拘わらず、固液界面は融液側に凸または平坦であり、歩留もVB法のみまたはVGF法のみでは70%であったが、本実施例1の方法では80%に改善した。
【0032】
[実施例2]
ここで説明するGaAs単結晶成長の概略を図3に示す。実施例1と同様にPBN製るつぼ3にGaAs多結晶原料4と液体封止剤である三酸化ホウ素(B)5と種結晶6を収容した。その後、グラファイト製結晶受け台7にPBN製るつぼ3をセットする。セット完了後、炉内を真空引きし、不活性ガスで置換し、最上部ヒーター11、上部ヒーター8、中部ヒーター9、下部ヒーター10により昇温する。最上部ヒーター11を1256℃、上部ヒーター8を1256℃、中部ヒーター9を約1252℃、下部ヒーター10を1207℃になるまで昇温する。昇温後15時間設定温度を保持する事によって、多結晶原料を完全に融解し、種付けを行う(図1(a)参照)。種付け完了後の原料融液の平均温度は約1254℃(GaAs融点に対して16℃高い温度)であった。
【0033】
最上部ヒーター11を1241℃、上部ヒーター8を1241℃、中部ヒーター9を1243℃、下部ヒーター10を1198℃になるまで温度を降温すること(VGF法)で、種付け完了後の種結晶部から単結晶を育成させる(図1(b)参照)。温度を降温する事(VGF法)で、成長結晶部の長さが30mmになるまで単結晶で育成させた時点において、原料融液の平均温度が約1242℃(GaAsの融点に対して4℃高い温度)になった。
【0034】
その後、炉内の温度降下を停止して、PBN製るつぼ3を3mm/時の速度で下方に移動させる事(VB法)によって、最後まで結晶成長を行った。
【0035】
この方法で、直径φ4インチ結晶長300mmの低転位GaAs単結晶を得ることができた。
【0036】
VB法のみまたはVGF法のみでは、直径φ4インチ結晶長300mmのGaAs単結晶得るのに270時間かかっていたが、本実施例2の方法では、220時間で低転位GaAs単結晶を成長させることができた。VB法のみまたはVGF法のみに対して本実施例2の方法では成長速度を上げているにも拘わらず、固液界面は融液側に凸または平坦であり、歩留もVB法のみまたはVGF法のみでは50%であったが、本実施例2の方法では70%に改善した。
【0037】
上記した実施例1と実施例2では、GaAsの単結晶成長について述べたが、GaAsの他に、例えばInP、GaP等の化合物半導体単結晶成長に応用することも可能である。
【0038】
[比較例1]
炉内の温度を降温することで、種付け完了後の種結晶部から単結晶を育成して、炉内の温度降下停止後の時点の原料融液の平均温度が、融点に対して5℃以上高い1243℃以上で行った以外は、実施例1と同じ条件でGaAs単結晶の成長を行った。
【0039】
炉内の温度降下停止後の時点の原料融液の平均温度が1243℃以上で行った以外は実施例1と同じ条件で行った結果、固液界面は融液側に凹になり、歩留も70%以下と実施例1の80%より低下した。
【0040】
[比較例2]
炉内の温度を降温することで、種付け完了後の種結晶部から単結晶を育成して、炉内の温度降下停止後の時点の原料融液の平均温度が、融点に対して5℃以上高い1243℃以上で行った以外は実施例2と同じ条件でGaAs単結晶の成長を行った。
【0041】
炉内の温度降下停止後の時点の原料融液の平均温度が1243℃以上で行った以外は実施例2と同じ条件で行った結果、固液界面は融液側に凹になり、歩留も60%以下と実施例2の70%より低下した。
【0042】
GaAs以外のInP、GaP等の化合物半導体単結晶成長においても、原料融液の平均温度が、融点に対して5℃以上高い温度で行った場合は、固液界面は融液側に凹になり、歩留も5℃以下で行った場合より低下した。
【0043】
以上の結果から、種結晶部から増径部あるいは断面積増大部のある時点までを、温度勾配を維持して温度を降温することで、単結晶を育成した時点の原料融液の平均温度を、融点に対して5℃高い温度より低くすることにより、固液界面は融液側に凸または平坦になり、高歩留で単結晶を製造することができる。
【0044】
成長速度の高速化は、種付け完了後の種結晶部から成長結晶部長手方向全体の1/4以下のある時点まで、温度勾配を維持して温度を降温することで、単結晶を育成した時点の原料融液の平均温度を融点付近まで低くする(例えば融点に対して5℃高い温度よりも低くする)ことにより、同様に達成することができる。
【0045】
【発明の効果】
以上述べたように、本発明によれば、VB法及びVGF法によって単結晶を成長する製造方法において、温度勾配を維持して温度を降温することで、種結晶部から増径部あるいは断面積増大部のある時点まで又は種付け完了後の種結晶部から成長結晶部長手方向全体の1/4以下のある時点まで、単結晶を育成した時点の原料融液の平均温度を融点付近まで低くする、例えば融点に対して5℃高い温度よりも低くするため、これにより原料融液からの流入熱を少なくすることができる。
【0046】
従って、本発明の化合物半導体結晶の製造方法を用いることにより、結晶成長速度の高速化、結晶の長尺化において、固液界面を融液側に凸または平坦にすることができ、低転位単結晶を製造することができる。従って、高歩留り、且つ安価に化合物半導体結晶を製造することができる。
【図面の簡単な説明】
【図1】本発明の化合物半導体単結晶の製造方法の一部を示したもので、(a)は、原料を融解し、種付けを完了した後の温度分布を表す概略図、(b)は、種付けを完了した後、温度勾配を維持しながら炉内の温度を降温させる事によって種結晶部から単結晶を育成し、原料融液の平均温度が融点に対して5℃高い温度より低くなった時点で、炉内温度の降温を停止した時の温度分布を表す概略図である。
【図2】本発明の実施例1に係るVB法による化合物半導体結晶の製造装置の概略図である。
【図3】本発明の実施例2に係るVB法による化合物半導体結晶の製造装置の概略図である。
【図4】固液界面形状が融液側に凹面である事を表す概略図である。
【図5】固液界面形状が融液側に凸面である事を表す概略図である
【符号の説明】
3 PBN製るつぼ(結晶成長容器)
3a 種結晶部
3b 断面積増大部(増径部)
3c 成長結晶部(直胴部)
4 GaAs多結晶原料
5 三酸化ホウ素(液体封止剤)
6 種結晶
7 結晶受け台
8 上部ヒーター
9 中部ヒーター
10 下部ヒーター
11 最上部ヒーター
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compound semiconductor by a vertical Bridgman method (VB method) and a vertical temperature gradient solidification method (VGF method) in which a raw material melt is gradually solidified from below in a crystal growth vessel to grow a single crystal. The present invention relates to a method for producing a crystal.
