JP2004161559A - Apparatus for manufacturing compound semiconductor - Google Patents

Apparatus for manufacturing compound semiconductor Download PDF

Info

Publication number
JP2004161559A
JP2004161559A JP2002330819A JP2002330819A JP2004161559A JP 2004161559 A JP2004161559 A JP 2004161559A JP 2002330819 A JP2002330819 A JP 2002330819A JP 2002330819 A JP2002330819 A JP 2002330819A JP 2004161559 A JP2004161559 A JP 2004161559A
Authority
JP
Japan
Prior art keywords
crystal
compound semiconductor
growth vessel
growth
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002330819A
Other languages
Japanese (ja)
Inventor
Takeshi Nakazawa
健 中澤
Michinori Wachi
三千則 和地
Shunsuke Yamamoto
俊輔 山本
Seiji Mizuniwa
清治 水庭
Masaya Itani
賢哉 井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002330819A priority Critical patent/JP2004161559A/en
Publication of JP2004161559A publication Critical patent/JP2004161559A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a growth vessel supporting structure with which heat flow control to make solid-liquid boundary to a shape of a convex on a liquid phase side is possible in an apparatus for manufacturing a compound semiconductor. <P>SOLUTION: The apparatus for manufacturing the compound semiconductor by a vertical type growth method grows a single crystal by supporting the crystal growth vessel having a seed crystal housing section 3a, an increased diameter section 3b and a crystal growth section 3c disposed in a vertical type inside heaters 5 and 6 with the increased diameter section of its lower part supported with a support 1 and by solidifying a semiconductor melt gradually from the lower side toward the upper side in the crystal growth vessel. The support 1 for supporting the increased diameter section 3b of the growth vessel 3 is a tubular and consists of a structure having a space 1a under the lower side of the growth vessel. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体融液を結晶成長容器内で下方から上方に向けて徐々に固化させて単結晶を成長する縦型成長法による化合物半導体結晶の製造装置、特にその成長容器の支持構造に係り、結晶成長時の固液界面を凸面化することで再現性良く、高収率で単結晶を得ることを目的とする結晶成長装置に関するものである。
【0002】
【従来の技術】
半導体原料融液を容器(ルツボ)内に収納し、容器の底部に予め配置した種結晶より徐々に上方に固化させることにより単結晶を成長する縦型成長法、すなわち垂直ブリッジマン法(VB法)や垂直温度勾配凝固法(VGF法)等では、比較的大口径で、且つ結晶中の転位密度の低い単結晶が作製できるという特長があることから、半導体単結晶の製造、特にIII−V族化合物半導体結晶の成長法として重要な技術となっている。
