JP5499200B2 - Degradation determination apparatus, deterioration determination method, and program - Google Patents

Degradation determination apparatus, deterioration determination method, and program Download PDF

Info

Publication number
JP5499200B2
JP5499200B2 JP2013096070A JP2013096070A JP5499200B2 JP 5499200 B2 JP5499200 B2 JP 5499200B2 JP 2013096070 A JP2013096070 A JP 2013096070A JP 2013096070 A JP2013096070 A JP 2013096070A JP 5499200 B2 JP5499200 B2 JP 5499200B2
Authority
JP
Japan
Prior art keywords
battery
voltage
load
current
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013096070A
Other languages
Japanese (ja)
Other versions
JP2013200312A (en
Inventor
敏雄 松島
伸彦 鈴木
寛 若木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2013096070A priority Critical patent/JP5499200B2/en
Publication of JP2013200312A publication Critical patent/JP2013200312A/en
Application granted granted Critical
Publication of JP5499200B2 publication Critical patent/JP5499200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、二次電池をバックアップに備えた電力供給システムであって、二次電池の劣化診断機能を備える劣化判定装置、劣化判定方法、及びプログラムに関する。
本願は、2005年8月19日に日本に出願された特願2005−238741号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a power supply system provided with a secondary battery as a backup, and relates to a deterioration determination device, a deterioration determination method, and a program having a secondary battery deterioration diagnosis function.
This application claims priority based on Japanese Patent Application No. 2005-238741 for which it applied to Japan on August 19, 2005, and uses the content here.

従来から、電話交換等の通信用機器に直接電力を供給する直流電力供給システムにおいては、浮動充電方式でバックアップ用の蓄電池が維持されている。このシステムにおいては、整流器の出力側に負荷設備と蓄電池が並列に接続されており、常時、整流器が負荷に直流電力を供給すると共に、蓄電池の充電状態に合わせて電池が完全充電となるように必要な充電電流が供給されている。このシステムでは、停電や、整流器の故障が起きると、その瞬間に蓄電池からの放電が行われ、一瞬でも負荷設備への電力供給が途絶えることがない。
このような、信頼性が求められるシステムでは、蓄電池が用いられていることから、蓄電池の残容量を把握することによって、蓄電池の性能が十分発揮できるか否かを求め、システムの状態を把握しておくことが望ましい。
2. Description of the Related Art Conventionally, in a DC power supply system that directly supplies power to communication equipment such as telephone exchange, a backup storage battery is maintained by a floating charging method. In this system, the load facility and the storage battery are connected in parallel to the output side of the rectifier, so that the rectifier always supplies DC power to the load and the battery is fully charged according to the state of charge of the storage battery. Necessary charging current is supplied. In this system, when a power failure or rectifier failure occurs, the storage battery is discharged at that moment, and the power supply to the load facility is not interrupted even for a moment.
In such systems that require reliability, storage batteries are used, so by grasping the remaining capacity of the storage battery, it is determined whether the performance of the storage battery can be fully demonstrated, and the state of the system is grasped. It is desirable to keep it.

このような背景から、バックアップ用蓄電池の状態把握や監視法がいくつか検討されてきている。これらのうちの一つには、電源システムが電力を供給中に、電池からの電力供給の正常性を確認するものがある。これは、整流器の出力電圧を所定の時間だけ低下させることによって、蓄電池からの放電を行わせ、その際の電圧特性を見極めるものであった(非特許文献1参照)。   Against this background, several methods for grasping and monitoring the status of backup storage batteries have been studied. One of these is to check the normality of power supply from the battery while the power supply system is supplying power. In this method, the output voltage of the rectifier is reduced for a predetermined time to discharge the storage battery, and the voltage characteristics at that time are determined (see Non-Patent Document 1).

KOZUKA, et al. “Development of On-line Battery Testing Technology”, Proceeding of INTELE ’97, 18-2,p.397.KOZUKA, et al. “Development of On-line Battery Testing Technology”, Proceeding of INTELE '97, 18-2, p.397.

しかしながら、上述した従来技術における、整流器の出力電圧を所定の時間だけ低下させることで蓄電池からの放電を行わせる方式は、蓄電池の充放電回路の正常性を確認することが目的である。従って、蓄電池の残容量について把握することができないという問題があった。
ここで、仮に「蓄電池の残容量を推定する」ことが試みられていても、負荷の容量が常時変化する実負荷に直接放電させることから、放電電流値が必ずしも一定とした値となる保証が無い。このため、負荷の容量の変化に応じて負荷に流れる電流の電流値が変化する影響を受けることなく放電電圧特性を測定することが困難であり、測定された放電電圧特性は定電流放電特性と異なり、容量推定を行うことができなかった。
However, the method of discharging the storage battery by reducing the output voltage of the rectifier for a predetermined time in the above-described prior art is intended to confirm the normality of the charge / discharge circuit of the storage battery. Therefore, there is a problem that the remaining capacity of the storage battery cannot be grasped.
Here, even if an attempt is made to “estimate the remaining capacity of the storage battery”, since the discharge capacity is directly discharged to an actual load that constantly changes, there is a guarantee that the discharge current value is always constant. No. For this reason, it is difficult to measure the discharge voltage characteristic without being affected by the change in the current value of the current flowing through the load according to the change in the capacity of the load, and the measured discharge voltage characteristic is a constant current discharge characteristic. Unlikely, capacity estimation could not be performed.

本発明は、このような事情に鑑みてなされたもので、蓄電池の容量を推定することができる劣化判定装置、劣化判定方法、及びプログラムを提供する。   This invention is made | formed in view of such a situation, and provides the deterioration determination apparatus, the deterioration determination method, and program which can estimate the capacity | capacitance of a storage battery.

上述した課題を解決するために、本発明は、測定対象の電池の劣化状態を判定する劣化判定装置であって、備える出力端子に負荷と測定対象の電池とが並列に接続され、供給される設定値に応じた出力電圧を前記出力端子に出力可能とする整流器と、前記整流器の出力端子に前記負荷とは別に並列に接続される擬似負荷装置と、前記電池から前記擬似負荷装置と前記負荷とに流れる前記電池の放電電流の電流値を測定する電流測定部と、前記出力電圧の設定値を制御して、前記電池の劣化判定試験時における前記整流器の出力電圧を前記電池からの放電を行わせる電圧にする整流器電圧制御部と、前記劣化判定試験の実施時に前記電池を放電させて前記擬似負荷装置と前記負荷とに流す放電電流の電流値が、前記劣化判定試験を実施する前に前記負荷に流す電流に応じて定められる劣化判定試験前電流値を上回る所定の電流値になるように前記擬似負荷装置に流す電流を制御する制御部と、を備えることを特徴とする。
これにより、測定対象の電池の劣化状態を判定する劣化判定装置は、負荷に電力を供給している整流器からの出力電圧を低下させ、測定対象電池を出力側に並列に接続した整流器と電池とから整流器の出力に並列に接続された負荷と整流器の出力に負荷とは別に並列に接続された擬似負荷装置とに流れる電流値を測定し、測定結果が所定の電流値となるように擬似負荷装置の負荷を制御する。
In order to solve the above-described problem, the present invention is a deterioration determination device that determines a deterioration state of a battery to be measured, and a load and a battery to be measured are connected in parallel to an output terminal provided and supplied. A rectifier capable of outputting an output voltage according to a set value to the output terminal, a pseudo load device connected in parallel to the output terminal of the rectifier separately from the load, the pseudo load device and the load from the battery And a current measuring unit for measuring a current value of a discharge current of the battery flowing through the control circuit, and controlling a set value of the output voltage to discharge the output voltage of the rectifier from the battery during the battery deterioration determination test. A rectifier voltage control unit for making a voltage to be performed, and a current value of a discharge current that is discharged to the pseudo load device and the load when the deterioration determination test is performed before the deterioration determination test is performed before the deterioration determination test is performed. And a control unit for controlling the current flowing in the dummy load device such that the predetermined current value exceeding the current value before deterioration determination test determined according to the current flowing in the serial load, characterized in that it comprises a.
Thereby, the deterioration determination device that determines the deterioration state of the battery to be measured decreases the output voltage from the rectifier that supplies power to the load, and the rectifier and the battery in which the battery to be measured is connected in parallel to the output side, Measure the current value flowing from the load connected in parallel to the output of the rectifier and the pseudo load device connected in parallel to the output of the rectifier separately from the load, and the pseudo load so that the measurement result becomes a predetermined current value Control the load on the device.