[0002]
[Prior art]
As a method for obtaining a compound semiconductor single crystal (GaAs, InP, etc.) having a large diameter exceeding φ3 inches and a low dislocation density, a vertical Bridgman method (LEC method) is used instead of the liquid-sealed Czochralski method (LEC method). The VB method) and the vertical temperature gradient solidification method (VGF method) have attracted attention. The VB method and the VGF method are vertical growth methods in a container in which a single crystal is grown by gradually solidifying a raw material melt from a lower portion to an upper portion in a container. In the LEC method, if growth is performed under a low temperature gradient, dissociation of the group V of a III-V compound semiconductor and dissociation of the group VI of a II-VI compound semiconductor from the crystal after passing through the liquid sealant becomes a problem. , VB method and VGF method are growths in a vertical container, so that dissociation can be prevented by covering the upper part of the container with a liquid sealant. Therefore, since the VB method and the VGF method can grow under a lower temperature gradient than the LEC method, a compound semiconductor single crystal having a low dislocation density can be manufactured.
[0003]
In both the vertical Bridgman method (VB method) and the vertical temperature gradient solidification method (VGF method), a semiconductor raw material melt is housed in a container (crucible), and crystal growth is started from a seed crystal previously arranged at the bottom of the container. This is common in that the crystallization is advanced by gradually solidifying it upward, and finally the entire raw material melt is crystallized. However, the VB method is a method in which the growth is performed by lowering the growth container relatively to the position of the heater, and the VGF method is a method in which the growth is performed only by the temperature drop.
[0004]
In the VB method and the VGF method, the seed crystal mounting portion (seed crystal portion) is located at the lowermost portion, and the diameter increasing portion (cross-sectional area increasing portion) whose diameter increases upward from the seed crystal mounting portion, A growth vessel having a straight body (growing crystal part) extending upward from the part is supported by a support member and arranged in the heating device. Then, the seed crystal is placed in the seed crystal mounting part at the lower part of the growth vessel, and the polycrystalline raw material is placed thereon. Crystallize towards the top.
[0005]
Conventionally, first, in the first half of crystal growth, as in the case of the VB method, in a furnace with a temperature gradient, the vertical container containing the raw material is lowered, and crystals are grown from the lower end of the raw material. There is known a method of growing a compound semiconductor crystal in which the lowering of the container is stopped and the temperature of the furnace is lowered and the crystal is subsequently grown in the same manner as in the VGF method (for example, see Patent Document 1).