【0003】
垂直ブリッジマン法(VB法)も垂直温度勾配凝固法(VGF法)等も、半導体原料融液を容器(ルツボ)内に収納し、容器の底部に予め配置した種結晶より結晶成長を開始して、徐々に上方に固化させことにより結晶化を進行せしめ、ついには原料融液全体を結晶化させるという点で共通する。ただし、垂直ブリッジマン法(VB法)では成長容器を相対的に降下させて成長させるのに対し、垂直温度勾配凝固法(VGF法)では温度降下のみで成長させる点で、両者に違いがある。いずれも液体封止引上法(LEC法)に比べて小さな温度勾配(緩い温度勾配)の下で結晶を成長させることができるので、転位等の結晶欠陥の少ない化合物半導体単結晶を得ることができる。
【0004】
上記縦型成長法のVB法やVGF法等では、成長容器の下部に種結晶を入れ、その上に化合物半導体多結晶を配置し、垂直方向に温度勾配を設けることのできる炉内に入れ、種結晶より上方に向けて結晶を成長させることによって単結晶を製造するもので、結晶欠陥の少ない直径76mmを超える大径の結晶成長を容易に行えることを特長としている。
【0005】
図3に従来の結晶成長装置の概略を示す。成長装置は、種結晶7とGaAs原料8と液体封止剤4を収容する筒状の成長容器3とこれらを支持する支持体1と、所定の温度勾配を作ることのできる加熱装置たるヒータ(発熱体)5〜6と、成長につれて垂直下方向に移動可能な下軸2から構成される。
【0006】
従来例として、垂直ブリッジマン法(VB法)によりIII−V族化合物半導体の一種である砒化ガリウム(GaAs)の単結晶を成長する例を、図3に示したVB炉について説明する。
【0007】
結晶成長容器3は、断面積が小さい種結晶収容部3aと、これに続く徐々に断面積が増大する増径部3bと、これに続く断面積が大きくほぼ一定の結晶育成部3cとを有するPBN製の容器である。
【0008】
まず、PBN製容器に底部に在る種結晶収容部3aにGaAsの種結晶7を挿入し、GaAs多結晶原料と液体封止剤4として三酸化硼素(B)を投入する。この結晶成長容器3を支持体1及び下軸2で支えて圧力容器内に装填し、圧力容器内を不活性ガスで置換、加圧し、ヒータ5、6に給電し、GaAs多結晶原料及びBを溶融してGaAs融液層及びB液体封止剤融液層とし、種付けを行う。次いで、種付け部近傍に例えば5℃/cmの温度勾配を設定して、結晶成長容器3を5mm/hrの速度で降下させる垂直ブリッジマン法で結晶成長を行う。
【0009】
ところで、垂直ブリッジマン法で、再現性よく単結晶を得るためのポイントは、融液と結晶部の界面(以下「固液界面」)の形状制御であり、固液界面を融液側に凸形状に制御するという固液界面の形状制御のポイントが、結晶成長過程での熱流の制御であることも一般的に知られている。このため、成長容器(ルツボ)とヒータとの間に、成長容器の外周を取り囲む熱シールド部材を配置するなどの提案がなされている(例えば、特許文献1参照)。
【0010】
【特許文献1】
特開平5−24964号公報
【0011】
【発明が解決しようとする課題】
しかしながら、従来技術には次のような課題がある。
【0012】
図2(B)に、図3で説明した従来型結晶成長装置の固液界面形状と熱流の概略を示す。成長容器3の荷重を支持するため、成長容器テーパー部(増径部3b)の全面が支持体1で覆われている。このため結晶固化で生じる潜熱の大部分は、放熱の容易な結晶側面から逃げることになり、トータルの熱流の方向は矢印Aの方向に示すように外側になる。この結果、固液界面は固相側に凸形状になり、成長するにつれて転位が結晶内部に集積し、多結晶化する問題がある。
【0013】
一方、上記特許文献1のように成長容器の外周を取り囲む熱シールド部材を配置する方法では、付加的な部材を必要とする上、ヒータからの熱伝達を妨げる恐れがある。
【0014】
そこで、本発明の目的は、上記課題を解決し、化合物半導体の製造装置において、固液界面を液相側に凸形状とするような熱流制御が可能な成長容器支持構造を提供し、成長途中で転位が内部に集積し多結晶化するのを防止し単結晶の製造歩留りを向上させることにある。
【0015】
【課題を解決するための手段】
上記目的を達成するため、本発明は、次のように構成したものである。
【0016】
請求項1の発明に係る化合物半導体製造装置は、種結晶収容部と、これに続く徐々に断面積が増大する増径部と、これに続く断面積が大きくほぼ一定の結晶育成部とを有する結晶成長容器を、その下部の増径部を支持体により支持して加熱装置内に縦型に配置し、半導体融液を結晶成長容器内で下方から上方に向けて徐々に固化させて単結晶を成長する縦型成長法による化合物半導体結晶の製造装置において、上記成長容器の増径部を支持する支持体が管状で、成長容器下側に空間を有することを特徴とする。
【0017】
請求項2の発明は、請求項1記載の化合物半導体製造装置において、上記成長容器の増径部を支持する支持体が、上方に開放された管状体から成り、上記増径部における結晶育成部との境界付近を支持することを特徴とする。
【0018】
請求項3の発明は、請求項1又は2記載の化合物半導体製造装置において、上記成長容器の増径部を支持する支持体が、上下方向に移動可能な下軸の上に設けられた中空の円筒状部材から成ることを特徴とする。
