JP2007074834A - Starter for sensorless motors - Google Patents

Starter for sensorless motors Download PDF

Info

Publication number
JP2007074834A
JP2007074834A JP2005260061A JP2005260061A JP2007074834A JP 2007074834 A JP2007074834 A JP 2007074834A JP 2005260061 A JP2005260061 A JP 2005260061A JP 2005260061 A JP2005260061 A JP 2005260061A JP 2007074834 A JP2007074834 A JP 2007074834A
Authority
JP
Japan
Prior art keywords
reference voltage
position detection
voltage
circuit
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005260061A
Other languages
Japanese (ja)
Inventor
Koichiro Horiuchi
幸一郎 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2005260061A priority Critical patent/JP2007074834A/en
Publication of JP2007074834A publication Critical patent/JP2007074834A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid zero-crossing potential detection from being influenced by increase in a kickback current when a sensorless motor is started under overload, and stably start the motor. <P>SOLUTION: A position detection circuit 4 detects the position of the sensorless motor based on comparison of the following: the terminal voltages Vu, Vv, Vw of stator windings U, V, W in multiple phases with a reference voltage Vst generated by a reference voltage generation circuit 6 that generates the predetermined constant reference voltage Vst. At this time, a control circuit 5 operates as follows: at starting rotation, it generates energization phase signals Pu, Pv, Pw based on only the rising of the terminal voltages Vu, Vv, Vw of the stator windings U, V, W at the position detection circuit 4; at a predetermined number of rotations or higher, it generates energization phase signals Pu, Pv, Pw based on position detection from the rising side and the falling side of the terminals voltages Vu, Vv, Vw of the stator windings U, V, W. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、インバータにより駆動されるDCブラシレスモータ等のセンサレスモータの起動装置に関するものである。   The present invention relates to a starter for a sensorless motor such as a DC brushless motor driven by an inverter.

この種のブラシレスモータの従来例として特許文献1に掲載の技術がある。
即ち、特許文献1に掲載の技術は、永久磁石を有する回転子と、前記回転子に回転力を与えるべく磁界を作用させる複数相の固定子巻線を有する固定子とを備えたブラシレスモ―タにおいて、前記複数相の固定子巻線の端子電圧と基準電圧との比較に基づき位置検出するとともに、前記端子電圧から前記固定子巻線に誘起される逆起電圧の有無を検出して状態検出信号を出力する逆起電圧検出手段を設け、前記逆起電圧検出手段からの位置検出信号に基づいて通電タイミング信号を出力する通電タイミング信号形成手段を設け、前記通電タイミング信号形成手段からの通電タイミング信号に基づいて前記固定子巻線の通電を制御する出力手段を設け、前記逆起電圧検出手段からの状態検出信号により前記回転子の回転の正常、異常を判定し、異常と判定した時には異常検出信号を出力する異常検出手段を設けるものである。
上記構成の各相の固定子巻線に誘起される逆起電圧に基づき位置検出信号を得る位置センサレス方式においては、固定子巻線の端子電圧にノイズが重畳した場合、或いは、回転子の負荷トルク変動による回転むらが大きくなった場合等には、逆起電圧を正常に検出することができなくなって、逆起電圧検出手段からの状態検出信号の状態が正常時とは変化する。これにより、異常検出手段は、状態検出信号の変化状態を検出することによって回転子の回転の正常、異常を判定することができ、異常と判定した時には異常検出信号を出力する。したがって、この異常検出手段からの異常検出信号を基に、例えば、通電タイミング信号形成手段の動作を停止させて固定子巻線に対する通電を停止させ、或いは、警報器を動作させる等の異常対策を講ずることができる。
As a conventional example of this type of brushless motor, there is a technique described in Patent Document 1.
That is, the technique disclosed in Patent Document 1 is a brushless motor including a rotor having a permanent magnet and a stator having a multi-phase stator winding for applying a magnetic field to apply a rotational force to the rotor. And detecting a position based on a comparison between a terminal voltage of the plurality of phase stator windings and a reference voltage, and detecting the presence or absence of a counter electromotive voltage induced in the stator winding from the terminal voltage. A back electromotive voltage detecting means for outputting a detection signal is provided, a power supply timing signal forming means for outputting a power supply timing signal based on a position detection signal from the back electromotive voltage detection means is provided, and power supply from the power supply timing signal forming means is provided. Provide output means for controlling the energization of the stator winding based on the timing signal, determine the normal or abnormal rotation of the rotor by the state detection signal from the back electromotive voltage detection means, When it is determined that the normal is intended to provide an abnormality detecting means for outputting an abnormality detection signal.
In the position sensorless system that obtains the position detection signal based on the back electromotive voltage induced in the stator winding of each phase of the above configuration, when noise is superimposed on the terminal voltage of the stator winding, or the load of the rotor When the rotation unevenness due to torque fluctuation becomes large, the back electromotive voltage cannot be detected normally, and the state of the state detection signal from the back electromotive voltage detection means changes from the normal state. Thus, the abnormality detection means can determine whether the rotation of the rotor is normal or abnormal by detecting the change state of the state detection signal, and outputs an abnormality detection signal when it is determined as abnormal. Therefore, based on the abnormality detection signal from the abnormality detection means, for example, countermeasures for abnormality such as stopping operation of the energization timing signal forming means to stop energization of the stator winding or operating an alarm device are taken. Can be taken.

特許文献2に掲載の技術は、負荷を駆動するモータに対して、180度通電駆動及び間欠通電駆動のうちのいずれかの駆動方式を選択して、モータのロータ位置を検出する位置センサを用いずにセンサレス運転を行うとき、起動時及び低速時には間欠通電駆動を行い、モータの回転数の上昇に伴って180度通電駆動に切換えるものである。
このようにセンサレスでモータ駆動を行う場合には、起動時には間欠通電駆動を行い、その後、180度通電駆動を行うことによって短時間で確実にモータの起動を行い、かつ、高効率、低振動の運転を行うことができる。このため、起動電流を低減できるので、起動時に生じやすいインバータ回路の駆動素子の破壊を防ぐことができ、信頼性の高い制御装置を実現できる。
The technique disclosed in Patent Document 2 uses a position sensor that detects a rotor position of a motor by selecting one of a 180-degree energization drive and an intermittent energization drive for a motor that drives a load. When the sensorless operation is performed, intermittent energization driving is performed at the time of start-up and at a low speed, and the operation is switched to 180-degree energization driving as the motor speed increases.
In this way, when performing motor drive without a sensor, intermittent energization drive is performed at the start, and then the motor is reliably activated in a short time by performing 180-degree energization drive, and high efficiency and low vibration are achieved. You can drive. For this reason, since the starting current can be reduced, it is possible to prevent the drive elements of the inverter circuit that are likely to occur at the time of starting, and to realize a highly reliable control device.