[0006]
The method of Patent Document 1 has the following advantages. First, by employing the VB method in the early stage of crystal growth in which the temperature is set to be high, the temperature of the high-temperature portion does not need to be too high. This prevents dissociation of the constituent elements. For this reason, composition deviation is prevented. Next, by employing the VGF method in the middle and late stages of growth, the furnace length can be shortened. In addition, since the VB method is performed first, the temperature gradient is relatively large at the stage of transition from the VB method to the VGF method. Therefore, the growth rate can be easily controlled in the VGF method even in the middle and late stages of growth.
[0007]
[Patent Document 1]
JP-A-4-325485
[Problems to be solved by the invention]
However, in increasing the length of a crystal, it is intended to produce a low-dislocation single crystal at a high yield and at a low cost by making the solid-liquid interface convex or flat on the melt side while increasing the crystal growth rate. From a viewpoint, it has been desired to provide a method of manufacturing a compound semiconductor crystal with further improvement.
[0009]
In order to realize the dislocation reduction which is a feature of the VB method and the VGF method, it is necessary to (i) suppress thermal strain generated after crystal solidification, and (ii) a solid-liquid interface (which shows the crystal solidification shape during crystal growth). ) Has a concave shape (FIG. 4) toward the melt, so that mechanical distortion must be suppressed.
[0010]
Regarding the above point (i), one of the measures against thermal distortion is crystal growth under a low temperature gradient. This is because dislocations caused by thermal distortion during cooling can be suppressed by slowly cooling the crystallized portion and the grown portion under a low temperature gradient.
[0011]
Regarding the above point (ii), when the shape of the solid-liquid interface becomes concave toward the melt, the generated dislocations converge toward the inside of the crystal and polycrystals easily form, so that the VB method and the VGF method use concave growth. In other words, it is essential to suppress dislocations, that is, to make the solid-liquid interface shape convex (FIG. 5) or flat on the melt side.
[0012]
However, for the reasons described above, during the crystal growth by the VB method and the VGF method, since the crystal grows under a low temperature gradient, the amount of heat radiation from the seed crystal part cannot be increased. Therefore, when the crystal growth rate is increased, the amount of heat radiation from the seed crystal portion becomes insufficient, and the solid-liquid interface shape becomes concave toward the melt (FIG. 4). Therefore, when high-speed growth is performed by the VB method and the VGF method, it is very difficult to achieve single crystallization and low dislocation. Also, when the crystal is lengthened, the amount of heat flowing from the raw material melt increases, so the amount of heat radiated from the seed crystal part is insufficient, and the solid-liquid interface shape becomes concave on the melt side. And dislocation reduction are difficult.
[0013]
Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a method of manufacturing a compound semiconductor crystal that is effective for increasing the crystal growth rate and lengthening the crystal by the VB method and the VGF method.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
[0015]
The method of manufacturing a compound semiconductor single crystal according to the first aspect of the present invention is characterized in that a seed crystal portion having a small cross-sectional area, a cross-sectional area increasing portion having a gradually increasing cross-sectional area, and a substantially constant cross-sectional area following the seed crystal portion Using a container having a growing crystal part, the raw material melt is stored in the container, and in a growth furnace provided with a temperature gradient, crystal growth is started from a seed crystal previously arranged at the bottom of the container, and gradually. In the method for producing a compound semiconductor single crystal in which crystallization is advanced upward and finally the entire raw material melt is crystallized, the polycrystalline raw material is melted, and after seeding is completed, the temperature in the furnace is lowered. By growing a single crystal from the seed crystal part after completion of seeding to a certain point of the cross-sectional area increasing part, then, by stopping the decrease in the furnace temperature, the container is moved relatively to the growth furnace. It is characterized by growing a single crystal.
[0016]
The method of manufacturing a compound semiconductor single crystal according to the second aspect of the present invention is a method for manufacturing a compound semiconductor single crystal, wherein a seed crystal portion having a small cross-sectional area, a cross-sectional area increasing portion having a gradually increasing cross-sectional area, and a substantially constant cross-sectional area subsequent thereto are provided. Using a container having a growing crystal part, the raw material melt is stored in the container, and in a growth furnace provided with a temperature gradient, crystal growth is started from a seed crystal previously arranged at the bottom of the container, and gradually. In the method for producing a compound semiconductor single crystal in which crystallization is advanced upward and finally the entire raw material melt is crystallized, the polycrystalline raw material is melted, and after seeding is completed, the temperature in the furnace is lowered. The single crystal is grown from the seed crystal part after completion of the seeding to a point equal to or less than 1 / of the entire length of the growth crystal part in the longitudinal direction, and then, the temperature in the furnace is stopped from falling, and the container is removed. Single crystal growth by moving relatively to the growth furnace And performing.
