JP2004262357A - Electric car and its continuous operation guarantee system - Google Patents

Electric car and its continuous operation guarantee system Download PDF

Info

Publication number
JP2004262357A
JP2004262357A JP2003055347A JP2003055347A JP2004262357A JP 2004262357 A JP2004262357 A JP 2004262357A JP 2003055347 A JP2003055347 A JP 2003055347A JP 2003055347 A JP2003055347 A JP 2003055347A JP 2004262357 A JP2004262357 A JP 2004262357A
Authority
JP
Japan
Prior art keywords
electric vehicle
battery
vehicle
power
support base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003055347A
Other languages
Japanese (ja)
Inventor
Akira Kawachi
朗 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HOME KEIZAI KENKYUSHO K
NIPPON HOME KEIZAI KENKYUSHO KK
Original Assignee
NIPPON HOME KEIZAI KENKYUSHO K
NIPPON HOME KEIZAI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HOME KEIZAI KENKYUSHO K, NIPPON HOME KEIZAI KENKYUSHO KK filed Critical NIPPON HOME KEIZAI KENKYUSHO K
Priority to JP2003055347A priority Critical patent/JP2004262357A/en
Publication of JP2004262357A publication Critical patent/JP2004262357A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric car operation system capable of reducing cost without making users feel inconvenient by focusing on types of car usage appropriate for many cars among various types of usage. <P>SOLUTION: A battery is separated in two parts, a fixed part and an increased/decreased part 4, to be mounted. The number of battery modules 2 of the increased/decreased part 4 is adjusted according to different travel distance demands depending on respective users for precisely adjusting the battery capacity. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、バッテリ電力を駆動力源とする中距離専用の電気自動車、及び日常1日毎に反復される計画的運行を支援する継続運行保証システムに関するものである。
【0002】
【従来の技術】
電気自動車の歴史は古く、電動モータや駆動力コントローラなど、電気自動車に固有の技術は成熟している。バッテリについても鉛酸電池に代わるニッケル水素、リチウムイオンなどの新型電池が実用化の段階に達している。また近年は大気汚染防止、地球温暖化の緩和、石油資源枯渇の遷延、電力需要の平準化などの社会的観点から、電気自動車の汎用が渇望されている。
【0003】
しかし、現状での登録自動車数のほとんどは未だに内燃機関自動車であり、ゼロ排気自動車は微細規模に止まっている。その原因であった加速性等の走行性能の問題は既にほぼ解消されており、現状での問題は、主として1回充電による走行距離が短いことと、バッテリが高価であるため自動車が高価であること、内燃機関自動車の給油に比べると充電に時間がかかる一方、充電に代わるバッテリの交換・補給システムなどのインフラ構築が容易でないということにある。
【0004】
そこで、自動車業界の大勢は、現状のインフラをほとんどそのまま利用できるとともに内燃機関自動車と同様に、1回の燃料補給で200Km以上の走行距離を確保でき、短時間で燃料補給ができるという使用形態を維持することを絶対的な前提条件とし、当面は内燃機関とバッテリを併用して排気の低減を図ったハイブリッド自動車を提供しつつ、ゼロ排気自動車である燃料電池自動車を開発する方向にある。
【0005】
【発明が解決しようとする課題】
ところが、現在の自動車が有している機能や性能と多くの自動車の実際の使用・運行形態との間には大きな乖離が存在し、過剰で無駄な機能や性能が多い。すなわち、現状ではすべての自動車について、どのような使われ方をしても不自由を感じることがないように設計されており、そのことがバッテリ自動車を非常に高価なものにするとともに、大掛かりなインフラ整備無しでは運行できないという致命的な問題にしており、電気自動車の普及を阻害している。
【0006】
例えば、1回の充電によってガソリン自動車と同様に200Kmの走行が可能であることが、絶対的に必要な条件であるように前提されることで、バッテリに要するコストが高くなり、ガソリン自動車に比べて非常に高価なものとなり、また車両重量が大きくなるため走行性能を低下させ、それに対応するためにさらに大きなバッテリ容量が必要になるという問題がある。また、ガソリンスタンドと同様に、必要時に何時でも何処でも短時間で充電又はバッテリ交換が可能であることが求められることからそのインフラ整備が必要となるが、現状では需要が小さいためインフラ整備は極めて困難であり、かつインフラ整備がされていないために需要を伸ばすことができないという問題がある。
【0007】
本発明は、上記従来の問題点に鑑み、自動車の種々の使用形態の内、多くの自動車が該当する使用形態に焦点を合わせることで、コスト低下を図った自動車と、使用時に不便を感じることがない電気自動車の継続運行保証システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の電気自動車は、中距離専用で、1日の走行距離による自動車の台数分布において合計台数が80%以下の任意の割合に達する走行距離を1回充電で走行可能な容量のバッテリを搭載する。この走行距離はほぼ70Kmであるが、短くすればするほどバッテリ容量が少なくて済み、価格を低減できる。一般に、大多数の人々は規則正しい日常生活を1日ごとに繰り返し、仕事か用務に自家用車を計画的に使用する場合には1日当たり70Km以上の走行距離を必要とせず、また毎日眠るので寝ているあいだに電気自動車を規則正しく再充電できる。
【0009】
そこで、本発明の電気自動車では、搭載するバッテリを固定部と増減部の2箇所に分けて設置し、総容量で上記走行距離の70Kmを達成し、電気自動車の販売時点において、増減部に収納された電池モジュールを任意数除去することにより、個別使用者によって異なる走行距離需要に対し、バッテリ容量をより細かく合わせるようにしている。これにより、価格もより一層低減できる。
【0010】
ここで、電池モジュールとは、通常複数セルを直列接続した状態で内蔵して所定の出力電圧と電池容量を持つようにした一体物の電池を意味しているが、本明細書における電池モジュールには、所定の出力電圧と電池容量を有する単セルから成る一体物の電池も含むものとする。
【0011】