【0019】
<発明の要点>
本発明は、VB法あるいはVGF法による結晶成長装置において、支持体の形状を管状として成長容器下側に空間を有する構造としたものである。
【0020】
成長容器のテーパー部(増径部3b)は、その一部が管状の支持体1の先端で覆われているだけであるので、結晶固化で生じる潜熱の大部分は、従来のテーパー部(増径部3b)を支持体で覆った場合のように放熱の容易な結晶側面から逃げる(図2(B)の矢印A参照)ということがなくなり、トータルの熱流の方向は、真っ直ぐ下方に向くようになる(図2(A)の矢印A参照)。この結果、固液界面は融液側に凸形状または平坦なものになる。
【0021】
【発明の実施の形態】
以下、本発明を図示の実施形態に基づいて説明する。
【0022】
図1に本発明の実施形態に係る化合物半導体結晶成長装置の概略を示す。従来の結晶成長装置と同様に、この成長装置は、種結晶7とGaAs原料8と封止剤4を収容する筒状の結晶成長容器3と、これらを支持する支持体1と、所定の温度勾配を作ることのできる加熱装置たるヒータ(発熱体)5〜6と、成長につれて垂直下方向に移動可能で、上部に上記支持体1を取り付けた下軸2から構成される。結晶成長容器3はPBN製であり、容器底部に設けられた断面積が小さい種結晶収容部3aと、これに続く徐々に上方に断面積が増大する増径部3bと、これに続く断面積が大きくほぼ一定の径を有する結晶育成部3cとを有する。
【0023】
上記成長容器の増径部3bを支持する支持体1は、上方に開放された管状部材から成り、上記増径部における結晶育成部との境界付近を支持する構造となっている。従って、この管状の支持体1により、成長容器下側、正確には増径部3bのテーパー部には、空間1aが存在する。
【0024】
このように支持体1を管状として成長容器3の下側に空間1aを設けた構造にすると、結晶下方への放熱が容易になり、図2(A)に示すように、結晶固化で生じる潜熱のうち結晶側面から逃げる熱が相対的に減少する。結果としてトータルの熱流は、図2(A)に矢印Aで示すように真っ直ぐ下方へ向かい、固液界面形状Bは凸面状になる。
【0025】
すなわち、結晶固化時に生じた潜熱は、成長容器下側に接触する物体がない場合、その放熱の大部分を伝導ではなく輻射によることになる。このため熱流は下方に向かい、固液界面形状は凸面状になる。
【0026】
【実施例】
本発明の実施例についてGaAs結晶成長装置を例として説明する。
【0027】
図1に示すように、成長容器3の中に種結晶7とGaAs原料8を11キログラムと封止剤4を600グラム入れる。原料の入った成長容器3を、支持体1を介して下軸2の上にのせる。発熱体5〜6は所定の温度勾配を形成し、原料を収容した成長容器3および支持体1をのせた下軸2を1〜3mm/時の速度で下降させることにより結晶成長を行った。
【0028】
上記の方法によって成長した結晶の固液界面形状を確認したところ、図2(A)に示すように触液側に凸形状になった。また、この方法により、直径4インチ、長さ150mmの単結晶となった。
【0029】
同様の方法で50回の結晶成長を実施したところ、単結晶成長の製造歩留りは70%以上であった。この数値は、従来技術での単結晶製造歩留り50%に比較して大幅に向上している。
【0030】
上述した実施例では、GaAs単結晶の製造装置について記述したが、本発明はInP、GaP等、VB法やVGF法で結晶成長を行う化合物半導体結晶の成長装置のすべてに適用することができ、上記と同様の固液界面制御の作用効果を得ることができる。
【0031】
また上記実施例では、上方が開放された管状部材の頂部により成長容器の増径部を支持する構造としたが、本発明はこれに限定されない。すなわち、成長容器の増径部を支持する支持体が、上方に開放された管状体から成り、その途中に、上記増径部における結晶育成部との境界付近を支持する段差部を有する構成(図2(A)参照)とすることもできる。
【0032】
本発明による装置で得られる化合物半導体単結晶は、従来装置よりも単結晶製造歩留りが高いだけでなく、従来装置で得られた化合物半導体単結晶の比べ転位の集積部が少ない傾向にある。よって本発明で得られる化合物半導体ウェハは、これを用いて素子を形成した場合、転位に基づく素子歩留りの低下を防止することができ、工業生産における経済効果は多大である。
【0033】
【発明の効果】
以上述べたように、本発明によれば、VB法あるいはVGF法といった縦型成長法による結晶成長装置において、支持体を管状として成長容器下側に空間を設けた構造としたので、空間がない場合に較べ、熱流が下方へ向かうようになり、これにより固液界面形状は液相側すなわち上方へ凸形状になる。この結果、成長するにつれて転位が結晶内部に集積することが防止され、多結晶化することなく製造歩留りが向上するという効果がある。また、従来より存在する支持体の構造を変えるという簡易、且つ局所的な手段によって、結晶成長時の固液界面を液相側へ凸面化させることができ、これにより再現性良く、高収率で単結晶を得ることができる。
【図面の簡単な説明】
【図1】本発明による化合物半導体製造装置の構成を示す断面図である。