[0017]
According to a third aspect of the present invention, in the method for producing a compound semiconductor single crystal according to the first or second aspect, after the polycrystalline raw material is melted and the seeding is completed, the temperature in the furnace is lowered to thereby reduce the seed after the completion of the seeding. The method is characterized in that a single crystal is grown from a crystal part and the average temperature of the raw material melt at the time when the decrease in the furnace temperature is stopped is lower than a temperature higher by 5 ° C. than the melting point.
[0018]
<The gist of the invention>
The gist of the present invention is a method for manufacturing a compound semiconductor single crystal in which the solid-liquid interface is convex or flat to the melt side and the growth rate can be increased or lengthened.
[0019]
That is, a seed crystal portion having a small diameter or cross-sectional area of a circular or arbitrary shape, a growth crystal portion having a large diameter or cross-sectional area of a circular or arbitrary shape and a substantially constant diameter, or a diameter-enlarging portion having a gradually increasing diameter or cross-sectional area. Using a container having a cross-sectional area increasing portion, the raw material melt is stored in the container, and in a growth furnace provided with a temperature gradient, crystal growth is started from a seed crystal previously arranged at the bottom of the container, and gradually. In the compound semiconductor single crystal manufacturing method in which crystallization is advanced upward and finally the entire raw material melt is crystallized, after the polycrystalline raw material is melted and seeding is completed, the diameter is increased or cut from the seed crystal part. After using the method of growing a single crystal by lowering the temperature in the furnace (VGF method) up to a certain point of the area increasing portion, the container is then moved relatively to the growth furnace. Grow single crystal with Performs utilization methods (VB method) which is a compound method for manufacturing a semiconductor single crystal so as to increase the growth rate and yield of the single crystal.
[0020]
In order to completely melt the polycrystalline raw material in a short time and stably seed the polycrystalline raw material in a short time, it is necessary to raise the average temperature in the furnace of the polycrystalline raw material placement part to a certain temperature higher than the melting point. However, after the polycrystalline raw material is completely melted, it does not solidify even if the temperature of the melt is lowered to near the melting point. In the present invention, attention is paid to this point, and the average temperature in the furnace of the polycrystalline raw material placement part is set to be somewhat higher than the melting point (for example, 15 ° C. higher than the melting point) (FIG. 1A), After the raw material is completely melted and stably seeded, the temperature in the furnace is lowered (VGF method), from the seed crystal part after seeding is completed to a point at which the diameter increasing part or the cross-sectional area increasing part is reached or The average temperature of the raw material melt at the time of growing the single crystal from the seed crystal part after completion of seeding to a certain point equal to or less than 1/4 of the entire length of the growth crystal part in the longitudinal direction is reduced to near the melting point (for example, 5 ° C. below the melting point). Lower than the high temperature) (FIG. 1 (b)).
[0021]
By lowering the average temperature of the raw material melt to the vicinity of the melting point with respect to the melting point in this way, the heat flowing from the raw material melt is reduced, and in the subsequent VB method, the solid-liquid interface is flattened and the crystal is cooled. It is possible to increase the growth rate. Further, by increasing the length of the crystal, the inflow heat from the raw material melt at the time of growing the single crystal increases. However, since the inflow heat from the raw material melt can be reduced according to the present invention, long and low dislocations can be obtained. It becomes possible to produce a single crystal.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the illustrated examples.
[0023]
In the method for producing a compound semiconductor single crystal of the present invention, the temperature of the raw material melt is reduced to near the melting point while growing the single crystal by lowering the furnace temperature from the seed crystal (VGF method), and then the furnace temperature is reduced. The growth rate and the yield are increased by growing the single crystal by stopping the lowering of the material and moving the raw material container downward (VB method). GaAs, which is one of compound semiconductor single crystals, will be described as an example.
[0024]
1A and 1B show a part of a method for producing a compound semiconductor single crystal of the present invention, in which FIG. 1A is a schematic diagram showing a temperature distribution after melting a raw material and completing seeding, and FIG. After the seeding was completed, the temperature in the furnace was lowered while maintaining the temperature gradient to grow a single crystal from the seed crystal part, and the average temperature of the raw material melt became lower than the temperature 5 ° C. higher than the melting point. It is a schematic diagram showing the temperature distribution at the time of stopping the temperature fall of the furnace temperature.
[0025]
[Example 1]
As shown in FIG. 2, the GaAs single crystal is grown by using a growth furnace which heat-treats with a heating device made of graphite (upper heater 8, middle heater 9, lower heater 10) in an inert gas 2 in a chamber 1. Was done.