また、本発明は、上述の劣化判定装置において、前記電流測定部は、前記負荷に流れる電流の電流値を測定する負荷電流測定部と、前記電池の放電電流の電流値を測定する放電電流測定部と、を備え、前記制御部は、前記負荷電流測定部によって前記測定された負荷に流れる電流の電流値から定められた前記劣化判定試験前電流値に基づいて、前記測定された劣化判定試験前電流値を上回る前記所定の電流値の前記電池の放電電流の放電電流値を定め、前記劣化判定試験の実施時に前記擬似負荷装置と前記負荷とに流す前記放電電流の電流値が前記放電電流値になるように前記擬似負荷装置に流す電流を制御することを特徴とする。
さらにまた、本発明は、上述の劣化判定装置において、前記電池から前記擬似負荷装置と前記負荷とに前記放電電流値の放電電流を流して、当該放電電流値の放電電流における放電時間と、前記放電時間における前記放電電流に対応した前記電池の端子間電圧とに基づいて、前記電池の残存容量を算出する演算部を備えることを特徴とする。これにより、劣化判定装置は、測定対象となる電池の所定の電流値における放電時間と端子間電圧と残存容量との関係を示す電池データを参照して、擬似負荷装置と負荷とに放電する放電電流における放電時間と放電時間における放電電流に対応した電池の端子間電圧とに基づいて、電池の残存容量を算出する。
Further, the present invention is the above-described degradation determination apparatus, wherein the current measurement unit includes a load current measurement unit that measures a current value of a current flowing through the load, and a discharge current measurement that measures a current value of the discharge current of the battery. And the control unit is based on the current value before the deterioration determination test determined from the current value of the current flowing through the load measured by the load current measuring unit, the measured deterioration determination test A discharge current value of the discharge current of the battery having the predetermined current value that exceeds the previous current value is determined, and a current value of the discharge current that flows through the pseudo load device and the load when the deterioration determination test is performed is the discharge current. The current flowing through the pseudo load device is controlled so as to be a value.
Still further, the present invention provides the above-described deterioration determination apparatus, wherein a discharge current of the discharge current value is allowed to flow from the battery to the pseudo load device and the load, and the discharge time of the discharge current value of the discharge current value is A calculation unit is provided that calculates a remaining capacity of the battery based on a voltage between terminals of the battery corresponding to the discharge current in a discharge time. Thereby, the deterioration determination device refers to the battery data indicating the relationship between the discharge time at the predetermined current value of the battery to be measured, the voltage between the terminals, and the remaining capacity, and discharges the pseudo load device and the load. The remaining capacity of the battery is calculated based on the discharge time in the current and the voltage between the terminals of the battery corresponding to the discharge current in the discharge time.

また、本発明は、上述の劣化判定装置において、前記出力電圧の設定値を制御して、前記電池の劣化判定試験の実施時における前記整流器の出力電圧を、前記負荷が許容する電圧範囲の下限電圧より高く、前記劣化判定試験を実施する前に設定されていた電圧より低い、前記電池からの放電を行わせる電圧にすることを特徴とする。   Further, the present invention provides the above-described deterioration determination apparatus, wherein the output voltage of the rectifier is controlled at the lower limit of the voltage range allowed by the load by controlling the set value of the output voltage and performing the battery deterioration determination test. It is characterized in that the voltage is higher than the voltage and lower than the voltage set before the deterioration determination test is carried out, so that the battery is discharged.

また、本発明は、上述の劣化判定装置において、前記整流器電圧制御部は、前記劣化判定試験の実施時に前記電池から前記負荷と前記擬似負荷装置とに電力を供給している状況において前記電池の電圧が所定の閾値電圧以下に低下した場合に前記整流器の電圧を低下させるように制御していた制御状態を解除することを特徴とする。   According to the present invention, in the above-described deterioration determination device, the rectifier voltage control unit supplies power from the battery to the load and the pseudo load device when the deterioration determination test is performed. The control state in which the control is performed so as to decrease the voltage of the rectifier when the voltage drops below a predetermined threshold voltage is released.

また、本発明は、測定対象の電池の劣化状態を判定する劣化判定方法であって、測定対象の電池の劣化状態を判定する劣化判定方法であって、負荷と測定対象の電池とが整流器の出力端子に並列に接続される当該整流器から、供給される設定値に応じた出力電圧を前記出力端子に出力可能にするステップと、前記整流器の出力端子に前記負荷とは別に並列に擬似負荷装置を接続するステップと、前記電池から前記擬似負荷装置と前記負荷とに流れる前記電池の放電電流の電流値を電流測定部が測定するステップと、整流器電圧制御部が前記出力電圧の設定値を制御して、前記電池の劣化判定試験時における前記整流器の出力電圧を、前記電池からの放電を行わせる電圧にするステップと、前記劣化判定試験の実施時に前記電池を放電させて前記擬似負荷装置と前記負荷とに流す放電電流の電流値が、前記劣化判定試験を実施する前に前記負荷に流す電流に応じて定められる劣化判定試験前電流値を上回る所定の電流値になるように前記擬似負荷装置に流す電流を制御するステップと、を備えることを特徴とする。   In addition, the present invention is a deterioration determination method for determining a deterioration state of a battery to be measured, the deterioration determination method for determining a deterioration state of a battery to be measured, wherein a load and a battery to be measured are connected to a rectifier. Enabling the output voltage corresponding to the set value supplied from the rectifier connected in parallel to the output terminal to be output to the output terminal; and the pseudo load device in parallel to the output terminal of the rectifier separately from the load A step of measuring a current value of a discharge current of the battery flowing from the battery to the pseudo load device and the load, and a rectifier voltage control unit controlling a set value of the output voltage The output voltage of the rectifier at the time of the battery deterioration determination test is set to a voltage for discharging the battery, and the battery is discharged before the deterioration determination test is performed. The current value of the discharge current flowing through the pseudo load device and the load is a predetermined current value that exceeds the current value before the deterioration determination test determined according to the current flowing through the load before the deterioration determination test is performed. And a step of controlling a current flowing through the pseudo load device.

また、本発明は、測定対象の電池の劣化状態を判定する劣化判定装置のコンピュータに、負荷と測定対象の電池とが整流器の出力端子に並列に接続される当該整流器から、供給される設定値に応じた出力電圧を前記出力端子に出力可能にするステップと、前記整流器の出力端子に前記負荷とは別に並列に擬似負荷装置を接続するステップと、前記電池から前記擬似負荷装置と前記負荷とに流す前記電池の放電電流の電流値を電流測定部が測定するステップと、整流器電圧制御部が前記出力電圧の設定値を制御して、前記電池の劣化判定試験時における前記整流器の出力電圧を、前記電池からの放電を行わせる電圧にするステップと、前記劣化判定試験の実施時に前記電池を放電させて前記擬似負荷装置と前記負荷とに流す放電電流の電流値が、前記劣化判定試験を実施する前に前記負荷に流す電流に応じて定められる劣化判定試験前電流値を上回る所定の電流値になるように前記擬似負荷装置に流す電流を制御するステップと、を実行させるためのプログラムである。   Further, the present invention provides a set value supplied from a rectifier in which a load and a battery to be measured are connected in parallel to an output terminal of a rectifier to a computer of a deterioration determination device that determines a deterioration state of the battery to be measured. An output voltage corresponding to the output terminal, enabling the output terminal of the rectifier to connect a pseudo load device in parallel to the load separately from the load; from the battery to the pseudo load device and the load; A step of measuring a current value of a discharge current of the battery to be passed through, a rectifier voltage control unit controlling a set value of the output voltage, and an output voltage of the rectifier during the battery deterioration determination test A voltage for causing the battery to discharge, and a current value of a discharge current that flows through the pseudo load device and the load by discharging the battery when the deterioration determination test is performed. Performing a step of controlling a current flowing through the pseudo load device so that a predetermined current value exceeds a pre-degradation test current value determined according to a current flowing through the load before the deterioration determination test is performed. It is a program to make it.

なお、本発明は、上記の他、上述した課題を解決するために、以下に例示する特徴を有するものとしてもよい。一例は、測定対象電池の劣化状態を判定する劣化判定装置であって、負荷に電力を供給する整流器からの出力電圧を低下させる整流器電圧制御部と、前記測定対象電池を出力側に並列に接続した整流器と、前記整流器の出力に並列に接続された負荷と、同じく前記整流器の出力に前記負荷とは別に並列に接続された擬似負荷装置と、前記整流器と前記電池とから前記負荷と前記擬似負荷装置とに流れる電流値を測定する負荷電流測定部と、前記負荷電流測定部の測定結果が所定の電流値となるように前記擬似負荷装置の負荷を制御する制御部と、測定対象となる電池の所定の電流値における放電時間と前記電池の端子間電圧と残存容量との関係を示す電池データを記憶する電池データ記憶部と、前記電池データ記憶部に記憶された前記電池データを参照し、前記擬似負荷装置と前記負荷とに放電する放電電流における放電時間と前記放電時間における前記放電電流に対応した前記電池の端子間電圧とに基づいて、前記電池の残存容量を算出する演算部とを有することを特徴とする。   In addition to the above, the present invention may have features exemplified below in order to solve the above-described problems. An example is a deterioration determination device that determines a deterioration state of a measurement target battery, and a rectifier voltage control unit that lowers an output voltage from a rectifier that supplies power to a load, and the measurement target battery connected in parallel to the output side Rectifier, a load connected in parallel to the output of the rectifier, a pseudo load device connected in parallel to the output of the rectifier in parallel with the load, and the load and the pseudo from the rectifier and the battery. A load current measuring unit that measures a current value flowing to the load device, a control unit that controls a load of the pseudo load device so that a measurement result of the load current measuring unit becomes a predetermined current value, and a measurement target A battery data storage unit for storing battery data indicating a relationship between a discharge time at a predetermined current value of the battery, a voltage between terminals of the battery and a remaining capacity, and the battery data stored in the battery data storage unit. The remaining capacity of the battery is calculated based on a discharge time in a discharge current discharged to the pseudo load device and the load and a voltage between terminals of the battery corresponding to the discharge current in the discharge time. And an arithmetic unit for performing the processing.

