JP2004264076A - Service life diagnostic method for battery - Google Patents

Service life diagnostic method for battery Download PDF

Info

Publication number
JP2004264076A
JP2004264076A JP2003052527A JP2003052527A JP2004264076A JP 2004264076 A JP2004264076 A JP 2004264076A JP 2003052527 A JP2003052527 A JP 2003052527A JP 2003052527 A JP2003052527 A JP 2003052527A JP 2004264076 A JP2004264076 A JP 2004264076A
Authority
JP
Japan
Prior art keywords
battery
current
life
voltage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003052527A
Other languages
Japanese (ja)
Other versions
JP4445709B2 (en
Inventor
Takao Goto
隆雄 後藤
Masahiro Hamaogi
昌弘 濱荻
Yoshihide Takahashi
芳秀 高橋
Setsu Tanabe
節 田邉
Kuniyoshi Watanabe
邦芳 渡辺
Tamahiko Kanouda
玲彦 叶田
Minehiro Nemoto
峰弘 根本
Fumikazu Takahashi
史一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Computer Peripherals Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Computer Peripherals Co Ltd, Hitachi Ltd filed Critical Hitachi Computer Peripherals Co Ltd
Priority to JP2003052527A priority Critical patent/JP4445709B2/en
Publication of JP2004264076A publication Critical patent/JP2004264076A/en
Application granted granted Critical
Publication of JP4445709B2 publication Critical patent/JP4445709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly diagnose a service life of a battery. <P>SOLUTION: A service life diagnosing current I is impressed for a short time in the condition where a voltage of the battery 23 is a release voltage value and where no current flows, under the condition where a control circuit 27 is in a condition before the diagnosis, and the voltage value therein is detected using a voltage detecting circuit 26. The voltage value of the battery 23 due to the current impression is measured as a characteristic led up vertically from the release voltage value, led up gradually from a certain voltage value, and attenuated from a time point of current interruption, a voltage change value ΔV1 with respect to the release voltage is detected, and an impedance R (Ω) is calculated based on the voltage change value ΔV1 to judge the life of the battery. The battery life is properly diagnosed thereby in the time point when an influence of polarization due to the current impression increasing with the lapse of time is small, by impressing the life diagnosing current larger than a usual charging current value for the short time. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、無停電電源装置等における電池の寿命診断方法に係り、特にニッケル水素電池の残寿命を予め診断することができる電池の寿命診断方法に関する。
【0002】
【従来の技術】
近年のコンピュータシテムは、システム及びデータの大規模化に伴い、停電等が発生した際に所定時間電力供給を行い、この電力供給時間内にデータの退避を確保するための無停電電源装置が採用されている。この無停電電源装置は、商用電源をコンピュータシステムに供給する際に充電を行うニッケル水素電池等の電池部と、商用電源の停電や瞬電を検出する停電検出回路とを備え、前記停電検出回路が商用電源の停電/落雷による過電圧/他の機器による過電力によるブレーカダウン/他の機器からのノイズ/人為的なミスによる停電等を検出した際に、前記電池部からコンピュータシステムに所定時間電力を供給する様に構成されている。
【0003】
尚、前述の無停電装置に関する技術が記載された文献としては、例えば特開2001−166016号公報が挙げられる。
【0004】
【発明が解決しようとする課題】
この無停電装置に使用されるニッケル水素電池は、一般に充放電を繰り返すことによって充電を行っても出力電力が低下し、予め設定した容量以下、又はバックアップ時間が規定時間以下の状態になった場合に寿命と判断され、蓄電池の交換を行う必要がある。
【0005】
しかしながら前記電池の寿命診断は、保守員が無停電電源装置の容量又はバックアップ時間等を人手によって測定し、寿命が近いか否かを判断する必要があり、寿命診断が煩雑であると言う不具合があった。