特許文献3に掲載の技術は、インバータによって回転が制御されるブラシレスモータ装置において、制御信号に基づいてブラシレスモータ内の各相に通電を行うインバータと、前記ブラシレスモータの逆起電圧と基準電圧との比較結果が論理反転するタイミングの中、立ち上がりタイミングか、立ち下がりタイミングのいずれかを用いてブラシレスモータの回転位置を検出して位置情報を出力する位置検出手段と、この位置検出手段が出力する前記位置情報より回転位置及び回転速度を演算する位置速度演算手段と、この回転速度情報、速度指令、直流電源の直流電圧に基づき前記インバータのPWMデューティ比及び基準電圧の変化量を出力し、前記PWMデューティ比が飽和している場合は、前記基準電圧の変化量を変更する演算を行う速度制御手段と、この新たに計算された基準電圧の変化量を基に基準電圧値を演算し、前記位置検出手段が前記立ち上がりタイミングを用いる場合は前記基準電圧を基準値より低くし、前記立ち下がりタイミングを用いる場合は前記基準電圧を基準値より高くする基準電圧発生手段と、前記位置速度演算手段が出力する進み位相の出力位相を基に前記インバータの制御信号を発生する駆動制御発生手段を備えることにより、逆起電圧位相に対する印加電圧位相の進み角をより大きくとることができる。
特開平5-227785 特開2003-111483 特許第3515047号
In the brushless motor device whose rotation is controlled by an inverter, the technology disclosed in Patent Document 3 includes an inverter that energizes each phase in the brushless motor based on a control signal, a back electromotive voltage and a reference voltage of the brushless motor. Position detection means for detecting the rotational position of the brushless motor using either the rising timing or the falling timing among the timings at which the comparison result of the logic is inverted, and outputting the position information, and this position detecting means outputs Position speed calculation means for calculating the rotation position and rotation speed from the position information, and output the PWM duty ratio of the inverter and the amount of change of the reference voltage based on the rotation speed information, the speed command, and the DC voltage of the DC power supply, When the PWM duty ratio is saturated, an operation for changing the amount of change in the reference voltage is performed. A reference voltage value is calculated on the basis of the newly calculated reference voltage change amount, and when the position detection means uses the rising timing, the reference voltage is made lower than the reference value, Reference voltage generating means for making the reference voltage higher than a reference value when using a falling timing, and drive control generating means for generating a control signal for the inverter based on the output phase of the advance phase output by the position speed calculating means. By providing, the advance angle of the applied voltage phase with respect to the counter electromotive voltage phase can be made larger.
JP-A-5-227785 JP 2003-111483 A Japanese Patent No. 3515047

しかしながら、特許文献1に掲載の技術は、無負荷回転数に比較して低い回転数で動作させる場合には、上記逆起電圧の有無を検出して状態検出信号を出力する逆起電圧検出手段の逆起電圧(電位差)は回転数に比例するため、信号処理がノイズの影響及び負荷変動の影響を受け易く、状態検出信号動作が困難となる。例えば、油圧ポンプをモータで駆動する場合、油温が低下し、粘度が上がったときには、ポンプの回転に必要な負荷トルクが上昇するため、一定入力電圧の下では回転数が低下する。自動車のATFの場合には、動粘度は常用使用領域の約10mm2/secに対して1000mm2/sec程度であり、負荷トルクは10倍以上となり、回転数が1/10になることもある。このような低回転数では、上記方法では回転子の位置特定が困難となり安定起動が困難である。
更に、上記ポンプをモータで駆動する場合、低温作動時には駆動電流が大きいうえにモータのコイル抵抗及びモータ駆動回路の抵抗が小さくなり、低インピーダンスとなるから、通電相の切り替え時に発生するキックバック電流が増加し、ゼロクロス電位に影響を及ぼす。例えば、通電相の低電圧側を切り替える場合には、キックバック電流は回路の高電圧側を流れ、逆に高電圧側を切り替える場合には、回路の低電圧側を流れるが、低電圧側に流れると、回路のグラウンド電位に影響を与え、巻線の中点の電位が下がって基準電圧以下となり、ゼロクロス点が認識できなくなる。このように、固定子の位置検出が困難となると安定起動が困難となる。
However, the technique disclosed in Patent Document 1 is a back electromotive force detection means for detecting the presence or absence of the back electromotive voltage and outputting a state detection signal when operating at a speed lower than the no-load speed. Since the back electromotive voltage (potential difference) is proportional to the rotation speed, the signal processing is easily affected by noise and load fluctuation, and the state detection signal operation becomes difficult. For example, when the hydraulic pump is driven by a motor, when the oil temperature decreases and the viscosity increases, the load torque necessary for the rotation of the pump increases, so that the rotational speed decreases under a constant input voltage. In the case of an automobile of the ATF, the kinematic viscosity of 1000 mm 2 / sec about versus about 10 mm 2 / sec of the normal use region, the load torque becomes 10 times or more, sometimes speed becomes 1/10 . At such a low rotational speed, it is difficult to specify the position of the rotor by the above method, and stable starting is difficult.
Furthermore, when the pump is driven by a motor, the drive current is large during low-temperature operation, and the coil resistance of the motor and the resistance of the motor drive circuit are reduced, resulting in low impedance. Increases and affects the zero-cross potential. For example, when switching the low voltage side of the energized phase, the kickback current flows on the high voltage side of the circuit, and conversely when switching the high voltage side, it flows on the low voltage side of the circuit, but on the low voltage side. If it flows, it will affect the ground potential of the circuit, the potential at the middle point of the winding will fall below the reference voltage, and the zero cross point will not be recognized. As described above, when it becomes difficult to detect the position of the stator, stable starting becomes difficult.

また、特許文献2に掲載の技術は、第1回転数の3000rpm未満の低速時は間欠通電駆動を行い、3000rpm以上、第2回転数の6000rpm未満の中速駆動時は180度通電駆動を行い、6000rpm以上の高速時は間欠通電駆動に戻すものであるが、第1回転数の3000rpm未満の低速時の間欠通電駆動を行うときには、特許文献1と同様の問題が発生する。しかし、特許文献2には、その問題意識が存在せず、かつ、解決手段に付いての記載もない。   The technique disclosed in Patent Document 2 performs intermittent energization driving at a low speed of less than 3000 rpm of the first rotation speed, and 180-degree energization driving at a medium speed driving of 3000 rpm or more and less than 6000 rpm of the second rotation speed. At high speeds of 6000 rpm or higher, the intermittent energization drive is restored. However, when intermittent energization drive is performed at a low speed of less than 3000 rpm of the first rotation speed, the same problem as in Patent Document 1 occurs. However, Patent Document 2 does not have the awareness of the problem and does not describe the solution.