また、一例は、上述の劣化判定装置において、前記電池データ記憶部は、放電時において、任意の放電電流と任意の放電経過時間における電池の端子間電圧と放電開始前に充電によって維持されていた際の電池の端子間電圧の差と電池残存容量の関係を示す電池データを記憶することを特徴とする。
また、一例は、上述の劣化判定装置において、前記電池データ記憶部は、任意の放電電流と任意の放電時間、基準となる電池の充電状態における電池の端子間電圧と放電時の電池の端子間電圧の差と電池残存容量との関係を示す電池データを記憶することを特徴とする。
さらにまた、本発明は、上述の劣化判定装置において、前記電池データ記憶部は、残存容量毎の、電池の端子間電圧と放電経過時間との関係を示す電池データを記憶することを特徴とする。
また、一例は、上述の劣化判定装置において、前記電池データ記憶部は、製造業者、納品業者、製造ロット、電池機種、電池の温度、放電電流値、放電経過時間のうち少なくとも一つ以上を含む放電条件毎に電池データを記憶することを特徴とする。
Further, as an example, in the above-described deterioration determination device, the battery data storage unit is maintained by charging before discharging and the voltage between terminals of the battery at an arbitrary discharge current and an arbitrary discharge elapsed time at the time of discharging. Battery data indicating the relationship between the difference in voltage between the terminals of the battery and the remaining battery capacity is stored.
Further, as an example, in the above-described deterioration determination apparatus, the battery data storage unit includes an arbitrary discharge current, an arbitrary discharge time, a voltage between battery terminals in a charge state of a reference battery, and a battery terminal during discharge. Battery data indicating the relationship between the voltage difference and the remaining battery capacity is stored.
Furthermore, the present invention is characterized in that, in the above-described deterioration determination apparatus, the battery data storage unit stores battery data indicating a relationship between a battery terminal voltage and a discharge elapsed time for each remaining capacity. .
Also, as an example, in the above-described deterioration determination apparatus, the battery data storage unit includes at least one of a manufacturer, a delivery company, a manufacturing lot, a battery model, a battery temperature, a discharge current value, and a discharge elapsed time. Battery data is stored for each discharge condition.

また、一例は、上述の劣化判定装置において、前記整流器電圧制御手段は、前記電池から前記負荷と前記擬似負荷装置とに電力を供給している場合に前記電池の電圧が所定値以下に低下した場合に前記整流器の電圧低下を解除することを特徴とする。   Further, as an example, in the above-described deterioration determination device, when the rectifier voltage control unit supplies power from the battery to the load and the pseudo load device, the voltage of the battery decreases to a predetermined value or less. In this case, the voltage drop of the rectifier is canceled.

また、一例は、測定対象電池の劣化状態を判定する劣化判定方法であって、負荷に電力を供給している整流器からの出力電圧を低下させ、前記測定対象電池を出力側に並列に接続した整流器と前記電池とから前記整流器の出力に並列に接続された負荷と前記整流器の出力に前記負荷とは別に並列に接続された擬似負荷装置とに流れる電流値を測定し、前記測定結果が所定の電流値となるように前記擬似負荷装置の負荷を制御し、測定対象となる電池の所定の電流値における放電時間と前記電池の端子間電圧と残存容量との関係を示す電池データを記憶する電池データ記憶部を参照し、前記擬似負荷装置と前記負荷とに放電する放電電流における放電時間と前記放電時間における前記放電電流に対応した前記電池の端子間電圧とに基づいて、前記電池の残存容量を算出することを特徴とする。   Further, an example is a deterioration determination method for determining a deterioration state of a measurement target battery, in which an output voltage from a rectifier supplying power to a load is reduced, and the measurement target battery is connected in parallel to an output side. A current value flowing from a rectifier and the battery to a load connected in parallel to the output of the rectifier and a pseudo load device connected in parallel to the output of the rectifier separately from the load is measured, and the measurement result is predetermined. The load of the pseudo load device is controlled so that the current value becomes the current value, and the battery data indicating the relationship between the discharge time at the predetermined current value of the battery to be measured, the voltage between the terminals of the battery, and the remaining capacity is stored. With reference to the battery data storage unit, based on the discharge time in the discharge current discharged to the pseudo load device and the load and the voltage between the terminals of the battery corresponding to the discharge current in the discharge time, And calculates the remaining capacity of the battery.

また、一例は、測定対象電池の劣化状態を判定する劣化判定装置のコンピュータを、負荷に電力を供給している整流器からの出力電圧を低下させる手段、前記測定対象電池を出力側に並列に接続した整流器と前記電池とから前記整流器の出力に並列に接続された負荷と前記整流器の出力に前記負荷とは別に並列に接続された擬似負荷装置とに流れる電流値を測定する手段、前記測定結果が所定の電流値となるように前記擬似負荷装置の負荷を制御する手段、測定対象となる電池の所定の電流値における放電時間と前記電池の端子間電圧と残存容量との関係を示す電池データを記憶する電池データ記憶部を参照し、前記擬似負荷装置と前記負荷とに放電する放電電流における放電時間と前記放電時間における前記放電電流に対応した前記電池の端子間電圧とに基づいて、前記電池の残存容量を算出する手段として機能させることを特徴とする。__   Further, as an example, the computer of the deterioration determination device that determines the deterioration state of the measurement target battery is connected to the output side from the means for reducing the output voltage from the rectifier that supplies power to the load. Means for measuring a current value flowing from the rectifier and the battery to a load connected in parallel to the output of the rectifier and a pseudo load device connected in parallel to the output of the rectifier separately from the load, the measurement result Means for controlling the load of the pseudo load device so that the current value becomes a predetermined current value, battery data indicating the relationship between the discharge time at the predetermined current value of the battery to be measured, the voltage between the terminals of the battery, and the remaining capacity The battery data storage unit for storing the discharge time for the discharge current discharged to the pseudo load device and the load, and the battery corresponding to the discharge current for the discharge time. Based on the child voltage, characterized in that to function as means for calculating the remaining capacity of the battery. __

以上説明したように、この発明によれば、擬似負荷装置を備えるようにしたので、電池からの放電電流を一定に調整することができ、精度良く放電電圧特性を得ることができる。   As described above, according to the present invention, since the pseudo load device is provided, the discharge current from the battery can be adjusted to be constant, and the discharge voltage characteristic can be obtained with high accuracy.

この発明の一実施形態による劣化判定装置を適用した二次電池劣化診断機能付き直流電源装置1の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the DC power supply device 1 with a secondary battery degradation diagnosis function to which the degradation determination apparatus by one Embodiment of this invention is applied. 制御装置100の構成を示す概略ブロック図である。2 is a schematic block diagram illustrating a configuration of a control device 100. FIG. 電池データ記憶部104に記憶される電池データの一例を示す図面である。4 is a diagram illustrating an example of battery data stored in a battery data storage unit 104. 電池データの一例を示す図面である。It is drawing which shows an example of battery data. 二次電池劣化診断機付き直流電源装置1の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the DC power supply device 1 with a secondary battery deterioration diagnostic machine. 二次電池劣化診断機付き直流電源装置1の動作について説明するための図面である。It is drawing for demonstrating operation | movement of the DC power supply device 1 with a secondary battery deterioration diagnostic machine. 劣化判定試験中の各設定電圧と蓄電池の放電電圧の関係を説明するための図面である。It is drawing for demonstrating the relationship between each setting voltage in a deterioration determination test, and the discharge voltage of a storage battery. 初期状態にある電池の放電曲線と、各残存容量における劣化状態にある電池の放電曲線を模式的に示した図である。It is the figure which showed typically the discharge curve of the battery in an initial state, and the discharge curve of the battery in the deterioration state in each remaining capacity. 各放電時間における、初期状態にある電池の端子間電圧と、劣化した状態にある電池の端子間電圧との差ΔVを示す図である。It is a figure which shows the difference (DELTA) V between the terminal voltage of the battery in an initial state, and the terminal voltage of the battery in a deteriorated state in each discharge time. 任意の放電経過時間における、100%容量電池の開放電圧と容量の低下した電池の端子間電圧の差を示す図である。It is a figure which shows the difference of the open circuit voltage of a 100% capacity | capacitance battery, and the voltage between terminals of the battery in which capacity | capacitance fell in arbitrary discharge elapsed time. 電池データの一例を示す図面である。It is drawing which shows an example of battery data. 交流電力供給装置における二次電池自動劣化診断機の適用例を示す概略ブロック図である。It is a schematic block diagram which shows the example of application of the secondary battery automatic degradation diagnostic machine in an alternating current power supply device. 交流電力供給装置における二次電池自動劣化診断機の適用例を示す概略ブロック図である。It is a schematic block diagram which shows the example of application of the secondary battery automatic degradation diagnostic machine in an alternating current power supply device.

以下、本発明の一実施形態による劣化判定装置について図面を参照して説明する。
本実施形態における劣化判定装置は、指定する任意の時刻に、指定する任意の電流で、任意の時間だけ蓄電池の放電を行わせ、この時の放電特性から蓄電池の劣化状態を推定するものである。すなわち、負荷設備に電力を供給している間に蓄電池からの放電を行わせるため、本実施形態では、動作中の整流器の出力電圧を負荷が許容する電圧範囲内で、指定の値まで低下させる。これによって蓄電池からの放電を行わせる。しかし、この状態では、蓄電池の放電電流は、負荷が必要とする電流値のままであるので、本実施形態では、擬似負荷装置を設け、指定する任意の一定電流で蓄電池からの放電が行われるように電流調整する。これにより、一定の電流で放電させることができ、いわゆる「定電流放電特性」を求めることができる。
Hereinafter, a deterioration determination apparatus according to an embodiment of the present invention will be described with reference to the drawings.
The deterioration determination apparatus according to the present embodiment causes a storage battery to be discharged for an arbitrary time at an arbitrary current to be specified at an arbitrary time to be specified, and estimates the deterioration state of the storage battery from the discharge characteristics at this time. . That is, in order to cause the storage battery to discharge while supplying power to the load facility, in this embodiment, the output voltage of the rectifier in operation is reduced to a specified value within the voltage range allowed by the load. . As a result, the storage battery is discharged. However, in this state, since the discharge current of the storage battery remains at the current value required by the load, in this embodiment, a pseudo load device is provided, and the storage battery is discharged at an arbitrary constant current that is designated. Adjust the current as follows. Thereby, it is possible to discharge with a constant current, and so-called “constant current discharge characteristics” can be obtained.