【図2】成長を行った結晶の熱流、固液界面形状を示すもので、(B)は、従来装置にて成長を行った結晶の熱流、固液界面形状を示す断面図、(A)は本発明の装置にて成長を行った結晶の熱流、固液界面形状を示す断面図である。
【図3】従来の縦型成長法による化合物半導体製造装置の構成を示す断面図である。
【符号の説明】
1 支持体
1a 空間
2 下軸
3 結晶成長容器
3a 種結晶収容部
3b 増径部
3c 結晶育成部
4 液体封止剤
5、6 ヒータ
7 種結晶
8 GaAs原料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for manufacturing a compound semiconductor crystal by a vertical growth method in which a semiconductor melt is gradually solidified from below in a crystal growth vessel upward to grow a single crystal, and particularly to a support structure of the growth vessel. The present invention relates to a crystal growth apparatus for obtaining a single crystal with high reproducibility and high yield by making a solid-liquid interface convex during crystal growth.
[0002]
[Prior art]
A vertical growth method in which a semiconductor raw material melt is housed in a container (crucible) and solidified gradually above a seed crystal previously arranged at the bottom of the container to grow a single crystal, that is, a vertical Bridgman method (VB method) ) And the vertical temperature gradient solidification method (VGF method) have the advantage that a single crystal having a relatively large diameter and a low dislocation density in the crystal can be produced. It is an important technique as a method for growing a group III compound semiconductor crystal.
[0003]
In both the vertical Bridgman method (VB method) and the vertical temperature gradient solidification method (VGF method), a semiconductor raw material melt is stored in a container (crucible), and crystal growth is started from a seed crystal previously arranged at the bottom of the container. This is common in that the crystallization is advanced by gradually solidifying the material upward, and finally the entire raw material melt is crystallized. However, the vertical Bridgman method (VB method) grows by relatively lowering the growth vessel, whereas the vertical temperature gradient solidification method (VGF method) grows only by the temperature drop. . In any case, since the crystal can be grown under a small temperature gradient (a gentle temperature gradient) as compared with the liquid sealing pulling method (LEC method), a compound semiconductor single crystal having few crystal defects such as dislocations can be obtained. it can.