特許文献3についても、特許文献1と同様、無負荷回転数に比較して低い回転数で動作させる場合には、信号処理がノイズの影響及び負荷変動の影響を受け易く、動作が困難となり、安定起動が困難となる点については開示するものがない。   Regarding Patent Document 3, as in Patent Document 1, when operating at a lower rotational speed than the no-load rotational speed, signal processing is easily affected by noise and load fluctuations, and operation becomes difficult. There is no disclosure about the point where stable starting becomes difficult.

そこで、本発明はこれらの問題点を解消すべく、過負荷状態下の起動時において、キックバック電流の増加によってゼロクロス電位の検出に影響を及ぼすのを回避し、安定起動を行うようにしたセンサレスモータの起動装置の提供を課題とするものである。   Therefore, in order to solve these problems, the present invention avoids affecting the detection of the zero cross potential due to the increase of the kickback current at the time of start-up under an overload condition, and performs sensor-less start-up. An object of the present invention is to provide a motor starting device.

請求項1のセンサレスモータの起動装置においては、複数個の永久磁石を有する回転子と、前記回転子に回転力を与える交番磁界を作用させる複数相の固定子巻線を有する固定子と、所定の定電圧の基準電圧を発生する基準電圧発生回路と、前記複数相の固定子巻線の端子電圧と前記基準電圧発生回路で発生した基準電圧との比較に基づき、前記端子電圧から前記固定子巻線に誘起される逆起電圧を検出して位置検出する位置検出回路と、始動回転においては、前記位置検出回路の固定子巻線の端子電圧の立ち上がりのみに基づいて通電位相信号を生成し、所定の回転数以上で前記位置検出回路の固定子巻線の端子電圧の立ち上がり側及び立ち下がり側からの位置検出に基づいて通電位相信号を生成する制御回路を具備するものである。
ここで、上記回転子に回転力を与える交番磁界とは、正弦波交流による円形の回転磁界を意味するものではなく、順次、磁界の方向を120度づつ変更或いはそれ以上に変更することによって生じる回転磁界を意味するものである。
また、上記基準電圧発生回路は定電圧発生回路であればよく、また、上記位置検出回路は比較回路と共にゼロクロス点を検出できればよい。
そして、上記制御回路が認識する始動回転とは、駆動を開始してから所定回転数または所定時間とすることができる。
更に、上記制御回路が生成する通電位相信号は、上記固定子巻線の端子電圧の位置検出の立ち上がりのみに基づいて所定のパルス幅の通電位相信号を生成し、また、所定の回転数以上で前記固定子巻線の端子電圧の位置検出の立ち上がり側及び立ち下がり側からの位置検出に基づいて、そこで得られたパルス幅によって通電位相信号を生成するものであればよい。
In the sensorless motor starting device according to claim 1, a rotor having a plurality of permanent magnets, a stator having a plurality of stator windings for applying an alternating magnetic field for applying a rotational force to the rotor, and a predetermined A reference voltage generation circuit that generates a constant voltage reference voltage, and a comparison between a terminal voltage of the plurality of stator windings and a reference voltage generated by the reference voltage generation circuit, from the terminal voltage to the stator A position detection circuit that detects a position by detecting a counter electromotive voltage induced in the winding, and a starting rotation generates an energization phase signal based only on the rise of the terminal voltage of the stator winding of the position detection circuit. And a control circuit that generates an energization phase signal based on the position detection from the rising side and the falling side of the terminal voltage of the stator winding of the position detection circuit at a predetermined rotational speed or higher.
Here, the alternating magnetic field that gives a rotational force to the rotor does not mean a circular rotating magnetic field by sinusoidal alternating current, but is generated by sequentially changing the direction of the magnetic field by 120 degrees or more. It means a rotating magnetic field.
The reference voltage generation circuit may be a constant voltage generation circuit, and the position detection circuit only needs to be able to detect the zero cross point together with the comparison circuit.
The starting rotation recognized by the control circuit can be a predetermined number of rotations or a predetermined time after starting driving.
Further, the energization phase signal generated by the control circuit generates an energization phase signal having a predetermined pulse width based only on the rise of the position detection of the terminal voltage of the stator winding, and at a predetermined rotation speed or higher. Any energization phase signal may be generated based on the pulse width obtained from the position detection from the rising side and the falling side of the position detection of the terminal voltage of the stator winding.

請求項2のセンサレスモータの起動装置の前記位置検出回路の固定子巻線の端子電圧の立ち上がり側のみに基づいて通電位相信号を生成する始動回転とは、前記位置検出回路の固定子巻線の端子電圧の立ち上がり側からの位置検出を所定回数行う回転数としたものである。
ここで、上記始動回転とは、前記位置検出回路の固定子巻線の端子電圧の立ち上がり側からの位置検出を所定回数行った回転数としたものであり、立ち上がり信号の欠損を問うものではない。
The starting rotation for generating the energization phase signal based only on the rising side of the terminal voltage of the stator winding of the position detection circuit of the starter of the sensorless motor according to claim 2 refers to the stator winding of the position detection circuit. This is the number of rotations at which the position detection from the rising side of the terminal voltage is performed a predetermined number of times.
Here, the starting rotation is a rotation number obtained by performing position detection from the rising side of the terminal voltage of the stator winding of the position detection circuit a predetermined number of times, and does not ask for a lack of rising signal. .

請求項1にかかるセンサレスモータの起動装置は、位置検出回路は複数相の固定子巻線の端子電圧と所定の定電圧の基準電圧を発生する基準電圧発生回路で発生した基準電圧との比較に基づき、前記端子電圧から前記固定子巻線に誘起される逆起電圧を検出して位置検出する。このとき、制御回路は、始動回転時に前記位置検出回路の固定子巻線の端子電圧の立ち上がりのみに基づいて通電位相信号を生成し、所定の回転数以上で前記位置検出回路の固定子巻線の端子電圧の立ち上がり側及び立ち下がり側からの位置検出に基づいて通電位相信号を生成するものである。
したがって、センサレスモータを過負荷状態で駆動する場合にキックバック電流が増加し、ゼロクロス電位に影響を及ぼすことがあっても、そのキックバック電流の増加によってゼロクロス電位の検出に影響を及ぼすのを回避できるし、位置検出回路の固定子巻線の端子電圧の立ち上がり側のみの信号を使用して安定起動を行うことができる。
In the sensorless motor starter according to claim 1, the position detection circuit compares the terminal voltage of the stator windings of a plurality of phases with a reference voltage generated by a reference voltage generation circuit that generates a predetermined constant voltage reference voltage. Based on the terminal voltage, a back electromotive voltage induced in the stator winding is detected to detect the position. At this time, the control circuit generates an energization phase signal based only on the rise of the terminal voltage of the stator winding of the position detection circuit at the start rotation, and the stator winding of the position detection circuit exceeds a predetermined rotation speed. The energization phase signal is generated based on the position detection from the rising side and the falling side of the terminal voltage.
Therefore, even when the sensorless motor is driven in an overload state, even if the kickback current increases and affects the zero-cross potential, the increase in the kickback current avoids affecting the detection of the zero-cross potential. In addition, stable starting can be performed using a signal only on the rising side of the terminal voltage of the stator winding of the position detection circuit.