蓄電池の劣化状態は、定電流放電中の電圧の経時変化曲線に現れるので、指定する任意の経過時間において、対象とする電池の端子間電圧を測定する。測定した端子間電圧値から、予め求めておいた、蓄電池の劣化と端子間電圧との関係を示す電池データに照合させて、対象電池の容量を推定する。   Since the deterioration state of the storage battery appears in the time-dependent change curve of the voltage during constant current discharge, the voltage between the terminals of the target battery is measured at any specified elapsed time. Based on the measured inter-terminal voltage value, the capacity of the target battery is estimated by collating with battery data indicating the relationship between the deterioration of the storage battery and the inter-terminal voltage obtained in advance.

以下、この発明の一実施形態における劣化判定装置について説明する。
図1は、この発明の一実施形態による劣化判定装置を適用した二次電池劣化診断機能付き直流電源装置1の構成を示す概略ブロック図である。
二次電池劣化診断機能付き直流電源装置1は、制御装置100、交流電源109、整流器200、交流電源300、負荷400、擬似負荷装置500、組電池600、回路切り離しスイッチ700、負荷電流センサ800、組電池放電電流センサ810、温度センサ820、電圧センサ830、セル電圧調整回路900によって構成される。
Hereinafter, a deterioration determination apparatus according to an embodiment of the present invention will be described.
FIG. 1 is a schematic block diagram showing a configuration of a DC power supply device 1 with a secondary battery deterioration diagnosis function to which a deterioration determination device according to an embodiment of the present invention is applied.
The DC power supply device 1 with the secondary battery deterioration diagnosis function includes a control device 100, an AC power supply 109, a rectifier 200, an AC power supply 300, a load 400, a pseudo load device 500, an assembled battery 600, a circuit disconnecting switch 700, a load current sensor 800, The battery pack includes a battery discharge current sensor 810, a temperature sensor 820, a voltage sensor 830, and a cell voltage adjustment circuit 900.

交流電源300から供給される交流電力は、整流器200によって直流電力に変換され、組電池600および負荷400に供給される。組電池600は、リチウムイオン二次電池を複数個接続して構成されており、整流器200と負荷400とに接続され、充電、放電が可能である。
交流電源109は、交流電流を制御装置100に供給する。
擬似負荷装置500は、制御装置100からの擬似負荷制御信号に基づいて、負荷400と擬似負荷装置500との電流値の総和が所定の電流値になるように組電池600からの放電を行わせる。
回路切り離しスイッチ700は、擬似負荷制御信号に含まれるオン、オフの信号に基づいてオン、オフし、オフの場合に擬似負荷装置500を組電池600から切り離す。
AC power supplied from the AC power supply 300 is converted into DC power by the rectifier 200 and supplied to the assembled battery 600 and the load 400. The assembled battery 600 is configured by connecting a plurality of lithium ion secondary batteries, is connected to the rectifier 200 and the load 400, and can be charged and discharged.
The AC power supply 109 supplies an AC current to the control device 100.
The pseudo load device 500 causes the assembled battery 600 to discharge based on the pseudo load control signal from the control device 100 so that the sum of the current values of the load 400 and the pseudo load device 500 becomes a predetermined current value. .
The circuit disconnecting switch 700 is turned on / off based on an on / off signal included in the simulated load control signal, and disconnects the simulated load device 500 from the assembled battery 600 when it is off.

負荷電流センサ800は、負荷400に供給される電流値を測定し、測定結果を制御装置100に出力する。組電池放電電流センサ810は、組電池600から供給される電流を検出し、検出結果を制御装置100に出力する。温度センサ820は、組電池600の温度を測定し、測定結果を制御装置100に出力する。電圧センサ830は、組電池600の電圧を検出し、検出結果を制御装置100に出力する。セル電圧調整回路900は、組電池600を構成するリチウムイオン二次電池の各セルの電圧を制御する。   The load current sensor 800 measures the current value supplied to the load 400 and outputs the measurement result to the control device 100. The assembled battery discharge current sensor 810 detects the current supplied from the assembled battery 600 and outputs the detection result to the control device 100. The temperature sensor 820 measures the temperature of the assembled battery 600 and outputs the measurement result to the control device 100. The voltage sensor 830 detects the voltage of the assembled battery 600 and outputs the detection result to the control device 100. The cell voltage adjustment circuit 900 controls the voltage of each cell of the lithium ion secondary battery constituting the assembled battery 600.

次に、制御装置100の構成を説明する。図2は、制御装置100の構成を示す概略ブロック図である。
データ入力部101は、負荷電流センサ800、組電池放電電流センサ810、温度センサ820、電圧センサ830から出力される測定結果を入力し、制御部103と演算部105に出力する。測定条件設定値入力部102は、ユーザからの入力を受け付ける機能を有し、キーボード、ファンクションキーで構成される。制御部103は、整流器出力制御信号を整流器200に出力し、測定条件設定値入力部102から入力された設定値の範囲内で整流器200からの出力電圧を低下させる機能を有する。また、制御部103は、擬似負荷制御信号を擬似負荷装置500に出力して負荷400と擬似負荷装置500とに流れる電流の総和が測定条件設定値入力部102から入力された設定値になるように制御する。
Next, the configuration of the control device 100 will be described. FIG. 2 is a schematic block diagram showing the configuration of the control device 100.
The data input unit 101 inputs measurement results output from the load current sensor 800, the assembled battery discharge current sensor 810, the temperature sensor 820, and the voltage sensor 830, and outputs them to the control unit 103 and the calculation unit 105. The measurement condition set value input unit 102 has a function of accepting an input from a user, and includes a keyboard and function keys. The control unit 103 has a function of outputting a rectifier output control signal to the rectifier 200 and reducing the output voltage from the rectifier 200 within the set value range input from the measurement condition set value input unit 102. Further, the control unit 103 outputs a pseudo load control signal to the pseudo load device 500 so that the sum of the currents flowing through the load 400 and the pseudo load device 500 becomes the set value input from the measurement condition set value input unit 102. To control.

電池データ記憶部104には、例えば、製造業者、納品業者、製造ロット等の電池の製造や流通等に関する情報と、「任意の時間における端子間電圧の差と種々の残存容量を有する電池容量との関係」を示す電池データや「新品電池(容量100%)の開放電圧と、種々の残存容量の電池を放電させた際の端子間電圧との差と残存容量の関係」、さらに「維持充電時の充電電圧(以下、本文、または図中において、「維持充電電圧」と簡略化した表現とする場合もある。)と種々の残存容量の電池を放電させた際の端子間電圧との差と残存容量の関係」の電池データが記憶されている。ここで、残存容量とは、上記のような電力供給システムにおけるバックアップ蓄電池においては、完全充電状態において保有する容量のことをいう。この電池データ記憶部104に記憶される電池データの一例を図3に示す。ここでは、任意の放電経過時間における、100%容量電池の端子間電圧と容量の低下した電池の端子間電圧の差の関係を示す電池データが記憶される。この電池データは、任意の電流値が電流値I1〜Inの場合について、電池の機種(A〜X)毎に記憶される。このように記憶される一例を図4に示す。また、必要により、種々の温度Te(n)毎に作成される。   The battery data storage unit 104 includes, for example, information on manufacturing and distribution of batteries such as manufacturers, delivery companies, manufacturing lots, etc., and “battery capacities having various remaining capacities and terminal voltage differences at arbitrary times”. Battery data indicating the relationship between the open capacity of a new battery (with a capacity of 100%) and the difference between the terminal voltages when discharging batteries with various remaining capacities and the remaining capacity, The difference between the charging voltage at the time (hereinafter sometimes referred to as “maintenance charging voltage” in the text or the figure) and the voltage between the terminals when the batteries having various remaining capacities are discharged. Battery data of “relationship between remaining capacity and battery” is stored. Here, the remaining capacity refers to the capacity held in the fully charged state in the backup storage battery in the power supply system as described above. An example of battery data stored in the battery data storage unit 104 is shown in FIG. Here, battery data indicating the relationship between the voltage between the terminals of the 100% capacity battery and the voltage between the terminals of the battery having a reduced capacity at an arbitrary discharge elapsed time is stored. The battery data is stored for each battery model (A to X) when the arbitrary current value is the current value I1 to In. An example of such storage is shown in FIG. Moreover, it produces for every various temperature Te (n) as needed.

演算部105は、データ入力部101から出力される組電池600の端子間電圧値を受信する機能と、受信した端子間電圧値と電池データ記憶部104に格納されたデータとを比較し、測定対象電池の残存容量の算出、劣化判定を行う機能を有する。   The arithmetic unit 105 compares the function of receiving the inter-terminal voltage value of the assembled battery 600 output from the data input unit 101 with the received inter-terminal voltage value and the data stored in the battery data storage unit 104 to perform measurement. It has a function of calculating the remaining capacity of the target battery and determining deterioration.

表示部106は、演算部105の演算結果をメータによって表示する。電源部107は、交流電源109が出力するAC100[V]を直流電源に変換し、劣化判定装置100の内部電源を供給する。データ送信部110は、外部通信インタフェース108を介して監視センタの端末に接続され、演算部105の演算結果となるデータを監視センタの端末に送信する。セル電圧調整回路制御部111は、セル電圧を制御するための制御信号をセル電圧調整回路900に出力する。   The display unit 106 displays the calculation result of the calculation unit 105 with a meter. The power supply unit 107 converts AC100 [V] output from the AC power supply 109 into a DC power supply, and supplies the internal power supply of the deterioration determination apparatus 100. The data transmission unit 110 is connected to the terminal of the monitoring center via the external communication interface 108 and transmits data that is the calculation result of the calculation unit 105 to the terminal of the monitoring center. The cell voltage adjustment circuit control unit 111 outputs a control signal for controlling the cell voltage to the cell voltage adjustment circuit 900.