[0026]
As a crystal growth container, a seed crystal part 3a formed as a circular seed crystal storage part having a small diameter formed at a lower part, a diameter increasing part (cross-sectional area increasing part 3b) having a diameter gradually increasing upward following the seed crystal part 3a, Then, a PBN crucible 3 having a substantially circular straight body (crystal growth part 3c) having a large circular diameter.
[0027]
A PBN crucible 3 contained GaAs polycrystalline raw material 4, boron trioxide (B 2 O 3 ) 5 as a liquid sealant, and seed crystal 6. After that, the crucible 3 made of PBN is set on the crystal receiving table 7 made of graphite. After the setting is completed, the inside of the furnace is evacuated, replaced with an inert gas, and heated by the upper heater 8, the middle heater 9, and the lower heater 10. The upper heater 8 is heated to 1256 ° C., the middle heater 9 is heated to about 1252 ° C., and the lower heater 10 is heated to 1217 ° C. By maintaining the set temperature for 15 hours after the temperature rise, the polycrystalline raw material is completely melted and seeded (see FIG. 1 (a)). The average temperature of the raw material melt after completion of the seeding was about 1254 ° C. (a temperature 16 ° C. higher than the GaAs melting point).
[0028]
By lowering the temperature of the upper heater 8 to 1240 ° C., the temperature of the middle heater 9 to about 1243 ° C., and the temperature of the lower heater 10 to 1208 ° C. (VGF method), a single crystal is grown from the seed crystal part 3 a after the seeding is completed ( FIG. 1 (b). By lowering the temperature (VGF method), the average temperature of the raw material melt is raised at the point of time when a single crystal is grown up to 4/5 of the entire length of the diameter-increasing portion (cross-sectional area increasing portion 3b). It was about 1242 ° C. (4 ° C. higher than the GaAs melting point).
[0029]
Thereafter, the temperature drop in the furnace was stopped, and the crucible 3 made of PBN was moved downward at a speed of 4 mm / hour (VB method) to grow the crystal to the end.
[0030]
By the above method, a low-dislocation GaAs single crystal having a diameter of φ4 inches and a crystal length of 200 mm was obtained.
[0031]
With only the VB method or only the VGF method, it took 170 hours to obtain a GaAs single crystal having a diameter of φ4 inches and a crystal length of 200 mm. However, in the method of the first embodiment, a low dislocation GaAs single crystal can be grown in 150 hours. did it. The solid-liquid interface is convex or flat on the melt side, and the yield is only VB method or VGF method, although the growth rate is increased in the method of Example 1 in comparison with VB method only or VGF method only. It was 70% by the method alone, but was improved to 80% by the method of Example 1.
[0032]
[Example 2]
FIG. 3 shows an outline of the GaAs single crystal growth described here. In the same manner as in Example 1, a PBN crucible 3 was filled with a GaAs polycrystalline raw material 4, boron trioxide (B 2 O 3 ) 5 as a liquid sealant, and a seed crystal 6. After that, the crucible 3 made of PBN is set on the crystal receiving table 7 made of graphite. After the setting is completed, the inside of the furnace is evacuated, replaced with an inert gas, and heated by the uppermost heater 11, upper heater 8, middle heater 9, and lower heater 10. The upper heater 11 is heated to 1256 ° C., the upper heater 8 to 1256 ° C., the middle heater 9 to about 1252 ° C., and the lower heater 10 to 1207 ° C. By maintaining the set temperature for 15 hours after the temperature rise, the polycrystalline raw material is completely melted and seeded (see FIG. 1 (a)). The average temperature of the raw material melt after completion of the seeding was about 1254 ° C. (a temperature 16 ° C. higher than the GaAs melting point).
[0033]
By lowering the temperature of the upper heater 11 to 1241 ° C., the upper heater 8 to 1241 ° C., the middle heater 9 to 1243 ° C., and the lower heater 10 to 1198 ° C. (VGF method), from the seed crystal part after completion of seeding A single crystal is grown (see FIG. 1B). When the temperature is lowered (VGF method) and the single crystal is grown until the length of the grown crystal part becomes 30 mm, the average temperature of the raw material melt is about 1242 ° C. (4 ° C. with respect to the melting point of GaAs). High temperature).
[0034]
Thereafter, the temperature drop in the furnace was stopped, and the crucible 3 made of PBN was moved downward at a speed of 3 mm / hour (VB method) to grow the crystal to the end.
[0035]
By this method, a low-dislocation GaAs single crystal having a diameter of φ4 inches and a crystal length of 300 mm was obtained.