請求項2にかかるセンサレスモータの起動装置は、前記位置検出回路の端子電圧の立ち上がり側のみに基づいて通電位相信号を生成する始動回転を、前記位置検出回路の端子電圧の立ち上がり側からの位置検出を所定回数行う回転数としたものであるから、請求項1に記載の効果に加えて、回転数センサ、速度センサ等のセンサを使用する必要がないから制御回路構成が簡単化できる。   The sensorless motor starter according to claim 2 detects the position of the starting rotation for generating the energization phase signal based only on the rising side of the terminal voltage of the position detection circuit from the rising side of the terminal voltage of the position detection circuit. Therefore, in addition to the effect of the first aspect, it is not necessary to use a sensor such as a rotational speed sensor or a speed sensor, so that the control circuit configuration can be simplified.

次に、本発明の実施の形態のセンサレスモータの起動装置について、図を用いて説明する。
[実施の形態1]
Next, a starter for a sensorless motor according to an embodiment of the present invention will be described with reference to the drawings.
[Embodiment 1]

図1は本発明の実施の形態のセンサレスモータの起動装置の全体構成を示す回路構成図である。また、図2は本発明の実施の形態のセンサレスモータの起動装置の電気的位相角度とインバータの制御信号との関係図、図3は本発明の実施の形態のセンサレスモータの起動装置の通常回転時と過負荷回転時のU層の端子電圧並びに比較信号及び通電位相信号の波形図であり、図4は本発明の実施の形態のセンサレスモータの起動装置の駆動プログラムのフローチャートである。   FIG. 1 is a circuit configuration diagram showing an overall configuration of a sensorless motor starter according to an embodiment of the present invention. FIG. 2 is a relationship diagram between the electrical phase angle of the sensorless motor starter according to the embodiment of the present invention and the control signal of the inverter, and FIG. 3 is a normal rotation of the sensorless motor starter according to the embodiment of the present invention. FIG. 4 is a waveform diagram of the U-layer terminal voltage, the comparison signal, and the energization phase signal during rotation and overload rotation, and FIG. 4 is a flowchart of the drive program of the starter for the sensorless motor according to the embodiment of the present invention.

図1において、直流電源1は電池または交流電源から直流電源に変換した回路である。インバータ2は制御信号に基づき複数のスイッチ素子UP,VP,WP、スイッチ素子UN,VN,WNを順次オン、オフ制御し、直流電源1からの直流を交番磁界に変換すべく、後述するDCブラシレスモータ3の固定子3aの複数相の固定子巻線U,V,Wに順次電流を供給するものである。DCブラシレスモータ3は、複数の巻線を有する固定子3a及び永久磁石を有する回転子3bから構成され、インバータ2から供給される電力によって回転する。基準電圧発生回路6は定電圧回路等からなる基準電圧を発生する回路である。   In FIG. 1, a DC power source 1 is a circuit in which a battery or an AC power source is converted to a DC power source. The inverter 2 sequentially turns on and off the plurality of switch elements UP, VP, WP and switch elements UN, VN, WN based on the control signal, and converts the direct current from the direct current power source 1 into an alternating magnetic field, which will be described later. Current is sequentially supplied to a plurality of stator windings U, V, W of the stator 3a of the motor 3. The DC brushless motor 3 includes a stator 3 a having a plurality of windings and a rotor 3 b having a permanent magnet, and rotates by electric power supplied from the inverter 2. The reference voltage generation circuit 6 is a circuit that generates a reference voltage composed of a constant voltage circuit or the like.

また、入力比較回路7は、インバータ2の出力電圧及びDCブラシレスモータ3の固定子3aの固定子巻線U,V,Wの起電力を、DCブラシレスモータ3の固定子3aの端子電圧として入力抵抗r1/(r1+r2)で分圧して検出し、それを基準電圧発生回路6の基準電圧Vstと比較する。なお、この基準電圧Vstは、直流電源1からの供給電圧Eの1/2に設定される。この基準電圧Vstを出力する基準電圧発生回路6及びDCブラシレスモータ3の固定子3aの端子電圧を検出する入力比較回路7は、位置検出回路4を構成する。制御回路5はインバータ2に対してインバータ2の複数のスイッチ素子UP,VP,WP、スイッチ素子UN,VN,WNをオン・オフ制御する通電位相信号を出力するマイクロコンピュータである。 Further, the input comparison circuit 7 inputs the output voltage of the inverter 2 and the electromotive force of the stator windings U, V, W of the stator 3 a of the DC brushless motor 3 as terminal voltages of the stator 3 a of the DC brushless motor 3. The voltage is detected by dividing with the resistor r 1 / (r 1 + r 2 ), and is compared with the reference voltage Vst of the reference voltage generation circuit 6. The reference voltage Vst is set to ½ of the supply voltage E from the DC power supply 1. The reference voltage generation circuit 6 that outputs the reference voltage Vst and the input comparison circuit 7 that detects the terminal voltage of the stator 3 a of the DC brushless motor 3 constitute a position detection circuit 4. The control circuit 5 is a microcomputer that outputs to the inverter 2 an energization phase signal for on / off control of a plurality of switch elements UP, VP, WP and switch elements UN, VN, WN of the inverter 2.

次に、本実施の形態のセンサレスモータの回転の基本的動作を説明する。
DCブラシレスモータ3の回転子3bの起動及び回転は、固定子巻線U,V,Wの端子に図2の電気的位相角度とインバータの制御信号との関係図に示すように、スイッチ素子UP,VP,WP、スイッチ素子UN,VN,WNを順次オン・オフ制御し、その端子電圧Vu,Vv,Vwが検出される。位置検出回路4では、端子電圧Vu,Vv,Vwと基準電圧発生回路6の基準電圧Vstと比較する。そして、これらの端子電圧Vu,Vv,Vwと基準電圧Vstとを比較した結果から、比較信号Ue,Ve,We及び通電位相信号Pu,Pv,Pwを検出する。
Next, the basic operation of rotation of the sensorless motor of the present embodiment will be described.
The activation and rotation of the rotor 3b of the DC brushless motor 3 is caused by the switching element UP as shown in the relationship diagram between the electrical phase angle of FIG. 2 and the control signal of the inverter at the terminals of the stator windings U, V and W. , VP, WP and switch elements UN, VN, WN are sequentially turned on / off, and terminal voltages Vu, Vv, Vw are detected. The position detection circuit 4 compares the terminal voltages Vu, Vv, and Vw with the reference voltage Vst of the reference voltage generation circuit 6. Then, the comparison signals Ue, Ve, We and energization phase signals Pu, Pv, Pw are detected from the result of comparing the terminal voltages Vu, Vv, Vw and the reference voltage Vst.

基準電圧Vstを出力する基準電圧発生回路6及び固定子3aの端子電圧を検出する入力比較回路7で構成される位置検出回路4は、図3(a)でU相の事例を示すように、端子電圧Vuと基準電圧Vst(=E/2)との比較により、図3(c)で示す比較信号Ueを得る。同様に、V相,W相の図示しない比較信号Ve,Weを得る。また、固定子巻線U,V,Wに誘起される逆起電力のゼロクロス点を検出することによって図3(b)で示すように、通電位相信号Puを得る。同様に、V相,W相の図示しない通電位相信号Pv,Pwを得る。更に、制御回路5は、通電位相信号Pu,Pv,Pwを論理変換して6つのベース信号を生成し、これらをインバータ2のスイッチ素子UP,VP,WPとスイッチ素子UN,VN,WNに与えて、順次スイッチ素子UP,VP,WPとスイッチ素子UN,VN,WNをオン,オフさせて、固定子巻線U,V,Wに通電して回転子3bを回転させる。なお、図3(c)で示す比較信号Ueの斜線部分はキックバック電流によって立ち上がり及び立ち下がりに影響を与える可能性の範囲を意味する。   The position detection circuit 4 including the reference voltage generation circuit 6 that outputs the reference voltage Vst and the input comparison circuit 7 that detects the terminal voltage of the stator 3a, as shown in FIG. A comparison signal Ue shown in FIG. 3C is obtained by comparing the terminal voltage Vu with the reference voltage Vst (= E / 2). Similarly, comparison signals Ve and We (not shown) for V phase and W phase are obtained. Further, by detecting the zero cross point of the counter electromotive force induced in the stator windings U, V, W, the energization phase signal Pu is obtained as shown in FIG. Similarly, energized phase signals Pv and Pw (not shown) of V phase and W phase are obtained. Further, the control circuit 5 logically converts the energization phase signals Pu, Pv, and Pw to generate six base signals, and supplies them to the switch elements UP, VP, WP and the switch elements UN, VN, WN of the inverter 2. Then, the switch elements UP, VP, WP and the switch elements UN, VN, WN are sequentially turned on and off, and the stator windings U, V, W are energized to rotate the rotor 3b. Note that the shaded portion of the comparison signal Ue shown in FIG.

更に、本実施の形態のセンサレスモータの起動装置の基本的動作を説明する。
基準電圧発生回路6は基準電圧Vstを出力している。また、入力比較回路7は固定子巻線U,V,Wの端子電圧Vu,Vv,Vwを検出している。基準電圧発生回路6及び入力比較回路7で構成される位置検出回路4は、図3(a)でU相の事例を示すように、端子電圧Vuと基準電圧Vstによって、立ち上がり及び立ち下がりのゼロクロス点を検出し、 図3(c)で比較信号Ueを得る。同様に、図示しない位相信号Ve,Weも、端子電圧Vv,Vwと基準電圧Vstとの比較によって得られ、また、逆起電力の立ち上がり及び立ち下がりのゼロクロス点を検出することにより、通電位相信号Pu,Pv,Pwが得られる。
なお、制御回路5は通電位相信号Pu,Pv,Pwから6つの通電タイミング信号となるインバータ2のスイッチ素子UP,VP,WPとスイッチ素子UN,VN,WNに順次印加し、オン,オフさせて、固定子巻線U,V,Wに通電し、その交番磁界により回転子3bを回転させる。
DCブラシレスモータ3の通常回転下においては、各相の固定子巻線U,V,Wに誘起される端子電圧Vu,Vv,Vwに基づき比較信号Ue,Ve,Weを得ると、DCブラシレスモータ3の回転子3bが略定速回転しているから、固定子巻線U,V,Wに誘起される端子電圧Vu,Vv,Vwも立ち上がり、立ち下がりの信号波形が略一致する。
Further, the basic operation of the sensorless motor starting device of the present embodiment will be described.
The reference voltage generation circuit 6 outputs a reference voltage Vst. The input comparison circuit 7 detects the terminal voltages Vu, Vv, Vw of the stator windings U, V, W. The position detection circuit 4 including the reference voltage generation circuit 6 and the input comparison circuit 7 has a zero crossing that rises and falls depending on the terminal voltage Vu and the reference voltage Vst, as shown in FIG. The point is detected, and the comparison signal Ue is obtained in FIG. Similarly, phase signals Ve and We (not shown) are also obtained by comparing the terminal voltages Vv and Vw with the reference voltage Vst, and the energization phase signals are detected by detecting the rising and falling zero cross points of the counter electromotive force. Pu, Pv, and Pw are obtained.
The control circuit 5 sequentially applies the energization phase signals Pu, Pv, Pw to the switch elements UP, VP, WP and the switch elements UN, VN, WN of the inverter 2, which are six energization timing signals, and turns them on and off. The stator windings U, V, and W are energized, and the rotor 3b is rotated by the alternating magnetic field.
Under normal rotation of the DC brushless motor 3, when the comparison signals Ue, Ve, We are obtained based on the terminal voltages Vu, Vv, Vw induced in the stator windings U, V, W of each phase, the DC brushless motor Since the third rotor 3b rotates at a substantially constant speed, the terminal voltages Vu, Vv, Vw induced in the stator windings U, V, W also rise and the falling signal waveforms substantially coincide.

ところが、例えば、ポンプを駆動するDCブラシレスモータ3の場合には、低温作動時には駆動電流が大きくなる上に、DCブラシレスモータ3の固定子巻線U,V,Wの抵抗及びモータ駆動回路の抵抗が小さくなり、電気的には全体的に低インピーダンスとなる。このときには、固定子巻線U,V,Wの端子電圧Vu,Vv,Vwの立ち上がり、立ち下がり信号は、特に、DCブラシレスモータ3の回転子3bが停止または略低速回転しているにすぎないから十分な逆起電力が発生していない。この状態で、通電位相信号Pu,Pv,Pwによって入力の切替えが行われると、固定子巻線U,V,Wの端子電圧Vu,Vv,Vwの立ち下がり信号には、キックバック電流が増加し、ゼロクロス電位に影響を及ぼすこととなる。図3(d)の例は、低温度の過負荷状態でキックバック電流が増加し、アース電位に影響を与え、固定子巻線U,V,Wの中性点の電位が下がり、基準電圧Vst以下となり、ゼロクロス点が検出できなくなる。このように、回転子3bの位置検出が困難となると安定起動が困難となる。   However, for example, in the case of the DC brushless motor 3 that drives the pump, the drive current increases during low temperature operation, and the resistance of the stator windings U, V, and W of the DC brushless motor 3 and the resistance of the motor drive circuit. Becomes smaller, and the overall impedance is low. At this time, the rising and falling signals of the terminal voltages Vu, Vv, Vw of the stator windings U, V, W are in particular only that the rotor 3b of the DC brushless motor 3 is stopped or rotated at a substantially low speed. Is not enough back electromotive force. In this state, when the input is switched by the energization phase signals Pu, Pv, Pw, the kickback current increases in the falling signals of the terminal voltages Vu, Vv, Vw of the stator windings U, V, W. However, this will affect the zero-cross potential. In the example of FIG. 3D, the kickback current increases in an overload state at a low temperature, which affects the ground potential, the potential at the neutral point of the stator windings U, V, and W decreases, and the reference voltage It becomes Vst or less, and the zero cross point cannot be detected. Thus, if it becomes difficult to detect the position of the rotor 3b, stable start-up becomes difficult.

したがって、このような起動開始時には、位置検出回路4が図3(d)にU相の事例を示すように、端子電圧Vuと基準電圧Vst(=E/2)によって端子電圧Vuの立ち上がりのゼロクロス点のみを検出することにより、図3(f)でU相の事例を示す比較信号Ueを得る。同様に、図示しない比較信号Ve,Weも、端子電圧Vv,Vwと基準電圧Vstとの比較により得ることができる。
ここでは、制御回路5によって通電位相信号Pu(図3(e)),Pv,Pwは、インバータ2の6つのベース信号たるスイッチ素子UP,VP,WPとスイッチ素子UN,VN,WNに与えて、順次スイッチ素子UP,VP,WPとスイッチ素子UN,VN,WNをオン,オフさせて、固定子巻線U,V,Wに通電し、回転子3bを回転させる。
Therefore, at the start of such activation, as shown in the case of the U phase in the position detection circuit 4 in FIG. 3D, the zero crossing of the rising of the terminal voltage Vu by the terminal voltage Vu and the reference voltage Vst (= E / 2). By detecting only the point, the comparison signal Ue indicating the U-phase case is obtained in FIG. Similarly, comparison signals Ve and We (not shown) can be obtained by comparing the terminal voltages Vv and Vw with the reference voltage Vst.
Here, the energization phase signals Pu (FIG. 3 (e)), Pv, and Pw are given by the control circuit 5 to the switch elements UP, VP, WP and the switch elements UN, VN, WN which are the six base signals of the inverter 2. The switch elements UP, VP, and WP and the switch elements UN, VN, and WN are sequentially turned on and off to energize the stator windings U, V, and W, thereby rotating the rotor 3b.

これによって、ポンプ等を駆動するDCブラシレスモータ3を低温で、かつ、過負荷状態で駆動する場合に、キックバック電流が増加し、ゼロクロス電位に影響を及ぼすことがあっても、キックバック電流の増加によってゼロクロス電位の検出に影響を及ぼすのを回避し、安定起動を行うことができる。
また、固定子巻線U,V,Wの端子電圧Vu,Vv,Vwにノイズが重畳した場合、回転子3bの負荷トルク変動による回転むらが大きくなった場合等にも、逆起電圧が正常に検出することができなることがない。
As a result, when the DC brushless motor 3 for driving a pump or the like is driven at a low temperature and in an overload state, the kickback current increases even if the kickback current increases and affects the zero cross potential. It is possible to avoid the influence of the increase on the detection of the zero-cross potential and to perform stable start-up.
Also, the back electromotive voltage is normal even when noise is superimposed on the terminal voltages Vu, Vv, Vw of the stator windings U, V, W, or when the rotation unevenness due to load torque fluctuation of the rotor 3b becomes large. Can never be detected.

これを制御回路5のマイクロコンピュータを使用してプログラム制御するには、図4のプログラムを実行させればよい。
まず、DCブラシレスモータ3の駆動電源を投入すると、ステップS1でカウンタnをクリアし、ステップS2で、カウンタnの値が5以上であるか判断し、カウンタn≧5のとき、ステップS8で通常のPWM制御による運転制御に入り、このルーチンを脱する。しかし、カウンタn<5のとき、起動初期を意味するから、ステップS3で固定回転数制御に入る。ここで固定とは、通電位相信号Pu,Pv,Pwのパルス幅Xを特定の値に設
定することを意味する。ステップS4で位置検出回路4の出力をみて、立ち上がりのゼロクロス点の検出を行う。この検出は各相毎に行ってもよいが、必ずしもその必要はなく、1相のみまたは2相とすることができる。ステップS5で立ち上がりのゼロクロス点の検出ができたか否かを判定し、ステップS5でゼロクロス点の検出ができたとき、ステップS6でカウンタnを「+1」インクリメントし、ステップS5でゼロクロス点の検出ができないとき、ステップS7でカウンタnをクリヤしたままとし、ステップS2からステップS7のルーチンを繰り返し実行する。そして、ステップS2でカウンタnの値が5以上であると判断したとき、通常の回転制御に入る。
なお、上記通電位相信号Pu,Pv,Pwのパルス幅Xは、通常回転の場合の通電位相
信号Pu,Pv,Pwのパルス幅Xに順次近寄らせるように、立ち上がりのゼロクロス点
の検出毎に変化させてもよい。
In order to control the program using the microcomputer of the control circuit 5, the program shown in FIG.
First, when the driving power of the DC brushless motor 3 is turned on, the counter n is cleared in step S1, and it is determined in step S2 whether the value of the counter n is 5 or more. When the counter n ≧ 5, normal in step S8. The operation control by PWM control is entered, and this routine is exited. However, when the counter n <5, it means the start-up initial stage, so that the fixed rotation speed control is entered in step S3. Here, “fixed” means that the pulse width X of the energization phase signals Pu, Pv, Pw is set to a specific value. In step S4, the output of the position detection circuit 4 is seen to detect a rising zero cross point. This detection may be performed for each phase, but it is not always necessary, and only one phase or two phases can be used. In step S5, it is determined whether or not the rising zero cross point has been detected. When the zero cross point has been detected in step S5, the counter n is incremented by "+1" in step S6, and the zero cross point is detected in step S5. If not, the counter n is kept cleared in step S7, and the routine from step S2 to step S7 is repeatedly executed. When it is determined in step S2 that the value of the counter n is 5 or more, normal rotation control is entered.
The pulse width X of the energization phase signals Pu, Pv, and Pw changes every time the rising zero cross point is detected so as to gradually approach the pulse width X of the energization phase signals Pu, Pv, and Pw in normal rotation. You may let them.

このように、上記実施の形態においては、複数個の永久磁石を有する回転子3bと、回転子3bに回転力を与える交番磁界を作用させる複数相の固定子巻線U,V,Wを有する固定子3aとを備えたセンサレスモータの起動装置において、所定の定電圧の基準電圧を発生する基準電圧発生回路6と、複数相の固定子巻線U,V,Wの端子電圧Vu,Vv,Vwと基準電圧発生回路6で発生した基準電圧Vstとの比較に基づき、端子電圧Vu,Vv,Vwから固定子巻線U,V,Wに誘起される逆起電圧を検出する位置検出回路4と、始動回転においては、固定子巻線U,V,Wの端子電圧Vu,Vv,Vwの立ち上がりのみに基づいて通電位相信号Pu,Pv,Pwを生成し、所定の回転数以上で固定子巻線U,V,Wの端子電圧Vu,Vv,Vwの立ち上がり側及び立ち下がり側からの位置検出に基づいて通電位相信号Pu,Pv,Pwを生成する制御回路5を具備するものである。   Thus, in the said embodiment, it has the rotor 3b which has a some permanent magnet, and the multiphase stator windings U, V, and W which act the alternating magnetic field which gives a rotational force to the rotor 3b. In a sensorless motor starting device having a stator 3a, a reference voltage generating circuit 6 for generating a reference voltage having a predetermined constant voltage, and terminal voltages Vu, Vv, Based on a comparison between Vw and the reference voltage Vst generated by the reference voltage generation circuit 6, a position detection circuit 4 for detecting counter electromotive voltages induced in the stator windings U, V, W from the terminal voltages Vu, Vv, Vw. In starting rotation, the energization phase signals Pu, Pv, Pw are generated based only on the rise of the terminal voltages Vu, Vv, Vw of the stator windings U, V, W, and the stator is rotated at a predetermined rotational speed or more. Terminal voltages Vu, Vv of windings U, V, W Energizing phase signal Pu based on the detected position from the rising side and the falling side of the Vw, Pv, those having a control circuit 5 for generating Pw.

したがって、本実施の形態のセンサレスモータの起動装置は、位置検出回路4が複数相の固定子巻線U,V,Wの端子電圧Vu,Vv,Vwと所定の定電圧の基準電圧Vstを発生する基準電圧発生回路6で発生した基準電圧Vstとの比較に基づき、端子電圧Vu,Vv,Vwから固定子巻線U,V,Wに誘起される逆起電圧を検出して位置検出する。このとき、制御回路5は、始動回転においては、位置検出回路4で固定子巻線U,V,Wの端子電圧Vu,Vv,Vwの立ち上がりのみに基づいて通電位相信号Pu,Pv,Pwを生成し、所定の回転数以上で固定子巻線U,V,Wの端子電圧Vu,Vv,Vwの立ち上がり側及び立ち下がり側からの位置検出に基づいて通電位相信号Pu,Pv,Pwを生成するものである。
よって、DCブラシレスモータ3を過負荷状態で駆動する場合にキックバック電流が増加し、ゼロクロス電位に影響を及ぼすことがあっても、そのキックバック電流の増加によってゼロクロス電位の検出に影響を及ぼすのを回避でき、固定子巻線U,V,Wの端子電圧Vu,Vv,Vwの立ち上がり側のみの信号を使用して安定起動を行うことができる。
Therefore, in the sensorless motor starter according to the present embodiment, the position detection circuit 4 generates the terminal voltages Vu, Vv, Vw of the stator windings U, V, W of plural phases and the reference voltage Vst of a predetermined constant voltage. Based on the comparison with the reference voltage Vst generated by the reference voltage generating circuit 6, the back electromotive voltages induced in the stator windings U, V, W are detected from the terminal voltages Vu, Vv, Vw to detect the position. At this time, in the starting rotation, the control circuit 5 outputs the energization phase signals Pu, Pv, Pw based only on the rise of the terminal voltages Vu, Vv, Vw of the stator windings U, V, W in the position detection circuit 4. Generate and generate energized phase signals Pu, Pv, and Pw based on position detection from the rising and falling sides of the terminal voltages Vu, Vv, and Vw of the stator windings U, V, and W at a predetermined rotation speed or higher. To do.
Therefore, even when the DC brushless motor 3 is driven in an overload state, the kickback current increases and affects the zero cross potential, but the increase in the kick back current affects the detection of the zero cross potential. Thus, stable starting can be performed using signals only on the rising sides of the terminal voltages Vu, Vv, Vw of the stator windings U, V, W.

そして、上記実施の形態においては、位置検出回路4で固定子巻線U,V,Wの端子電圧Vu,Vv,Vwの立ち上がり側のみに基づいて通電位相信号Pu,Pv,Pwを生成する始動回転を、固定子巻線U,V,Wの端子電圧Vu,Vv,Vwの立ち上がり側からの位置検出を所定回数行う回転数としたものであるから、速度センサまたは回転数センサを使用する必要がないから制御回路5構成が簡単化できる。   In the above embodiment, the position detection circuit 4 generates the energization phase signals Pu, Pv, Pw based only on the rising sides of the terminal voltages Vu, Vv, Vw of the stator windings U, V, W. Since the rotation is set to a rotation speed at which the position detection from the rising side of the terminal voltages Vu, Vv, Vw of the stator windings U, V, W is performed a predetermined number of times, it is necessary to use a speed sensor or a rotation speed sensor. Therefore, the configuration of the control circuit 5 can be simplified.

図1は本発明の実施の形態のセンサレスモータの起動装置の全体構成を示す回路構成図である。FIG. 1 is a circuit configuration diagram showing an overall configuration of a sensorless motor starter according to an embodiment of the present invention. 図2は本発明の実施の形態のセンサレスモータの起動装置の電気的位相角度とインバータの制御信号との関係図である。FIG. 2 is a relationship diagram between the electrical phase angle of the sensorless motor starter according to the embodiment of the present invention and the control signal of the inverter. 図3は本発明の実施の形態のセンサレスモータの起動装置の通常回転時と過負荷回転時のU層の端子電圧並びに比較信号及び通電位相信号の波形図である。FIG. 3 is a waveform diagram of the U-layer terminal voltage, the comparison signal, and the energization phase signal during normal rotation and overload rotation of the sensorless motor starter according to the embodiment of the present invention. 図4は本発明の実施の形態のセンサレスモータの起動装置の駆動プログラムのフローチャートである。FIG. 4 is a flowchart of the drive program for the sensorless motor starter according to the embodiment of the present invention.

符号の説明Explanation of symbols

3 DCブラシレスモータ
3a 固定子
3b 回転子
4 位置検出回路
5 制御回路
6 基準電圧発生回路
U,V,W 固定子巻線
Vu,Vv,Vw 端子電圧
Pu,Pv,Pw 通電位相信号
Vst 基準電圧
3 DC brushless motor 3a Stator 3b Rotor 4 Position detection circuit 5 Control circuit 6 Reference voltage generation circuits U, V, W Stator windings Vu, Vv, Vw Terminal voltages Pu, Pv, Pw Energization phase signal Vst Reference voltage

Claims (2)

複数個の永久磁石を有する回転子と、前記回転子に回転力を与える交番磁界を作用させる複数相の固定子巻線を有する固定子とを備えたセンサレスモータの起動装置において、
所定の定電圧の基準電圧を発生する基準電圧発生回路と、
前記複数相の固定子巻線の端子電圧と前記基準電圧発生回路で発生した基準電圧との比較に基づき、前記端子電圧から前記固定子巻線に誘起される逆起電圧を検出して位置検出する位置検出回路と、
始動回転においては、前記位置検出回路で固定子巻線の端子電圧の立ち上がりのみに基づいて通電位相信号を生成し、所定の回転数以上においては固定子巻線の端子電圧の立ち上がり側及び立ち下がり側の信号に基づいて通電位相信号を生成する制御回路と
を具備してなるセンサレスモータの起動装置。
In a sensorless motor starter comprising: a rotor having a plurality of permanent magnets; and a stator having a plurality of stator windings for applying an alternating magnetic field for applying a rotational force to the rotor.
A reference voltage generating circuit for generating a reference voltage having a predetermined constant voltage;
Based on the comparison between the terminal voltage of the multi-phase stator winding and the reference voltage generated by the reference voltage generation circuit, the position detection is performed by detecting the back electromotive voltage induced in the stator winding from the terminal voltage. A position detection circuit that
In the starting rotation, the position detection circuit generates an energization phase signal based only on the rise of the terminal voltage of the stator winding, and the rising side and the falling of the terminal voltage of the stator winding at a predetermined rotation speed or higher. A sensorless motor starting device comprising: a control circuit that generates an energization phase signal based on a side signal.
前記位置検出回路の固定子巻線の端子電圧の立ち上がり側のみに基づいて通電位相信号を生成する始動回転とは、前記位置検出回路の固定子巻線の端子電圧の立ち上がり側からの位置検出を所定回数行う回転数としたことを特徴とする請求項1に記載のセンサレスモータの起動装置。   The starting rotation that generates the energization phase signal based only on the rising side of the terminal voltage of the stator winding of the position detection circuit is to detect the position from the rising side of the terminal voltage of the stator winding of the position detection circuit. 2. The sensorless motor starting device according to claim 1, wherein the number of rotations is a predetermined number of times.
JP2005260061A 2005-09-08 2005-09-08 Starter for sensorless motors Pending JP2007074834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005260061A JP2007074834A (en) 2005-09-08 2005-09-08 Starter for sensorless motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005260061A JP2007074834A (en) 2005-09-08 2005-09-08 Starter for sensorless motors

Publications (1)

Publication Number Publication Date
JP2007074834A true JP2007074834A (en) 2007-03-22

Family

ID=37935790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005260061A Pending JP2007074834A (en) 2005-09-08 2005-09-08 Starter for sensorless motors

Country Status (1)

Country Link
JP (1) JP2007074834A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217504A (en) * 2010-03-31 2011-10-27 Fujitsu General Ltd Motor drive device
KR101199634B1 (en) 2011-07-15 2012-11-08 충남대학교산학협력단 Method and apparatus for controling 3-phase brushless dc motor
JP2013229949A (en) * 2012-04-24 2013-11-07 Jtekt Corp Controller of two-phase brushless motor
WO2018186061A1 (en) * 2017-04-03 2018-10-11 アイシン精機株式会社 Pump control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217504A (en) * 2010-03-31 2011-10-27 Fujitsu General Ltd Motor drive device
KR101199634B1 (en) 2011-07-15 2012-11-08 충남대학교산학협력단 Method and apparatus for controling 3-phase brushless dc motor
JP2013229949A (en) * 2012-04-24 2013-11-07 Jtekt Corp Controller of two-phase brushless motor
WO2018186061A1 (en) * 2017-04-03 2018-10-11 アイシン精機株式会社 Pump control device
JP2018182790A (en) * 2017-04-03 2018-11-15 アイシン精機株式会社 Pump control device
CN110463019A (en) * 2017-04-03 2019-11-15 爱信精机株式会社 Apparatus for controlling pump

Similar Documents

Publication Publication Date Title
JP2008141828A (en) Motor driving device and motor driving method
JP2007166695A (en) Control device of motor
JP4735681B2 (en) MOTOR CONTROL CIRCUIT, VEHICLE FAN DRIVE DEVICE, AND MOTOR CONTROL METHOD
JP2010246210A (en) Method and system for driving motor, heat pump system, and fan motor system
WO2012032571A1 (en) Ac motor rotation direction detecting method and electric power conversion device for ac motor using same
US20150102758A1 (en) Motor drive controller, motor drive control method and motor system using the same
JP2001128485A (en) Motor system and air-conditioner equipped with the same and/or starting method of motor
JP2007074834A (en) Starter for sensorless motors
JP2011030385A (en) Motor drive and method of determining relative position of rotor equipped in motor
JP2007195313A (en) Driving device for brushless motors
JP2007252135A (en) Drive unit for brushless motor
JP2009011014A (en) Inverter controller, electric compressor, and home electrical equipment
JP2008043073A (en) Method and unit for controlling speed of brushless motor
JP2005278320A (en) Starting method of brushless motor, control device of brushless motor and electric pump
JP5326948B2 (en) Inverter control device, electric compressor and electrical equipment
JP2017034767A (en) Sensorless drive method for three-phase brushless motor
JP4085818B2 (en) DC motor driving method and DC motor driving apparatus
JP2007174745A (en) Sensorless control method for brushless motor, and sensorless controller for brushless motor
JP2005312145A (en) Driver of brushless motor
JP2014090657A (en) Motor driving apparatus, motor driving control method, and motor using the same
JP5218818B2 (en) DC brushless motor parallel drive circuit
JP2005269719A (en) Sensorless control method for brushless motor, sensorless controller for brushless motor, and electric pump
KR102226615B1 (en) Operation method of motor system comprising switched reluctance motor
JP5363158B2 (en) Sensorless brushless motor controller
JP2005278360A (en) Brushless motor sensorless controlling method, sensorless controller thereof, and electric pump