[0004]
In the vertical growth method such as the VB method or the VGF method, a seed crystal is placed in a lower portion of a growth vessel, and a compound semiconductor polycrystal is placed thereon, and placed in a furnace capable of providing a temperature gradient in a vertical direction, A single crystal is manufactured by growing a crystal upward from a seed crystal, and is characterized in that a crystal having a large diameter exceeding 76 mm and having few crystal defects can be easily grown.
[0005]
FIG. 3 schematically shows a conventional crystal growth apparatus. The growth apparatus includes a cylindrical growth vessel 3 containing a seed crystal 7, a GaAs raw material 8, and a liquid sealant 4, a support 1 supporting the same, and a heater (heater) capable of forming a predetermined temperature gradient. (Heating elements) 5 to 6 and a lower shaft 2 which can move vertically downward as it grows.
[0006]
As a conventional example, an example in which a single crystal of gallium arsenide (GaAs), which is a kind of III-V compound semiconductor, is grown by a vertical Bridgman method (VB method) will be described for the VB furnace shown in FIG.
[0007]
The crystal growth vessel 3 has a seed crystal accommodating portion 3a having a small cross-sectional area, a diameter-increasing portion 3b having a gradually increasing cross-sectional area, and a crystal growing portion 3c having a large cross-sectional area and a substantially constant subsequent size. It is a container made of PBN.
[0008]
First, a GaAs seed crystal 7 is inserted into a seed crystal accommodating portion 3a at the bottom of a PBN container, and GaAs polycrystalline material and boron trioxide (B 2 O 3 ) as a liquid sealant 4 are charged. The crystal growth vessel 3 is supported by the support 1 and the lower shaft 2 and loaded into a pressure vessel. The inside of the pressure vessel is replaced with an inert gas, pressurized, and power is supplied to the heaters 5 and 6 so that the GaAs polycrystalline raw material and B 2 O 3 is melted into a GaAs melt layer and a B 2 O 3 liquid sealant melt layer, and seeding is performed. Next, a temperature gradient of, for example, 5 ° C./cm is set near the seeding portion, and crystal growth is performed by the vertical Bridgman method in which the crystal growth vessel 3 is lowered at a speed of 5 mm / hr.
[0009]
The point of obtaining a single crystal with good reproducibility by the vertical Bridgman method is to control the shape of the interface between the melt and the crystal part (hereinafter, “solid-liquid interface”), and the solid-liquid interface is convex toward the melt. It is generally known that the point of controlling the shape of the solid-liquid interface to control the shape is the control of the heat flow during the crystal growth process. For this reason, it has been proposed to arrange a heat shield member surrounding the outer periphery of the growth vessel between the growth vessel (crucible) and the heater (for example, see Patent Document 1).
[0010]
[Patent Document 1]
JP-A-5-24964
[Problems to be solved by the invention]
However, the prior art has the following problems.
[0012]
FIG. 2B schematically shows the solid-liquid interface shape and the heat flow of the conventional crystal growth apparatus described with reference to FIG. In order to support the load of the growth vessel 3, the entire surface of the growth vessel taper portion (the diameter increasing portion 3 b) is covered with the support 1. For this reason, most of the latent heat generated by crystallization solidification escapes from the crystal side surface where heat can be easily dissipated, and the direction of the total heat flow is outward as shown by the arrow A. As a result, the solid-liquid interface has a convex shape toward the solid phase, and dislocations accumulate inside the crystal as it grows, which causes a problem of polycrystallization.
[0013]
On the other hand, the method of arranging a heat shield member surrounding the outer periphery of the growth vessel as in Patent Document 1 requires an additional member and may hinder heat transfer from the heater.