[0036]
With only the VB method or the VGF method, it took 270 hours to obtain a GaAs single crystal having a diameter of φ4 inches and a crystal length of 300 mm. However, in the method of Example 2, it was possible to grow a low dislocation GaAs single crystal in 220 hours. did it. The solid-liquid interface is convex or flat on the melt side, and the yield is only VB method or VGF method, although the growth rate is increased in the method of Example 2 in comparison with VB method only or VGF method only. It was 50% by the method alone, but was improved to 70% by the method of Example 2.
[0037]
In the above-described first and second embodiments, single crystal growth of GaAs has been described. However, in addition to GaAs, application to single crystal growth of a compound semiconductor such as InP, GaP or the like is also possible.
[0038]
[Comparative Example 1]
By lowering the temperature in the furnace, a single crystal is grown from the seed crystal part after the seeding is completed, and the average temperature of the raw material melt at the time after the stop of the temperature drop in the furnace is 5 ° C. or more with respect to the melting point. A GaAs single crystal was grown under the same conditions as in Example 1 except that the temperature was higher than 1243 ° C.
[0039]
As a result of performing under the same conditions as in Example 1 except that the average temperature of the raw material melt at the time after the stop of the temperature drop in the furnace was 1243 ° C. or higher, the solid-liquid interface became concave toward the melt and the yield was increased. Was also 70% or less, which was lower than 80% of Example 1.
[0040]
[Comparative Example 2]
By lowering the temperature in the furnace, a single crystal is grown from the seed crystal part after the seeding is completed, and the average temperature of the raw material melt at the time after the stop of the temperature drop in the furnace is 5 ° C. or more with respect to the melting point. A GaAs single crystal was grown under the same conditions as in Example 2 except that the temperature was higher than 1243 ° C.
[0041]
The results were obtained under the same conditions as in Example 2 except that the average temperature of the raw material melt at the time after the stop of the temperature drop in the furnace was 1243 ° C. or higher. As a result, the solid-liquid interface became concave toward the melt and the yield was increased. Was also 60% or less, which was lower than 70% in Example 2.
[0042]
In the case of compound semiconductor single crystal growth of InP, GaP, etc. other than GaAs, when the average temperature of the raw material melt is higher than the melting point by 5 ° C. or more, the solid-liquid interface becomes concave toward the melt. Also, the yield was lower than when the test was performed at 5 ° C. or lower.
[0043]
From the above results, the average temperature of the raw material melt at the time when the single crystal was grown by lowering the temperature while maintaining the temperature gradient from the seed crystal part to the point of the diameter increasing part or the cross-sectional area increasing part By lowering the temperature by 5 ° C. higher than the melting point, the solid-liquid interface becomes convex or flat on the melt side, and a single crystal can be manufactured with a high yield.
[0044]
The growth rate is increased at the time when the single crystal is grown by lowering the temperature while maintaining the temperature gradient from the seed crystal part after completion of seeding to a certain point equal to or less than 1 / of the entire length of the growth crystal part in the longitudinal direction. The same can be achieved by lowering the average temperature of the raw material melt to around the melting point (for example, lower than a temperature higher by 5 ° C. than the melting point).
[0045]
【The invention's effect】
As described above, according to the present invention, in the manufacturing method of growing a single crystal by the VB method and the VGF method, the temperature is decreased while maintaining the temperature gradient, so that the diameter of the seed crystal part is increased or the sectional area is increased. The average temperature of the raw material melt at the time when the single crystal is grown is reduced to near the melting point until a certain point of the growing part or from a seed crystal part after completion of seeding to a certain point equal to or less than 1 / of the entire length of the growth crystal part in the longitudinal direction. For example, since the temperature is set to be lower than the temperature which is higher by 5 ° C. than the melting point, the inflow heat from the raw material melt can be reduced.
[0046]
Therefore, by using the method for producing a compound semiconductor crystal of the present invention, the solid-liquid interface can be convex or flat on the melt side when the crystal growth rate is increased and the crystal length is increased, and low dislocation single crystals can be formed. Crystals can be produced. Therefore, a compound semiconductor crystal can be manufactured at a high yield and at a low cost.
[Brief description of the drawings]
FIGS. 1A and 1B show a part of a method for producing a compound semiconductor single crystal of the present invention, in which FIG. 1A is a schematic diagram showing a temperature distribution after melting a raw material and completing seeding, and FIG. After completion of the seeding, the temperature in the furnace is lowered while maintaining the temperature gradient to grow a single crystal from the seed crystal part, so that the average temperature of the raw material melt becomes lower than a temperature higher by 5 ° C. than the melting point. FIG. 6 is a schematic diagram showing a temperature distribution when the temperature of the furnace is stopped when the temperature in the furnace is lowered.
FIG. 2 is a schematic view of an apparatus for manufacturing a compound semiconductor crystal by a VB method according to Example 1 of the present invention.