【0006】
このニッケル水素電池の寿命の診断方法としては、例えば図4に示す如く、電池内部のインピーダンスが電池の劣化と共に上昇する特性があることを利用し、前記インピーダンスが所定値になったときを寿命と判断することが知られ、インピーダンスR(Ω)は次式で求められる。尚、図4に破線で示す範囲が使用限界であり、例えばインピーダンスが9Ωに達したときに寿命限界と診断される。
【0007】
【数1】
インピーダンスR(Ω)=電圧変化量ΔV/電流I
【0008】
このインピーダンス測定による寿命診断は、電池に電流を流した直後に電圧が急激に変化し、更に継続して電流を流すことによって分極と呼ばれる電池の化学的変化の影響によって時間的経過と共に電池電圧が上昇し、電流の供給を停止すると電池電圧が低下する特性をもっている。尚、分極とは、電流が原理上は単位時間あたりの物質の移動量を意味し、この電流を取り出すと一般的に電圧が▲1▼電極の電気抵抗によるオーミック成分、▲2▼反応物質が電極表面で電子の移動等するときに発生する抵抗(電荷移動抵抗)による損失、▲3▼電解液中の反応物質が電極へ補給され電子をやりとりした後再び電極表面から拡散移動するときの抵抗(物質移動抵抗)による損失の3種類の抵抗が生じることによって起こる現象である。
【0009】
この電池特性を図を用いて説明すると、図5に示す如く、所定の出力電圧値をもち、電流値が零の状態の診断前の状態において、電池の内部インピーダンスを測定するために電流Iを印可すると、診断中のエリアに示す如く、電流値Iは矩形状に変化する特性があるのに対し、上昇する電圧値は電流印加直後の電圧値ΔV1の上昇値から徐々に上昇して電圧値ΔVに達し、前記電流印加を停止することによって、診断後の如く、徐々に低下する様に変化する特性である。尚、前記立ち上がり時の電圧値変化量ΔV1は、新品に近い電池電池ほど低く、劣化が進行した電池ほど高くなる傾向にあることが知られている。
【0010】
インピーダンス測定による電池寿命の測定は、図5に示す如く、電流Iの印加直後から電池電圧が徐々に上昇するため、その測定時点によって電池電圧が変化し、計算によって求められるインピーダンスも変化し、正確な電池寿命の測定が困難であると言う不具合があった。
【0011】
本発明の目的は、前述の従来技術による不具合を除去することであり、電池寿命を高精度に診断することができる電池寿命診断方法を提供することである。
【0012】
【課題を解決するための手段】
前記目的を達成するために本発明は、所定の充電電流を印加することによって電力を充電する電池と、該電池に寿命診断電流を印可したときの電圧値変化量を基に電池インピーダンスを測定し、該電池インピーダンスから電池寿命を診断する電池の寿命診断方法において、前記寿命診断電流を0.1C〜2Cの電流値に設定し、該寿命診断電流の電池印加時間を1ミリ秒乃至1秒に設定し、前記寿命診断電流を電池に印可したときの電圧値変化量を基に電池インピーダンスを測定する工程を含むことを第1の特徴とする。
尚、本明細書で述べる寿命診断電流は、単位「C」で表すものとする。この単位「C」は、電流値をy [A]、電池定格容量をx [A・hour] ,充電時間をt [hour] としたとき、y=( x / t )[ A ]で表す単位であり、例えば、1時間で満充電可能な充電電流を「1C」とし、これを基準として、30分で満充電可能な充電電流を「2C」、2時間で満充電可能な充電電流を「0.5C」の如く表記する。
【0013】
また本発明は、所定の充電電流を印加することによって電力を充電する電池と、該電池に寿命診断電流を印可したときの電圧値変化量を基に電池インピーダンスを測定し、該電池インピーダンスから電池寿命を診断する電池の寿命診断方法であって、前記充電電流を電池に印可して充電を行う第1工程と、該充電電流の電池印可を停止し、電池の電圧値が電池の定格電圧値になるまで休止する第2工程と、前記寿命診断電流を0.1C〜2Cの電流値に設定し、該寿命診断電流の電池印加時間を1ミリ秒乃至1秒に設定し、前記寿命診断電流を電池に印可したときの電圧値変化量を基に電池インピーダンスを測定する第3工程とを含むことを第2の特徴とする。
【0014】
更に本発明は、前記何れかの特徴の電池の寿命診断方法において、前記寿命診断電流を電池に印可する前に、電圧検出回路に高精度基準電圧を印加し、また電流検出回路にも同様に基準電圧を印加することにより、各検出回路の検出ばらつきを低減する工程を含むことを第3の特徴とする。
【0015】
【発明実施の形態】
以下、本発明の一実施形態による電池寿命診断方法を図面を参照して詳細に説明する。図1は、本発明による電池寿命診断方法を適用した無停電電源装置の一実施形態を示す図、図2は、本発明による電池寿命診断方法の第1の実施形態を説明するための図、図3は、本発明による電池寿命診断方法の第2の実施形態を説明するための図である。
【0016】
図1は、本実施形態による電池寿命診断方法を適用した無停電電源装置20を含む電源供給システムの一例を示す図であり、本システムは、所定出力電源を供給するスイッチング電源装置10と、該スイッチング電源装置10からの電源を正常時においてはコンピュータシステム30に供給すると共に内部のニッケル水素電池23に充電を行い、停電時等においては前記電池23からの電源をコンピュータシステム30に所定時間供給する無停電電源装置20とから構成される。
【0017】
前記無停電電源装置20は、スイッチング電源装置10からの電源をライン1を介して入力し、制御回路27からの指示によってライン4を介して電池23に対して充電を行うと共に、ライン2及び3を介してコンピュータシステム30に電源を供給する充放電回路22と、前記ライン1に供給される電圧を検出する電圧検出回路21と、前記ライン4の電流値を検出する電流検出回路24と、前記電池23の電圧を検出する電圧検出回路26と、同様に電池の温度を検出する温度検出回路25と、スイッチング電源装置10からの装置負荷レベル信号/AC/DC動作状態信号/DC/DC状態動作信号並びに前記電池23の電圧及び温度を入力とし、電池23への充電/コンピュータシステム(負荷)への電源の供給を制御する制御回路27と、該制御回路27からの指示によってコンピュータシステムに対してライン8及び9を介する電源の供給/バックアップ電源異常信号31/給電停止信号32/電池交換指示信号33他の制御信号を供給するインタフェース回路28とを備える。また本実施形態によるニッケル水素電池23は、定格値が例えば、電圧33.6V、電流5.8A/hとし、充電時の電流値は0.6Aであるものとする。
【0018】
本実施形態による電池寿命診断方法は、前記制御回路27が予め設定されたプログラムによって診断するものであり、次に本診断方法を図2を参照して説明する。まず、本実施形態に寿命診断方法を実施する制御回路27は、診断前の状態においては、電池23の電圧が定格値が33.6V、且つ電流値が0Aの状態(電流を流していない状態)から、電流値6Aの電流Iを短時間印可し、このときの電圧値を電圧検出回路26を用いて検出する。
【0019】