次に、上述した二次電池劣化診断機付き直流電源装置1の動作について、図5のフローチャートを用いて説明する。
まず、待機中において(ステップS1)、整流器200から負荷400に供給される負荷電流を計測し、最大電流値の算出する(ステップS2)。次に、測定条件設定値入力部102から劣化判定処理の開始指示がユーザによって入力されると、劣化判定処理を開始する(ステップS3)。ここでは、劣化判定処理の開始指示に続き、ユーザによって入力される、整流器200から出力される電圧の低下を継続する放電時間の設定値、電流の設定値を受け付ける。
各種設定値が入力されると、制御部103は、整流器200の出力電圧を下げるように整流器200に整流器出力制御信号を出力する(ステップS4)。
整流器からの出力電圧に伴い、組電池600からの放電が開始される。制御部103は、負荷400と擬似負荷装置500に流れる電流値の合計(組電池放電電流センサ810による検出結果の値)が、指定された一定の電流値となるように擬似負荷装置500が分担する電流値を擬似負荷制御信号によって適宜制御する(ステップS5)。
Next, operation | movement of the DC power supply device 1 with a secondary battery deterioration diagnostic machine mentioned above is demonstrated using the flowchart of FIG.
First, during standby (step S1), the load current supplied from the rectifier 200 to the load 400 is measured, and the maximum current value is calculated (step S2). Next, when an instruction to start deterioration determination processing is input from the measurement condition set value input unit 102 by the user, the deterioration determination processing is started (step S3). Here, following the instruction to start the deterioration determination process, a set value for the discharge time and a set value for the current, which are input by the user and continue to decrease the voltage output from the rectifier 200, are received.
When various set values are input, the control unit 103 outputs a rectifier output control signal to the rectifier 200 so as to lower the output voltage of the rectifier 200 (step S4).
Along with the output voltage from the rectifier, discharging from the assembled battery 600 is started. The control unit 103 causes the pseudo load device 500 to share such that the total of the current values flowing through the load 400 and the pseudo load device 500 (the value of the detection result by the assembled battery discharge current sensor 810) becomes a specified constant current value. The current value to be controlled is appropriately controlled by the pseudo load control signal (step S5).

制御部103は、また、劣化判定処理が開始された時点から、蓄電池放電時間のカウントを開始する(ステップS6)。そして、電圧センサ830によって組電池600の端子間電圧を計測し(ステップS7)、組電池600の電圧が所定の値まで低下したか否かを検出する(ステップS8)。組電池600の電圧が所定の値まで低下した場合には、整流器の電圧低下を解除して整流器出力電圧を通常電圧に戻すとともに、警報を監視センタの端末に転送し(ステップS9)、ステップS1に移行する。   The control unit 103 also starts counting the storage battery discharge time from the time when the deterioration determination process is started (step S6). And the voltage between the terminals of the assembled battery 600 is measured by the voltage sensor 830 (step S7), and it is detected whether or not the voltage of the assembled battery 600 has decreased to a predetermined value (step S8). When the voltage of the assembled battery 600 drops to a predetermined value, the voltage drop of the rectifier is canceled to return the rectifier output voltage to the normal voltage, and an alarm is transferred to the terminal of the monitoring center (step S9). Migrate to

一方、組電池600の電圧が所定の値以上である場合、蓄電池放電時間のカウント値が測定条件設定値入力部102から入力された放電時間に達したか否かを検出する(ステップS10)。カウント値が放電時間に達していない場合は、ステップS5に移行する。
一方、カウント値が放電時間に達した場合、その放電時間における対象電池の端子間電圧を電圧センサ830によって測定し、温度センサ820の測定結果と、測定結果の電圧値を記録する(ステップS11)。温度センサ820の検出結果、電池電圧が記録されると、演算部105は、測定時間、測定温度に対応する電池データを電池データ記憶部104に記憶された電池データを参照し、記録された電池電圧に基づいて、電池容量の算出を行う(ステップS12)。
この電池の容量の算出には、種々の残存容量を有する蓄電池の放電特性(端子間電圧の時間変化特性)から求まる、「任意の時間における端子間電圧の差と電池容量の関係」が使用できる。任意の放電電流、任意の周囲温度で上記の関係を求めておけばよい。なお、「新品電池(容量が100%)の開放電圧と種々の残存容量の電池を放電させた際の端子間電圧との差と電池容量の関係」を用いて、残容量の算出を行うことも可能である。さらに、「維持充電時の充電電圧と種々の残存容量の電池を放電させた際の端子間電圧との差と電池容量の関係」から、残容量の算出を行うことも可能である。また、ここでは、温度センサ820の測定結果、測定条件設定値入力部102から入力される電池機種に基づき、合致する条件の電池データが選択されて参照される。
On the other hand, when the voltage of the assembled battery 600 is equal to or higher than a predetermined value, it is detected whether or not the count value of the storage battery discharge time has reached the discharge time input from the measurement condition set value input unit 102 (step S10). If the count value has not reached the discharge time, the process proceeds to step S5.
On the other hand, when the count value reaches the discharge time, the voltage between the terminals of the target battery at the discharge time is measured by the voltage sensor 830, and the measurement result of the temperature sensor 820 and the voltage value of the measurement result are recorded (step S11). . When the battery voltage is recorded as a result of detection by the temperature sensor 820, the calculation unit 105 refers to the battery data stored in the battery data storage unit 104 for the battery data corresponding to the measurement time and the measurement temperature, and the recorded battery Based on the voltage, the battery capacity is calculated (step S12).
For the calculation of the capacity of this battery, the “relation between the voltage difference between terminals at any time and the battery capacity” obtained from the discharge characteristics (time-varying characteristics of the voltage between terminals) of storage batteries having various remaining capacities can be used. . What is necessary is just to obtain | require the said relationship by arbitrary discharge current and arbitrary ambient temperature. In addition, the remaining capacity is calculated using “the relationship between the battery capacity and the difference between the open circuit voltage of a new battery (with a capacity of 100%) and the voltage between terminals when various remaining capacity batteries are discharged”. Is also possible. Furthermore, it is also possible to calculate the remaining capacity from “the relationship between the battery voltage and the difference between the charging voltage at the time of maintenance charging and the voltage between terminals when the batteries having various remaining capacities are discharged”. Here, based on the measurement result of the temperature sensor 820 and the battery model input from the measurement condition set value input unit 102, the battery data of the matching condition is selected and referred to.

電池容量が算出されると、制御部103は、整流器200の出力電圧を通常の出力電圧値に戻した後(ステップS13)、算出した電池容量の値を出力する(ステップS14)。この出力は、表示部106による表示とデータ送信部110から外部の監視センタの端末への送信によって行われる。
そして、測定結果が出力されると、制御部103は、劣化判定処理を終了する(ステップS15)。
なお、このプロセスの進行中、停電発生や整流器の故障検出についても並行して行われる。そして、ひとたび上記のトラブルが発生した場合、組電池600から負荷400への電力供給が継続して行われ、このプロセスでの容量推定作業はキャンセルされる。停電終了後は、整流器200の出力電圧は通常の値に設定され、負荷400への電力供給と組電池600の充電が行われる。
When the battery capacity is calculated, the control unit 103 returns the output voltage of the rectifier 200 to the normal output voltage value (step S13), and then outputs the calculated battery capacity value (step S14). This output is performed by display on the display unit 106 and transmission from the data transmission unit 110 to the terminal of the external monitoring center.
And if a measurement result is output, the control part 103 will complete | finish a deterioration determination process (step S15).
During this process, power failure and rectifier failure detection are also performed in parallel. Once the above trouble occurs, power supply from the assembled battery 600 to the load 400 is continuously performed, and the capacity estimation work in this process is cancelled. After the end of the power failure, the output voltage of the rectifier 200 is set to a normal value, and power is supplied to the load 400 and the assembled battery 600 is charged.

ここで、二次電池劣化診断機付き直流電源装置1の動作について図6を用いてさらに説明する。
時刻T1において劣化判定試験が開始されると、制御部103からの指示に従い、整流器200の出力電圧が低下する(符号a)。整流器200の出力電圧を、負荷400が動作可能な電圧範囲の下限値より高い値で、かつ、負荷400への供給電力が蓄電池からの放電のみとなるような電圧に設定する。出力電圧が低下すると、組電池600から電力が供給されることにより、蓄電池電流が出力され(符号b)、擬似負荷消費電流が発生する(符号c)。そして、指定された放電時間が経過し、時刻T2において試験が終了すると、制御部103からの指示に基づいて、整流器200の出力電圧は通常の電圧に戻り、組電池600に充電が開始される(符号e)。そして擬似負荷装置500の回路切り替えスイッチ700がオフになることにより、擬似負荷装置500の消費電流が0になる(符号f)。なお、この図においては、蓄電池の放電電流IB=擬似負荷電流IDL+負荷電流Iである。
Here, operation | movement of the DC power supply device 1 with a secondary battery deterioration diagnostic machine is further demonstrated using FIG.
When the deterioration determination test is started at time T1, the output voltage of the rectifier 200 decreases according to an instruction from the control unit 103 (symbol a). The output voltage of the rectifier 200 is set to a voltage that is higher than the lower limit value of the voltage range in which the load 400 can operate, and that the power supplied to the load 400 is only discharged from the storage battery. When the output voltage decreases, power is supplied from the assembled battery 600, so that a storage battery current is output (reference symbol b) and a pseudo load consumption current is generated (reference symbol c). When the specified discharge time has elapsed and the test is completed at time T2, the output voltage of the rectifier 200 returns to the normal voltage based on an instruction from the control unit 103, and charging of the assembled battery 600 is started. (Sign e). When the circuit changeover switch 700 of the pseudo load device 500 is turned off, the current consumption of the pseudo load device 500 becomes 0 (reference f). In this figure, a discharge current of the storage battery IB = dummy load current I DL + load current I L.