[0014]
Therefore, an object of the present invention is to solve the above problems and provide a growth container supporting structure capable of controlling a heat flow such that a solid-liquid interface is convex toward the liquid phase side in a compound semiconductor manufacturing apparatus. Therefore, dislocations are prevented from accumulating inside and polycrystallizing, and the production yield of single crystals is improved.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
[0016]
The compound semiconductor manufacturing apparatus according to the first aspect of the present invention has a seed crystal housing part, a diameter increasing part that has a gradually increasing cross-sectional area following the seed crystal housing part, and a crystal growth part that has a large and substantially constant cross-sectional area that follows. The crystal growth vessel is vertically arranged in the heating device with the lower diameter increasing portion supported by a support, and the semiconductor melt is gradually solidified from below to above in the crystal growth vessel to form a single crystal. In the apparatus for producing a compound semiconductor crystal by the vertical growth method, the support for supporting the increased diameter portion of the growth vessel is tubular, and has a space below the growth vessel.
[0017]
According to a second aspect of the present invention, in the compound semiconductor manufacturing apparatus according to the first aspect, the support for supporting the increased diameter portion of the growth vessel is formed of a tubular body that is opened upward, and the crystal growing section in the increased diameter portion. It is characterized by supporting near the boundary with.
[0018]
According to a third aspect of the present invention, in the compound semiconductor manufacturing apparatus according to the first or second aspect, the support for supporting the diameter-increasing portion of the growth container is a hollow member provided on a vertically movable lower shaft. It is characterized by comprising a cylindrical member.
[0019]
<The gist of the invention>
According to the present invention, in a crystal growth apparatus based on the VB method or the VGF method, the support has a tubular shape and a structure having a space below the growth vessel.
[0020]
Since only a part of the tapered portion (increased diameter portion 3b) of the growth vessel is covered by the tip of the tubular support 1, most of the latent heat generated by crystal solidification is reduced by the conventional tapered portion (increased diameter portion 3b). As in the case where the diameter portion 3b) is covered with the support, the crystal portion does not escape from the crystal side surface where heat can be easily dissipated (see the arrow A in FIG. 2B), and the direction of the total heat flow is directed straight downward. (See arrow A in FIG. 2A). As a result, the solid-liquid interface becomes convex or flat on the melt side.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiments.
[0022]
FIG. 1 schematically shows a compound semiconductor crystal growth apparatus according to an embodiment of the present invention. As with the conventional crystal growth apparatus, this growth apparatus includes a cylindrical crystal growth vessel 3 containing a seed crystal 7, a GaAs raw material 8, and a sealant 4, a support 1 supporting these, and a predetermined temperature. It is composed of heaters (heating elements) 5 to 6 as heating devices capable of forming a gradient, and a lower shaft 2 which can move vertically downward as it grows and has the support 1 attached to the upper part. The crystal growth vessel 3 is made of PBN, and has a seed crystal accommodating section 3a provided at the bottom of the vessel and having a small cross-sectional area, a diameter increasing section 3b having a gradually increasing cross-sectional area, and a subsequent cross-sectional area. And a crystal growing portion 3c having a substantially constant diameter.
[0023]
The support 1 that supports the increased diameter portion 3b of the growth vessel is formed of a tubular member that is open upward, and has a structure that supports the vicinity of the boundary between the increased diameter portion and the crystal growing portion. Therefore, due to this tubular support 1, a space 1a exists on the lower side of the growth vessel, more precisely, on the tapered portion of the diameter-increased portion 3b.
[0024]
When the support 1 is formed in a tubular shape and the space 1a is provided below the growth vessel 3 as described above, heat can be easily dissipated below the crystal, and as shown in FIG. Among them, the heat that escapes from the crystal side surface is relatively reduced. As a result, the total heat flow goes straight downward as shown by the arrow A in FIG. 2A, and the solid-liquid interface shape B becomes convex.
[0025]
In other words, the latent heat generated during the solidification of the crystal, when there is no object in contact with the lower side of the growth vessel, radiates most of the heat radiation instead of conduction. Therefore, the heat flow is directed downward, and the shape of the solid-liquid interface becomes convex.
[0026]
【Example】
Embodiments of the present invention will be described using a GaAs crystal growth apparatus as an example.