この電流印加による電池23の電圧値は、図2に示す如く、開放電圧33.6Vから垂直に立ち上がり、ある電圧値から徐々に立ち上がり、電流遮断の時点から減衰するる特性として測定され、例えば立ち上がりピークの電圧値が40Vの場合、開放電圧との差がΔV1=40V−33.6V=6.4Vとして算出される。
【0020】
前記電流を印可する短時間とは、例えば5ミリ秒程度であり、電圧および電流変化を検出する回路の最小限界値、例えば1ミリ秒乃至許容できる誤差の最大値限界として1秒の範囲が好ましく、短時間なほど好ましい。
【0021】
本実施形態による寿命診断方法は、制御回路27が充放電回路22を用いて例えば6Aの電流を5ミリ秒印可し、このときの電圧変化量(電圧上昇値)ΔV1を検出し、この電圧上昇値ΔV1から電池23のインピーダンスを前述の式、インピーダンスR(Ω)=電圧変化ΔV/電流Iを用いて算出することによって、電池の寿命を判断することができる。即ち、本実施形態による寿命診断方法は、通常の充電電流値(0.6A)に比して10倍の寿命診断電流を、5ミリ秒程度の短時間印可することによって、電流印加による分極が時間経過と共に増大する影響が小さい時点で電圧値変化量を測定し、電池寿命を適正に診断することができる。尚、前記寿命診断電流は、充電電流に比して5〜15倍の電流値に設定することもでき、更に前記寿命診断電流の電池印加時間は1ミリ秒乃至1秒に設定することもできる。前記寿命診断電流を、充電電流に比して5〜15倍の電流値に設定する理由は、一般に充電電流は、コンピュータシステム等への本来の負荷に対する電力供給中の余剰電力を用いて充電を行うために低電流値に設定され、この充電電流の短時間の印加では前記電池の電圧値変化量が微小で検出困難なため大きく設定するものの、回路構成の負荷容量の限界の範囲を考慮し、設定した値である。
【0022】
また本実施形態による寿命診断方法は、前述の充放電回路22による短時間の電流印可に先だって電圧検出回路26および電流検出回路に高精度の基準電圧を印可し、検出及び周辺回路の温度特性等による特性のバラツキを除去するオフセット・キャンセラー機能を制御回路27に付加し、該制御回路27が前記オフセット・キャンセラー機能を実行した後に前述の電圧および電流検出を実行することにより、より正確な電池の電圧値および電流値、即ちインピーダンスを測定して電池寿命を診断することができる。
【0023】
また本実施形態による寿命診断方法は、電池23へ充電を行った後に前述の寿命診断を行うことができ、この場合に制御回路27は、図3に示す如く、電池23に電流0.6Åを印可して充電を行い(図2の充電中の期間)、この充電を停止してから所定時間だけ休止期間(電池電圧が充電中の時点Paから所定降下点Pbに達するまでの期間)を設け、この後に前述の短時間(5ミリ秒)だけ寿命診断用に高電流(6Å)を印可し、このときの電圧値変化量ΔV1を測定することによって、電池の寿命を診断することもできる。前記休止期間は、電池から検出した電圧値が電池の充電による分極の影響がなくなるまでの期間であり、予め設定した休止時間後に前記電池の寿命を診断すると言うこともできる。
【0024】
更に本実施形態による無停電電源装置20は、電池23の温度を検出する温度検出回路26を備え、制御回路27が前記温度検出回路25によって検出した電池温度をファクターとして前記検出した電圧値ΔV1から計算したインピーダンス値を補正し、この補正したインピーダンス値を基に電池寿命を診断することもできる。このンピーダンス値の補正とは、例えば検出したインピーダンス値が8Ωであっても駆動時の温度既定値が0°C〜40°Cに対して検出温度が45°Cと高温である場合は劣化が速く進むものと補正するものである。
【0025】
以上述べた如く本実施形態による電池寿命診断方法は、無停電電源装置20の制御回路27が、充電電流に比して高電流を短時間だけ電池23に印可し、このとき測定した電池23の開放電圧値から上昇した電圧値変化量ΔV1を測定することにより、電池の分極による影響を受けることなく、電池の寿命を正確に診断することができる。
【0026】
前記制御回路27は、診断の結果、電池23が寿命に達していると判断した場合、インタフェース回路28を介して電池交換信号33をコンピュータシステム30に発し、管理者に電池の交換を促すことができる。また制御回路27が、前記測定した電池のインピーダンス値を図示しないメモリに格納しておき、そのインピーダンス値をプロットし、その推移からインピーダンス変化グラフを作成し、将来にわたるグラフの予測値を算出することによって、電池寿命に達する時期を予想し、早い時点で管理者に警告する様にすることもできる。
【0027】
【発明の効果】
この様に本発明による電池の寿命診断方法は、前記寿命診断電流を0.1C〜2Cの電流値に設定し、該寿命診断電流の電池印加時間を1ミリ秒乃至1秒に設定し、前記寿命診断電流を電池に印可したときの電圧値変化量を基に電池インピーダンスを測定する工程を含むことによって、電池の分極による影響を受けることなく、電池の寿命を正確に診断することができる。
【0028】
また本発明による電池の寿命診断方法は、充電電流を電池に印可して充電を行う第1工程と、該充電電流の電池印可を停止し、電池の電圧値が電池の充電による分極の影響がなくなるまで休止する第2工程と、前記寿命診断電流を0.1C〜2Cの電流値に設定し、該寿命診断電流の電池印加時間を1ミリ秒乃至1秒に設定し、前記寿命診断電流を電池に印可したときの電圧値変化量を基に電池インピーダンスを測定する第3工程とを含むことにより、充電後に電池の寿命を分極による影響を受けることなく、正確に診断することができる。
【0029】
更に本発明は、前記寿命診断電流を電池に印可する前に、電圧検出回路に高精度基準電圧を印加し、また電流検出回路にも同様に基準電圧を印加することにより、各検出回路の検出ばらつきを低減することにより正確な寿命診断を行うことができる。
【図面の簡単な説明】
【図1】本発明による電池寿命診断方法を適用した無停電電源装置の一実施形態を示す図。
【図2】本発明による電池寿命診断方法の第1の実施形態を説明するための図。
【図3】本発明による電池寿命診断方法の第2の実施形態を説明するための図。
【図4】従来技術による電池寿命診断方法の原理を説明するための図。
【図5】従来技術による電池寿命診断方法による電圧変化を説明するための図。
【符号の説明】
1〜5:電源ライン、10:スイッチング電源装置、20:無停電電源装置、30:コンピュータシステム、21:電圧検出回路、22:充放電回路、23:ニッケル水素電池、24:電流検出回路、25:温度検出回路、27:制御回路、28:インタフェース回路。
[0001]
[Industrial applications]
The present invention relates to a method for diagnosing the life of a battery in an uninterruptible power supply or the like, and more particularly to a method for diagnosing the life of a nickel-metal hydride battery in advance.