さらに、劣化判定試験中の各設定電圧と蓄電池の放電電圧の関係を、図7を用いて説明する。同図は、直流給電システムにおける電圧供給電圧の上下限と通常の整流器動作電圧Vn、さらに試験実施時の整流器電圧VTを示している。試験実施時の整流器電圧VTは、システムの下限電圧よりも高い値に設定される。試験の開始に伴い、整流器出力電圧は、試験電圧VTに設定されると、これと同時に蓄電池放電が開始される。極端に容量が失われていない正常な蓄電池の場合、電圧の経時変化は、放電カーブ(符号a)に沿って変化し、所定の時間T2において試験が終了する。容量が低下している電池の場合、放電カーブ(符号b)のようなプロファイルで放電が進行し、設定放電時間より短い時間で試験が終了する(B点)。B点では整流器出力電圧と同じ電圧になるので、蓄電池のみからの放電は行えなくなり、実効的に試験は終了となる。制御部103はこの状態を検出し、容量推定はこの時間T3以前の段階で行い、さらに、整流器の電圧低下動作は終了し、通常の電圧Vnに戻す。一方、B点に至った状態を制御部103が見落とした場合に備え、異常検出電圧VBを設定し、システムの保護を行う。この例は、放電カーブ(符号c)に示される。即ち、B’点で、制御部103が試験の終了を検出し損なった場合、さらに放電が進行する。システムの最低電圧VLまで低下すると、負荷に影響を及ぼす恐れがある。
そこで、異常検出電圧VBを設定し、システムからの出力がこの電圧に低下するような事があったら、試験を終了し、整流器の出力低下の停止・警報発生等の処置を行う。
Further, the relationship between each set voltage during the deterioration determination test and the discharge voltage of the storage battery will be described with reference to FIG. The figure shows the upper and lower limits of the voltage supply voltage in the DC power supply system, the normal rectifier operating voltage Vn, and the rectifier voltage VT during the test. The rectifier voltage VT at the time of performing the test is set to a value higher than the lower limit voltage of the system. When the rectifier output voltage is set to the test voltage VT along with the start of the test, the storage battery discharge is started at the same time. In the case of a normal storage battery in which the capacity is not extremely lost, the voltage change with time changes along the discharge curve (symbol a), and the test ends at a predetermined time T2. In the case of a battery with a reduced capacity, discharge proceeds with a profile such as a discharge curve (symbol b), and the test ends in a time shorter than the set discharge time (point B). Since it becomes the same voltage as the rectifier output voltage at point B, it is impossible to discharge only from the storage battery, and the test is effectively terminated. The control unit 103 detects this state, performs capacity estimation at a stage before this time T3, ends the voltage drop operation of the rectifier, and returns to the normal voltage Vn. On the other hand, in case the control unit 103 overlooks the state of reaching the point B, the abnormality detection voltage VB is set to protect the system. This example is shown in the discharge curve (symbol c). That is, at the point B ′, when the control unit 103 fails to detect the end of the test, the discharge further proceeds. When the voltage drops to the lowest voltage VL of the system, the load may be affected.
Therefore, the abnormality detection voltage VB is set, and if the output from the system drops to this voltage, the test is terminated, and measures such as stopping the rectifier output drop and generating an alarm are taken.

ここで、上述した容量推定を行う計算は、試験開始時に設定された放電時間の最大値以内で有れば、一回でなく、数回行うことも可能であり、数回の容量推定によって、算出値が目標とする精度(例えば、3〜4回の測定値の差が5%)以内に収まった場合に、設定放電時間内でも試験を終了することも可能である。一方、目標制度内に収まっていない場合は、設定放電時間いっぱいの放電を行い、容量推定を行って試験を終了する。   Here, the calculation for performing the capacity estimation described above can be performed several times instead of once as long as it is within the maximum value of the discharge time set at the start of the test. When the calculated value falls within the target accuracy (for example, the difference between the measurement values of 3 to 4 times is 5%), the test can be finished within the set discharge time. On the other hand, if it is not within the target system, the discharge is performed for the set discharge time, the capacity is estimated, and the test is terminated.

以上説明した実施形態によれば、電池容量を算出した後、制御部103が整流器200の出力電圧を適正な値に戻すようにした。これにより、整流器200からは負荷400への電力供給とともに組電池600の充電が行われ、負荷側に供給する電力の品質には影響が生じない。
また、この実施形態によれば、組電池600の電池電圧が所定の値まで低下した場合には、制御部103は、整流器200への出力電圧を元に戻すので、組電池600を放電するにあたり、劣化判定試験後の停電等に備え、組電池600が完全放電とならないようにすることができる。さらに、いくつかの検出電圧の設定により、試験によりシステムに問題が生じることを防止するようにした。
According to the embodiment described above, after calculating the battery capacity, the control unit 103 returns the output voltage of the rectifier 200 to an appropriate value. Thereby, the assembled battery 600 is charged together with the power supplied from the rectifier 200 to the load 400, and the quality of the power supplied to the load is not affected.
Further, according to this embodiment, when the battery voltage of the assembled battery 600 decreases to a predetermined value, the control unit 103 restores the output voltage to the rectifier 200, so that the assembled battery 600 is discharged. In preparation for a power failure after the deterioration judgment test, the assembled battery 600 can be prevented from being completely discharged. In addition, some detection voltage settings were made to prevent system problems from being tested.

なお、上述した実施形態において、電池データ記憶部104に、電圧差ΔVと残存容量との関係を示す電池データを記憶する場合について説明したが、図8に示す放電曲線を示すデータを利用するようにしてもよい。図8(a)は、初期状態にある電池の放電曲線と、各残存容量における劣化状態にある電池の放電曲線を模式的に示した図である。この図において、Vcn(Tn)とは、残存容量がCnである電池を放電した際の、放電時間Tn経過時における端子間電圧を意味する。すなわち、電池機種や放電電流毎に、残存容量と種々の経過時間における端子間電圧の関係を求める。ここで図8(b)は、各残存容量を有する電池の各放電経過時間後の端子間電圧と残存容量との関係を示す図面である。このように求めた関係を容量推定に用いることによって、予め定められた放電電流において、指定された放電時間が経過した時点での端子間電圧を測定し、容量を推定することができる。   In the above-described embodiment, the case where the battery data storage unit 104 stores the battery data indicating the relationship between the voltage difference ΔV and the remaining capacity has been described. However, the data indicating the discharge curve illustrated in FIG. 8 is used. It may be. FIG. 8A is a diagram schematically showing a discharge curve of a battery in an initial state and a discharge curve of a battery in a deteriorated state at each remaining capacity. In this figure, Vcn (Tn) means a voltage between terminals when a discharge time Tn has elapsed when a battery having a remaining capacity of Cn is discharged. That is, the relationship between the remaining capacity and the voltage between terminals at various elapsed times is obtained for each battery model and discharge current. Here, FIG. 8B is a diagram showing the relationship between the terminal voltage and the remaining capacity after each elapsed discharge time of the battery having each remaining capacity. By using the relationship obtained in this way for capacity estimation, it is possible to estimate the capacity by measuring the voltage between terminals at the time when a specified discharge time has elapsed in a predetermined discharge current.

また、電池データ記憶部104に記憶する電池データとして、他の情報を用いることが可能である。図9は、各放電時間における、初期状態にある端子間電圧と、劣化した状態にある端子間電圧との差ΔVを示す図である。図9において、放電時間Tn経過時における、初期状態(放電容量が100%)にある端子間電圧をV100(Tn)と示し、劣化して残存容量が80%になった端子間電圧はV80(Tn)、残存容量が60%になった端子間電圧はV60(Tn)と示してある。また、本図において、放電時間Tn経過時における、初期状態にある端子間電圧V100(Tn)と、劣化状態にある端子間電圧V60(Tn)との電圧差ΔVを、矢印bで示す。
このような放電特性を利用し、各放電時間における、初期状態にある電池の開放電圧Vopenと劣化状態にある端子間電圧との電圧差ΔV´(図9の符号(c))と、残存容量の関係を示した情報を用いるようにしてもよい。
図10は、任意の放電経過時間における、100%容量電池の開放電圧と容量の低下した端子間電圧の差を示す図である。この場合、電池データ記憶部104は、本図の関係を示す電池データを記憶しておく。このように記憶される電池データの一例を図11に示す。このような電池データが電池機種毎に作成される。なお、同様に図を「維持充電時の充電電圧と種々の残存容量の電池を放電させた際の端子間電圧との差と電池容量の関係」について作成しておくことも可能である。実際の電源システムにおいては、電池は整流装置等の充電装置によって維持されているので、開放電圧よりも、「維持充電時の充電電圧」との関係の方が実用的である。
Also, other information can be used as the battery data stored in the battery data storage unit 104. FIG. 9 is a diagram showing a difference ΔV between the terminal voltage in the initial state and the terminal voltage in the deteriorated state at each discharge time. In FIG. 9, the terminal voltage in the initial state (discharge capacity is 100%) when the discharge time Tn has elapsed is denoted as V 100 (Tn), and the terminal voltage at which the remaining capacity is reduced to 80% is V The voltage between terminals at 80 (Tn) and the remaining capacity is 60% is indicated as V 60 (Tn). Further, in this figure, when the discharge time Tn has elapsed, the voltage difference ΔV between the terminal voltage V 100 (Tn) in the initial state and the terminal voltage V 60 (Tn) in the deteriorated state is indicated by an arrow b. .
Utilizing such discharge characteristics, the voltage difference ΔV ′ (sign (c) in FIG. 9) between the open circuit voltage Vopen of the battery in the initial state and the voltage between the terminals in the deteriorated state at each discharge time, and the remaining capacity Information indicating the relationship may be used.
FIG. 10 is a diagram showing the difference between the open-circuit voltage of a 100% capacity battery and the inter-terminal voltage with reduced capacity at an arbitrary discharge elapsed time. In this case, the battery data storage unit 104 stores battery data indicating the relationship shown in FIG. An example of the battery data stored in this way is shown in FIG. Such battery data is created for each battery model. Similarly, it is also possible to prepare a diagram for “the relationship between the battery voltage and the difference between the charging voltage at the time of maintenance charging and the voltage between terminals when batteries having various remaining capacities are discharged”. In an actual power supply system, since the battery is maintained by a charging device such as a rectifier, the relationship with the “charging voltage during maintenance charging” is more practical than the open circuit voltage.