[0027]
As shown in FIG. 1, 11 kg of a seed crystal 7, 11 kg of a GaAs raw material 8 and 600 g of a sealant 4 are put in a growth vessel 3. The growth vessel 3 containing the raw material is placed on the lower shaft 2 via the support 1. The heating elements 5 to 6 formed a predetermined temperature gradient, and the growth was performed by lowering the growth vessel 3 containing the raw material and the lower shaft 2 on which the support 1 was placed at a speed of 1 to 3 mm / hour.
[0028]
When the solid-liquid interface shape of the crystal grown by the above method was confirmed, it became convex toward the contact liquid side as shown in FIG. In addition, a single crystal having a diameter of 4 inches and a length of 150 mm was obtained by this method.
[0029]
When crystal growth was performed 50 times by the same method, the production yield of single crystal growth was 70% or more. This value is significantly improved as compared with the single crystal production yield of 50% in the prior art.
[0030]
In the above-described embodiment, a GaAs single crystal manufacturing apparatus has been described. However, the present invention can be applied to all apparatus for growing compound semiconductor crystals, such as InP and GaP, which perform crystal growth by the VB method or the VGF method. The same effect of controlling the solid-liquid interface as described above can be obtained.
[0031]
In the above embodiment, the diameter of the growth vessel is supported by the top of the tubular member whose top is open. However, the present invention is not limited to this. That is, the support for supporting the diameter-increased portion of the growth vessel is formed of a tubular body that is opened upward, and has a step portion that supports the vicinity of the boundary between the diameter-increased portion and the crystal growth portion in the middle thereof ( (See FIG. 2A).
[0032]
The compound semiconductor single crystal obtained by the device according to the present invention not only has a higher single crystal production yield than the conventional device, but also tends to have fewer dislocation accumulation parts than the compound semiconductor single crystal obtained by the conventional device. Therefore, when a compound semiconductor wafer obtained by the present invention is used to form a device, it is possible to prevent a reduction in the device yield due to dislocation, and the economic effect in industrial production is great.
[0033]
【The invention's effect】
As described above, according to the present invention, in the crystal growth apparatus using the vertical growth method such as the VB method or the VGF method, the support is tubular and the space is provided below the growth vessel, so there is no space. As compared with the case, the heat flow is directed downward, whereby the solid-liquid interface shape becomes convex on the liquid side, that is, upward. As a result, dislocations are prevented from accumulating inside the crystal as the crystal grows, and the production yield is improved without polycrystallization. In addition, the solid-liquid interface during crystal growth can be made convex toward the liquid phase by a simple and local means of changing the structure of a conventional support, thereby providing good reproducibility and high yield. Thus, a single crystal can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a configuration of a compound semiconductor manufacturing apparatus according to the present invention.
FIG. 2 shows a heat flow and a solid-liquid interface shape of a grown crystal. FIG. 2 (B) is a cross-sectional view showing a heat flow and a solid-liquid interface shape of a crystal grown by a conventional apparatus. FIG. 3 is a cross-sectional view showing a heat flow and a solid-liquid interface shape of a crystal grown by the apparatus of the present invention.
FIG. 3 is a cross-sectional view illustrating a configuration of a conventional compound semiconductor manufacturing apparatus using a vertical growth method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Support 1a Space 2 Lower axis 3 Crystal growth container 3a Seed crystal accommodating part 3b Diameter increasing part 3c Crystal growing part 4 Liquid sealant 5, 6 Heater 7 seed crystal 8 GaAs raw material

Claims (3)

種結晶収容部と、これに続く徐々に断面積が増大する増径部と、これに続く断面積が大きくほぼ一定の結晶育成部とを有する結晶成長容器を、その下部の増径部を支持体により支持して加熱装置内に縦型に配置し、半導体融液を結晶成長容器内で下方から上方に向けて徐々に固化させて単結晶を成長する縦型成長法による化合物半導体結晶の製造装置において、
上記成長容器の増径部を支持する支持体が管状で、成長容器下側に空間を有することを特徴とする化合物半導体製造装置。
Supports a crystal growth vessel that has a seed crystal housing part, a diameter increasing part that has a gradually increasing cross-sectional area following it, and a crystal growth part that has a large and substantially constant cross-sectional area following it. Production of compound semiconductor crystal by vertical growth method in which a semiconductor melt is vertically arranged in a heating device while being supported by a body, and the semiconductor melt is gradually solidified from below in a crystal growth vessel to grow a single crystal. In the device,
An apparatus for manufacturing a compound semiconductor, wherein a support for supporting a diameter-increasing portion of the growth vessel is tubular and has a space below the growth vessel.