[0002]
[Prior art]
In recent years, computer systems have been using an uninterruptible power supply to supply power for a predetermined time when a power outage or the like has occurred due to an increase in the scale of systems and data, and to ensure that data is saved during this power supply time. Have been. The uninterruptible power supply device includes a battery unit such as a nickel-metal hydride battery for charging when supplying commercial power to the computer system, and a power failure detection circuit for detecting a power failure or instantaneous power failure of the commercial power supply. Detects a power failure due to a commercial power supply interruption / overvoltage due to lightning strike / breaker down due to overpower due to other equipment / noise from other equipment / power failure due to human error etc. Is configured to be supplied.
[0003]
In addition, as a document in which the technology relating to the above-described uninterruptible device is described, for example, JP-A-2001-166016 is cited.
[0004]
[Problems to be solved by the invention]
In general, when the nickel-metal hydride battery used for this uninterruptible power supply is charged and discharged by repeating charging and discharging, the output power is reduced, and the capacity is less than a predetermined capacity or the backup time is less than a specified time. It is determined that the battery has reached the end of its service life, and the storage battery needs to be replaced.
[0005]
However, the battery life diagnosis requires maintenance personnel to manually measure the capacity or backup time of the uninterruptible power supply and determine whether the life is near or not, which is a problem that the life diagnosis is complicated. there were.
[0006]
As a method of diagnosing the life of the nickel-metal hydride battery, for example, as shown in FIG. 4, the fact that the impedance inside the battery has a characteristic of increasing with the deterioration of the battery is used, and the life when the impedance reaches a predetermined value is defined as the life. It is known to make a determination, and the impedance R (Ω) is obtained by the following equation. The range indicated by the broken line in FIG. 4 is the service limit. For example, when the impedance reaches 9Ω, it is diagnosed that the service life is limited.
[0007]
(Equation 1)
Impedance R (Ω) = Voltage change ΔV / Current I
[0008]
In the life diagnosis based on the impedance measurement, the voltage suddenly changes immediately after the current flows through the battery, and the battery voltage changes with time due to the influence of a chemical change of the battery called polarization by continuously flowing the current. The battery voltage rises, and when the supply of current is stopped, the battery voltage decreases. The polarization means, in principle, the amount of movement of a substance per unit time of a current. When this current is taken out, the voltage generally becomes (1) an ohmic component due to the electric resistance of an electrode, and (2) a reactant. Loss due to resistance (charge transfer resistance) generated when electrons move on the electrode surface, etc. (3) Resistance when the reactants in the electrolyte are resupplied to the electrode and exchange electrons, and then diffuse and move again from the electrode surface (Mass transfer resistance) is a phenomenon that occurs when three kinds of resistances of loss occur.
[0009]
The battery characteristics will be described with reference to the drawing. As shown in FIG. 5, in a state before the diagnosis of a state where the battery has a predetermined output voltage value and the current value is zero, the current I is measured in order to measure the internal impedance of the battery. When applied, as shown in the area under diagnosis, the current value I has a characteristic that changes in a rectangular shape, whereas the rising voltage value gradually rises from the rising value of the voltage value ΔV1 immediately after the current is applied, and When the current reaches ΔV and the application of the current is stopped, the characteristic is changed so as to gradually decrease as after diagnosis. It is known that the voltage value change amount ΔV1 at the time of rising tends to be lower for a battery battery that is newer, and to be higher for a battery that has deteriorated.
[0010]
In the measurement of the battery life by the impedance measurement, as shown in FIG. 5, since the battery voltage gradually increases immediately after the application of the current I, the battery voltage changes at the time of the measurement, and the impedance obtained by the calculation also changes. There is a problem that it is difficult to measure a long battery life.
[0011]
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-described disadvantages of the related art, and to provide a battery life diagnosis method capable of diagnosing the battery life with high accuracy.