FIG. 3 is a schematic view of an apparatus for manufacturing a compound semiconductor crystal by a VB method according to a second embodiment of the present invention.
FIG. 4 is a schematic diagram showing that the solid-liquid interface shape is concave on the melt side.
FIG. 5 is a schematic diagram showing that the solid-liquid interface shape is convex toward the melt side.
3 PBN crucible (crystal growth vessel)
3a Seed crystal part 3b Cross-sectional area increasing part (diameter increasing part)
3c Growth crystal part (straight body part)
4 GaAs polycrystalline raw material 5 Boron trioxide (liquid sealant)
6 seed crystal 7 crystal cradle 8 upper heater 9 middle heater 10 lower heater 11 top heater

Claims (3)

断面積が小さい種結晶部と、これに続く徐々に断面積が増大する断面積増大部と、これに続く断面積が大きくほぼ一定の成長結晶部とを有する容器を用いて、該容器に原料融液を収納し、温度勾配を設けた成長炉内で該容器の底部に予め配置した種結晶より結晶成長を開始して、徐々に上方に結晶化を進行させて、ついには原料融液全体を結晶化させる化合物半導体単結晶の製造方法において、
多結晶原料を融解し、種付けを完了した後、炉内温度を降温することで、種付け完了後の種結晶部から断面積増大部のある時点まで単結晶の育成を行い、
次いで、炉内温度の降下を停止して、上記容器を成長炉に対し相対的に移動させることで単結晶の育成を行うことを特徴とする化合物半導体単結晶の製造方法。
Using a container having a seed crystal part having a small cross-sectional area, a cross-sectional area increasing part having a gradually increasing cross-sectional area, and a growth crystal part having a large and substantially constant cross-sectional area following the seed crystal part, the raw material is added to the container. The melt is accommodated, and crystal growth is started from a seed crystal previously arranged at the bottom of the vessel in a growth furnace provided with a temperature gradient, and crystallization is gradually advanced upward. In the method for producing a compound semiconductor single crystal for crystallizing
After melting the polycrystalline raw material and completing the seeding, by lowering the furnace temperature, a single crystal is grown from the seed crystal part after the seeding is completed to a point where the cross-sectional area increases,
Next, a method for producing a compound semiconductor single crystal, characterized in that the decrease in the furnace temperature is stopped and the single crystal is grown by moving the vessel relative to the growth furnace.
断面積が小さい種結晶部と、これに続く徐々に断面積が増大する断面積増大部と、これに続く断面積が大きくほぼ一定の成長結晶部とを有する容器を用いて、該容器に原料融液を収納し、温度勾配を設けた成長炉内で該容器の底部に予め配置した種結晶より結晶成長を開始して、徐々に上方に結晶化を進行させて、ついには原料融液全体を結晶化させる化合物半導体単結晶の製造方法において、
多結晶原料を融解し、種付けを完了した後、炉内温度を降温することで、種付け完了後の種結晶部から成長結晶部の長手方向全体の長さの1/4以下のある時点まで単結晶の育成を行い、
次いで、炉内温度の降下を停止して、上記容器を成長炉に対し相対的に移動させることで単結晶の育成を行うことを特徴とする化合物半導体単結晶の製造方法。
Using a container having a seed crystal part having a small cross-sectional area, a cross-sectional area increasing part having a gradually increasing cross-sectional area, and a growth crystal part having a large and substantially constant cross-sectional area following the seed crystal part, the raw material is added to the container. The melt is accommodated, and crystal growth is started from a seed crystal previously arranged at the bottom of the vessel in a growth furnace provided with a temperature gradient, and crystallization is gradually advanced upward. In the method for producing a compound semiconductor single crystal for crystallizing
After the polycrystalline raw material is melted and seeding is completed, the temperature in the furnace is lowered to allow a single point from the seed crystal part after completion of seeding to a certain point equal to or less than 1/4 of the entire length in the longitudinal direction of the grown crystal part. Grow crystals,
Next, a method for producing a compound semiconductor single crystal, characterized in that the decrease in the furnace temperature is stopped and the single crystal is grown by moving the vessel relative to the growth furnace.
請求項1又は2記載の化合物半導体単結晶の製造方法において、
多結晶原料を融解し、種付けを完了した後、炉内温度を降温することで、種付け完了後の種結晶部から単結晶を育成し、炉内温度の降下を停止した時点の原料融液の平均温度を、融点に対して5℃高い温度より低くすることを特徴とする化合物半導体単結晶の製造方法。
The method for producing a compound semiconductor single crystal according to claim 1 or 2,
After melting the polycrystalline raw material and completing the seeding, the temperature in the furnace is lowered to grow a single crystal from the seed crystal portion after the completion of the seeding, and the raw material melt at the time when the decrease in the furnace temperature is stopped. A method for producing a compound semiconductor single crystal, wherein the average temperature is lower than a temperature higher by 5 ° C. than a melting point.