請求項1記載の化合物半導体製造装置において、
上記成長容器の増径部を支持する支持体が、上方に開放された管状体から成り、上記増径部における結晶育成部との境界付近を支持することを特徴とする化合物半導体製造装置。
The compound semiconductor manufacturing apparatus according to claim 1,
A compound semiconductor manufacturing apparatus, wherein a support for supporting the increased diameter portion of the growth vessel comprises a tubular body opened upward, and supports a vicinity of a boundary between the increased diameter portion and a crystal growing portion.
請求項1又は2記載の化合物半導体製造装置において、
上記成長容器の増径部を支持する支持体が、上下方向に移動可能な下軸の上に設けられた中空の円筒状部材から成ることを特徴とする化合物半導体製造装置。
The compound semiconductor manufacturing apparatus according to claim 1 or 2,
A compound semiconductor manufacturing apparatus, wherein a support for supporting the diameter-increased portion of the growth vessel comprises a hollow cylindrical member provided on a vertically movable lower shaft.
JP2002330819A 2002-11-14 2002-11-14 Apparatus for manufacturing compound semiconductor Withdrawn JP2004161559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002330819A JP2004161559A (en) 2002-11-14 2002-11-14 Apparatus for manufacturing compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002330819A JP2004161559A (en) 2002-11-14 2002-11-14 Apparatus for manufacturing compound semiconductor

Publications (1)

Publication Number Publication Date
JP2004161559A true JP2004161559A (en) 2004-06-10

Family

ID=32808404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330819A Withdrawn JP2004161559A (en) 2002-11-14 2002-11-14 Apparatus for manufacturing compound semiconductor

Country Status (1)

Country Link
JP (1) JP2004161559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240895A (en) * 2011-05-23 2012-12-10 Fuji Electric Co Ltd Method and apparatus for growing single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240895A (en) * 2011-05-23 2012-12-10 Fuji Electric Co Ltd Method and apparatus for growing single crystal

Similar Documents

Publication Publication Date Title
US20120282133A1 (en) Crystal growth apparatus and method
JP5464429B2 (en) Method for growing single crystal silicon having a square cross section
JP2004161559A (en) Apparatus for manufacturing compound semiconductor
JP2690419B2 (en) Single crystal growing method and apparatus
WO2011043777A1 (en) Crystal growth apparatus and method
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP3216298B2 (en) Vertical container for compound semiconductor crystal growth
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JPH11302094A (en) Production of compound semiconductor single crystal
JP4549111B2 (en) GaAs polycrystal production furnace
JP2758038B2 (en) Single crystal manufacturing equipment
JPH03193689A (en) Production of compound semiconductor crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP2003226594A (en) Method of growing semiconductor crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JP2004277267A (en) Apparatus for manufacturing compound semiconductor single crystal
JP2004250297A (en) Method for manufacturing compound semiconductor single crystal
JP2004026577A (en) Apparatus for growing compound semiconductor single crystal and method of growing compound semiconductor single crystal
JP2004244235A (en) Vessel for growing compound semiconductor single crystal and method for manufacturing compound semiconductor single crystal
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPH05178684A (en) Production of semiconductor single crystal
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal
JPH0559873B2 (en)
JPS60122791A (en) Pulling up method of crystal under liquid sealing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207