[0012]
[Means for Solving the Problems]
In order to achieve the object, the present invention measures a battery impedance based on a battery that charges power by applying a predetermined charging current and a voltage value change amount when a life diagnosis current is applied to the battery. A method for diagnosing battery life based on the battery impedance, wherein the life diagnosis current is set to a current value of 0.1 C to 2 C, and the battery application time of the life diagnosis current is set to 1 millisecond to 1 second. A first feature is that the method includes a step of setting and measuring a battery impedance based on a voltage value change amount when the life diagnosis current is applied to the battery.
Note that the life diagnosis current described in this specification is represented by a unit “C”. This unit "C" is a unit represented by y = (x / t) [A], where the current value is y [A], the battery rated capacity is x [A · hour], and the charging time is t [hour]. For example, a charging current that can be fully charged in one hour is “1C”, and a charging current that can be fully charged in 30 minutes is “2C”, and a charging current that can be fully charged in two hours is “1C” based on this. 0.5C ".
[0013]
The present invention also provides a battery that charges power by applying a predetermined charging current, and a battery impedance measured based on a voltage value change amount when a life diagnosis current is applied to the battery. A method of diagnosing the life of a battery, comprising: a first step of charging the battery by applying the charging current to the battery; and stopping the application of the charging current to the battery. A second step of resting until the life diagnosis current is set to a current value of 0.1 C to 2 C, and a battery application time of the life diagnosis current is set to 1 millisecond to 1 second; A third step of measuring the battery impedance based on the amount of change in the voltage value when the battery is applied to the battery.
[0014]
Further, according to the present invention, in the battery life diagnosing method according to any one of the above aspects, before applying the life diagnosing current to the battery, a high-precision reference voltage is applied to a voltage detection circuit, and the current detection circuit is similarly applied. A third feature is that the method includes a step of reducing a detection variation of each detection circuit by applying a reference voltage.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a battery life diagnosis method according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating an embodiment of an uninterruptible power supply to which a battery life diagnosis method according to the present invention is applied, FIG. 2 is a diagram illustrating a first embodiment of a battery life diagnosis method according to the present invention, FIG. 3 is a diagram for explaining a battery life diagnosis method according to a second embodiment of the present invention.
[0016]
FIG. 1 is a diagram illustrating an example of a power supply system including an uninterruptible power supply 20 to which the battery life diagnosis method according to the present embodiment is applied. The system includes a switching power supply 10 that supplies a predetermined output power, When the power from the switching power supply 10 is normal, the power is supplied to the computer system 30 and the internal nickel-metal hydride battery 23 is charged. At the time of a power failure or the like, the power from the battery 23 is supplied to the computer system 30 for a predetermined time. And an uninterruptible power supply 20.
[0017]
The uninterruptible power supply 20 receives power from the switching power supply 10 via a line 1, charges a battery 23 via a line 4 in accordance with an instruction from a control circuit 27, and A charging / discharging circuit 22 for supplying power to the computer system 30 via a power supply; a voltage detecting circuit 21 for detecting a voltage supplied to the line 1; a current detecting circuit 24 for detecting a current value of the line 4; A voltage detection circuit 26 for detecting the voltage of the battery 23, a temperature detection circuit 25 for similarly detecting the temperature of the battery, and a device load level signal / AC / DC operation state signal / DC / DC state operation from the switching power supply 10. A control circuit that receives a signal and the voltage and temperature of the battery 23 and controls charging of the battery 23 and supply of power to a computer system (load). 7 and an interface for supplying power to the computer system via lines 8 and 9 / backup power supply abnormality signal 31 / power supply stop signal 32 / battery replacement instruction signal 33 and other control signals to the computer system in accordance with an instruction from the control circuit 27. And a circuit 28. The nickel-metal hydride battery 23 according to the present embodiment has a rated value of, for example, a voltage of 33.6 V, a current of 5.8 A / h, and a current value of 0.6 A during charging.
[0018]
In the battery life diagnosis method according to the present embodiment, the control circuit 27 makes a diagnosis according to a preset program. Next, the diagnosis method will be described with reference to FIG. First, the control circuit 27 that implements the life diagnosis method according to the present embodiment has a state in which the voltage of the battery 23 has a rated value of 33.6 V and a current value of 0 A (a state in which no current is flowing) before the diagnosis. ), The current I having the current value of 6 A is applied for a short time, and the voltage value at this time is detected using the voltage detection circuit 26.
[0019]
As shown in FIG. 2, the voltage value of the battery 23 due to the application of the current is measured as a characteristic that rises vertically from an open voltage of 33.6 V, gradually rises from a certain voltage value, and attenuates from the time of current interruption. When the peak voltage value is 40V, the difference from the open circuit voltage is calculated as ΔV1 = 40V−33.6V = 6.4V.
[0020]
The short time for applying the current is, for example, about 5 milliseconds, and is preferably a minimum limit value of a circuit for detecting a change in voltage and current, for example, a range of 1 millisecond to a maximum value of an allowable error of 1 second. The shorter the time, the better.