一般に、電気自動車が毎晩再充電される場合には、1日単位の業務遂行には何らの支障も生じないが、充電忘れ、充電器の不調、停電、計画外の寄り道などの原因から、電力不足は起こり得る。もともと電力不足は、バッテリ容量がどんなに大きくても同様に起こり得るわけであるが、電気自動車が不測の電力不足に陥った場合には、バッテリ増減部に収納空間があればバッテリモジュールを追加し、無ければ増減部モジュールを交換するか、または電力源トレーラを連結接続すれば、自走能力が即時に回復されるので、中途で途絶がない運行継続が可能となる。
【0012】
そこで、電気自動車には、電力源トレーラを連結するための鋼鉄製ポールと、トレーラに積載した電力源を接続するための受け入れ口を共に車体後部中央に設け、受け入れ口は搭載バッテリ増減部と駆動コントローラを結ぶ動力線に直列に挿入しておく。
【0013】
また、電気自動車の一充電走行可能距離はバッテリ総容量により規定されているので、フル再充電時に最大距離数を示し、走行するに従って経過走行距離を減算してゆく計器を用いれば走行可能な残存距離を知ることができる。こうして得る物理的残存距離計は、現行の電気的残存距離計のように激しく増減せず、安定した読み取りができ、かつ構造が簡単で安価でもある。
【0014】
また、電気自動車にカーナビか携帯電話を設け、他方、サポート基地にも位置確認システムと充電設備とを設けて相互に連絡するシステムを作れば、電力不足が予測される場合、電気自動車はサポート基地に立ち寄って充電するか、モジュールを追加もしくは交換するか、あるいは電力源トレーラを連結接続することにより、路上で立ち往生することを予防できるようになり、電気自動車の継続運行が社会システムとして完成される。
【0015】
【発明の実施の形態】
以下、本発明の電気自動車とその継続運行保証システムの一実施形態について、図1〜図5を参照しながら説明する。
【0016】
図1は、電気自動車1の車室内の最後部空間5にバッテリの増減部4が設けられ、この増減部4に3個のバッテリモジュール2が搭載されている状態を示している。
【0017】
本実施形態のバッテリモジュール2はニッケル水素電池の場合であり、セルを10個直列接続して12Vの出力電圧と95Ah(5時間)のバッテリ容量を有している。外形寸法は幅12cm×高さ18cm×長さ40cm、容積8リットル、重量19kg、市場価格は略20万円であり、しかも価格低減は不可能に近いと言う。本実施形態では5個のモジュールを直列接続して構成した固定部バッテリ3(図4参照)を車体の床下などに固定的に設置している。バッテリの増減部4は、最後部空間5のほか、ボンネット(図示せず)下など、1箇所以上設けることができ、モジュールを各別に容易に着脱できるように搭載する。本実施形態では、必要に応じ、搭載するモジユール総数が5個から8個の間で増減できるように構成されている。
【0018】
参考までにリチウムイオン電池の場合は、1セルが直径67mm、長さ410mmの円筒状で、8セルを直列接続して一体物にしたものを1パッケージと呼んでおり、本発明に適用する場合には、この1パッケージを1電池モジュールとしても、1セル又は複数セルにて電池モジュールを構成しても良い。また、民生用の渦巻きセルを5個直列して円筒とし、円筒5個を直列接続してモジュールを構成し、30Vの出力電圧と90Ah(3時間)のバッテリ容量を得たものもある。しかし、何れにしろ外形寸法にはまだ国際規格がなく、構造上、より小型のモジュール製造は可能だと考えられる。
【0019】
図2は、増減部4に収納するモジュール2の個数を増減する場合の電力線6の接続状態を示す。モジュール2同士を破線で示すように必要に応じて接続部材7を加えて直列接続するとともに両端の接続端子に固定部バッテリ3からの電力線6aとコントローラ8(図4参照)ヘの電力線6bを接続する。増減部4にモジュール2を1個も搭載しない場合は実線で示すように電力線6aと6bを接続する。
【0020】
次に、本実施形態において、上記のように搭載するバッテリモジュール2の総数を5個から8個まで変更できるようにした根拠について説明する。自動車の実際の使用形態を分析すると、全国登録自動車総数7500万台の内、平日の一日で3000万台が走行するものと想定すれば、その走行距離の分布は表1に示すようになる。
【0021】
【表1】

Figure 2004262357
表1から、1日走行距離は意外と短く、30km未満のものが略80万台で3%、以下40kmまでのものが11%、50kmまでのものが31%、60kmまでのものが66%、70kmまでのものが78%であり、80%近い自動車は1日の走行距離がほぼ70km程度以下であることが分かる。これは、終日走り続ける営業車を除けば、自家用車は毎日の仕事と用務の遂行の補助にのみ使用され、特に法人自家用車は普通遠出もしない現実を反映している。
【0022】
一方、5人乗りで車両総重量1815kgの電気自動車に搭載されている12V、95Ahの24個のバッテリモジュールによれば、1回充電で走行距離が215kmとされていることから概略計算して1個のバッテリモジュール2によって略9kmの走行が可能であることになり、必要な搭載モジュール数は、表1の右欄に示すように、1日の走行距離が40kmで5個、50kmで6個、60kmで7個、70kmで8個となり、バッテリにかかるコストは100万円ないし160万円となる。一方、1日の走行距離が120km以上の場合には15個以上、300万円以上を必要とする。しかも日常の仕事ないし用務を遂行するために120Kmを走行する例はまれである。かくして、1日走行距離が70km未満である80%程度の自動車使用実例を対象とすることによって、搭載すべきバッテリに要するコストを、格段に低下できることが分かる。
【0023】
さらに、本実施形態のように、モジュール5個を固定部バッテリ3として固定的に設置し、モジュール3個は各別に容易に着脱できるように増減部空間に設置することによって、個々の電気自動車使用者について、それぞれ異なる1日ごとの使用形態に対して過剰なバッテリ容量を削除することで大幅にコスト低下を図ることができる。
【0024】
すなわち、表2に示すように、製造標準としてはモジュール8個を搭載して出荷し、営業所において、1日当たりの計画的需要走行距離が63km未満の顧客の場合にはモジュール1個を除去して総計7個とし、54km未満の顧客の場合には2個を除去して6個とし、45km未満の顧客の場合には増減部3個をすべて除去し、モジュール5個から成る固定部バッテリ3のみとすることで、搭載するバッテリに要するコスト及び重量を160万円、152kgから100万円、95kgにまで低減することができる。
【0025】
【表2】
Figure 2004262357
また、個々の電気自動車の1日当たりの計画的需要走行距離は、現在使用中のガソリン自動車の積算走行距離計をチェックすることで容易に求めることができる。例えば、表3に示すように、自動車運転日誌から、1日1回、仕事終わり時の走行距離値を転記しておいて、算出した1日毎の実走行距離を右欄のような区分上にプロットすることで、需要距離に対して必要なモジュール個数を1目で知ることができる。表3の例は、自動車の不規則な使用例である。このような場合は、電気自動車による代替は不適切であるからガソリン自動車をそのまま使用するのがよい。また、この機会に所有自動車全般の管理運用を見直し、規則的運行には電気自動車をあてる計画を立案することもできる。
【0026】
【表3】
Figure 2004262357
なお、搭載モジュール総数を8個から5個に減らしてゆくと、総電圧は96V、84V、72V、60Vと変わるが、駆動力のコントローラ8は基本的にチョッパ変圧器であり、設計電圧がほぼ半減するまで一定の定格出力をモータに供給し続けることが判明している。他の条件にもよるが、不足電圧分は過大電流で補われるので、経験則によれば、バッテリ容量がより早く減衰する、すなわち電気自動車の走行可能距離が短縮される。
【0027】
次に、図3は、電気自動車が電力不足に陥った場合、電力源トレーラ(図示せず。特開平7−76228号公報において開示した電気自動車用電力供給装置を参照。)に積載した外部電力源を接続して即時に自走能力を回復させるため、あらかじめ車体後部中央に設けておく外部電力源の受け入れ口を示す。この受け入れ口11は、箱体12と蓋体13とから成り、電気自動車が単体で走行する通常の場合には蓋13を閉じておき、図4(a)の配線図に示されるように、固定部バッテリ3と増減部4のバッテリモジュール2から成るバッテリ14とコントローラ8とを結ぶ駆動力線回路15を形成させる。この場合、蓋体13に取付けられた接続プラグ16は電力用端子穴17aと17bに嵌合している。