なお、以上説明した実施形態では、負荷400に供給する電力が直流である場合について説明したが、直流供給系のみならず、交流供給系にも適用可能である。図12、図13は、交流電力供給装置における二次電池自動劣化診断機の適用例を示す概略ブロック図である。図12、図13において、バックアップ用蓄電池の専用充電器を備えた交流電力供給システムにおいては、直流供給系において整流器の電圧調整に代わって、専用充電器の充電電圧の調整を行い、さらに、蓄電池の放電が実負荷ではなく専用の擬似負荷に対して行われるが、蓄電池の定電流放電によって容量を推定することは基本的に同じである。
なお、試験のための放電中の過放電等による負荷への影響を防ぐため組電池600の総電圧を測定し、予め設定された危険予知のための電圧値まで低下したら蓄電池放電を停止させることもできる。
In the embodiment described above, the case where the power supplied to the load 400 is a direct current has been described. However, the present invention can be applied not only to a direct current supply system but also to an alternating current supply system. 12 and 13 are schematic block diagrams illustrating application examples of the secondary battery automatic deterioration diagnosis device in the AC power supply apparatus. 12 and 13, in the AC power supply system provided with the dedicated charger for the backup storage battery, the charging voltage of the dedicated charger is adjusted instead of the voltage adjustment of the rectifier in the DC supply system, and the storage battery However, it is basically the same that the capacity is estimated by constant current discharge of the storage battery.
Note that the total voltage of the assembled battery 600 is measured in order to prevent the influence on the load due to overdischarge during the discharge for the test, and the discharge of the storage battery is stopped when the voltage drops to a preset risk prediction voltage value. You can also.

また、図1における制御装置100の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより劣化判定を行ってもよい。   Further, the program for realizing the function of the control device 100 in FIG. 1 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system and executed to determine deterioration. You may go.

以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design and the like within a scope not departing from the gist of the present invention.

1 二次電池劣化診断機能付き直流電源装置 100 制御装置 101 データ入力部 102 測定条件設定値入力部 103 制御部 104 電池データ記憶部 105 演算部 106 表示部 107 電源部 400 負荷 500 擬似負荷装置 600 組電池 800 負荷電流センサ 810 組電池放電電流センサ 820 温度センサ 830 電圧センサ   DESCRIPTION OF SYMBOLS 1 DC power supply device with a secondary battery deterioration diagnosis function 100 Control device 101 Data input part 102 Measurement condition set value input part 103 Control part 104 Battery data storage part 105 Calculation part 106 Display part 107 Power supply part 400 Load 500 Pseudo load apparatus 600 sets Battery 800 Load current sensor 810 Battery discharge current sensor 820 Temperature sensor 830 Voltage sensor

Claims (7)

測定対象の電池の劣化状態を判定する劣化判定装置であって、
備える出力端子に負荷と測定対象の電池とが並列に接続され、供給される設定値に応じた出力電圧を前記出力端子に出力可能とする整流器と、
前記整流器の出力端子に前記負荷とは別に並列に接続される擬似負荷装置と、
前記電池から前記擬似負荷装置と前記負荷とに流れる前記電池の放電電流の電流値を測定する電流測定部と、
前記出力電圧の設定値を制御して、前記電池の劣化判定試験時における前記整流器の出力電圧を前記電池からの放電を行わせる電圧にする整流器電圧制御部と、
前記劣化判定試験の実施時に前記電池を放電させて前記擬似負荷装置と前記負荷とに流す放電電流の電流値が、前記劣化判定試験を実施する前に前記負荷に流す電流に応じて定められる劣化判定試験前電流値を上回る所定の電流値になるように前記擬似負荷装置に流す電流を制御する制御部と、
を備えることを特徴とする劣化判定装置。
A deterioration determination device for determining a deterioration state of a battery to be measured,
A rectifier in which a load and a battery to be measured are connected in parallel to an output terminal provided, and an output voltage corresponding to a supplied set value can be output to the output terminal;
A pseudo load device connected in parallel to the output terminal of the rectifier separately from the load;
A current measuring unit for measuring a current value of a discharge current of the battery flowing from the battery to the pseudo load device and the load;
A rectifier voltage control unit that controls a set value of the output voltage and sets the output voltage of the rectifier at the time of the deterioration determination test of the battery to a voltage for discharging the battery;
Deterioration in which the current value of the discharge current that flows through the pseudo load device and the load by discharging the battery during the deterioration determination test is determined according to the current flowing through the load before the deterioration determination test is performed. A control unit for controlling the current flowing through the pseudo load device so as to have a predetermined current value exceeding the current value before the judgment test;
A deterioration determination device comprising:
前記電流測定部は、
前記負荷に流れる電流の電流値を測定する負荷電流測定部と、
前記電池の放電電流の電流値を測定する放電電流測定部と、
を備え、
前記制御部は、
前記負荷電流測定部によって前記測定された負荷に流れる電流の電流値から定められた前記劣化判定試験前電流値に基づいて、前記測定された劣化判定試験前電流値を上回る前記所定の電流値の前記電池の放電電流の放電電流値を定め、前記劣化判定試験の実施時に前記擬似負荷装置と前記負荷とに流す前記放電電流の電流値が前記放電電流値になるように前記擬似負荷装置に流す電流を制御する
ことを特徴とする請求項1に記載の劣化判定装置。
The current measuring unit includes:
A load current measurement unit for measuring a current value of a current flowing through the load;
A discharge current measuring unit for measuring a current value of a discharge current of the battery;
With
The controller is
Based on the current value before the deterioration determination test determined from the current value of the current flowing through the load measured by the load current measuring unit, the predetermined current value exceeding the measured current value before the deterioration determination test. A discharge current value of the discharge current of the battery is determined, and the battery is supplied to the pseudo load device so that the current value of the discharge current supplied to the pseudo load device and the load when the deterioration determination test is performed becomes the discharge current value. The deterioration determination apparatus according to claim 1, wherein the current is controlled.
前記電池から前記擬似負荷装置と前記負荷とに前記放電電流値の放電電流を流して、当該放電電流値の放電電流における放電時間と、前記放電時間における前記放電電流に対応した前記電池の端子間電圧とに基づいて、前記電池の残存容量を算出する演算部
を備えることを特徴とする請求項2に記載の劣化判定装置。
A discharge current of the discharge current value is allowed to flow from the battery to the pseudo load device and the load, and a discharge time at the discharge current of the discharge current value and between the terminals of the battery corresponding to the discharge current at the discharge time The deterioration determination device according to claim 2, further comprising: an arithmetic unit that calculates a remaining capacity of the battery based on a voltage.
前記整流器電圧制御部は、
前記出力電圧の設定値を制御して、前記電池の劣化判定試験の実施時における前記整流器の出力電圧を、前記負荷が許容する電圧範囲の下限電圧より高く、前記劣化判定試験を実施する前に設定されていた電圧より低い、前記電池からの放電を行わせる電圧にする
ことを特徴とする請求項1から3の何れか1項に記載の劣化判定装置。
The rectifier voltage controller is
By controlling the set value of the output voltage, the output voltage of the rectifier at the time of performing the battery deterioration determination test is higher than the lower limit voltage of the voltage range allowed by the load, and before performing the deterioration determination test The deterioration determination device according to any one of claims 1 to 3, wherein the deterioration determination device uses a voltage lower than a set voltage for discharging the battery.
前記整流器電圧制御部は、
前記劣化判定試験の実施時に前記電池から前記負荷と前記擬似負荷装置とに電力を供給している状況において前記電池の電圧が所定の閾値電圧以下に低下した場合に前記整流器の電圧を低下させるように制御していた制御状態を解除する
ことを特徴とする請求項1から4の何れか1項に記載の劣化判定装置。
The rectifier voltage controller is
The voltage of the rectifier is lowered when the voltage of the battery falls below a predetermined threshold voltage in a situation where power is supplied from the battery to the load and the pseudo load device when the deterioration judgment test is performed. The deterioration determination apparatus according to any one of claims 1 to 4, wherein the control state that is being controlled is released.
測定対象の電池の劣化状態を判定する劣化判定方法であって、
負荷と測定対象の電池とが整流器の出力端子に並列に接続される当該整流器から、供給される設定値に応じた出力電圧を前記出力端子に出力可能にするステップと、
前記整流器の出力端子に前記負荷とは別に並列に擬似負荷装置を接続するステップと、
前記電池から前記擬似負荷装置と前記負荷とに流れる前記電池の放電電流の電流値を電流測定部が測定するステップと、
整流器電圧制御部が前記出力電圧の設定値を制御して、前記電池の劣化判定試験時における前記整流器の出力電圧を、前記電池からの放電を行わせる電圧にするステップと、
前記劣化判定試験の実施時に前記電池を放電させて前記擬似負荷装置と前記負荷とに流す放電電流の電流値が、前記劣化判定試験を実施する前に前記負荷に流す電流に応じて定められる劣化判定試験前電流値を上回る所定の電流値になるように前記擬似負荷装置に流す電流を制御するステップと、
を備えることを特徴とする劣化判定方法。
A deterioration determination method for determining a deterioration state of a battery to be measured,
From the rectifier in which the load and the battery to be measured are connected in parallel to the output terminal of the rectifier, enabling the output voltage corresponding to the supplied set value to be output to the output terminal;
Connecting a pseudo load device in parallel to the output terminal of the rectifier separately from the load;
A current measuring unit measuring a current value of a discharge current of the battery flowing from the battery to the pseudo load device and the load;
A step in which a rectifier voltage control unit controls a set value of the output voltage to set the output voltage of the rectifier at the time of the battery deterioration determination test to a voltage for discharging the battery;
Deterioration in which the current value of the discharge current that flows through the pseudo load device and the load by discharging the battery during the deterioration determination test is determined according to the current flowing through the load before the deterioration determination test is performed. Controlling a current flowing through the pseudo load device so as to be a predetermined current value that exceeds a pre-judgment test current value;
A degradation determination method comprising:
測定対象の電池の劣化状態を判定する劣化判定装置のコンピュータに、
負荷と測定対象の電池とが整流器の出力端子に並列に接続される当該整流器から、供給される設定値に応じた出力電圧を前記出力端子に出力可能にするステップと、
前記整流器の出力端子に前記負荷とは別に並列に擬似負荷装置を接続するステップと、
前記電池から前記擬似負荷装置と前記負荷とに流す前記電池の放電電流の電流値を電流測定部が測定するステップと、
整流器電圧制御部が前記出力電圧の設定値を制御して、前記電池の劣化判定試験時における前記整流器の出力電圧を、前記電池からの放電を行わせる電圧にするステップと、
前記劣化判定試験の実施時に前記電池を放電させて前記擬似負荷装置と前記負荷とに流す放電電流の電流値が、前記劣化判定試験を実施する前に前記負荷に流す電流に応じて定められる劣化判定試験前電流値を上回る所定の電流値になるように前記擬似負荷装置に流す電流を制御するステップと、
を実行させるためのプログラム。
In the computer of the deterioration determination device that determines the deterioration state of the battery to be measured,
From the rectifier in which the load and the battery to be measured are connected in parallel to the output terminal of the rectifier, enabling the output voltage corresponding to the supplied set value to be output to the output terminal;
Connecting a pseudo load device in parallel to the output terminal of the rectifier separately from the load;
A current measuring unit measuring a current value of a discharge current of the battery flowing from the battery to the pseudo load device and the load;
A step in which a rectifier voltage control unit controls a set value of the output voltage to set the output voltage of the rectifier at the time of the battery deterioration determination test to a voltage for discharging the battery;
Deterioration in which the current value of the discharge current that flows through the pseudo load device and the load by discharging the battery during the deterioration determination test is determined according to the current flowing through the load before the deterioration determination test is performed. Controlling a current flowing through the pseudo load device so as to be a predetermined current value that exceeds a pre-judgment test current value;
A program for running
JP2013096070A 2005-08-19 2013-04-30 Degradation determination apparatus, deterioration determination method, and program Expired - Fee Related JP5499200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013096070A JP5499200B2 (en) 2005-08-19 2013-04-30 Degradation determination apparatus, deterioration determination method, and program