[0021]
In the life diagnosis method according to the present embodiment, the control circuit 27 applies a current of, for example, 6 A for 5 milliseconds by using the charge / discharge circuit 22, detects a voltage change (voltage rise value) ΔV1 at this time, and detects the voltage rise. The life of the battery 23 can be determined by calculating the impedance of the battery 23 from the value ΔV1 using the above-described formula, impedance R (Ω) = voltage change ΔV / current I. That is, in the life diagnosis method according to the present embodiment, the polarization by the application of the current is reduced by applying a life diagnosis current that is 10 times the normal charging current value (0.6 A) for a short time of about 5 milliseconds. The amount of change in the voltage value is measured at a time when the influence that increases with the passage of time is small, and the battery life can be properly diagnosed. Note that the life diagnosis current can be set to a current value that is 5 to 15 times the charging current, and the battery application time of the life diagnosis current can be set to 1 millisecond to 1 second. . The reason for setting the life diagnosis current to a current value that is 5 to 15 times as large as the charging current is that the charging current generally uses the surplus power during the power supply to the original load to the computer system or the like. In order to perform the charging, the voltage is set to a low current value, and when the charging current is applied for a short time, the amount of change in the voltage value of the battery is small and difficult to detect. , The set value.
[0022]
Further, the life diagnosis method according to the present embodiment applies a high-precision reference voltage to the voltage detection circuit 26 and the current detection circuit prior to the short-time application of the current by the charge / discharge circuit 22 described above, and detects the temperature characteristics of the detection and peripheral circuits. Is added to the control circuit 27, and the control circuit 27 executes the above-described voltage and current detection after executing the offset canceller function, thereby providing a more accurate battery. The battery life can be diagnosed by measuring the voltage value and the current value, that is, the impedance.
[0023]
Further, the life diagnosis method according to the present embodiment can perform the above-described life diagnosis after charging the battery 23. In this case, the control circuit 27 supplies the battery 23 with a current of 0.6 ° as shown in FIG. After the charging, the battery is charged (period during charging in FIG. 2), and a pause is provided for a predetermined time (period until the battery voltage reaches a predetermined falling point Pb from the time Pa during charging) after the charging is stopped. After that, a high current (6 °) is applied for a short period of time (5 milliseconds) for the life diagnosis, and the voltage change ΔV1 at this time is measured, whereby the life of the battery can be diagnosed. The pause period is a period until the voltage value detected from the battery is no longer affected by the polarization due to the charging of the battery, and it can be said that the life of the battery is diagnosed after a preset pause time.
[0024]
Further, the uninterruptible power supply 20 according to the present embodiment includes a temperature detection circuit 26 that detects the temperature of the battery 23, and the control circuit 27 uses the battery temperature detected by the temperature detection circuit 25 as a factor to calculate the temperature from the detected voltage value ΔV1. The calculated impedance value can be corrected, and the battery life can be diagnosed based on the corrected impedance value. The correction of the impedance value means that, for example, even if the detected impedance value is 8Ω, if the detected temperature is as high as 45 ° C. with respect to the predetermined temperature at the time of driving of 0 ° C. to 40 ° C., the deterioration is not caused. It is the one that advances fast and the one that corrects.
[0025]
As described above, in the battery life diagnosis method according to the present embodiment, the control circuit 27 of the uninterruptible power supply 20 applies a high current to the battery 23 for a short time compared to the charging current, By measuring the amount of change in voltage value ΔV1 increased from the open-circuit voltage value, the life of the battery can be accurately diagnosed without being affected by the polarization of the battery.
[0026]
When the control circuit 27 determines that the battery 23 has reached the end of its life as a result of the diagnosis, the control circuit 27 issues a battery replacement signal 33 to the computer system 30 via the interface circuit 28 to prompt the administrator to replace the battery. it can. Further, the control circuit 27 stores the measured battery impedance value in a memory (not shown), plots the impedance value, creates an impedance change graph from the transition, and calculates a predicted value of the graph in the future. Thus, it is possible to predict when the battery life will be reached and to warn the administrator at an early point.
[0027]
【The invention's effect】
As described above, in the battery life diagnosis method according to the present invention, the life diagnosis current is set to a current value of 0.1 C to 2 C, and the battery application time of the life diagnosis current is set to 1 millisecond to 1 second. By including the step of measuring the battery impedance based on the amount of change in the voltage value when the life diagnosis current is applied to the battery, the life of the battery can be accurately diagnosed without being affected by the polarization of the battery.
[0028]
The battery life diagnosing method according to the present invention includes a first step of charging the battery by applying a charging current and stopping the application of the charging current to the battery so that the voltage of the battery is affected by the polarization due to the charging of the battery. A second step of resting until the battery runs out, setting the life diagnosis current to a current value of 0.1 C to 2 C, setting the battery application time of the life diagnosis current to 1 millisecond to 1 second, and setting the life diagnosis current to By including the third step of measuring the battery impedance based on the amount of change in the voltage value when the battery is applied, the life of the battery after charging can be accurately diagnosed without being affected by polarization.
[0029]
Further, the present invention applies a high-precision reference voltage to the voltage detection circuit before applying the life diagnosis current to the battery, and also applies a reference voltage to the current detection circuit in the same manner. Accurate life diagnosis can be performed by reducing the variation.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of an uninterruptible power supply to which a battery life diagnosis method according to the present invention is applied.
FIG. 2 is a diagram for explaining a first embodiment of a battery life diagnosis method according to the present invention.
FIG. 3 is a view for explaining a second embodiment of the battery life diagnosis method according to the present invention.
FIG. 4 is a diagram for explaining the principle of a battery life diagnosis method according to the related art.
FIG. 5 is a diagram for explaining a voltage change by a battery life diagnosis method according to the related art.
[Explanation of symbols]
1 to 5: power supply line, 10: switching power supply, 20: uninterruptible power supply, 30: computer system, 21: voltage detection circuit, 22: charge / discharge circuit, 23: nickel metal hydride battery, 24: current detection circuit, 25 : Temperature detection circuit, 27: control circuit, 28: interface circuit.