【0028】
外部電力を受け入れる場合には蓋13を開き、開いた電力用端子穴17a、17bに外部電力の接続プラグを嵌合する。端子穴17aと17cを用いて電気自動車に搭載したバッテリ14を充電することもできる。
【0029】
なお、図3と図4において、18は補機用回路、19はその接続部品を示している。
【0030】
また、以上の説明では、電気自動車が電力不足に陥った場合に、電力源トレーラを接続する例を説明したが、図4(b)に示すように、固定部バッテリ3と同数の電池モジュールを増減部4に搭載し、固定部バッテリ3に並列接続しても同様に自走能力を回復することができる。また、もっと単純に、図4(a)に示す増減部4のバッテリモジュール2を満充電のものと交換しても良い。
【0031】
次に、図5は、電気自動車の走行可能残存距離計のバネル部21を示す。既往の同種計器がバッテリの残存容量を残存距離に換算し、かつ多くが相対的な面積表示しかできないのに対し、本実施形態の残存距離表示部22は、搭載するバッテリモジュールの総数により規定される理論的最大走行可能距離を出発値とし、その距離値から実際に走行した距離値を減算してゆき、目盛りで現在値を読むように構成している。
【0032】
出発値は、バッテリを充電する場合の過充電防止装置と連動させて自動的にリセットできる。リセット値は、むろん、個別の電気自動車により異なる。購入者は、それぞれの計画的運行に無駄がないバッテリモジュール数を選択しているから、その個数を、ツマミ23で指定しておけば良い。実際に走行した距離値は、現行のすべての自動車が常設している積算走行距離計の変更数値を機械的に、あるいは電子的に読み取って演算チップに入力するか、あるいはパルスを発信してパルスカウンターで数えて減算することができる。表示には発光ダイオード棒グラフから成る距離表示バー22aを用いるのが良く、例示例では残存距離が13Kmであることを示している。
【0033】
目盛りゼロは、バッテリの残存容量ゼロを意味しない。電気自動車を運転する場合、アクセルを踏み込んでも反応が鈍くなる時がくる。これはバッテリ電力を消費した結果、電圧が急激な低下を始めるからであり、その時点で電圧は30%減、放電深度は70%に近い。この位置を目盛りゼロと定めることができる。実際にはその後、電圧が急減するが、電気自動車は加速不能のまま、まだ数Kmは走行することができる。
【0034】
目盛りゼロと最大目盛りとのあいだを長くとれば、読み取り易い残存距離表示部22ができる。棒グラフの代わりに電子式モニタ画面を用いてもよいが、最大目盛りを越える値は、混乱を防ぐ目的で、スクロールして隠すのが良い。
【0035】
計画外の充電を行うと、この残存距離計は実態を反映しなくなるので、調整が必要となる。計画外の充電には機会給電、貸出しモジュールの追加または交換、及び貸出し外部電力源トレーラーの3通りがある。
【0036】
機会給電の場合は、サポート基地要員がパルス発信器(図示せず)を用い、給電時間を相当走行キロ数に換算したパルス数を修正回路に入力して距離表示を増やす。換算は、給電電源アンペア値を基に、パルス発信器にプログラムしておくこともできる。モジュールの追加または交換も同様に表示を増やす。パルス発信は有線でもリモコン無線でもよい。
【0037】
モジュール貸出しの場合、新モジュールが満充電されて端子電圧が12V、放電深度がゼロであるのに対し、使用中の搭載モジュールは9V、放電深度70%に低下している状態が多い。しかし、電力線には逆流防止ダイオード(図示せず)が挿入されているため、イクォライザ(図示せず)が作動を始める前に、まず新モジュール電力がコントローラにより吸引され、後、均衡状態に至る。
【0038】
なおこの残存距離計は、途中の表示調整がどのようなものであったとしても、正規の夜間充電を行えば過充電防止装置と連動し、必ず正規の出発値に復元される。また調整は、強力なソーラー電池を車体に取り付けるとか、エアコンその他の使用が走行エネルギーに大きな影響を及ぼす場合にも、一定の係数を掛け合わせれば増減いずれとも可能である。
【0039】
外部電力源トレーラーを電気自動車に付設して運行を継続する場合には、トグルスイッチ24を切り換えて距離表示部25での表示に切り換える。この場合にはパルス発信を用い、トレーラーに積載するモジュール個数により実測して確かめた出発値を入れる。
【0040】
パネル部21には警告スイッチ26を設け、スイッチオンの場合は警告灯27が点灯し、残存走行可能距離が所定のメモリ値、例えば7Kmに到達すると、距離表示バー22aが点滅を始めると同時に警告音が発生するように構成されている。また必要であれば同時にカーナビゲーション装置のモニタ画面に周辺地図および最寄りのサポート基地を映し出し、さらにタッチパネルの技法によってサポート基地との交信が始まるように構成できる。
【0041】
以上のように本発明による電気自動車は、個々の使用例に個別に対応して余剰バッテリ容量を削減することにより価格低減を実現するものであるが、多数を使用するためには専用の社会的運行支援システムが欠かせない。
【0042】
本発明の電気自動車の継続運行保証システムは、電気自動車に設けるカーナビゲーションもしくは携帯電話と、サポート基地における位置確認システムと充電設備とを備えている。上記相互に連絡する通信手段により、電力不足が予測される場合電気自動車はサポート基地に立ち寄って機会給電を受けるか、モジュールを追加もしくは交換するか、あるいは電力源トレーラーを連結接続することができ、路上で立ち往生することを予防し、継続運行が保証される。
【0043】
また、この継続運行保証システムの中核となるサポート基地には電気自動車の修理維持設備と要員とが配置され、販売員も常駐して新車の展示並びに試乗と営業の業務にたずさわり、土地投資を節減するために回転立体駐車場兼充電設備(図示せず。特許第2691117号において開示した電気自動車用二次電池の充電装置を参照。)を設置し、一定の距離間隔を置いて設けられた他のサポート基地とも通信手段で連携して救急サービス機能を万全に遂行して関連運転者すべてに安心感を与え、顧客を満足させるとともに販売にともなう金融業務、電気自動車運行に伴う保険業務、これら各種の計算を行うコンピュータとプログラムと結果のフィードバック技術で構成されている。かくして、サポート基地を中核とする継続運行保証システムを構築することで電気自動車の汎用化に大きく寄与する。
【0044】
【発明の効果】
本発明の電気自動車とその継続運行保証システムによれば、電気自動車に搭載するバッテリを固定部と増減部の2箇所に分けて設置しているので、個別使用者によって異なる走行距離需要に対し、バッテリ容量をより細かく合わせることができ、電気自動車の価格を低減できる。
【0045】
また、搭載バッテリ以外の走行用外部電力及び搭載バッテリへの充電用電力の供給を受け入れることができる受け入れ口を車体後部中央に設けると、走行用外部電力の接続及び充電を簡単に行うことができる。
【0046】
また、電気自動車と、そのサポート基地と、相互の位置確認機能を含む通信手段を備えた継続運行保証システムを構築することで、電気自動車の継続運行を保証して電気自動車の汎用化に大きく寄与することができる。
【図面の簡単な説明】
【図1】本発明の電気自動車の一実施形態におけるバッテリの増減部を示す背面図である。
【図2】同実施形態の増減部におけるバッテリモジュールの接続状態の説明図である。
【図3】同実施形態の受け入れ口を示し、(a)は蓋体を開いた状態の斜視図、(b)は蓋体を閉じた状態の縦断面図である。
【図4】同実施形態の電気回路を示し、(a)は固定部と増減部を直列接続した回路図、(b)は固定部に増減部を並列接続した回路図である。
【図5】同実施形態の残存距離計のパネル部の正面図である。
【符号の説明】
1 電気自動車
2 バッテリモジュール
3 固定部バッテリ
4 増減部
11 受け入れ口
21 走行可能残存距離計のパネル部[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an electric vehicle exclusively for middle distance using battery power as a driving power source, and a continuous operation assurance system that supports scheduled operation that is repeated every day.
[0002]
[Prior art]
Electric vehicles have a long history, and technologies unique to electric vehicles, such as electric motors and driving force controllers, have matured. As for batteries, new types of batteries such as nickel-metal hydride and lithium ion replacing lead-acid batteries have reached the stage of practical use. In recent years, general-purpose electric vehicles have been sought from social viewpoints such as prevention of air pollution, mitigation of global warming, prolonged depletion of petroleum resources, and equalization of power demand.
[0003]
However, most of the registered vehicles at present are still internal combustion engine vehicles, and zero-emission vehicles remain on a fine scale. The problem of running performance such as acceleration, which was the cause of the problem, has already been almost solved. The current problems are mainly that the running distance after one charge is short and that the battery is expensive, so that the car is expensive. That is, while charging takes longer time than refueling of an internal combustion engine vehicle, it is not easy to construct an infrastructure such as a battery replacement / supply system instead of charging.
[0004]
Therefore, the majority of the automobile industry has decided to use the existing infrastructure almost as it is and to secure a mileage of 200 km or more with one refueling and to refuel in a short time, as with internal combustion engine vehicles. Maintaining maintenance is an absolute prerequisite. For the time being, there is a trend to develop a fuel cell vehicle that is a zero-emission vehicle while providing a hybrid vehicle that uses a combination of an internal combustion engine and a battery to reduce emissions.
[0005]
[Problems to be solved by the invention]
However, there is a large discrepancy between the functions and performances of the current vehicle and the actual use and operation modes of many vehicles, and there are many excessive and useless functions and performances. In other words, at present, all vehicles are designed so that no matter how they are used, they will not be inconvenienced, which makes battery vehicles extremely expensive and large-scale. It is a fatal problem that it can not be operated without infrastructure development, which hinders the spread of electric vehicles.
[0006]
For example, it is presumed that it is an absolutely necessary condition that the vehicle can travel 200 km with a single charge, similarly to a gasoline-powered vehicle. However, there is a problem that the running performance is degraded due to an increase in the weight of the vehicle, and a larger battery capacity is required to cope with this. In addition, similar to gas stations, it is necessary to be able to charge or replace batteries whenever and wherever necessary, in a short period of time. There is a problem that demand cannot be increased due to difficulty and lack of infrastructure.
[0007]
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, the present invention focuses on a use form in which many cars are applicable among various use forms of a car, thereby reducing the cost of a car and feeling inconvenience during use. An object of the present invention is to provide a continuous operation guarantee system for electric vehicles.
[0008]
[Means for Solving the Problems]
The electric vehicle of the present invention is equipped with a battery having a capacity that can be driven by a single charge for a mileage in which the total number reaches an arbitrary ratio of 80% or less in the distribution of the number of vehicles according to the mileage per day, only for medium distances. I do. This traveling distance is approximately 70 km, but the shorter the distance, the less the battery capacity is required, and the lower the price. In general, the majority of people repeat their regular daily life every day, do not need a mileage of more than 70 km per day when planning to use a private car for work or business, and sleep every day. You can regularly recharge electric vehicles while you are there.
[0009]
Therefore, in the electric vehicle according to the present invention, the mounted battery is separately installed in two places, the fixed part and the increase / decrease part, and achieves the above-mentioned traveling distance of 70 km in total capacity. By removing an arbitrary number of the battery modules, the battery capacity can be more finely adjusted to the mileage demands different for individual users. Thereby, the price can be further reduced.
[0010]
Here, the battery module means an integrated battery in which a plurality of cells are usually connected in series and have a predetermined output voltage and a battery capacity. Also includes an integrated battery consisting of a single cell having a predetermined output voltage and a battery capacity.
[0011]
In general, when an electric vehicle is recharged every night, there is no hindrance to the performance of daily work. However, due to factors such as forgetting to charge, malfunctioning of the charger, power outage, and unplanned detours, etc. Shortages can occur. Originally, power shortage can occur no matter how large the battery capacity is.However, if an electric vehicle falls into an unexpected power shortage, add a battery module if there is storage space in the battery increase / decrease unit, If there is not, if the increase / decrease module is replaced or the power source trailer is connected and connected, the self-propelled ability is immediately restored, so that the operation can be continued without interruption.
[0012]
Therefore, electric vehicles are provided with a steel pole for connecting the power source trailer and a receiving port for connecting the power source loaded on the trailer both in the center of the rear of the vehicle body. Insert it in series with the power line connecting the controllers.
[0013]
In addition, since the chargeable travel distance of an electric vehicle is defined by the total battery capacity, it indicates the maximum number of distances at the time of full recharge, and the remaining travelable distance is calculated by using an instrument that subtracts the elapsed travel distance as the vehicle travels. You can know the distance. The physical remaining distance meter thus obtained does not increase or decrease as sharply as the current electric remaining distance meter, is capable of stable reading, is simple in structure, and is inexpensive.
[0014]
If a car navigation system or a mobile phone is installed in an electric vehicle, and a location confirmation system and a charging facility are also installed in a support base to create a system that communicates with each other, an electric vehicle will be installed in the support base if power shortage is predicted. By stopping and charging, adding or replacing modules, or connecting and connecting power source trailers, it is possible to prevent getting stuck on the road, and the continuous operation of electric vehicles will be completed as a social system .
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an electric vehicle and a continuous operation guarantee system thereof according to the present invention will be described with reference to FIGS. 1 to 5.
[0016]
FIG. 1 shows a state in which a battery increasing / decreasing unit 4 is provided in a rearmost space 5 in the cabin of the electric vehicle 1, and three battery modules 2 are mounted in the increasing / decreasing unit 4.
[0017]
The battery module 2 of the present embodiment is a nickel-metal hydride battery, and has an output voltage of 12 V and a battery capacity of 95 Ah (5 hours) by connecting ten cells in series. The external dimensions are 12cm wide x 18cm high x 40cm long, the volume is 8 liters, the weight is 19kg, the market price is about 200,000 yen, and it is said that price reduction is almost impossible. In the present embodiment, a fixed part battery 3 (see FIG. 4) configured by connecting five modules in series is fixedly installed under the floor of the vehicle body. The battery increasing / decreasing unit 4 can be provided at one or more places, such as below the hood (not shown), in addition to the rearmost space 5, and is mounted so that each module can be easily attached and detached. In the present embodiment, the number of mounted modules can be increased or decreased between 5 and 8 as necessary.
[0018]
For reference, in the case of a lithium ion battery, one cell has a cylindrical shape with a diameter of 67 mm and a length of 410 mm, and eight cells are connected in series to form an integrated body. In this case, this one package may be configured as one battery module, or a battery module may be configured with one cell or a plurality of cells. Further, there is also a type in which five consumer-use spiral cells are connected in series to form a cylinder, and five cylinders are connected in series to form a module, and an output voltage of 30 V and a battery capacity of 90 Ah (3 hours) are obtained. However, in any case, there is no international standard for the external dimensions, and it is considered that a smaller module can be manufactured due to its structure.
[0019]
FIG. 2 shows a connection state of the power line 6 when the number of the modules 2 housed in the increase / decrease unit 4 is increased / decreased. Modules 2 are connected in series by adding connecting members 7 as necessary as indicated by broken lines, and a power line 6a from fixed part battery 3 and a power line 6b to controller 8 (see FIG. 4) are connected to connection terminals at both ends. I do. When no module 2 is mounted on the increase / decrease unit 4, the power lines 6a and 6b are connected as shown by solid lines.
[0020]
Next, a description will be given of the grounds in which the total number of battery modules 2 mounted as described above can be changed from 5 to 8 in the present embodiment. Analyzing the actual usage patterns of automobiles, assuming that 30 million vehicles will travel on a weekday, out of a total of 75 million vehicles registered nationwide, the distribution of travel distances is as shown in Table 1. .
[0021]
[Table 1]
Figure 2004262357
From Table 1, the daily mileage is surprisingly short, 3% of approximately 800,000 vehicles less than 30 km, 11% of vehicles up to 40 km, 31% of vehicles up to 50 km, 66% of vehicles up to 60 km, It can be seen that 78% of the vehicles up to 70 km have a running distance of about 70 km or less per day for nearly 80% of automobiles. This reflects the fact that private cars are only used to assist with daily work and services, except for business cars, which run all day, and corporate private cars do not usually go out.
[0022]
On the other hand, according to 24 battery modules of 12 V, 95 Ah mounted on an electric vehicle having a total weight of 18,15 kg and occupying five passengers, it is roughly calculated from the fact that the mileage is 215 km per charge, which is approximately 1 The battery modules 2 can travel approximately 9 km, and the required number of mounted modules is five as shown in the right column of Table 1 when the traveling distance per day is 40 km and six when the traveling distance is 50 km. , 60 km and 7 at 70 km, and the cost of the battery is 1,000,000 yen to 1.6 million yen. On the other hand, when the daily mileage is 120 km or more, 15 or more, and 3 million yen or more are required. In addition, it is rare that the vehicle travels 120 km to carry out daily work or business. Thus, it can be seen that the cost required for the battery to be mounted can be significantly reduced by targeting about 80% of the car use cases where the daily mileage is less than 70 km.
[0023]
Furthermore, as in the present embodiment, five modules are fixedly installed as the fixed part battery 3 and three modules are installed in the increase / decrease part space so that each module can be easily attached and detached. For the user, the cost can be significantly reduced by removing excess battery capacity for different daily usage patterns.
[0024]
That is, as shown in Table 2, as a manufacturing standard, eight modules are mounted and shipped. In the case of a customer whose planned daily mileage per day is less than 63 km, one module is removed. In the case of a customer of less than 54 km, two are removed to make six, and in the case of a customer of less than 45 km, all three increase / decrease parts are removed, and a fixed part battery 3 composed of five modules is provided. With only this, the cost and weight of the battery to be mounted can be reduced from 1.6 million yen and 152 kg to 1 million yen and 95 kg.
[0025]
[Table 2]
Figure 2004262357
The planned daily mileage of each electric vehicle can be easily obtained by checking the integrated odometer of the currently used gasoline vehicle. For example, as shown in Table 3, the mileage value at the end of work is transcribed once a day from a car driving log, and the calculated actual mileage for each day is displayed in a section such as the right column. By plotting, the number of modules required for the demand distance can be known at a glance. The example in Table 3 is an example of an irregular use of an automobile. In such a case, it is preferable to use a gasoline-powered vehicle as it is because it is inappropriate to substitute an electric vehicle. On this occasion, it is possible to review the management and operation of all owned vehicles and develop a plan to use electric vehicles for regular operation.
[0026]
[Table 3]
Figure 2004262357
When the total number of mounted modules is reduced from eight to five, the total voltage changes to 96 V, 84 V, 72 V, and 60 V. However, the driving force controller 8 is basically a chopper transformer, and the design voltage is almost zero. It has been found that a constant rated output is continuously supplied to the motor until it is reduced by half. Depending on other conditions, the undervoltage is compensated for by an excessive current, and according to an empirical rule, the battery capacity is attenuated more quickly, that is, the mileage of the electric vehicle is reduced.
[0027]
Next, FIG. 3 shows an external electric power loaded on a power source trailer (not shown; see the electric vehicle power supply device disclosed in Japanese Patent Application Laid-Open No. 7-76228) when the electric vehicle runs out of electric power. This shows an external power source receiving port that is provided in the center of the rear of the vehicle body in advance to connect the power source and immediately restore self-propelling ability. The receiving port 11 is composed of a box body 12 and a lid body 13. In a normal case where the electric vehicle travels alone, the lid 13 is closed, and as shown in the wiring diagram of FIG. A driving force line circuit 15 for connecting the controller 14 with the battery 14 composed of the fixed part battery 3 and the battery module 2 of the increasing / decreasing part 4 is formed. In this case, the connection plug 16 attached to the lid 13 is fitted in the power terminal holes 17a and 17b.
[0028]
To receive external power, the lid 13 is opened, and a connection plug for external power is fitted into the opened power terminal holes 17a and 17b. The battery 14 mounted on the electric vehicle can also be charged using the terminal holes 17a and 17c.
[0029]
In FIGS. 3 and 4, reference numeral 18 denotes an auxiliary circuit, and reference numeral 19 denotes a connection part thereof.
[0030]
Further, in the above description, the example in which the power source trailer is connected when the electric vehicle runs out of electric power has been described. However, as shown in FIG. The self-propelling ability can be similarly recovered by mounting the battery on the increasing / decreasing unit 4 and connecting it in parallel with the fixed unit battery 3. More simply, the battery module 2 of the increasing / decreasing unit 4 shown in FIG. 4A may be replaced with a fully charged battery module.
[0031]
Next, FIG. 5 shows a panel portion 21 of the remaining travelable distance meter of the electric vehicle. Whereas the same type of existing instruments convert the remaining capacity of the battery into the remaining distance and many can only display the relative area, the remaining distance display unit 22 of the present embodiment is defined by the total number of battery modules mounted. The theoretical maximum possible travel distance is used as a starting value, the actual traveled distance value is subtracted from the distance value, and the current value is read on a scale.
[0032]
The starting value can be automatically reset in conjunction with the overcharge prevention device when charging the battery. The reset value is, of course, different for individual electric vehicles. Since the purchaser has selected the number of battery modules with no waste in each planned operation, the number may be specified by the knob 23. The actual distance traveled can be obtained by reading the changed value of the integrated odometer, which is permanently installed in all current vehicles, mechanically or electronically and inputting it to a calculation chip, or transmitting a pulse and transmitting a pulse. It can be counted and subtracted from the counter. It is preferable to use a distance display bar 22a composed of a light emitting diode bar graph for display, and the example shows that the remaining distance is 13 km.
[0033]
Zero scale does not mean zero remaining battery capacity. When driving an electric vehicle, there are times when the reaction slows down even when the accelerator is depressed. This is because the voltage begins to drop sharply as a result of battery power consumption, at which point the voltage is reduced by 30% and the depth of discharge is close to 70%. This position can be defined as zero scale. In practice, after that, although the voltage drops sharply, the electric vehicle can still run for several kilometers without acceleration.
[0034]
If the interval between the scale zero and the maximum scale is set to be long, the remaining distance display unit 22 that is easy to read can be obtained. An electronic monitor screen may be used in place of the bar graph, but values exceeding the maximum scale are preferably scrolled and hidden to prevent confusion.
[0035]
If unplanned charging is performed, the remaining distance meter does not reflect the actual situation, and thus adjustment is required. There are three types of unplanned charging: opportunity powering, adding or replacing lending modules, and lending external power source trailers.
[0036]
In the case of the opportunity power supply, the support base personnel uses a pulse transmitter (not shown) to input the number of pulses obtained by converting the power supply time to the number of traveled kilometers to the correction circuit to increase the distance display. The conversion can be programmed in the pulse transmitter based on the power supply amperage value. Adding or exchanging modules also increases the display. Pulse transmission may be wired or remote control wireless.
[0037]
In the case of module lending, the terminal voltage is 12 V and the depth of discharge is zero when the new module is fully charged, whereas the mounted module in use is reduced to 9 V and the depth of discharge 70% in many cases. However, since a backflow prevention diode (not shown) is inserted in the power line, the new module power is first drawn by the controller before the equalizer (not shown) starts operating, and then reaches an equilibrium state.
[0038]
Regardless of what kind of display adjustment is performed in the middle of this remaining distance meter, if regular night charging is performed, the remaining distance meter is linked to the overcharge prevention device and is always restored to the normal starting value. Adjustment can also be increased or decreased by multiplying by a certain coefficient, even when a strong solar battery is attached to the vehicle body or when the use of an air conditioner or the like has a great effect on the running energy.
[0039]
When the operation is continued by attaching an external power source trailer to the electric vehicle, the display is displayed on the distance display unit 25 by switching the toggle switch 24. In this case, using a pulse transmission, a starting value actually measured and confirmed by the number of modules loaded on the trailer is entered.
[0040]
A warning switch 26 is provided on the panel unit 21. When the switch is turned on, a warning light 27 is lit, and when the remaining travelable distance reaches a predetermined memory value, for example, 7 km, the distance display bar 22a starts blinking and a warning is issued at the same time. It is configured to generate sound. If necessary, the peripheral map and the nearest support base are displayed on the monitor screen of the car navigation device at the same time, and communication with the support base can be started by a touch panel technique.
[0041]
As described above, the electric vehicle according to the present invention realizes the price reduction by individually reducing the surplus battery capacity corresponding to each usage example. An operation support system is indispensable.
[0042]
The continuous operation guarantee system for an electric vehicle according to the present invention includes a car navigation or a mobile phone provided in the electric vehicle, a position confirmation system at a support base, and a charging facility. By the communication means for communicating with each other, when a power shortage is predicted, the electric vehicle can stop at a support base to receive an opportunity power supply, add or replace a module, or connect and connect a power source trailer, It prevents getting stuck on the road and ensures continuous operation.
[0043]
In addition, electric vehicle repair and maintenance equipment and personnel are located at the support base, which is the core of the continuous operation assurance system, and sales staff are also on duty to exhibit new vehicles and participate in test drive and sales operations, thereby saving land investment. In addition, a rotating multi-story parking lot and charging facility (not shown; refer to the charging device for an electric vehicle secondary battery disclosed in Japanese Patent No. 2691117) is installed in order to perform the above-mentioned operations. In cooperation with the support base of the company by means of communication means to perform the emergency service function thoroughly, giving all related drivers a sense of security, satisfying customers and satisfying sales, financial business associated with sales, insurance business associated with electric vehicle operation, these various It consists of a computer that performs calculations, a program, and a result feedback technology. Thus, building a continuous operation assurance system with a support base at the core will greatly contribute to the generalization of electric vehicles.
[0044]
【The invention's effect】
According to the electric vehicle and the continuous operation assurance system of the present invention, the battery mounted on the electric vehicle is installed in two parts, the fixed part and the increase / decrease part. The battery capacity can be adjusted more finely, and the price of the electric vehicle can be reduced.
[0045]
In addition, if a receiving port that can receive supply of external power for traveling other than the on-board battery and power for charging to the on-board battery is provided in the center of the rear of the vehicle body, connection and charging of the external power for traveling can be easily performed. .
[0046]
In addition, by constructing a continuous operation assurance system equipped with an electric vehicle, its support base, and communication means including a mutual location confirmation function, the continuous operation of the electric vehicle will be guaranteed and the electric vehicle will be widely used. can do.
[Brief description of the drawings]
FIG. 1 is a rear view showing an increase / decrease part of a battery in an embodiment of an electric vehicle of the present invention.
FIG. 2 is an explanatory diagram of a connection state of a battery module in an increase / decrease unit of the embodiment.
3A and 3B show a receiving port of the embodiment, wherein FIG. 3A is a perspective view showing a state where a lid is opened, and FIG. 3B is a longitudinal sectional view showing a state where the lid is closed.
4A and 4B show an electric circuit of the same embodiment, in which FIG. 4A is a circuit diagram in which a fixed portion and an increasing / decreasing portion are connected in series, and FIG. 4B is a circuit diagram in which a fixed portion and an increasing / decreasing portion are connected in parallel.
FIG. 5 is a front view of a panel unit of the remaining distance meter according to the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric vehicle 2 Battery module 3 Fixed part battery 4 Increasing / decreasing part 11 Receiving port 21 Panel part of mileage meter

Claims (9)

搭載バッテリ総容量を固定部と増減部に分けて設置し、増減部は車体シャシーより上部にかつ少なくとも1箇所以上配設され、各増減部は少なくとも電池モジュール1個を着脱できる空間を含んでいることを特徴とする電気自動車。The total installed battery capacity is divided into a fixed part and an increasing / decreasing part. The increasing / decreasing part is disposed above the chassis of the vehicle and at least at one or more places. An electric vehicle, characterized in that: 搭載バッテリ以外の走行用外部電力及び搭載バッテリへの充電用電力の供給を受け入れることができる受け入れ口を車体後部中央に有し、搭載バッテリとコントローラとを結ぶ動力回路に受け入れ口を直列に接続したことを特徴とする電気自動車。In the center of the rear of the vehicle body, there is a receiving port that can receive the supply of external power for traveling other than the on-board battery and charging power to the on-board battery, and the receiving port is connected in series to a power circuit connecting the on-board battery and the controller. An electric vehicle, characterized in that: 搭載バッテリ以外の走行用電力を供給するトレーラ連結機構を受け入れ口の下方位置に配設したことを特徴とする請求項2記載の電気自動車。3. The electric vehicle according to claim 2, wherein a trailer connecting mechanism for supplying running power other than the on-board battery is disposed below the receiving port. 搭載バッテリ総容量を固定部と増減部に分けて設置し、増減部は車体シャシーより上部にかつ少なくとも1箇所以上配設され、各増減部は少なくとも電池モジュール1個を着脱できる空間を含み、搭載バッテリ以外の走行用外部電力及び搭載バッテリへの充電用電力の供給を受け入れることができる受け入れ機構を車体後部中央に有し、搭載バッテリとコントローラとを結ぶ動力回路に受け入れ機構を接続し、搭載バッテリ以外の走行用電力を供給するトレーラ連結機構を受け入れ口の下方位置に配設したことを特徴とする電気自動車。The total capacity of the installed battery is divided into a fixed part and an increase / decrease part, and the increase / decrease part is disposed above the chassis of the vehicle and at least one place. Each increase / decrease part includes a space in which at least one battery module can be attached and detached. A receiving mechanism that can receive supply of running external power other than the battery and charging power to the mounted battery is provided in the center of the rear of the vehicle body, and the receiving mechanism is connected to a power circuit connecting the mounted battery and the controller. An electric vehicle, characterized in that a trailer connecting mechanism for supplying power for traveling other than the above is arranged at a position below the receiving port. 搭載バッテリをフル再充電した場合に搭載バッテリ総容量に応じた走行可能距離数を表示し、以後走行した距離数を減じて行く走行可能残存距離計を有することを特徴とする電気自動車。An electric vehicle, comprising: a travelable remaining distance meter that displays the number of travelable distances in accordance with the total capacity of an onboard battery when the onboard battery is fully recharged, and thereafter reduces the number of traveled distances. 搭載バッテリ以外の走行用外部電力を供給する場合にも走行可能残存距離を示すことができる共用距離計と、共用の距離調整手段とを有することを特徴とする請求項5記載の電気自動車。6. The electric vehicle according to claim 5, further comprising a shared distance meter capable of indicating a remaining travelable distance even when an external power for driving other than the on-board battery is supplied, and shared distance adjusting means. 電気自動車と、充電設備を有する電気自動車用のサポート基地と、電気自動車とサポート基地のそれぞれに設けられた位置確認能力を有する通信手段とを備えていることを特徴とする電気自動車の継続運行保証システム。A continuous operation guarantee for an electric vehicle, comprising: an electric vehicle, a support base for the electric vehicle having a charging facility, and communication means having a position confirmation capability provided in each of the electric vehicle and the support base. system. 電気自動車と、充電設備並びに電力供給トレーラを保有するサポート基地と、電池モジュールの運搬及び電力供給トレーラの曳航ができるサービス車両と、電気自動車とサポート基地とサービス車両のそれぞれに設けられた位置確認能力を有する通信手段とを備えていることを特徴とする電気自動車の継続運行保証システム。An electric vehicle, a support base having a charging facility and a power supply trailer, a service vehicle capable of transporting a battery module and towing the power supply trailer, and a position confirmation capability provided in each of the electric vehicle, the support base, and the service vehicle A continuous operation assurance system for an electric vehicle, comprising: a communication unit having: 電気自動車と、集積駐車充電設備を設けたサポート基地と、サービス車両と、サポート基地に配設された電気自動車の販売・修理・保全・救急・保険などのデータを統括する集中管理機構と、各電気自動車と各サポート基地を結ぶ通信網とを備えていることを特徴とする電気自動車の継続運行保証システム。An electric vehicle, a support base with integrated parking and charging facilities, a service vehicle, and a centralized management mechanism that manages data such as sales, repair, maintenance, emergency services, and insurance for the electric vehicles installed at the support base. A continuous operation guarantee system for an electric vehicle, comprising: an electric vehicle and a communication network connecting each support base.
JP2003055347A 2003-03-03 2003-03-03 Electric car and its continuous operation guarantee system Pending JP2004262357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055347A JP2004262357A (en) 2003-03-03 2003-03-03 Electric car and its continuous operation guarantee system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055347A JP2004262357A (en) 2003-03-03 2003-03-03 Electric car and its continuous operation guarantee system

Publications (1)

Publication Number Publication Date
JP2004262357A true JP2004262357A (en) 2004-09-24

Family

ID=33119385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055347A Pending JP2004262357A (en) 2003-03-03 2003-03-03 Electric car and its continuous operation guarantee system

Country Status (1)

Country Link
JP (1) JP2004262357A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116799A (en) * 2005-10-19 2007-05-10 Leben Hanbai:Kk Battery managing system
JP2008303059A (en) * 2007-06-11 2008-12-18 Komatsu Utility Co Ltd Work vehicle
JP2010071736A (en) * 2008-09-17 2010-04-02 Aisin Aw Co Ltd System, method, and program for providing battery information
JP2010089719A (en) * 2008-10-10 2010-04-22 Toyota Motor Corp Power supply system for hybrid car
FR2945988A1 (en) * 2009-06-02 2010-12-03 Leoni Wiring Systems France System for managing booster batteries of electric motor vehicle, has station comprising set of booster batteries, where each booster battery is placed in location of electric vehicle for electrically connecting with electric element
US7900728B2 (en) 2008-06-20 2011-03-08 Toyota Jidosha Kabushiki Kaisha Vehicle
JP2011193624A (en) * 2010-03-15 2011-09-29 Denso Corp Battery system for electric vehicle, electric vehicle, and method of mounting subbattery in electric vehicle
JP2012151916A (en) * 2011-01-14 2012-08-09 Jsol Corp Battery system
US8515605B2 (en) 2007-05-23 2013-08-20 Toyota Jidosha Kabushiki Kaisha On-vehicle equipment control system and vehicle
JP2013222292A (en) * 2012-04-16 2013-10-28 Sony Corp Information processing device, information processing method, and program
WO2014204809A1 (en) * 2013-06-18 2014-12-24 Atieva, Inc. Series booster pack for battery system capacity recovery
JP2018098033A (en) * 2016-12-13 2018-06-21 ダイムラー・アクチェンゲゼルシャフトDaimler AG Battery module structure for electric truck
JP2019135909A (en) * 2019-05-02 2019-08-15 渡邉 雅弘 Electric vehicle
CN115008992A (en) * 2022-06-13 2022-09-06 孟宪恒 Carrying mode of automobile power battery
WO2022196513A1 (en) * 2021-03-16 2022-09-22 いすゞ自動車株式会社 Driving system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041209A (en) * 1973-08-20 1975-04-15
JPH03155308A (en) * 1989-11-11 1991-07-03 Aisin Aw Co Ltd Power source unit for motor vehicle
JPH0378632U (en) * 1989-12-05 1991-08-09
JPH04334906A (en) * 1991-05-08 1992-11-24 Honda Motor Co Ltd Electric motor vehicle with auxiliary power source
JPH1086678A (en) * 1996-09-17 1998-04-07 Nippon Home Keizai Kenkyusho:Kk Electric vehicle
JPH10174211A (en) * 1996-10-09 1998-06-26 Nippon Home Keizai Kenkyusho:Kk Electric vehicle
JP3069096B1 (en) * 1999-07-28 2000-07-24 廣瀬 徳三 Electric vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041209A (en) * 1973-08-20 1975-04-15
JPH03155308A (en) * 1989-11-11 1991-07-03 Aisin Aw Co Ltd Power source unit for motor vehicle
JPH0378632U (en) * 1989-12-05 1991-08-09
JPH04334906A (en) * 1991-05-08 1992-11-24 Honda Motor Co Ltd Electric motor vehicle with auxiliary power source
JPH1086678A (en) * 1996-09-17 1998-04-07 Nippon Home Keizai Kenkyusho:Kk Electric vehicle
JPH10174211A (en) * 1996-10-09 1998-06-26 Nippon Home Keizai Kenkyusho:Kk Electric vehicle
JP3069096B1 (en) * 1999-07-28 2000-07-24 廣瀬 徳三 Electric vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116799A (en) * 2005-10-19 2007-05-10 Leben Hanbai:Kk Battery managing system
US9731667B2 (en) 2007-05-23 2017-08-15 Toyota Jidosha Kabushiki Kaisha On-vehicle equipment control system and vehicle
US8515605B2 (en) 2007-05-23 2013-08-20 Toyota Jidosha Kabushiki Kaisha On-vehicle equipment control system and vehicle
JP2008303059A (en) * 2007-06-11 2008-12-18 Komatsu Utility Co Ltd Work vehicle
US7900728B2 (en) 2008-06-20 2011-03-08 Toyota Jidosha Kabushiki Kaisha Vehicle
JP2010071736A (en) * 2008-09-17 2010-04-02 Aisin Aw Co Ltd System, method, and program for providing battery information
JP2010089719A (en) * 2008-10-10 2010-04-22 Toyota Motor Corp Power supply system for hybrid car
FR2945988A1 (en) * 2009-06-02 2010-12-03 Leoni Wiring Systems France System for managing booster batteries of electric motor vehicle, has station comprising set of booster batteries, where each booster battery is placed in location of electric vehicle for electrically connecting with electric element
JP2011193624A (en) * 2010-03-15 2011-09-29 Denso Corp Battery system for electric vehicle, electric vehicle, and method of mounting subbattery in electric vehicle
JP2012151916A (en) * 2011-01-14 2012-08-09 Jsol Corp Battery system
JP2013222292A (en) * 2012-04-16 2013-10-28 Sony Corp Information processing device, information processing method, and program
US9707854B2 (en) 2013-06-18 2017-07-18 Atieva, Inc. Series booster pack for battery system capacity recovery
WO2014204809A1 (en) * 2013-06-18 2014-12-24 Atieva, Inc. Series booster pack for battery system capacity recovery
JP2018098033A (en) * 2016-12-13 2018-06-21 ダイムラー・アクチェンゲゼルシャフトDaimler AG Battery module structure for electric truck
JP2019135909A (en) * 2019-05-02 2019-08-15 渡邉 雅弘 Electric vehicle
WO2022196513A1 (en) * 2021-03-16 2022-09-22 いすゞ自動車株式会社 Driving system
CN115008992A (en) * 2022-06-13 2022-09-06 孟宪恒 Carrying mode of automobile power battery

Similar Documents

Publication Publication Date Title
US8217620B2 (en) Method and system for retrofitting a full hybrid to be a plug-in hybrid
JP5596789B2 (en) Method and apparatus for managing stored energy in a vehicle powered by a battery
JP2004262357A (en) Electric car and its continuous operation guarantee system
JP6160928B2 (en) In-vehicle device and charge / discharge system
EP2736759B1 (en) Apparatus, method and article for providing vehicle diagnostic data
KR101087942B1 (en) Storage battery, storage battery receiving device, storage battery charging device, and usage fee settlement device for storage battery
US7928693B2 (en) Plugin hybrid electric vehicle with V2G optimization system
US20120303259A1 (en) Providing Roadside Charging Services
JP2009137366A (en) Battery exchange system
JP2011096233A (en) Common battery management system for driving vehicle
CN102044889A (en) Charging network system matched with electric vehicle and system-based charging method
Karner et al. EV charging infrastructure roadmap
Xia et al. Impact of battery size and energy cost on the market acceptance of blended plug-in hybrid electric vehicles
Alam et al. Conversion of an Indian Three wheeler Scooter into Hybrid Fuel Cell Ni-MH battery vehicle and validation of the vehicle model for the Bajaj Three wheeler Scooter
WO2024062947A1 (en) Information providing method, management system, and charge/discharge system
CN211731060U (en) Plug-in exchangeable battery system device and electric vehicle
JP2023125077A (en) Electric power management device, electric power management system mounted with the same, electric power management method, and electric power management program
Alam et al. Conversion of a golf car into a hybrid fuel cell li-ion battery vehicle and validation of the vehicle model for the 2006 GEM eL golf car using PSAT
KR20230036575A (en) Extended mileage system for electric vehicles using detachable auxiliary batteries
Schey et al. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Naval Air Station Whidbey Island: Task 3
CN110667415A (en) Electric power auxiliary system of electric vehicle
Carriere The future potential of electric and hybrid vehicles
Schey et al. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Marine Corps Base Camp Lejeune. Task 3
Yanni Electric vehicle test and evaluation program: Site operators' experience
JP2022141045A (en) Server, power management system and power management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105