JP2003074679A 2003-03-19 2003-03-19 Method for manufacturing compound semiconductor single crystal Withdrawn JP2004277266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074679A JP2004277266A (en) 2003-03-19 2003-03-19 Method for manufacturing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074679A JP2004277266A (en) 2003-03-19 2003-03-19 Method for manufacturing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JP2004277266A true JP2004277266A (en) 2004-10-07

Family

ID=33290204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074679A Withdrawn JP2004277266A (en) 2003-03-19 2003-03-19 Method for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2004277266A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100927A1 (en) * 2005-03-23 2006-09-28 Sumitomo Electric Industries, Ltd. Crystal growing crucible
US20110143091A1 (en) * 2009-12-13 2011-06-16 Axt, Inc. Germanium ingots/wafers having low micro-pit density (mpd) as well as systems and methods for manufacturing same
US8231727B2 (en) 2008-04-07 2012-07-31 Axt, Inc. Crystal growth apparatus and method
EP2501844A1 (en) * 2009-10-08 2012-09-26 Axt, Inc. Crystal growth apparatus and method
WO2024053095A1 (en) * 2022-09-09 2024-03-14 京セラ株式会社 Control device and production system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100927A1 (en) * 2005-03-23 2006-09-28 Sumitomo Electric Industries, Ltd. Crystal growing crucible
US7473317B2 (en) 2005-03-23 2009-01-06 Sumitomo Electric Industries, Ltd. Crystal growth crucible
US8231727B2 (en) 2008-04-07 2012-07-31 Axt, Inc. Crystal growth apparatus and method
US20120282133A1 (en) * 2008-04-07 2012-11-08 AXT. Inc. Crystal growth apparatus and method
EP2501844A1 (en) * 2009-10-08 2012-09-26 Axt, Inc. Crystal growth apparatus and method
JP2013507313A (en) * 2009-10-08 2013-03-04 エーエックスティー,インコーポレーテッド Crystal growth apparatus and crystal growth method
EP2501844A4 (en) * 2009-10-08 2013-08-07 Axt Inc Crystal growth apparatus and method
US20110143091A1 (en) * 2009-12-13 2011-06-16 Axt, Inc. Germanium ingots/wafers having low micro-pit density (mpd) as well as systems and methods for manufacturing same
EP2510138A2 (en) * 2009-12-13 2012-10-17 Axt, Inc. Germanium ingots/wafers having low micro-pit density (mpd) as well as systems and methods for manufacturing same
US8647433B2 (en) * 2009-12-13 2014-02-11 Axt, Inc. Germanium ingots/wafers having low micro-pit density (MPD) as well as systems and methods for manufacturing same
EP2510138A4 (en) * 2009-12-13 2014-09-03 Axt Inc Germanium ingots/wafers having low micro-pit density (mpd) as well as systems and methods for manufacturing same
WO2024053095A1 (en) * 2022-09-09 2024-03-14 京セラ株式会社 Control device and production system

Similar Documents

Publication Publication Date Title
US7314518B2 (en) Furnace for growing compound semiconductor single crystal and method of growing the same by using the furnace
JPWO2007063637A1 (en) Method for producing semiconductor bulk polycrystal
JP4830312B2 (en) Compound semiconductor single crystal and manufacturing method thereof
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP3806791B2 (en) Method for producing compound semiconductor single crystal
JP2008260641A (en) Method of manufacturing aluminum oxide single crystal
JP2008120614A (en) Compound semiconductor single crystal substrate and method for producing the same
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JP3648703B2 (en) Method for producing compound semiconductor single crystal
JP4292300B2 (en) Method for producing semiconductor bulk crystal
JP4344021B2 (en) Method for producing InP single crystal
JP2006188403A (en) Compound semiconductor single crystal and its manufacturing method and apparatus
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
KR101267981B1 (en) Apparatus of growing for single crystal
JP2814796B2 (en) Method and apparatus for producing single crystal
JP4529712B2 (en) Method for producing compound semiconductor single crystal
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP4576571B2 (en) Method for producing solid solution
JP2004345888A (en) Production method for compound semiconductor single crystal
JPH09249479A (en) Method for growing compound semiconductor single crystal
JP2004277267A (en) Apparatus for manufacturing compound semiconductor single crystal
JPH10212192A (en) Method for growing bulk crystal
JP2004161559A (en) Apparatus for manufacturing compound semiconductor
JP2004026577A (en) Apparatus for growing compound semiconductor single crystal and method of growing compound semiconductor single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606