Claims (3)

所定の充電電流を印加することによって電力を充電する電池と、該電池に寿命診断電流を印可したときの電圧値変化量を基に電池インピーダンスを測定し、該電池インピーダンスから電池寿命を診断する電池の寿命診断方法であって、電流値をy[A]、電池定格容量をx[A・hour],充電時間をt[hour]とし、y=(x/t)[A]で表す単位Cで表すとき、前記寿命診断電流を0.1C〜2Cの電流値に設定し、該寿命診断電流の電池印加時間を1ミリ秒乃至1秒に設定し、前記寿命診断電流を電池に印可したときの電圧値変化量を基に電池インピーダンスを測定する工程を含むことを特徴とする電池の寿命診断方法。A battery that charges power by applying a predetermined charging current, and a battery that measures battery impedance based on a change in voltage value when a life diagnostic current is applied to the battery and diagnoses battery life from the battery impedance , Wherein the current value is y [A], the battery rated capacity is x [A · hour], the charging time is t [hour], and the unit C is represented by y = (x / t) [A]. When the life diagnosis current is set to a current value of 0.1 C to 2 C, the battery application time of the life diagnosis current is set to 1 millisecond to 1 second, and the life diagnosis current is applied to the battery. A method of measuring battery impedance based on the amount of change in the voltage value of the battery. 所定の充電電流を印加することによって電力を充電する電池と、該電池に寿命診断電流を印可したときの電圧値変化量を基に電池インピーダンスを測定し、該電池インピーダンスから電池寿命を診断する電池の寿命診断方法であって、電流値をy[A]、電池定格容量をx[A・hour],充電時間をt[hour]とし、y=(x/t)[A]で表す単位Cで表すとき、前記充電電流を電池に印可して充電を行う第1工程と、該充電電流の電池印可を停止し、電池の電圧値が電池の定格電圧値になるまで休止する第2工程と、前記寿命診断電流を0.1C〜2Cの電流値に設定し、該寿命診断電流の電池印加時間を1ミリ秒乃至1秒に設定し、前記寿命診断電流を電池に印可したときの電圧値変化量量を基に電池インピーダンスを測定する第3工程とを含むことを特徴とする電池の寿命診断方法。A battery that charges power by applying a predetermined charging current, and a battery that measures battery impedance based on a change in voltage value when a life diagnostic current is applied to the battery and diagnoses battery life from the battery impedance , Wherein the current value is y [A], the battery rated capacity is x [A · hour], the charging time is t [hour], and the unit C is represented by y = (x / t) [A]. A first step of applying the charging current to the battery to perform charging, and a second step of stopping the application of the charging current to the battery and stopping until the battery voltage reaches the rated voltage of the battery. The life diagnostic current is set to a current value of 0.1 C to 2 C, the battery application time of the life diagnostic current is set to 1 millisecond to 1 second, and the voltage value when the life diagnostic current is applied to the battery Measure battery impedance based on the amount of change Life diagnosis method of a battery, which comprises a third step. 前記寿命診断電流を電池に印可する前に、電圧検出回路に高精度基準電圧を印加し、また電流検出回路にも同様に基準電圧を印加することにより、各検出回路の検出ばらつきを低減することを特徴とする請求項1又は2記載の電池の寿命診断方法。Before applying the life diagnosis current to the battery, a high-precision reference voltage is applied to the voltage detection circuit, and a reference voltage is similarly applied to the current detection circuit, thereby reducing the detection variation of each detection circuit. The method for diagnosing battery life according to claim 1 or 2, wherein:
JP2003052527A 2003-02-28 2003-02-28 Method for diagnosing life of secondary battery in power supply system Expired - Fee Related JP4445709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052527A JP4445709B2 (en) 2003-02-28 2003-02-28 Method for diagnosing life of secondary battery in power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052527A JP4445709B2 (en) 2003-02-28 2003-02-28 Method for diagnosing life of secondary battery in power supply system

Publications (2)

Publication Number Publication Date
JP2004264076A true JP2004264076A (en) 2004-09-24
JP4445709B2 JP4445709B2 (en) 2010-04-07

Family

ID=33117379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052527A Expired - Fee Related JP4445709B2 (en) 2003-02-28 2003-02-28 Method for diagnosing life of secondary battery in power supply system

Country Status (1)

Country Link
JP (1) JP4445709B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085772A (en) * 2005-09-20 2007-04-05 Toyota Motor Corp Battery state detection device and battery state detection method
DE102010011896A1 (en) 2009-03-30 2010-10-14 Kabushiki Kaisha Toshiba Battery meter, battery management system and vehicle
JP2011250687A (en) * 2009-07-01 2011-12-08 Toyota Motor Corp Battery control system and vehicle
WO2015030295A1 (en) * 2013-08-30 2015-03-05 숭실대학교산학협력단 Charger having battery diagnosis function and control method therefor
JP2015045553A (en) * 2013-08-28 2015-03-12 株式会社三社電機製作所 Secondary battery charge/discharge device equipped with switching power supply
JP2015102443A (en) * 2013-11-26 2015-06-04 矢崎総業株式会社 State-of-battery detection device and state-of-battery detection method
JP2015102444A (en) * 2013-11-26 2015-06-04 矢崎総業株式会社 State-of-battery detection device and state-of-battery detection method
JP2016133513A (en) * 2015-01-22 2016-07-25 三星電子株式会社Samsung Electronics Co.,Ltd. Battery-state estimation method and battery-state estimation apparatus
CN107179512A (en) * 2017-07-12 2017-09-19 万帮充电设备有限公司 Predict the method and device of battery life
CN110933827A (en) * 2018-09-20 2020-03-27 株式会社岛津制作所 X-ray imaging apparatus and method for estimating consumption of X-ray source
CN111426954A (en) * 2020-04-13 2020-07-17 清华大学 Logarithmic prediction method and device for service life and residual life of fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955886B2 (en) * 2016-05-12 2021-03-23 Dell Products L.P. Systems and methods for graceful termination of applications in response to power event

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645382B2 (en) * 2005-09-20 2011-03-09 トヨタ自動車株式会社 Battery state detection device and battery state detection method
JP2007085772A (en) * 2005-09-20 2007-04-05 Toyota Motor Corp Battery state detection device and battery state detection method
DE102010011896A1 (en) 2009-03-30 2010-10-14 Kabushiki Kaisha Toshiba Battery meter, battery management system and vehicle
US8489264B2 (en) 2009-03-30 2013-07-16 Kabushiki Kaisha Toshiba Battery measuring device, battery control system and vehicle
JP2011250687A (en) * 2009-07-01 2011-12-08 Toyota Motor Corp Battery control system and vehicle
US8390253B2 (en) 2009-07-01 2013-03-05 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
US8629655B2 (en) 2009-07-01 2014-01-14 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
JP2015045553A (en) * 2013-08-28 2015-03-12 株式会社三社電機製作所 Secondary battery charge/discharge device equipped with switching power supply
US9793735B2 (en) 2013-08-30 2017-10-17 Foundation Of Soongsil University-Industry Cooperation Charger having battery diagnostic function and control method therof
WO2015030295A1 (en) * 2013-08-30 2015-03-05 숭실대학교산학협력단 Charger having battery diagnosis function and control method therefor
KR101511655B1 (en) * 2013-08-30 2015-04-13 숭실대학교산학협력단 Charger with Embedded Battery Diagnosis And Control Method thereof
JP2015102443A (en) * 2013-11-26 2015-06-04 矢崎総業株式会社 State-of-battery detection device and state-of-battery detection method
JP2015102444A (en) * 2013-11-26 2015-06-04 矢崎総業株式会社 State-of-battery detection device and state-of-battery detection method
JP2016133513A (en) * 2015-01-22 2016-07-25 三星電子株式会社Samsung Electronics Co.,Ltd. Battery-state estimation method and battery-state estimation apparatus
CN107179512A (en) * 2017-07-12 2017-09-19 万帮充电设备有限公司 Predict the method and device of battery life
CN107179512B (en) * 2017-07-12 2020-06-19 万帮充电设备有限公司 Method and device for predicting service life of battery
CN110933827A (en) * 2018-09-20 2020-03-27 株式会社岛津制作所 X-ray imaging apparatus and method for estimating consumption of X-ray source
CN110933827B (en) * 2018-09-20 2023-11-03 株式会社岛津制作所 X-ray imaging device and method for estimating degree of consumption of X-ray source
CN111426954A (en) * 2020-04-13 2020-07-17 清华大学 Logarithmic prediction method and device for service life and residual life of fuel cell
CN111426954B (en) * 2020-04-13 2021-04-13 清华大学 Logarithmic prediction method and device for service life and residual life of fuel cell

Also Published As

Publication number Publication date
JP4445709B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
US9190681B2 (en) Method of controlling a fuel cell system using impedance determination
JP5499200B2 (en) Degradation determination apparatus, deterioration determination method, and program
US7683580B2 (en) Remaining-battery-capacity estimating apparatus, remaining-battery-capacity estimating method, and remaining-battery-capacity estimating computer program
US8635038B2 (en) System for monitoring the state of a battery
EP2939320B1 (en) System and method for monitoring a battery in an uninterruptible power supply
JP5323818B2 (en) Method for diagnosing defects in a stand-alone system driven by an intermittent power supply
US20090140696A1 (en) Apparatus and method for correcting residual capacity measurement of battery pack
CN109856548B (en) Power battery capacity estimation method
JP5743634B2 (en) Deterioration measuring device, secondary battery pack, deterioration measuring method, and program
JP4445709B2 (en) Method for diagnosing life of secondary battery in power supply system
JP2020174530A (en) Method and system for effective battery cell balancing using duty control
US9172265B2 (en) Battery charger, voltage monitoring device and self-diagnosis method of reference voltage circuit
US20220155378A1 (en) Battery Resistance Diagnosis Device and Method
JP2022502990A (en) Abnormal self-discharge detection of lithium ion cell and battery system
JP2009064682A (en) Battery deterioration judging device, and lithium ion battery pack equipped with the same
US9933488B2 (en) Open circuit voltage checking for a battery system
KR101990042B1 (en) Apparatus for diagnosing battery by cell and method thereof
JP3632798B2 (en) Storage battery capacity estimation method and storage battery capacity estimation apparatus
JP2001197686A (en) Capacitor uninterruptible power supply apparatus
JP3944904B2 (en) Storage battery life diagnosis device and life diagnosis method
KR20210011235A (en) Apparatus and method for diagnosing battery cell
JP2002334725A (en) Method for monitoring condition of lead-acid battery
US20230230788A1 (en) Relay control device and method of controlling relay control device
KR20220081473A (en) System for monitoring ground fault and operating method thereof
JP7471083B2 (en) Power Control Unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees