JP2004260980A - Method for detecting abnormality in constant voltage stepping motor drive circuit - Google Patents

Method for detecting abnormality in constant voltage stepping motor drive circuit Download PDF

Info

Publication number
JP2004260980A
JP2004260980A JP2003052149A JP2003052149A JP2004260980A JP 2004260980 A JP2004260980 A JP 2004260980A JP 2003052149 A JP2003052149 A JP 2003052149A JP 2003052149 A JP2003052149 A JP 2003052149A JP 2004260980 A JP2004260980 A JP 2004260980A
Authority
JP
Japan
Prior art keywords
stepping motor
current
driver
voltage
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003052149A
Other languages
Japanese (ja)
Inventor
Shiro Takashima
志朗 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Printing Systems Ltd
Original Assignee
Hitachi Printing Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Printing Solutions Inc filed Critical Hitachi Printing Solutions Inc
Priority to JP2003052149A priority Critical patent/JP2004260980A/en
Publication of JP2004260980A publication Critical patent/JP2004260980A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Stepping Motors (AREA)
  • Character Spaces And Line Spaces In Printers (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the burnout of a stepping motor, by performing phase switching for the stepping motor before an overcurrent flows into the stepping motor using a transistor or FET driver that has no constant current function, and by detecting a failure if a conduction failure occurs in the driver. <P>SOLUTION: This constant voltage stepping motor drive circuit, that drives a stepping motor at a voltage that exceeds a rated voltage and that performs a drive phase switching for the stepping motor at a predetermined period, is provided with a detecting circuit that can detect a failure of a driver element that drives the motor such as the transistor or the FET, to detect if a conduction failure is occurring in the driver element under a condition that at least the stepping motor is not driven. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、複写機、プリンタ等の画像形成装置に使用される定電圧ステッピングモータの駆動回路の異常検出方法に関する。
【0002】
【従来の技術】
従来のステッピングモータのドライバ駆動回路は、低速回転時は単なるトランジスタを使いモータの定格電圧で動かす定電圧駆動と、定電流ドライバを使いモータの定格電圧以上の電圧を印加して使う定電流駆動があり、定電流駆動は定電流機能を有するICを使用する。定圧駆動方式はステピングモータの駆動速度が遅い場合に使用され定電流駆動はステッピングモータの駆動速度が速い場合に使用される。
【0003】
ステピングモータの駆動速度が速い場合に使われる定電流駆動回路は次ぎのようになっている。電源電圧が+24Vの場合、モータは通常定格電圧5V程度のものが選ばれる。定格電圧以上の電圧で駆動するためモータの電流の立ち上がりが早く高速回転でもトルクが発生し易い。定格を越える電圧をステッピングモータに印加し続けると、定格電流を越える電流がモータに流れ、+24Vで定格電圧+5V、定格電流1Aのステッピングモータを駆動した場合は4.8Aの電流がモータに流れ、モータは定格電流を越える電流により過熱し焼損発生の可能性がある。そのためモータが過熱しないよう電流を一定電流で制御する定電流ドライバを使用する。
【0004】
【発明が解決しようとする課題】
ステッピングモータは、回転させる場合励磁する巻線を切り換えて1ステップずつロータを動かすことにより回転させる。ステッピングモータの巻線はインダクターであるため相切り換えを行うと巻線電流の立ち上がりは過渡現象を起こし、巻線電流は徐々に増加する。そのため、ステッピングモータはステピングモータの定格電圧で使用する場合、電流の立ち上がりが遅く相の切り換えを高速で行うと巻線に電流が流れないため、高速では使用できなかった。高速で回転させるには巻線電流の立ち上がりを早くするため、ステッピングモータの定格電圧以上の電圧をステッピングモータに印加して巻線電流の立ち上がりを早くする方法が取られる。ステッピングモータに定格電圧以上の電圧を印加すると電流の立ち上がりは早くなるが、結果的にモータの定格電流以上に電流が流れてステッピングモータは焼損してしまう。このため、ステッピングモータに流れる電流を定格電流で抑えるためにPWM動作を行い定められた電流以上に電流が流れないような定電流ドライバを使用する必要があった。
【0005】
定電流ドライバは単なるトランジスタと異なり高価であり、定電流ドライバが導通状態で故障した場合はステッピングモータに定格電流以上の電流が流れ、ステッピングモータの焼損が発生する。
【0006】
本発明は、定電流機能をもたないトランジスタやFETのドライバを使用してステッピングモータに過電流が流れる前にステッピングモータの相切り換えを行い、かつドライバが導通故障した場合には故障を検出してステッピングモータの焼損を防止することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的は、定格電圧を越える電圧でステッピングモータを駆動し、決められた周期でステッピングモータの駆動相の切り換えを行う定電圧ステッピングモータ駆動回路において、トランジスタやFET等のモータを駆動するドライバ素子が故障した場合に検出可能な検出回路を有し、少なくてもステッピングモータを駆動していない状態でドライバ素子が導通故障しているか検出を行うことによって達成される。
【0008】
【発明の実施の形態】
図1に本発明のステッピングモータドライバの一実施例を示す。相信号発生回路1はステッピングモータの動作/停止を決定する制御信号M_ENB−N3と、ステッピングモータの回転方向を決定する制御信号M_CCW−N2と、ステッピングモータの回転速度を決定するための制御信号M_CLK−N4とで制御される。
【0009】
相信号発生回路1は、制御信号によりトランジスタ5を駆動し、ステッピングモータ6を回転させる。ダイオード7のカソードはトランジスタ5のコレクタに接続され、トランジスタ5がオン状態とオフ状態でダイオード7のアノード出力が変化する。ダイオード7のアノードは抵抗8と抵抗10で分圧され、ダイオード11とコンデンサ12でノイズ成分を除去して波形整形器13に入力し、論理レベルに変換する。
【0010】
次に本実施例の動作を説明する。
【0011】
ステッピングモータ6は、停止時かつ非励磁時はM_ENB−N3がデスイネーブル状態になっており、この時はM_CCW−N2とM_CLK−N4の状態に影響されず相信号発生回路1はトランジスタ5をオフする。トランジスタ5がオフの状態ではトランジスタ5のコレクタは+24Vになり、ダイオード7は逆バイアスされて非導通となる。この状態では図1のD点の電位は抵抗8と抵抗10で分圧された電圧になる。抵抗8と抵抗10はこの状態で波形整形器13がHレベル入力と認識できる値に設定されている。波形整形器13はトランジスタ5がオンしているとL入力を検出し、オフしている時にはHを件出する。D点の電圧はトランジスタ5に異常がない場合、トランジスタ5がOFFでH、トランジスタ5がONでLを検出する。
【0012】
ステッパ駆動時は定期的に相が切り替わる。図2に示す波形はステッパ駆動時の相電流を示しており、図3は図2に示す電流波形の詳細図である。ある相が励磁された時には電流は過渡現象を起して立ち上る。この時に電流が過渡的に立ち上って行く途中で励磁相の切り換えを繰り返すと、各相電流は一定電流が流れるようになる。このときの動作はステッパの定電流ドライバと同様の原理となり、各相の電流は定電流ドライバを使用した場合と同じく一定電流となる。この場合、各相に流れる電流は次式のようになる。
【0013】
【数1】

Figure 2004260980
【0014】
Io:相電流
V:電源電圧
L:モータの巻線インピーダンス
R:巻線抵抗
t:励磁切り換えからの時間
図4はA相が導通故障している場合であり、モータの駆動以前にD点がLであることを検出しトランジスタの導通故障を検出できる。
【0015】
本実施例では、ステッピングモータの定格を越える電圧を印加してモータをドライブするため、ヒータOFF中にドライバが導通故障を起した場合にモータの焼損やドライバの焼損を起さないようにドライブ停止時のドライバOFFをチェックする。ドライバ停止時にドライバの導通を検出した場合、モータおよびドライバの焼損防止のためドライブ電源の給電カット処理を行う。
【0016】
【発明の効果】
本発明によれば、ドライバを定電流機能のないトランジスタ等の単なる半導体スイッチを使う事により安価かつ小形のステッピングモータを提供でき、かつ、定格電圧以上の電圧で駆動する場合に問題となるドライバ異常時のモータ焼損防止のプロテクトをドライバの導通異常チェックを行うことにより、安全なステッピングモータドライバを提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す回路図。
【図2】本発明の一実施例における正常時動作波形図。
【図3】本発明の一実施例における正常時動作波形の電流詳細図。
【図4】本発明の一実施例における異常発生時動作波形図。
【符号の説明】
1 相信号発生回路
2 M_CCW−N(制御信号)
3 M_ENB−N(制御信号)
4 M_ENB−N(制御信号)
5 トランジスタ
6 ステッピングモータ
7、11 ダイオード
8、10 抵抗
12 コンデンサ
13 波形整形器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for detecting an abnormality in a drive circuit of a constant voltage stepping motor used in an image forming apparatus such as a copying machine and a printer.
[0002]
[Prior art]
Conventional stepping motor driver drive circuits consist of a constant voltage drive that operates at the motor rated voltage using a simple transistor at low speed rotation and a constant current drive that uses a constant current driver to apply a voltage higher than the motor rated voltage. The constant current drive uses an IC having a constant current function. The constant pressure driving method is used when the driving speed of the stepping motor is low, and the constant current driving is used when the driving speed of the stepping motor is high.
[0003]
The constant current driving circuit used when the driving speed of the stepping motor is high is as follows. When the power supply voltage is + 24V, a motor having a rated voltage of about 5V is usually selected. Since the motor is driven at a voltage equal to or higher than the rated voltage, the current of the motor rises quickly and torque is easily generated even at high speed rotation. When a voltage exceeding the rating is continuously applied to the stepping motor, a current exceeding the rated current flows to the motor. When a stepping motor having a rated voltage of +5 V and a rated current of 1 A is driven at +24 V, a current of 4.8 A flows to the motor. The motor is overheated by a current exceeding the rated current, and may cause burnout. Therefore, a constant current driver that controls the current with a constant current so that the motor does not overheat is used.
[0004]
[Problems to be solved by the invention]
When the stepping motor is rotated, the winding to be excited is switched to rotate the rotor by moving the rotor one step at a time. Since the winding of the stepping motor is an inductor, when phase switching is performed, the rise of the winding current causes a transient phenomenon, and the winding current gradually increases. For this reason, when the stepping motor is used at the rated voltage of the stepping motor, the current cannot be used at high speed because the current does not flow through the winding if the current rises slowly and the phase switching is performed at high speed. In order to rotate the motor at a high speed, a method of applying a voltage higher than the rated voltage of the stepping motor to the stepping motor to make the rising of the winding current earlier is adopted in order to make the rising of the winding current faster. When a voltage higher than the rated voltage is applied to the stepping motor, the current rises faster, but as a result, the current flows more than the rated current of the motor and the stepping motor is burned. For this reason, in order to suppress the current flowing through the stepping motor at the rated current, it is necessary to use a constant current driver that performs a PWM operation and does not allow the current to flow more than a predetermined current.
[0005]
A constant current driver is expensive, unlike a simple transistor. If the constant current driver fails in a conductive state, a current exceeding the rated current flows through the stepping motor, and the stepping motor is burned.
[0006]
The present invention uses a transistor or FET driver that does not have a constant current function to perform phase switching of a stepping motor before an overcurrent flows through the stepping motor, and to detect a failure when the driver has a conduction failure. To prevent burnout of the stepping motor.
[0007]
[Means for Solving the Problems]
The above object is to provide a driver element for driving a motor such as a transistor or a FET in a constant voltage stepping motor driving circuit that drives a stepping motor at a voltage exceeding a rated voltage and switches the driving phase of the stepping motor at a predetermined cycle. Is achieved by detecting whether or not the driver element has a conduction failure at least in a state where the stepping motor is not driven, in a case where the stepping motor is not driven.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the stepping motor driver according to the present invention. The phase signal generating circuit 1 includes a control signal M_ENB-N3 for determining the operation / stop of the stepping motor, a control signal M_CCW-N2 for determining the rotation direction of the stepping motor, and a control signal M_CLK for determining the rotation speed of the stepping motor. -N4.
[0009]
The phase signal generation circuit 1 drives the transistor 5 according to the control signal, and rotates the stepping motor 6. The cathode of the diode 7 is connected to the collector of the transistor 5, and the anode output of the diode 7 changes when the transistor 5 is turned on and off. The anode of the diode 7 is divided by a resistor 8 and a resistor 10, and a noise component is removed by a diode 11 and a capacitor 12, input to a waveform shaper 13, and converted into a logic level.
[0010]
Next, the operation of this embodiment will be described.
[0011]
When the stepping motor 6 is stopped and de-energized, M_ENB-N3 is in a disabled state. At this time, the phase signal generating circuit 1 turns off the transistor 5 without being affected by the states of M_CCW-N2 and M_CLK-N4. I do. When the transistor 5 is off, the collector of the transistor 5 becomes +24 V, and the diode 7 is reverse-biased and becomes non-conductive. In this state, the potential at point D in FIG. 1 is a voltage divided by the resistors 8 and 10. The resistances 8 and 10 are set to values that the waveform shaper 13 can recognize as an H level input in this state. The waveform shaper 13 detects the L input when the transistor 5 is on, and detects the H input when the transistor 5 is off. When there is no abnormality in the transistor 5 at the point D, the transistor 5 detects H when the transistor 5 is OFF and L when the transistor 5 is ON.
[0012]
When the stepper is driven, the phase is periodically switched. The waveform shown in FIG. 2 shows the phase current when the stepper is driven, and FIG. 3 is a detailed view of the current waveform shown in FIG. When a phase is excited, the current rises with a transient. At this time, if the switching of the excitation phase is repeated while the current transiently rises, a constant current flows in each phase current. The operation at this time is based on the same principle as that of the constant current driver of the stepper, and the current of each phase becomes constant as in the case of using the constant current driver. In this case, the current flowing in each phase is as follows.
[0013]
(Equation 1)
Figure 2004260980
[0014]
Io: phase current V: power supply voltage L: winding impedance R of the motor R: winding resistance t: time from excitation switching FIG. 4 shows a case where the A-phase has a conduction failure, and the point D is set before the motor is driven. By detecting that it is L, the conduction failure of the transistor can be detected.
[0015]
In this embodiment, since the motor is driven by applying a voltage exceeding the rating of the stepping motor, the drive is stopped so as not to cause the motor burnout or the driver burnout when the driver causes a conduction failure while the heater is OFF. Check the driver OFF at the time. When the conduction of the driver is detected when the driver is stopped, power supply cut processing of the drive power supply is performed to prevent burnout of the motor and the driver.
[0016]
【The invention's effect】
According to the present invention, an inexpensive and small-sized stepping motor can be provided by using a simple semiconductor switch such as a transistor without a constant current function as a driver, and a driver abnormality which becomes a problem when driven at a voltage higher than a rated voltage is provided. A safe stepping motor driver can be provided by checking the conduction abnormality of the driver to protect the motor from burnout at the time.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing one embodiment of the present invention.
FIG. 2 is a normal operation waveform diagram in one embodiment of the present invention.
FIG. 3 is a detailed current diagram of a normal operation waveform in one embodiment of the present invention.
FIG. 4 is an operation waveform diagram at the time of occurrence of an abnormality in one embodiment of the present invention.
[Explanation of symbols]
1-phase signal generation circuit 2 M_CCW-N (control signal)
3 M_ENB-N (control signal)
4 M_ENB-N (control signal)
5 Transistor 6 Stepping motor 7, 11 Diode 8, 10 Resistance 12 Capacitor 13 Waveform shaper

Claims (1)

定格電圧を越える電圧でステッピングモータを駆動し、決められた周期でステッピングモータの駆動相の切り換えを行う定電圧ステッピングモータ駆動回路において、トランジスタやFET等のモータを駆動するドライバ素子が故障した場合に検出可能な検出回路を有し、少なくてもステッピングモータを駆動していない状態でドライバ素子が導通故障しているか検出を行うことを特徴とする定電圧ステッピングモータ駆動回路の異常検出方法。In a constant voltage stepping motor drive circuit that drives a stepping motor at a voltage exceeding the rated voltage and switches the driving phase of the stepping motor at a fixed cycle, if a driver element that drives a motor such as a transistor or FET fails. An abnormality detection method for a constant-voltage stepping motor drive circuit, comprising: a detection circuit capable of detection;
JP2003052149A 2003-02-28 2003-02-28 Method for detecting abnormality in constant voltage stepping motor drive circuit Pending JP2004260980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052149A JP2004260980A (en) 2003-02-28 2003-02-28 Method for detecting abnormality in constant voltage stepping motor drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052149A JP2004260980A (en) 2003-02-28 2003-02-28 Method for detecting abnormality in constant voltage stepping motor drive circuit

Publications (1)

Publication Number Publication Date
JP2004260980A true JP2004260980A (en) 2004-09-16

Family

ID=33117084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052149A Pending JP2004260980A (en) 2003-02-28 2003-02-28 Method for detecting abnormality in constant voltage stepping motor drive circuit

Country Status (1)

Country Link
JP (1) JP2004260980A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539420A (en) * 2006-05-19 2009-11-19 エシコン エンド−サージェリー,インク. Electric surgical instrument
US7959050B2 (en) 2005-07-26 2011-06-14 Ethicon Endo-Surgery, Inc Electrically self-powered surgical instrument with manual release
US8028885B2 (en) 2006-05-19 2011-10-04 Ethicon Endo-Surgery, Inc. Electric surgical instrument with optimized power supply and drive
US8269121B2 (en) 2006-05-19 2012-09-18 Ethicon Endo-Surgery, Inc. Force switch
US8627993B2 (en) 2007-02-12 2014-01-14 Ethicon Endo-Surgery, Inc. Active braking electrical surgical instrument and method for braking such an instrument
US8627995B2 (en) 2006-05-19 2014-01-14 Ethicon Endo-Sugery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US9554803B2 (en) 2005-07-26 2017-01-31 Ethicon Endo-Surgery, Llc Electrically self-powered surgical instrument with manual release
US9662116B2 (en) 2006-05-19 2017-05-30 Ethicon, Llc Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US9848872B2 (en) 2005-07-26 2017-12-26 Ethicon Llc Surgical stapling and cutting device
US10314583B2 (en) 2005-07-26 2019-06-11 Ethicon Llc Electrically self-powered surgical instrument with manual release

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8672951B2 (en) 2005-07-26 2014-03-18 Ethicon Endo-Surgery, Inc. Electrically self-powered surgical instrument with manual release
US7959050B2 (en) 2005-07-26 2011-06-14 Ethicon Endo-Surgery, Inc Electrically self-powered surgical instrument with manual release
US11234695B2 (en) 2005-07-26 2022-02-01 Cilag Gmbh International Surgical stapling and cutting device
US11172930B2 (en) 2005-07-26 2021-11-16 Cilag Gmbh International Electrically self-powered surgical instrument with manual release
US10314583B2 (en) 2005-07-26 2019-06-11 Ethicon Llc Electrically self-powered surgical instrument with manual release
US9855038B2 (en) 2005-07-26 2018-01-02 Ethicon Llc Surgical stapling and cutting device
US9848872B2 (en) 2005-07-26 2017-12-26 Ethicon Llc Surgical stapling and cutting device
US9554803B2 (en) 2005-07-26 2017-01-31 Ethicon Endo-Surgery, Llc Electrically self-powered surgical instrument with manual release
US9622744B2 (en) 2006-05-19 2017-04-18 Ethicon Endo-Surgery, Llc Electrical surgical instrument with one-handed operation
US9687234B2 (en) 2006-05-19 2017-06-27 Ethicon L.L.C. Electrical surgical instrument with optimized power supply and drive
US8573462B2 (en) 2006-05-19 2013-11-05 Ethicon Endo-Surgery, Inc. Electrical surgical instrument with optimized power supply and drive
US8592700B2 (en) 2006-05-19 2013-11-26 Ethicon Endo-Surgery, Inc. Force switch
US11759203B2 (en) 2006-05-19 2023-09-19 Cilag Gmbh International Electrical surgical instrument with minimum closure distance for staple firing control
US8627995B2 (en) 2006-05-19 2014-01-14 Ethicon Endo-Sugery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8292157B2 (en) 2006-05-19 2012-10-23 Ethicon Endo-Surgery, Inc. Electrical surgical instrument with optimized power supply and drive
US8827138B2 (en) 2006-05-19 2014-09-09 Ethicon Endo-Sugery, Inc. Method for operating an electrical surgical instrument with optimal tissue compression
US8844791B2 (en) 2006-05-19 2014-09-30 Ethicon Endo-Surgery, Inc. Electrical surgical instrument with optimal tissue compression
US8872046B2 (en) 2006-05-19 2014-10-28 Ethicon Endo-Surgery, Inc. Force switch
US9439651B2 (en) 2006-05-19 2016-09-13 Ethicon Endo-Surgery, Llc Methods for cryptographic identification of interchangeable parts for surgical instruments
US8286846B2 (en) 2006-05-19 2012-10-16 Ethicon Endo-Surgery, Inc. Method for operating an electrical surgical instrument with optimal tissue compression
JP2009539420A (en) * 2006-05-19 2009-11-19 エシコン エンド−サージェリー,インク. Electric surgical instrument
US9666389B2 (en) 2006-05-19 2017-05-30 Ethicon Endo-Surgery, Inc. Force switch
US9662116B2 (en) 2006-05-19 2017-05-30 Ethicon, Llc Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US9675348B2 (en) 2006-05-19 2017-06-13 Ethicon Llc Electrical surgical instrument with knife return
US9681873B2 (en) 2006-05-19 2017-06-20 Ethicon Llc Electrical surgical stapling instrument with tissue compressive force control
US8573459B2 (en) 2006-05-19 2013-11-05 Ethicon Endo-Surgery, Inc Optimal tissue compression electrical surgical instrument
US9713473B2 (en) 2006-05-19 2017-07-25 Ethicon Endo-Surgery, Inc. Active braking electrical surgical instrument and method for braking such an instrument
US9757127B2 (en) 2006-05-19 2017-09-12 Ethicon Llc Electrical surgical instrument with optimal tissue compression
US8269121B2 (en) 2006-05-19 2012-09-18 Ethicon Endo-Surgery, Inc. Force switch
US8038046B2 (en) 2006-05-19 2011-10-18 Ethicon Endo-Surgery, Inc. Electrical surgical instrument with optimized power supply and drive
US9901340B2 (en) 2006-05-19 2018-02-27 Ethicon Endo-Surgery, Inc. Active braking electrical surgical instrument and method for braking such an instrument
US9934920B2 (en) 2006-05-19 2018-04-03 Ethicon Endo-Surgery, Inc. Force switch
US10217582B2 (en) 2006-05-19 2019-02-26 Ethicon Endo-Surgery, Inc. Force switch
US10314592B2 (en) 2006-05-19 2019-06-11 Ethicon Llc Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8028885B2 (en) 2006-05-19 2011-10-04 Ethicon Endo-Surgery, Inc. Electric surgical instrument with optimized power supply and drive
US10586669B2 (en) 2006-05-19 2020-03-10 Ethicon-Endo Surgery, Inc. Force switch
US10675022B2 (en) 2006-05-19 2020-06-09 Ethicon Llc Electrical surgical instrument with optimal tissue compression
JP2011120923A (en) * 2006-05-19 2011-06-23 Ethicon Endo-Surgery Inc Electrical surgical instrument
US11172931B2 (en) 2006-05-19 2021-11-16 Cilag Gmbh International Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US11183349B2 (en) 2006-05-19 2021-11-23 Ethicon Endo-Surgery, Inc Force switch
JP2011120924A (en) * 2006-05-19 2011-06-23 Ethicon Endo-Surgery Inc Electrical surgical instrument
US8627993B2 (en) 2007-02-12 2014-01-14 Ethicon Endo-Surgery, Inc. Active braking electrical surgical instrument and method for braking such an instrument

Similar Documents

Publication Publication Date Title
US8183807B2 (en) Method of driving DC motor and related circuit for avoiding reverse current
KR100404782B1 (en) Motor drive method and electrical machinery and apparatus using the same
EP2254235A1 (en) Brushless dc motor driver
JP2010172124A (en) Motor control device
JP2004260980A (en) Method for detecting abnormality in constant voltage stepping motor drive circuit
US7746014B2 (en) Motor driving apparatus, brushless motor, and method for driving the same
JP2007174897A (en) Fan system
US8581534B2 (en) Method and motor driving circuit for adjusting rotational speed of motor
JP2012070540A (en) Motor
JP4086102B2 (en) Stepping motor control device
WO2018186061A1 (en) Pump control device
JP2007170868A (en) Current detecting circuit
JP2007074834A (en) Starter for sensorless motors
JP6005451B2 (en) Voltage control circuit
JP3099256B2 (en) Drive device for brushless motor
KR100936019B1 (en) Driving apparatus and method for motor of treadmill
JP2007181309A (en) Control method of permanent magnet synchronous motor drive unit, and the permanent magnet synchronous motor drive unit using the method
JP5837547B2 (en) Abnormality detection device for circuit system of stepping motor
JP6408625B2 (en) Semiconductor device, drive mechanism, and motor drive control method
JP2006166504A (en) Inverter apparatus
JPH07184390A (en) Control method for commutatorless motor and its equipment
JP2004237855A (en) Wiper device
WO2006040953A1 (en) Motor driving circuit and motor apparatus having the same
JP2000350493A (en) Drive device for dc motor
JPH01298995A (en) Driving circuit for stepping motor