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005238741 2005-08-19
JP2005238741 2005-08-19
JP2013096070A JP5499200B2 (en) 2005-08-19 2013-04-30 Degradation determination apparatus, deterioration determination method, and program

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006141742A Division JP5460943B2 (en) 2005-08-19 2006-05-22 Degradation judgment device, degradation judgment method, computer program

Publications (2)

Publication Number Publication Date
JP2013200312A JP2013200312A (en) 2013-10-03
JP5499200B2 true JP5499200B2 (en) 2014-05-21

Family

ID=37737680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013096070A Expired - Fee Related JP5499200B2 (en) 2005-08-19 2013-04-30 Degradation determination apparatus, deterioration determination method, and program

Country Status (3)

Country Link
JP (1) JP5499200B2 (en)
KR (1) KR100803474B1 (en)
CN (1) CN100535680C (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042183A (en) * 2007-08-10 2009-02-26 Canon Inc Electronic device and method of checking battery
JP5789736B2 (en) * 2009-10-23 2015-10-07 パナソニックIpマネジメント株式会社 Power supply
CN101706557B (en) * 2009-11-19 2012-06-27 辽宁省电力有限公司鞍山供电公司 Automatic detector for communication storage battery
WO2011132311A1 (en) * 2010-04-23 2011-10-27 株式会社 日立製作所 Battery assembly and method for controlling battery assembly
MY158124A (en) * 2010-11-10 2016-08-30 Nissan Motor Vehicle battery diagnosis apparatus
WO2012095894A1 (en) * 2011-01-14 2012-07-19 トヨタ自動車株式会社 Degradation speed estimation method, and degradation speed estimation device, of lithium-ion battery
KR20120134415A (en) * 2011-06-02 2012-12-12 에스케이이노베이션 주식회사 Method for estimating state of health
KR101232648B1 (en) * 2011-07-01 2013-02-13 한국에너지기술연구원 Solar cell degraded accelerating device, maximum load point chasing device of the same, solar cell accelerating method maximum load point chasing method of the same
JP5971580B2 (en) * 2011-11-22 2016-08-17 パナソニックIpマネジメント株式会社 Discharge system
CN102590760B (en) * 2012-02-27 2014-08-13 力帆实业(集团)股份有限公司 Storage battery state detection device and detection method thereof
JP5596083B2 (en) 2012-06-26 2014-09-24 Imv株式会社 Lithium-ion secondary battery deterioration diagnosis device
JP6303576B2 (en) * 2014-02-18 2018-04-04 沖電気工業株式会社 Automatic transaction equipment
CN104375091A (en) * 2014-11-18 2015-02-25 柳州市金旭节能科技有限公司 Monitoring method for electric vehicle power storage battery
CN105807225B (en) * 2014-12-29 2018-08-31 财团法人车辆研究测试中心 Battery behavior determination device
JP6638585B2 (en) 2016-07-15 2020-01-29 株式会社村田製作所 Power supply
JP6345292B1 (en) * 2017-03-22 2018-06-20 本田技研工業株式会社 Management device, program, management method and production method
WO2018181129A1 (en) * 2017-03-31 2018-10-04 株式会社Gsユアサ Power storage element management apparatus and power storage element management method
JP2020016582A (en) * 2018-07-26 2020-01-30 ラピスセミコンダクタ株式会社 Semiconductor device and method for detecting remaining amount of battery
JP7276676B2 (en) * 2019-01-28 2023-05-18 トヨタ自動車株式会社 SECONDARY BATTERY EVALUATION METHOD, SECONDARY BATTERY EVALUATION DEVICE, AND POWER SUPPLY SYSTEM
CN110618388B (en) * 2019-09-04 2023-01-17 苏州浪潮智能科技有限公司 Battery performance detection method and device
JP7344191B2 (en) * 2020-12-21 2023-09-13 矢崎総業株式会社 Backup battery control module and backup battery control system
CN113985286B (en) * 2021-10-14 2024-03-08 合肥国轩高科动力能源有限公司 SOC-OCV test method for lithium ion battery at different temperatures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497572B1 (en) * 2003-02-10 2005-07-01 주식회사 한림포스텍 Portable battery-pack non-destructive test device using ac impedance measurment technology and method which it use, multi-channel measurment system with this device
JP2005019019A (en) * 2003-06-23 2005-01-20 Yazaki Corp Method and apparatus for determining degradation of battery

Also Published As

Publication number Publication date
KR100803474B1 (en) 2008-02-14
CN100535680C (en) 2009-09-02
CN1916653A (en) 2007-02-21
JP2013200312A (en) 2013-10-03
KR20070021911A (en) 2007-02-23

Similar Documents

Publication Publication Date Title
JP5499200B2 (en) Degradation determination apparatus, deterioration determination method, and program
JP5460943B2 (en) Degradation judgment device, degradation judgment method, computer program
JP7072607B2 (en) Effective Battery Cell Balancing Methods and Systems Using Duty Control
EP1837944B1 (en) Electric power supply control apparatus
US11545839B2 (en) System for charging a series of connected batteries
US20020153865A1 (en) Uninterruptible power supply system having an NiMH or Li-ion battery
EP3455917A1 (en) Method and apparatus of a modular management system for energy storage cells
CA2765824C (en) Power pack partial failure detection and remedial charging control
KR102180625B1 (en) Method for detecting state of health for secondary battery
KR101732854B1 (en) Storage battery device and storage battery system
US6922058B2 (en) Method for determining the internal impedance of a battery cell in a string of serially connected battery cells
JP2008151526A (en) Apparatus for determining degradation of secondary cell and backup power supply
WO2014115294A1 (en) Battery control device, battery system
US20170254857A1 (en) Control device, control method, and recording medium
JP2022502990A (en) Abnormal self-discharge detection of lithium ion cell and battery system
TW201828556A (en) Battery state detection method and system thereof
JP5203270B2 (en) Secondary battery capacity test system and secondary battery capacity test method
KR101227835B1 (en) The battery charger with battery management system
US11885852B2 (en) Battery management device, energy storage apparatus, battery management method, and computer program
EP4053966A1 (en) Electric storage system and management method
KR20220030824A (en) Apparatus and method for managing battery
KR19980079177A (en) Portable computer and remaining power display method with voltage display function of rechargeable battery
JP2002170599A (en) Monitor, controller, and battery module
US20190285701A1 (en) Determining Capacitance of an Energy Store of an Uninterruptible Direct Current Supply Unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5499200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees