JP2004251183A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2004251183A
JP2004251183A JP2003041742A JP2003041742A JP2004251183A JP 2004251183 A JP2004251183 A JP 2004251183A JP 2003041742 A JP2003041742 A JP 2003041742A JP 2003041742 A JP2003041742 A JP 2003041742A JP 2004251183 A JP2004251183 A JP 2004251183A
Authority
JP
Japan
Prior art keywords
amount
valve
internal egr
egr amount
valve overlap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003041742A
Other languages
Japanese (ja)
Inventor
Takefumi Uchida
武文 内田
Harufumi Muto
晴文 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003041742A priority Critical patent/JP2004251183A/en
Priority to CNB2004100043747A priority patent/CN1270067C/en
Priority to US10/778,110 priority patent/US6917874B2/en
Priority to DE602004001529T priority patent/DE602004001529T2/en
Priority to EP04003655A priority patent/EP1452708B1/en
Publication of JP2004251183A publication Critical patent/JP2004251183A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1516Digital data processing using one central computing unit with means relating to exhaust gas recirculation, e.g. turbo
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine capable of easily and appropriately performing the engine control based on the operating condition of a variable valve mechanism and a change of the internal EGR quantity. <P>SOLUTION: This engine controlling electronic control device used for an internal combustion engine provided with a variable valve mechanism corrects the ignition timing in response to a change of the internal EGR quantity following operation of the variable valve mechanism. When correcting the ignition timing, VVT correction quantity AVVT of the ignition time is computed by multiplying a ratio between a square numeral of the real valve overlap quantity realOL and a square numeral of the target valve overlap quantity tOL and a base correction quantity AVVTb, which is obtained on the basis of the engine speed NE and the engine load ratio KL. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構を備える内燃機関の制御を行う制御装置に関する。
【0002】
【従来の技術】
近年、吸気効率の向上、NOx低減による排気エミッションの向上、及び内部EGRの導入に応じたポンピング損失の低減による燃費性能の向上などを目的として、吸排気弁のバルブ特性を機関運転状況に応じて可変とする可変動弁機構付きの内燃機関が実用されている。例えば車載内燃機関では、吸排気弁の開閉時期、すなわちバルブタイミングを可変とする可変バルブタイミング機構や、吸排気弁のバルブリフト量を可変とする可変バルブリフト機構などが、可変動弁機構として広く採用されている。
【0003】
この種の内燃機関では、吸排気弁のバルブオーバーラップ状態の変化等の可変動弁機構の作動に応じて、シリンダ内に存在する内部EGR量が増減する。そのため、可変動弁機構の作動に応じた内部EGR量の変化を考慮して、点火時期等の機関制御量の設定を行う必要がある。従来、そうした可変動弁機構の作動に応じた内部EGR量の変化を考慮した点火時期の設定を行う内燃機関の制御装置として、特許文献1に記載の制御装置が知られている。
【0004】
【特許文献1】
特開平9−209895号公報
【0005】
【発明が解決しようとする課題】
内部EGR量は、機関回転速度、機関負荷、及び可変動弁機構の作動状態に応じて複雑に変化するが、上記従来の制御装置では、可変動弁機構の作動状態と内部EGR量の変化との関係が明確とされておらず、内部EGR量の変化に対して適切な点火時期の設定を行うことが困難となっている。
【0006】
なお、可変動弁機構の作動が内部EGR量の変化をもたらすことから、可変動弁機構の作動により、内部EGR量を制御することも可能であると考えられるが、上記関係が不明確である以上、内部EGR量を高い精度で制御するには無理がある。
【0007】
本発明は、こうした実情に鑑みてなされたものであり、その目的は、可変動弁機構の作動状態と内部EGR量の変化との関係に基づく機関制御を、容易且つ適切に行うことのできる内燃機関の制御装置を提供することにある。
【0008】
【課題を解決するための手段】
以下、上述した目的を達成するための手段及びその作用効果を記載する。
請求項1に記載の発明は、吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構によって内部EGR量を調整可能な内燃機関に適用されて、該可変動弁機構の作動に伴う内部EGR量の変化に応じて所定の機関制御量を補正する内燃機関の制御装置において、前記所定の機関制御量の補正に係る補正量を、実内部EGR量と目標内部EGR量との比に基づき算出することをその要旨とする。
【0009】
上記構成では、例えば吸気弁及び排気弁の少なくとも一方のバルブタイミングやバルブリフト量を可変とする等の可変動弁機構によって、吸排気弁のバルブオーバーラップが可変とされている。こうした可変動弁機構の作動により吸排気弁のバルブオーバーラップが変更されると、内燃機関の内部EGR量が変化する。そしてその結果、例えば点火時期、スロットル開度、燃料噴射量、燃料噴射時期、外部EGR量のような、内部EGR量の変化による影響を受ける機関制御量の適合値も変化する。
【0010】
このとき上記構成では、内部EGR量の現状値である実内部EGR量と、可変動弁機構の作動量がその制御目標に収束しているときの内部EGR量である目標内部EGR量との比に基づき算出された補正量にて、そうした機関制御量の補正が行われる。すなわち、上記構成では、可変動弁機構の作動による内部EGR量の変化度合いを示す指標値として、内部EGR量の変化量ではなく、目標内部EGR量に対する実内部EGR量の比率を用いて所定の機関制御量に対する補正が行われる。そのため、内部EGR量の変化が与える影響分が、より容易且つ的確に機関制御量の補正に反映されるようになる。したがって上記構成によれば、可変動弁機構の作動に伴う内部EGR量の変化に応じた機関制御量の補正を、容易且つ的確に行うことができる。
【0011】
また請求項2に記載の発明は、吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構の可変動弁機構を備える内燃機関に適用されて、該可変動弁機構の作動に伴う内部EGR量の変化に応じて所定の機関制御量を補正する内燃機関の制御装置において、前記所定の機関制御量の補正に係る補正量を、実バルブオーバーラップ面積と目標バルブオーバーラップ面積との比に基づき算出することをその要旨とする。
【0012】
式(21)に示されるように、実内部EGR量と目標内部EGR量との比は、実バルブオーバーラップ面積と目標バルブオーバーラップ面積との比に等しいと云うことができる。そのため、上記構成のように、可変動弁機構の作動に伴う内部EGR量の変化に応じた所定の機関制御量に対する補正量を、実バルブオーバーラップ面積と目標バルブオーバーラップ面積との比に基づき算出することで、可変動弁機構の作動に伴う内部EGR量の変化に応じた機関制御量の補正を、容易且つ的確に行うことができる。
【0013】
また請求項3に記載の発明は、吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構の可変動弁機構を備える内燃機関に適用されて、該可変動弁機構の作動に伴う内部EGR量の変化に応じて所定の機関制御量を補正する内燃機関の制御装置において、前記所定の機関制御量の補正に係る補正量を、実バルブオーバーラップ量の平方数と目標バルブオーバーラップ量の平方数との比に基づき算出することをその要旨とする。
【0014】
バルブオーバーラップ面積は、バルブオーバーラップ量の平方数に比例すると近似することができる。よって式(22)に示されるように、実内部EGR量と目標内部EGR量との比は、実バルブオーバーラップ量の平方数と目標バルブオーバーラップ量の平方数との比に等しいと云える。したがって上記構成のように、可変動弁機構の作動に伴う内部EGR量の変化に応じた所定の機関制御量に対する補正量を、実バルブオーバーラップ量の平方数と目標バルブオーバーラップ量の平方数との比に基づき算出することで、可変動弁機構の作動に伴う内部EGR量の変化に応じた機関制御量の補正を、容易且つ的確に行うことができる。
【0015】
また請求項4に記載の発明は、吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構を備える内燃機関に適用され、そのバルブオーバーラップ状態の変更を通じて内部EGR量を制御する内燃機関の制御装置において、前記吸排気弁のバルブオーバーラップ面積が、実内部EGR量に対する目標内部EGR量の比率と実バルブオーバーラップ面積との乗算値となるように前記可変動弁機構の制御を行うことをその要旨とする。
【0016】
式(21)に示されるように、実内部EGR量と目標内部EGR量との比は、実バルブオーバーラップ面積と目標バルブオーバーラップ面積との比に等しいと云うことができる。そのため、上記構成のように吸排気弁のバルブオーバーラップ面積が、実内部EGR量に対する目標内部EGR量の比と実バルブオーバーラップ面積との乗算値となるように可変動弁機構を制御すれば、内部EGR量を目標内部EGR量とすることができる。よって上記構成によれば、可変動弁機構の作動制御に基づき、内部EGR量を高精度に調整することができる。
【0017】
また請求項5に記載の発明は、吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構を備える内燃機関に適用され、そのバルブオーバーラップ状態の変更を通じて内部EGR量を制御する内燃機関の制御装置において、前記吸排気弁のバルブオーバーラップ量が、実内部EGR量に対する目標内部EGR量の比の平方根と実バルブオーバーラップ量との乗算値となるように前記可変動弁機構を制御することをその要旨とする。
【0018】
式(22)に示されるように、実内部EGR量と目標内部EGR量との比は、実バルブオーバーラップ量の平方数と目標バルブオーバーラップ量の平方数との比に等しいと云うことができる。上記構成のように吸排気弁のバルブオーバーラップ量が、実内部EGR量に対する目標内部EGR量の比の平方根と実バルブオーバーラップ量との乗算値となるように可変動弁機構を制御すれば、内部EGR量を目標内部EGR量とすることができる。よって上記構成によれば、可変動弁機構の作動制御に基づき、内部EGR量を高精度に調整することができる。
【0019】
また請求項6に記載の発明は、吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構を備える内燃機関に適用されて、そのバルブオーバーラップ状態の変更を通じて内部EGR量を制御する内燃機関の制御装置において、機関回転速度及び機関負荷より一義的に設定される基本バルブオーバーラップ面積、及び吸排気弁のバルブオーバーラップ面積がその基本バルブオーバーラップ面積であるときの内部EGR量である基本内部EGR量、及び内部EGR量の制御目標値である目標内部EGR量に基づいて、前記基本内部EGR量に対する前記目標内部EGR量の比と前記基本バルブオーバーラップ面積との乗算値を前記バルブオーバーラップ面積の制御目標値として前記可変動弁機構を制御して、前記内部EGR量の制御を行うことをその要旨とする。
【0020】
式(21)等からは、式(27)に示される関係が導き出せる。この関係に基づけば、内部EGR量を目標内部EGR量とするために必要なバルブオーバーラップ面積は、基本内部EGR量に対する目標内部EGR量の比と基本バルブオーバーラップ面積との乗算値として求めることができる。よって上記構成によれば、可変動弁機構の作動制御に基づき、内部EGR量を高精度に調整することができる。
【0021】
また請求項7に記載の発明は、吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構を備える内燃機関に適用されて、そのバルブオーバーラップ状態の変更を通じて内部EGR量を制御する内燃機関の制御装置において、機関回転速度及び機関負荷より一義的に設定される基本バルブオーバーラップ量、及び吸排気弁のバルブオーバーラップ量がその基本バルブオーバーラップ量であるときの内部EGR量である基本内部EGR量、及び内部EGR量の制御目標値である目標内部EGR量に基づいて、前記基本内部EGR量に対する前記目標内部EGR量の比の平方根と前記基本バルブオーバーラップ量との乗算値を前記バルブオーバーラップ量の制御目標値として前記可変動弁機構を制御して、前記内部EGR量の制御を行うことをその要旨とする。
【0022】
式(22)等からは、式(28)に示される関係が導き出せる。この関係に基づけば、内部EGR量を目標内部EGR量とするために必要なバルブオーバーラップ量は、基本内部EGR量に対する目標内部EGR量の比の平方根と基本バルブオーバーラップ量との乗算値として求めることができる。よって上記構成によれば、可変動弁機構の作動制御に基づき、内部EGR量を高精度に調整することができる。
【0023】
【発明の実施の形態】
(第1実施形態)
以下、本発明の内燃機関の制御装置を具体化した第1実施形態を、図を参照して詳細に説明する。
【0024】
図1に示すように、本実施形態の適用される内燃機関10には、機関運転状況を検出する各種センサ類が配設されている。例えば内燃機関10の出力軸であるクランクシャフトの近傍には、クランク角センサ21が設けられている。また吸気側及び排気側のカムシャフトの近傍には、カム角センサ22m,22eがそれぞれ設けられている。更に内燃機関10の吸気管には、吸気管圧力センサ23、及び流量センサであるエアフローメータ24がそれぞれ配設されている。これらセンサ類の検出信号は、内燃機関10の各種制御を司る電子制御装置20に入力されている。
【0025】
電子制御装置20は、そうしたセンサ類の検出信号に基づき機関運転状況を把握している。例えばクランク角センサ21の検出信号からは、クランクシャフトの回転位相、すなわちクランク角が求められ、更に機関回転速度NEが算出される。また各カム角センサ22m,22eの検出信号からは、吸気側及び排気側のカムシャフトの回転位相、すなわちカム角がそれぞれ求められる。更に吸気管圧力センサ23の検出信号からは吸気管圧力Pmが、エアフローメータ24の検出信号からは吸入空気量GAがそれぞれ求められている。
【0026】
そして電子制御装置20は、上記のようなセンサ類の検出結果から把握される機関運転状況に基づいて内燃機関10の各種制御を実施している。例えば電子制御装置20は、機関運転状況に応じて内燃機関10のインジェクタ12や点火プラグ14、スロットルバルブ13に指令信号を出力して、燃料噴射制御や点火時期制御、吸入空気量制御を行っている。
【0027】
この内燃機関10は、吸気弁及び排気弁のバルブタイミングをそれぞれ可変とする2つの可変動弁機構11m,11eを備える可変動弁機構付きの内燃機関として構成されている。本実施形態では、可変動弁機構11m,11eとして、機関出力軸出であるクランクシャフトに対する吸気側及び排気側のカムシャフトの相対回転位相を変更することで吸気弁及び排気弁のバルブタイミングを可変とする機構が採用されている。
【0028】
電子制御装置20は、そうした可変動弁機構11m,11eの駆動制御に基づき吸排気弁のバルブタイミングを可変とするバルブタイミング制御を実施する。本実施形態でのバルブタイミング制御は、電子制御装置20により、以下の手順で行われている。
【0029】
まず、機関回転速度NEと機関負荷とに基づいて、吸気弁及び排気弁のバルブタイミングの制御目標値である目標バルブタイミングtVTm,tVTeがそれぞれ算出される。そして上記カム角センサ22m,22eによってそれぞれ検出される吸排気弁の実バルブタイミングrealVTm,realVTeが、その求められた目標バルブタイミングtVTm,tVTeとなるように可変動弁機構11m,11eを駆動させる。
【0030】
なお本実施形態では、吸排気弁のバルブタイミングを、図2に示す進角量(VTm)及び遅角量(VTe)を用いて表している。すなわち吸気弁のバルブタイミングVTeは、可変動弁機構11mによるバルブタイミングの変更範囲のうちで、吸気弁の開閉が最も遅くなる最遅角位置を基準とし、その最遅角位置からの進角量[°CA]で表される。また排気弁のバルブタイミングVTeは、可変動弁機構11eによるバルブタイミングの変更範囲のうちで、排気弁の開閉が最も早くなる最進角位置を基準とし、その最遅角位置からの遅角量[°CA]で表される。
【0031】
こうして吸排気弁のバルブタイミングが変更されると、内部EGR量が増減して最適な点火時期が変化する。そこで本実施形態では、可変動弁機構11m,11eによる吸排気弁のバルブタイミングの変更に伴う内部EGR量の変化を考慮して、点火時期の補正を行っている。以下、そうした本実施形態での点火時期の補正態様について説明する。
【0032】
[内部EGR量MegrALLの算出]
まずここで、任意の機関運転状態における内部EGR量MegrALLの算出について説明する。上記のように内部EGR量MegrALLは、機関回転速度NE及び機関負荷に加え、更に可変動弁機構11m,11eの作動状況に応じても変化する。そうした内部EGR量MegrALLの変化は、以下に述べるように、吸排気弁のバルブオーバーラップ面積AOL、或いはバルブオーバーラップ量OLを用いることで、容易且つ的確に把握することができる。
【0033】
(シリンダ内での既燃ガスの挙動)
ここで内燃機関10のシリンダ内での既燃ガスの挙動について考察する。
燃料の燃焼によりシリンダ内で発生した既燃ガスは、排気弁の開弁に応じて排気管へと排出される(図3−A参照)。その後、吸気弁が開かれてバルブオーバーラップが開始されると、排気管圧力Peと吸気管圧力Pmとの差圧により、排気管からシリンダ内に既燃ガスが吹き返されるようになる(図3−C参照)。このとき一部の既燃ガスはシリンダ内を吹き抜けて吸気管内に流入するが、そうした既燃ガスはその後の吸気行程において、新気と共にシリンダ内に再導入される。ここでは、こうした吸気弁開後のバルブオーバーラップ期間に、排気管からの吹き返しによりシリンダ内に導入される既燃ガスを「吹返し既燃ガス」といい、その量を「吹返し既燃ガス量Megr2」という。
【0034】
一方、吸気弁開直前には、ある程度の量の既燃ガスが、排気管に排出されることなくシリンダ内に残留している(図3−B参照)。そうした既燃ガスの一部は、そのままシリンダ内に留まり続け、残りの部分は、バルブオーバーラップ中の排気の吹返しにより吸気管内に一旦流出した後、吸気行程中にシリンダ内に再導入される。よって、吸気弁開直前までシリンダ内に残留した既燃ガスは、いずれにせよ、そのすべてが燃焼時にシリンダ内に存在することとなる。ここでは、そうした吸気弁の開直前のシリンダ内に残留した既燃ガスを「残留既燃ガス」といい、その量を「残留既燃ガス量Megr1」という。
【0035】
したがって燃焼時にシリンダ内に存在する内部EGR量MegrALLは、式(1)に示すように、残留既燃ガス量Megr1と吹返し既燃ガス量Megr2との和として求めることができる。
【0036】
【数1】

Figure 2004251183
(残留既燃ガス量Megr1の算出)
残留既燃ガス量Megr1は、式(2)に示されるような吸気弁開直前のシリンダ内の状態に基づく気体状態方程式で表すことができる。ここでPm:吸気管圧力、Pe:排気管圧力、Re:既燃ガスの気体定数、Te:排気温度、V:吸気弁開直前のシリンダ容積をそれぞれ示している。
【0037】
【数2】
Figure 2004251183
更に吸気弁開直前のシリンダ容積Vは、吸気弁開時期Topen(BTDC)、シリンダボア径rb、ピストンのストロークS、ピストンが上死点にあるときの燃焼室の容積、すなわちクリアランス容積Vcに基づき、式(3)にて求められる。
【0038】
【数3】
Figure 2004251183
上式(3)においてシリンダボア径rb、ストロークS、及びクリアランス容積Vcは、設計諸元等により決まる定数である。そのため、吸排気弁のバルブタイミングを可変とする可変動弁機構を備える内燃機関の場合、シリンダ容積Vは、吸気弁開時期Topenの関数f(Topen)として求めることができる。
【0039】
(吹返し既燃ガス量Megr2の算出)
バルブオーバーラップ期間には、排気管圧力Peと吸気管圧力Pmとの差圧により、排気管から吸気管に向けて既燃ガスが流れ、シリンダ内に排気管の既燃ガスが吹き返されるようになる。このときの既燃ガスの流通経路では、吸排気弁の開口は、流路面積の局所的に狭められた絞りとなっている。したがって、このときの既燃ガスの流れの様相は、図4のようなモデルで表すことができ、その流量Qは、絞りの流量算出式を用いて求めることができる。
【0040】
ここでは、そうした絞りの流量算出式として、式(4)を用いている。ここで、κ:既燃ガスの比熱比、μ:流量係数、A:バルブ開口面積をそれぞれ示している。
【0041】
【数4】
Figure 2004251183
上式(4)のΦ(Pm/Pe)は、1/(κ+1)<Pm/Peのとき、式(5)で表される。
【0042】
【数5】
Figure 2004251183
一方、1/(κ+1)≧Pm/Peのときには、上式(4)のΦ(Pm/Pe)は式(6)で表される。
【0043】
【数6】
Figure 2004251183
よって、排気の吹返しによりシリンダ内に導入される既燃ガスの量、すなわち吹返し既燃ガス量Megr2は、そうした絞りの既燃ガス流量のバルブオーバーラップ期間における時間積分値として求めることができる。更に吸気管圧力Pm、排気管圧力Pe、排気温度Te、及び既燃ガスの比熱比κは、急激に変化することはないため、バルブオーバーラップ中のそれらの値は一定と見なすことができる。そのため、吹返し既燃ガス量Megr2は、有効バルブ開口面積μA(=流量係数μ×バルブ開口面積A)の時間積分値Σ(μA)に比例する値として求めることができる。よって吹返し既燃ガス量Megr2は、式(7)で表すことができる。
【0044】
【数7】
Figure 2004251183
(有効バルブ開口面積の時間積分値Σ(μA)の算出)
バルブオーバーラップ期間の排気の吹返しに際して、図5−Aに示すように、吸気弁の有効バルブ開口面積μi Ai が排気弁の有効バルブ開口面積μe Aeよりも小さいときには、吸気弁が絞りとして機能する。また図5−Bに示すように、排気弁の有効バルブ開口面積μe Ae が吸気弁の有効バルブ開口面積μi Ai よりも小さいときには、排気弁が絞りとして機能する。すなわち、排気弁及び吸気弁のうち、有効バルブ開口面積μAの小さい方が絞りとして機能することとなる。したがって、有効バルブ開口面積の時間積分値Σ(μA)は、式(8)で表される。
【0045】
【数8】
Figure 2004251183
ここで吸気弁、排気弁の流量係数が同じと見なせるのであれば(μi =μe =μ)、同式(8)は更に式(9)のように表すことができる。なお式(9)の右辺括弧内は、図6にハッチングで示されるバルブリフト曲線の部分の面積、すなわちバルブオーバーラップ時間面積を示している。
【0046】
【数9】
Figure 2004251183
ここで吸気弁や排気弁の開閉時期、すなわちバルブタイミングを可変とする可変動弁機構を備える内燃機関の場合、上記バルブオーバーラップ時間面積は、吸排気弁のバルブタイミングの設定状況に応じて変化する。ただし、瞬時毎の有効バルブ開口面積μAは、カムプロフィール等の設計諸元により決まるため、上記時間積分値Σ(μA)を、吸排気弁のバルブオーバーラップ量OLと機関回転速度NEの関数として求めることができる。すなわち有効バルブ開口面積μAをクランク角について積分すれば、バルブオーバーラップ量OLのみによる関数f1(OL)が得られるようになる。そして、そのクランク角積分値を機関回転速度NEで除算すれば、バルブオーバーラップ時間面積を、すなわち有効バルブ開口面積の時間積分値Σ(μA)を求めることができる。したがって上式(9)は、式(10)により表すことができる。更にこの式(10)を上式(7)に代入すれば、式(11)が得られる。
【0047】
【数10】
Figure 2004251183
【0048】
【数11】
Figure 2004251183
(内部EGR量MegrALLの算出)
燃焼時にシリンダ内に存在する内部EGR量MegrALLは、上式(2)により表される残留既燃ガス量Megr1と上式(11)により表される吹返し既燃ガス量Megr2との和として、式(12)により求められるようになる。
【0049】
【数12】
Figure 2004251183
なお排気管圧力Pe及び排気温度Teは、機関運転状態より推定可能であり、機関回転速度NEと機関負荷との関数として求めることができる。したがって、排気管圧力Pe、及び排気温度Teを常に計測、又は推定しないのであれば、例えば機関負荷率KL(全負荷WOTに対する現在の負荷の割合)、吸入空気量GA、吸気管圧力Pm等のような機関負荷を表すパラメータと機関回転速度NEとの関数としてそれらを求めるようにすれば良い。
【0050】
例えば機関負荷の指標値として吸気管圧力Pmを用いた場合、上式(11)は式(13)に示すように、バルブオーバーラップ量OL、機関回転速度NE、及び吸気管圧力Pmの関数として表すことができる。図7は、そうした関数f(NE,Pm)の設定態様の一例を示している。
【0051】
【数13】
Figure 2004251183
また同様に上式(2)の{Pe/(Re・Te)}を機関回転速度NE、及び吸気管圧力Pmの関数f(NE,Pm)として与えると、残留既燃ガス量Megr1は式(14)で表すことができる。
【0052】
【数14】
Figure 2004251183
このような場合、内部EGR量MegrALLは、式(15)に示すように、機関回転速度NE、吸気管圧力Pm、バルブオーバーラップ量OL、吸気弁開時期Topenの関数により求めることができる。
【0053】
【数15】
Figure 2004251183
[点火時期のVVT補正量AVVTの算出]
以上のように任意の機関運転状況における内部EGR量は、機関回転速度NE、吸気管圧力Pm、及び吸排気弁のバルブオーバーラップ量OL(或いはバルブオーバーラップ面積AOL)等を用いて表されることが確かめられた。この関係からは、以下のような、可変動弁機構11m,11eの作動に応じた内部EGR量の変化に応じた点火時期の補正態様が導き出される。
【0054】
図8は、任意の機関回転速度、及び機関負荷における内部EGR量の変化に応じた最適な点火時期tSAの変化態様を示している。同図8に示すように内部EGR量が増大すれば、最適な点火時期tSAはより早い時期となる。これは、内部EGR量の増大に応じてシリンダ内の燃料の燃焼速度が低下すること、等による。
【0055】
さて、吸排気弁のバルブタイミングが、機関回転速度及び機関負荷から一義的に求められるのであれば、内部EGR量も機関回転速度及び機関負荷より一義的に求めることができる。しかしながら機関運転中には、吸排気弁のバルブタイミングの変更に伴う可変動弁機構11m,11eの応答遅れ等のため、実バルブタイミングVTm,VTeが目標バルブタイミングtVTm,tVTeと不一致となることがある。よって、点火時期をそのときの内部EGR量に即して適正に補正するには、そうした実バルブタイミングVTm,VTeと目標バルブタイミングtVTm,tVTeとのずれによる内部EGR量の変化を考慮する必要がある。
【0056】
ここで内部EGR量が”0”であるときの最適な点火時期を「基準点火時期tSA0」といい、吸排気弁の実バルブタイミングVTm,VTeが目標バルブタイミングtVTmb,tVTebにあるときの内部EGR量を「目標内部EGR量tEGR」という。また内部EGR量が目標内部EGR量tEGRであるときの最適な点火時期tSAbと上記基準点火時期tSA0との差を「ベース補正量AVVTb」という。これら「基準点火時期tSA0」、「目標内部EGR量tEGR」、及び「ベース補正量AVVTb」はいずれも、機関回転速度と機関負荷とから一義的に求めることができる。また「目標内部EGR量tEGR」、「ベース補正量AVVTb」の機関回転速度及び機関負荷に対する相関関係は、予め実験等により求めておくことができる。
【0057】
これらの「基準点火時期tSA0」、「目標内部EGR量tEGR」、及び「ベース補正量AVVTb」を用いれば、上記点火時期tSAbは、式(16)で表すことができる。
【0058】
【数16】
Figure 2004251183
更に同図8に示されるように、最適な点火時期tSAと内部EGR量とが線形関係にあるとすれば、可変動弁機構11m,11eの作動による内部EGR量の変化に応じた点火時期の補正量であるVVT補正量AVVTを、式(17)に示すように与えることができる。すなわち、VVT補正量AVVTを、内部EGR量の現状値である実内部EGR量realEGRと、上記目標内部EGR量tEGRとの比regr(=realEGR/tEGR)に比例した値として与えることができる。
【0059】
【数17】
Figure 2004251183
ここで、任意の機関運転状況での内部EGR量MegrALLは、上式(1)に示されるように残留既燃ガス量Megr1と吹返し既燃ガス量Megr2との和として表すことができる。よって上記比regrは、式(18)のように表すことができる。なお式(18)において、「realMegr1」及び「realMegr2」は、残留既燃ガス量、及び吹返し既燃ガス量の現状値をそれぞれ示している。また「tMegr1」及び「tMegr2」は、吸排気弁のバルブタイミングがその目標バルブタイミングtVTm,tVTeに収束されているときの残留既燃ガス量、及び吹返し既燃ガス量をそれぞれ示している。
【0060】
【数18】
Figure 2004251183
なお、吸気弁開時にシリンダ内に存在する残留既燃ガスは、非常に高温でガス密度が低いことから、一般に残留既燃ガス量Megr1は、吹返し既燃ガス量Megr2に比して著しく小さい値となる(Megr1<<Megr2)。よって上記のような比をとった場合、上式(18)は、式(19)のように近似することができる。
【0061】
【数19】
Figure 2004251183
ここで上式(13)に示される吹返し既燃ガス量Megr2に係る式を、上式(19)に代入すれば、式(20)が得られる。なお式(20)において「realOL」、「realNE」及び「realPm」は、バルブオーバーラップ量、機関回転速度、及び吸気管圧力の現状値をそれぞれ示している。また「tOL」、「tNE」及び「tPm」は、吸排気弁のバルブタイミングがその目標バルブタイミングtVTm,tVTeに収束されているときのバルブオーバーラップ量、機関回転速度、及び吸気管圧力をそれぞれ示している。
【0062】
【数20】
Figure 2004251183
一方、吸排気弁のバルブタイミングの過渡的な変化は、機関回転速度NE、及び吸気管圧力Pmに直ちに影響を与える訳ではないため、バルブタイミング変更中の機関回転速度NE、及び吸気管圧力Pmは、ほぼ一定と見なすことができる。よって、realNE=tNE、realPm=tPmとなり、上式(20)は更に式(21)のように簡易化できる。
【0063】
【数21】
Figure 2004251183
なお上述したように関数f(OL)は、吸排気弁のバルブオーバーラップ面積AOLを示している。よって、上記比regrは、バルブオーバーラップ面積の現状値である実バルブオーバーラップ面積realAOLと、吸排気弁のバルブタイミングがその制御目標に収束されているときのバルブオーバーラップ面積である目標バルブオーバーラップ面積tAOLとの比として表すことができる。
【0064】
一方、図9に示すように、バルブオーバーラップ量OLが変化しても、オーバーラップ部分AOL1、AOL2の形状は、ほぼ相似となっている。そこでオーバーラップ部分AOL1、AOL2の形状がバルブオーバーラップ量の変化に拘わらず相似であると見なせば、任意のバルブオーバーラップ量OLについて、バルブオーバーラップ面積AOLは、そのバルブオーバーラップ量OLの二乗に比例するとの近似が可能である。よって上式(21)は、更に式(22)のように表すことができる。
【0065】
【数22】
Figure 2004251183
式(21)、(22)を上式(17)に代入すれば、式(23)、(24)が得られる。すなわち、点火時期のVVT補正量AVVTは、実バルブオーバーラップ面積realAOLと目標バルブオーバーラップ面積tAOLとの比、或いは実バルブオーバーラップ量realOLの平方数と目標バルブオーバーラップ量tOLの平方数との比に基づいて求めることができる。
【0066】
【数23】
Figure 2004251183
【0067】
【数24】
Figure 2004251183
図10は、上式(24)により示される、特定の機関回転速度及び特定の機関負荷における点火時期のVVT補正量AVVTとバルブオーバーラップ量OLとの関係を示している。同図10に示されるように、機関回転速度、機関負荷が一定のときのVVT補正量AVVTは、実バルブオーバーラップ量realOLの平方数に比例した値となる。
【0068】
本実施形態では、電子制御装置20は、点火時期の設定に際して、上式(24)を用いて算出されたVVT補正量AVVTによる点火時期の補正を行っている。以下、そうした本実施形態でのVVT補正量AVVTの算出態様について、図11を併せ参照して説明する。
【0069】
図11は、VVT補正量AVVTの算出に係る処理態様をブロック図として示したものである。同図に示すように本処理においては、上述したバルブタイミング制御において設定された吸排気弁の目標バルブタイミングtVTm,tVTeより、目標バルブオーバーラップ量tOLが算出される。上記のようにバルブタイミング制御においては、目標バルブタイミングtVTm,tVTeは、機関回転速度NE及び機関負荷率KLに基づき算出されている。同図の例では、機関回転速度NE及び機関負荷率KLと吸排気弁の目標バルブタイミングtVTm,tVTeとの相関関係がそれぞれ記憶された演算マップM01,M02を用いて、目標バルブタイミングtVTm,tVTeが算出されている。
【0070】
またこれとともに、カム角センサ22m,22eの検出結果から吸排気弁の実バルブタイミングVTm,VTeが求められる。そして求められた吸排気弁の実バルブタイミングVTm,VTeに基づき、実バルブオーバーラップ量realOLが算出される。
【0071】
更に機関回転速度NE、及び機関負荷率KLに基づいて、上記ベース補正量AVVTbが算出される。ここでは、ベース補正量AVVTbの算出は、機関回転速度NE及び機関負荷率KLとベース補正量AVVTbとの相関関係が記憶された演算マップM03を用いて行われている。
【0072】
上記のように算出されたベース補正量AVVTb、目標バルブオーバーラップ量tOL、及び実バルブオーバーラップ量realOLから、上式(24)に従ってVVT補正量AVVTが算出される。そしてその算出されたVVT補正量AVVTを用いて点火時期の補正が行われる。これにより、可変動弁機構11m,11eの作動に伴う内部EGR量の変化に応じた適切な点火時期の設定がなされることとなる。
【0073】
以上説明した本実施形態によれば、以下の効果を奏することができる。
(1)本実施形態では、実バルブオーバーラップ量realOLの平方数と目標バルブオーバーラップ量tOLの平方数との比に基づいて点火時期のVVT補正量AVVTを算出している。ここで、上記平方数の比は、上式(22)に示されるように、実内部EGR量realEGRと目標内部EGR量tEGRとの比を表している。そのため、上記算出されたVVT補正量AVVTを用いることで、可変動弁機構11m,11eの作動に伴う内部EGR量の変化に応じた点火時期の補正を容易且つ適切に行うことができる。
【0074】
なお、内部EGR量の増減に応じてシリンダ内に導入される新気の量が変化するため、新気の量の厳密な制御が求められる場合などには、内部EGR量の変化に応じて吸入空気量やスロットル開度を補正することがある。またそうした新気導入量の変化に対応した空燃比の制御等のため、内部EGR量の変化に応じた燃料噴射量の補正が必要となることがある。更に内部EGR量の変化による燃焼状態の変化への対応等のため、内部EGR量の変化に応じた燃料噴射時期の補正が必要となることや、外部EGRを行う内燃機関でのシリンダ内に存在する既燃ガス量の制御等のため、内部EGR量の変化に応じた外部EGR量の補正が必要となることがある。
【0075】
このような可変動弁機構の作動に伴う内部EGR量の変化の影響を受ける、点火時期以外の機関制御量の補正についても、実バルブオーバーラップ面積と目標バルブオーバーラップ面積との比や、実バルブオーバーラップ量の平方数と目標バルブオーバーラップ量の平方数との比に基づき算出することもできる。
【0076】
(第2実施形態)
続いて、本発明の内燃機関の制御装置を具体化した第2実施形態を、第1実施形態と異なる点を中心に説明する。
【0077】
上式(21)によれば、実内部EGR量realEGRと目標内部EGR量tEGRとの比regr が、実バルブオーバーラップ面積realAOLと目標バルブオーバーラップ面積tAOLとの比に等しいことが示されている。また上式(22)によれば、同比regr が、更に実バルブオーバーラップ量realOLの平方数と目標バルブオーバーラップ量tOLの平方数との比に等しいことが示されている。これらの関係からは、次の式(25)、(26)の関係が導き出せる。すなわち内部EGR量MegrALLは、バルブオーバーラップ面積AOLに比例し、又はバルブオーバーラップ量OLの平方数に比例する。ここで「k1」、「k2」はそれぞれ、所定の定数を示している。
【0078】
【数25】
Figure 2004251183
【0079】
【数26】
Figure 2004251183
これらの関係により、可変動弁機構11m,11eの作動状態、特にその作動に応じて設定されるバルブオーバーラップ面積AOLやバルブオーバーラップ量OLと、内部EGR量との関係を的確に把握することができる。例えば図12に示すように、内部EGR量MegrALLを現状の1/4に減量する場合には、バルブオーバーラップ量OLを現状の1/2とすれば良い。
【0080】
よって、次の(a)、(b)のように可変動弁機構11m,11eを制御することで、容易且つ確実に内部EGR量を目標内部EGR量tEGRへと調整することができる。
(a)吸排気弁のバルブオーバーラップ面積AOLが、実内部EGR量realEGRに対する目標内部EGR量tEGRの比と実バルブオーバーラップ面積realAOLとの乗算値となるように可変動弁機構11m,11eを制御する。
(b)吸排気弁のバルブオーバーラップ量OLが、実内部EGR量realEGRに対する目標内部EGR量tEGRの比の平方根と実バルブオーバーラップ量realOLとの乗算値となるように可変動弁機構11m,11eを制御する。
【0081】
また、上式(25)、(26)からは、次の式(27)、(28)に示される関係を導き出すことができる。ここで基本バルブオーバーラップ面積baseAOL、基本バルブオーバーラップ量baseOL、及び基本EGR量baseEGRは、吸排気弁が基本目標バルブタイミングtbVTm,tbVTeにあるときのバルブオーバーラップ面積、バルブオーバーラップ量、及び内部EGR量をそれぞれ示している。
【0082】
【数27】
Figure 2004251183
【0083】
【数28】
Figure 2004251183
基本バルブオーバーラップ面積baseAOL、基本バルブオーバーラップ量baseOLは、基本目標バルブタイミングtbVTm,tbVTeによって一義的に決まるため、機関回転速度、機関負荷から一義的に求めることができる。また基本EGR量baseEGRも、機関回転速度及び機関負荷から一義的に決めることができ、予め実験等で求めておくこともできる。
【0084】
こうした式(27)、(28)によれば、内部EGR量を所望の値とするために必要なバルブオーバーラップ面積、及びバルブオーバーラップ量を容易且つ適切に求めることができる。すなわち、同式(27)又は式(28)により算出された目標バルブオーバーラップ面積tAOL又は目標バルブオーバーラップ量tOLが得られるように可変動弁機構11m,11eを制御すれば、高精度の内部EGR量の調整を容易に行うことができる。
【0085】
以下、そうした内部EGR量の調整を、内部EGRのリミット制御に適用した例を説明する。
図13に、本実施形態での「内部EGRのリミット制御ルーチン」のフローチャートを示す。本ルーチンの処理は、定時割り込み処理として電子制御装置20により周期的に実行される。
【0086】
本ルーチンに処理が移行されると、まずステップ100において、吸排気弁の基本目標バルブタイミングtbVTm,tbVTeがそれぞれ算出される。ここでの算出は、予め電子制御装置20に記憶された、機関回転速度NEと機関負荷とに基づく演算マップを用いて行われる。また同ステップ100において、算出された基本目標バルブタイミングtbVTm,tbVTeから基本バルブオーバーラップ量baseOLが算出される。基本バルブオーバーラップ量baseOLは、吸排気弁のバルブタイミングが共に基本目標バルブタイミングtbVTm,tbVTeにあるときのバルブオーバーラップ量を示している。
【0087】
ステップ110では、機関回転速度NE及び機関負荷率KLに基づき、基本EGR量baseEGRが算出される。基本EGR量baseEGRは、吸排気弁のバルブタイミングが基本目標バルブタイミングtbVTm,tbVTeとなっていることを前提とした現状の機関回転速度NE及び機関負荷率KLでの内部EGR量を示している。
【0088】
ステップ120では、機関回転速度NEの推移に基づいて内燃機関10のトルク変動量ΔTLが算出される。そしてステップ130において、その算出されたトルク変動量ΔTLが判定値α以上であるか否かが判定される。判定値αは、許容されるトルク変動量ΔTLの上限値よりも、すなわち燃焼の不安定化を示すトルク変動量ΔTLの下限値よりも若干小さい値に設定されている。
【0089】
ここでトルク変動量ΔTLが判定値α以上であれば(ステップ130において「YES」)、ステップ140において、内部EGR減量値ΔEGRに所定値γが加算される。またトルク変動量ΔTLが判定値α未満であれば(ステップ130において「NO」)、ステップ150において、内部EGR減量値ΔEGRから所定値βが減算される。この所定値βは、所定値γに比して小さい値が設定されている。
【0090】
内部EGR減量値ΔEGRは、基本EGR量baseEGRから減らすべき内部EGRの量を示している。ちなみに内部EGR減量値ΔEGRが負の値となるときには、内部EGR量が基本EGR量baseEGRよりも増やされる。
【0091】
こうして内部EGR減量値ΔEGRが設定されると、続くステップ160において、式(29)に基づいて、基本EGR量baseEGR及び内部EGR減量値ΔEGRから目標内部EGR量tEGRが算出される。
【0092】
【数29】
Figure 2004251183
図14に、以上の処理による目標内部EGR量tEGRの設定態様の一例を示す。同図に示すように、目標内部EGR量tEGRは、トルク変動量ΔTLが判定値α未満であるときには、所定値βずつ徐々に増やされる。一方、内部EGR量が過剰となり、燃焼が不安定となってトルク変動量ΔTLが判定値α以上となると(同図の時刻t1,t2)、目標内部EGR量tEGRは所定値γ分、大きく減らされる。これにより、目標内部EGR量tEGRは、燃焼の不安定化を招かない内部EGR量の範囲の上限近傍まで増大されるようになる。
【0093】
よって、内部EGR量がこの目標内部EGR量tEGRとなるように可変動弁機構11m,11eを制御すれば、好ましい燃焼状態が維持できる範囲内で、できるだけ多くの内部EGRを導入して、燃料消費率の低減や排気エミッション性能の向上を図ることができる。そうした内部EGR量の調整に必要な可変動弁機構11m,11eの目標バルブタイミングtVTm,tVTeの算出は、続くステップ170及び180で行われる。
【0094】
ステップ170では、次の式(30)を用いてリミット補正量ΔOLが算出される。このリミット補正量ΔOLは、図15に示すように、基本バルブオーバーラップ量baseOLと目標バルブオーバーラップ量tOLとの差(baseOL−tOL)を示している。
【0095】
【数30】
Figure 2004251183
続くステップ180では、このリミット補正量ΔOLだけバルブオーバーラップ量が少なくなるように基本目標バルブタイミングtbVTm,tbVTeを補正して最終的な目標バルブタイミングtVTm,tVTeが算出される。ここでは、排気弁の基本目標バルブタイミングtbVTeをリミット補正量ΔVTだけ進角側に補正してその最終的な目標バルブタイミングtVTeとしている(tVTe=baseVTe+ΔOL)。その一方、吸気弁については、基本目標バルブタイミングtbVTmがそのまま最終的な目標バルブタイミングtVTmとされている(tVTm=baseVTm)。
【0096】
電子制御装置20は、こうして吸排気弁の最終的な目標バルブタイミングtVTm,tVTeを設定して本ルーチンの処理を一旦終了する。こうして設定された最終的な目標バルブタイミングtVTm,tVTeに基づき可変動弁機構11m,11eが制御されると、吸排気弁のバルブオーバーラップ量OLが上記目標バルブオーバーラップ量tOLとなり、内部EGR量が上記算出された目標内部EGR量tEGRに調整されるようになる。
【0097】
以上説明した本実施形態によれば、次の効果を奏することができる。
(1)本実施形態では、基本EGR量baseEGRに対する目標内部EGR量tEGRの比の平方根と基本バルブオーバーラップ量baseOLとの乗算値である目標バルブオーバーラップ量tOLが得られるように可変動弁機構11m,11eを制御している。そしてこれにより、内部EGR量を目標内部EGR量tEGRに調整するようにしている。このように本実施形態では、式(22)等に示される内部EGR量とバルブオーバーラップ量との関係に基づき可変動弁機構11m,11eを制御して内部EGR量を調整している。そのため、内部EGR量の調整を高精度に行うことができる。
【0098】
以上の各実施形態は、以下のように変更して実施することもできる。
・図11の算出ロジックでは、実バルブオーバーラップ量realOL及び目標バルブオーバーラップ量tOLに基づき、式(24)を用いてVVT補正量AVVTを算出しているが、その算出に式(23)を用いるようにしても良い。このときの実バルブオーバーラップ面積realAOL及び目標バルブオーバーラップ面積tAOLは、吸排気弁のバルブタイミングの目標値や現状値から求めることができる。こうした場合、バルブオーバーラップ面積AOLがバルブオーバーラップ量OLの平方数に比例すると見なすことができない構成にも、その適用が可能となる。
【0099】
・図13の内部EGRのリミット制御ルーチンでは、式(28)に示されるバルブオーバーラップ量と内部EGR量との関係に基づいて、吸排気弁の目標バルブタイミングtVTm,tVTeを算出している。この算出を、式(27)に示されるバルブオーバーラップ面積と内部EGR量との関係に基づいて行うようにしても良い。こうした場合には、バルブオーバーラップ面積AOLがバルブオーバーラップ量OLの平方数に比例すると見なすことができない構成にも、その適用が可能となる。
【0100】
・第1実施形態でのVVT補正量AVVTの算出を、式(15)等を用いて実内部EGR量realEGR及び目標内部EGR量tEGRをそれぞれ求め、式(17)に示されるように実内部EGR量realEGRと目標内部EGR量tEGRとの比に基づいて行うようにしても良い。
【0101】
・第2実施形態での内部EGR量の調整に係る可変動弁機構の制御は、可変動弁機構によるバルブオーバーラップ状態の変更を通じて内部EGR量の調整を行う制御であれば、内部EGRのリミット制御以外の制御にも同様、或いはそれに準じた態様で適用することができる。いずれにせよ、式(21)、(22)に示される関係に基づき可変動弁機構11m,11eの制御を行えば、高精度の内部EGR量の調整を容易に行うことができる。
【0102】
・上記各実施形態では、吸排気弁のバルブタイミングをそれぞれ可変とする2つの可変動弁機構11m,11eを備える内燃機関10への本発明の適用例を示したが、吸排気弁のいずれか一方のみに可変動弁機構を備える内燃機関に本発明をすることもできる。また、バルブリフト量を可変とする機構等の他のタイプの可変動弁機構を備える内燃機関にも本発明の適用は可能である。要は、可変動弁機構により吸排気弁のバルブオーバーラップ状態が可変とされる内燃機関であれば、本発明を適用することができる。
【0103】
上記各実施形態及びその変更例から把握される技術的思想を、以下に列記する。
(イ)機関回転速度及び機関負荷より設定された基本目標作動量に基づいて、吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構を備え、その可変動弁機構の作動により内部EGR量を変更する内燃機関に適用されて、該可変動弁機構の作動に伴う内部EGR量の変化に応じて所定の機関制御量を補正する内燃機関の制御装置において、機関回転速度及び機関負荷より算出されたベース補正量に対して、実内部EGR量と目標内部EGR量との比を乗算して、前記所定の機関制御量の補正に係る補正量を算出することを特徴とする内燃機関の制御装置。
【0104】
(ロ)機関回転速度及び機関負荷より設定された基本目標作動量に基づいて、吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構を備える内燃機関に適用されて、該可変動弁機構の作動に伴う内部EGR量の変化に応じて所定の機関制御量を補正する内燃機関の制御装置において、機関回転速度及び機関負荷より算出されたベース補正量に対して、実バルブオーバーラップ面積と目標バルブオーバーラップ面積との比をそのベース補正量に乗算して、前記所定の機関制御量の補正に係る補正量を算出することを特徴とする内燃機関の制御装置。
【0105】
(ハ)機関回転速度及び機関負荷より設定された基本目標作動量に基づいて、吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構を備える内燃機関に適用されて、該可変動弁機構の作動に伴う内部EGR量の変化に応じて所定の機関制御量を補正する内燃機関の制御装置において、機関回転速度及び機関負荷より算出されたベース補正量に対して、実バルブオーバーラップ量の平方数と目標バルブオーバーラップ量の平方数との比を乗算して、前記所定の機関制御量の補正に係る補正量を算出することを特徴とする内燃機関の制御装置。
【0106】
(ニ)前記機関制御量は、点火時期である請求項1〜3、及び上記(イ)〜(ハ)のいずれかに記載の内燃機関の制御装置。
(ホ)前記機関制御量は、吸入空気量である請求項1〜3、及び上記(イ)〜(ハ)のいずれかに記載の内燃機関の制御装置。
【0107】
(ヘ)前記機関制御量は、燃料噴射量である請求項1〜3、及び上記(イ)〜(ハ)のいずれかに記載の内燃機関の制御装置。
(ト)前記機関制御量は、燃料噴射時期である請求項1〜3、及び上記(イ)〜(ハ)のいずれかに記載の内燃機関の制御装置。
【0108】
(チ)前記機関制御量は、外部EGR量である請求項1〜3、及び上記(イ)〜(ハ)のいずれかに記載の内燃機関の制御装置。
(リ)前記目標内部EGR量は、当該機関のトルク変動の度合いに応じて算出される請求項4〜7のいずれかに記載の内燃機関の制御装置。
【図面の簡単な説明】
【図1】本発明の第1実施形態についてその全体構造を示す模式図。
【図2】同実施形態のバルブタイミングの設定例を示すグラフ。
【図3】内燃機関における既燃ガスの挙動を示す模式図。
【図4】排気管からの既燃ガスの吹返しについてのモデル図。
【図5】排気管から吹き返す既燃ガスの挙動を示す模式図。
【図6】吸排気弁のバルブリフト量の推移を示すグラフ。
【図7】関数f(NE,Pm)の設定例を示すグラフ。
【図8】内部EGR量と最適な点火時期との対応関係例を示すグラフ。
【図9】バルブオーバーラップ量の変化に応じたバルブリフト曲線の変化を示すグラフ。
【図10】実バルブオーバーラップ量とVVT補正量との関係を示すグラフ。
【図11】第1実施形態でのVVT補正量算出ロジックのブロック図。
【図12】バルブオーバーラップ量に応じた内部EGR量の変化を示すグラフ。
【図13】第2実施形態における内部EGRのリミット制御ルーチンのフローチャート。
【図14】同ルーチンによる目標EGR量の制御例を示すタイムチャート。
【図15】バルブオーバーラップ量に応じた内部EGR量の変化を示すグラフ。
【符号の説明】
10…内燃機関、11m,11e…可変動弁機構、12…インジェクタ、13…スロットルバルブ、14…点火プラグ、20…電子制御装置、21…クランク角センサ、22m,22e…カム角センサ、23…吸気管圧力センサ、24…エアフローメータ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for controlling an internal combustion engine including a variable valve mechanism that makes a valve overlap state of intake and exhaust valves variable.
[0002]
[Prior art]
In recent years, for the purpose of improving intake efficiency, improving exhaust emissions by reducing NOx, and improving fuel efficiency by reducing pumping loss in accordance with the introduction of internal EGR, the valve characteristics of intake and exhaust valves have been adjusted according to the engine operating conditions. 2. Description of the Related Art An internal combustion engine with a variable valve mechanism that is variable has been put to practical use. For example, in an in-vehicle internal combustion engine, a variable valve timing mechanism that varies the opening / closing timing of intake and exhaust valves, that is, a valve timing, and a variable valve lift mechanism that varies the valve lift amount of intake and exhaust valves are widely used as variable valve operating mechanisms. Has been adopted.
[0003]
In this type of internal combustion engine, the amount of internal EGR present in the cylinder increases or decreases according to the operation of the variable valve mechanism such as a change in the valve overlap state of the intake and exhaust valves. Therefore, it is necessary to set the engine control amount such as the ignition timing in consideration of the change in the internal EGR amount according to the operation of the variable valve mechanism. Conventionally, as a control device for an internal combustion engine that sets an ignition timing in consideration of a change in an internal EGR amount according to the operation of such a variable valve mechanism, a control device described in Patent Literature 1 is known.
[0004]
[Patent Document 1]
JP-A-9-209895
[0005]
[Problems to be solved by the invention]
The internal EGR amount varies in a complicated manner according to the engine speed, the engine load, and the operating state of the variable valve mechanism. However, in the above-described conventional control device, the operating state of the variable valve mechanism, the change in the internal EGR amount, Is not clear, and it is difficult to set an appropriate ignition timing for a change in the internal EGR amount.
[0006]
In addition, since the operation of the variable valve mechanism causes a change in the internal EGR amount, it is considered that the internal EGR amount can be controlled by the operation of the variable valve mechanism, but the above relationship is unclear. As described above, it is impossible to control the internal EGR amount with high accuracy.
[0007]
The present invention has been made in view of such circumstances, and an object thereof is to provide an internal combustion engine capable of easily and appropriately performing engine control based on a relationship between an operation state of a variable valve mechanism and a change in an internal EGR amount. An object of the present invention is to provide an engine control device.
[0008]
[Means for Solving the Problems]
Hereinafter, means for achieving the above-described object and the effects thereof will be described.
The invention according to claim 1 is applied to an internal combustion engine in which the internal EGR amount can be adjusted by a variable valve mechanism that makes the valve overlap state of the intake and exhaust valves variable, and the internal pressure associated with the operation of the variable valve mechanism. In a control device for an internal combustion engine that corrects a predetermined engine control amount according to a change in an EGR amount, a correction amount related to the correction of the predetermined engine control amount is determined based on a ratio between an actual internal EGR amount and a target internal EGR amount. The gist is to calculate.
[0009]
In the above configuration, for example, the valve overlap of the intake and exhaust valves is made variable by a variable valve operating mechanism that makes the valve timing and the valve lift of at least one of the intake valve and the exhaust valve variable. When the valve overlap of the intake and exhaust valves is changed by the operation of the variable valve mechanism, the internal EGR amount of the internal combustion engine changes. As a result, the engine control variable affected by the change in the internal EGR amount, such as the ignition timing, the throttle opening, the fuel injection amount, the fuel injection timing, and the external EGR amount, also changes.
[0010]
At this time, in the above configuration, the ratio of the actual internal EGR amount, which is the current value of the internal EGR amount, to the target internal EGR amount, which is the internal EGR amount when the operation amount of the variable valve mechanism converges to its control target, The engine control amount is corrected by the correction amount calculated based on the above. That is, in the above-described configuration, the index value indicating the degree of change of the internal EGR amount due to the operation of the variable valve mechanism is determined not by the change amount of the internal EGR amount but by the ratio of the actual internal EGR amount to the target internal EGR amount. Correction for the engine control amount is performed. Therefore, the influence of the change in the internal EGR amount is more easily and accurately reflected in the correction of the engine control amount. Therefore, according to the above configuration, it is possible to easily and accurately correct the engine control amount according to the change in the internal EGR amount accompanying the operation of the variable valve mechanism.
[0011]
The invention according to claim 2 is applied to an internal combustion engine including a variable valve operating mechanism of a variable valve operating mechanism that makes a valve overlap state of an intake / exhaust valve variable, and an internal part accompanying the operation of the variable valve operating mechanism In a control device for an internal combustion engine that corrects a predetermined engine control amount according to a change in an EGR amount, a correction amount relating to the correction of the predetermined engine control amount is determined by a ratio of an actual valve overlap area to a target valve overlap area. The gist is to calculate based on.
[0012]
As shown in Expression (21), it can be said that the ratio between the actual internal EGR amount and the target internal EGR amount is equal to the ratio between the actual valve overlap area and the target valve overlap area. Therefore, as in the above configuration, the correction amount for the predetermined engine control amount according to the change in the internal EGR amount accompanying the operation of the variable valve mechanism is determined based on the ratio between the actual valve overlap area and the target valve overlap area. By calculating, it is possible to easily and accurately correct the engine control amount according to the change in the internal EGR amount accompanying the operation of the variable valve mechanism.
[0013]
The invention according to claim 3 is applied to an internal combustion engine including a variable valve operating mechanism of a variable valve operating mechanism that makes a valve overlap state of an intake / exhaust valve variable, and an internal part accompanying the operation of the variable valve operating mechanism In a control device for an internal combustion engine that corrects a predetermined engine control amount according to a change in an EGR amount, the correction amount relating to the correction of the predetermined engine control amount is determined by calculating a square number of an actual valve overlap amount and a target valve overlap amount. The gist is to calculate based on the ratio to the square number of.
[0014]
The valve overlap area can be approximated as being proportional to the square number of the valve overlap amount. Therefore, as shown in Expression (22), it can be said that the ratio between the actual internal EGR amount and the target internal EGR amount is equal to the ratio between the square number of the actual valve overlap amount and the square number of the target valve overlap amount. . Therefore, as in the above configuration, the correction amount for the predetermined engine control amount according to the change in the internal EGR amount accompanying the operation of the variable valve operating mechanism is determined by the square number of the actual valve overlap amount and the square number of the target valve overlap amount. By calculating based on the ratio, the engine control amount can be easily and accurately corrected in accordance with the change in the internal EGR amount accompanying the operation of the variable valve mechanism.
[0015]
The invention according to claim 4 is applied to an internal combustion engine provided with a variable valve mechanism that makes the valve overlap state of the intake and exhaust valves variable, and controls the internal EGR amount through changing the valve overlap state. In the control device, the variable valve mechanism is controlled such that the valve overlap area of the intake / exhaust valve is a product of the ratio of the target internal EGR amount to the actual internal EGR amount and the actual valve overlap area. That is the gist.
[0016]
As shown in Expression (21), it can be said that the ratio between the actual internal EGR amount and the target internal EGR amount is equal to the ratio between the actual valve overlap area and the target valve overlap area. Therefore, if the variable valve mechanism is controlled such that the valve overlap area of the intake / exhaust valve is a product of the ratio of the target internal EGR amount to the actual internal EGR amount and the actual valve overlap area as in the above configuration. , The internal EGR amount can be set as the target internal EGR amount. Therefore, according to the above configuration, the internal EGR amount can be adjusted with high accuracy based on the operation control of the variable valve mechanism.
[0017]
The invention according to claim 5 is applied to an internal combustion engine provided with a variable valve mechanism that makes the valve overlap state of the intake and exhaust valves variable, and controls the internal EGR amount by changing the valve overlap state. Controlling the variable valve mechanism so that the valve overlap amount of the intake / exhaust valve is a product of the square root of the ratio of the target internal EGR amount to the actual internal EGR amount and the actual valve overlap amount. The main point is to do.
[0018]
As shown in equation (22), it can be said that the ratio between the actual internal EGR amount and the target internal EGR amount is equal to the ratio between the square number of the actual valve overlap amount and the square number of the target valve overlap amount. it can. As described above, if the variable valve mechanism is controlled so that the valve overlap amount of the intake and exhaust valves is a product of the square root of the ratio of the target internal EGR amount to the actual internal EGR amount and the actual valve overlap amount. , The internal EGR amount can be set as the target internal EGR amount. Therefore, according to the above configuration, the internal EGR amount can be adjusted with high accuracy based on the operation control of the variable valve mechanism.
[0019]
Further, the invention according to claim 6 is applied to an internal combustion engine having a variable valve operating mechanism that makes the valve overlap state of the intake and exhaust valves variable, and controls the internal EGR amount by changing the valve overlap state. In the control device of the engine, the basic valve overlap area uniquely set based on the engine speed and the engine load, and the internal EGR amount when the valve overlap area of the intake and exhaust valves is the basic valve overlap area. Based on a basic internal EGR amount and a target internal EGR amount which is a control target value of the internal EGR amount, a value obtained by multiplying a value obtained by multiplying a ratio of the target internal EGR amount to the basic internal EGR amount by the basic valve overlap area is applied to the valve Controlling the internal EGR amount by controlling the variable valve mechanism as a control target value of the overlap area; The door and the gist thereof.
[0020]
From the equation (21) and the like, the relationship shown in the equation (27) can be derived. Based on this relationship, the valve overlap area required for making the internal EGR amount the target internal EGR amount is determined as a product of the ratio of the target internal EGR amount to the basic internal EGR amount and the basic valve overlap area. Can be. Therefore, according to the above configuration, the internal EGR amount can be adjusted with high accuracy based on the operation control of the variable valve mechanism.
[0021]
Further, the invention according to claim 7 is applied to an internal combustion engine having a variable valve mechanism for making the valve overlap state of the intake and exhaust valves variable, and controlling the internal EGR amount through changing the valve overlap state. In the engine control device, the basic valve overlap amount uniquely set based on the engine speed and the engine load, and the internal EGR amount when the valve overlap amount of the intake and exhaust valves is the basic valve overlap amount. Based on a basic internal EGR amount and a target internal EGR amount which is a control target value of the internal EGR amount, a multiplication value of a square root of a ratio of the target internal EGR amount to the basic internal EGR amount and the basic valve overlap amount is calculated. By controlling the variable valve mechanism as the control target value of the valve overlap amount, the internal EGR amount is controlled. It is referred to as the gist thereof.
[0022]
From the equation (22) and the like, the relation shown in the equation (28) can be derived. Based on this relationship, the valve overlap amount necessary to make the internal EGR amount the target internal EGR amount is calculated by multiplying the square root of the ratio of the target internal EGR amount to the basic internal EGR amount by the basic valve overlap amount. You can ask. Therefore, according to the above configuration, the internal EGR amount can be adjusted with high accuracy based on the operation control of the variable valve mechanism.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Hereinafter, a first embodiment of a control device for an internal combustion engine according to the present invention will be described in detail with reference to the drawings.
[0024]
As shown in FIG. 1, an internal combustion engine 10 to which the present embodiment is applied is provided with various sensors for detecting an engine operating condition. For example, a crank angle sensor 21 is provided near a crankshaft which is an output shaft of the internal combustion engine 10. Cam angle sensors 22m and 22e are provided near the intake and exhaust camshafts, respectively. Further, an intake pipe pressure sensor 23 and an air flow meter 24 as a flow rate sensor are provided in an intake pipe of the internal combustion engine 10. The detection signals of these sensors are input to an electronic control unit 20 that controls various controls of the internal combustion engine 10.
[0025]
The electronic control unit 20 grasps the engine operation status based on the detection signals of such sensors. For example, from the detection signal of the crank angle sensor 21, the rotational phase of the crank shaft, that is, the crank angle is obtained, and further the engine rotational speed NE is calculated. From the detection signals of the cam angle sensors 22m and 22e, the rotational phases of the intake and exhaust camshafts, that is, the cam angles, are obtained. Further, an intake pipe pressure Pm is obtained from a detection signal of the intake pipe pressure sensor 23, and an intake air amount GA is obtained from a detection signal of the air flow meter 24.
[0026]
The electronic control unit 20 performs various controls of the internal combustion engine 10 based on the engine operation status obtained from the detection results of the sensors described above. For example, the electronic control unit 20 outputs a command signal to the injector 12, the ignition plug 14, and the throttle valve 13 of the internal combustion engine 10 in accordance with the engine operation state, and performs fuel injection control, ignition timing control, and intake air amount control. I have.
[0027]
The internal combustion engine 10 is configured as an internal combustion engine with a variable valve mechanism including two variable valve mechanisms 11m and 11e that make valve timings of an intake valve and an exhaust valve respectively variable. In this embodiment, the variable valve mechanisms 11m and 11e change the valve timings of the intake valves and the exhaust valves by changing the relative rotation phases of the camshafts on the intake side and the exhaust side with respect to the crankshaft that is the output shaft of the engine. Is adopted.
[0028]
The electronic control unit 20 performs valve timing control for varying the valve timing of the intake and exhaust valves based on the drive control of the variable valve mechanisms 11m and 11e. The valve timing control in the present embodiment is performed by the electronic control device 20 in the following procedure.
[0029]
First, based on the engine speed NE and the engine load, target valve timings tVTm and tVTe, which are control target values of the valve timings of the intake valve and the exhaust valve, are calculated. The variable valve mechanisms 11m and 11e are driven such that the actual valve timings realVTm and realVTe of the intake and exhaust valves detected by the cam angle sensors 22m and 22e become the obtained target valve timings tVTm and tVTe, respectively.
[0030]
In the present embodiment, the valve timings of the intake and exhaust valves are represented using the advance amount (VTm) and the retard amount (VTe) shown in FIG. That is, the valve timing VTe of the intake valve is based on the most retarded position at which the opening and closing of the intake valve is the slowest in the variable range of the valve timing by the variable valve mechanism 11m, and the amount of advance from the most retarded position. [° CA]. Further, the valve timing VTe of the exhaust valve is based on the most advanced position where the opening and closing of the exhaust valve is the fastest in the variable range of the valve timing by the variable valve mechanism 11e, and the amount of retardation from the most retarded position. [° CA].
[0031]
When the valve timing of the intake and exhaust valves is changed in this manner, the internal EGR amount increases and decreases, and the optimal ignition timing changes. Therefore, in the present embodiment, the ignition timing is corrected in consideration of a change in the internal EGR amount due to a change in the valve timing of the intake and exhaust valves by the variable valve mechanisms 11m and 11e. Hereinafter, the manner of correcting the ignition timing in this embodiment will be described.
[0032]
[Calculation of Internal EGR Amount MegrALL]
First, calculation of the internal EGR amount MegrALL in an arbitrary engine operating state will be described. As described above, the internal EGR amount MegrALL changes in accordance with the operating conditions of the variable valve mechanisms 11m and 11e in addition to the engine speed NE and the engine load. Such a change in the internal EGR amount MegrALL can be easily and accurately grasped by using the valve overlap area AOL or the valve overlap amount OL of the intake / exhaust valve as described below.
[0033]
(Behavior of burned gas in cylinder)
Here, the behavior of the burned gas in the cylinder of the internal combustion engine 10 will be considered.
The burned gas generated in the cylinder by the combustion of the fuel is discharged to an exhaust pipe according to the opening of the exhaust valve (see FIG. 3-A). Thereafter, when the intake valve is opened and the valve overlap is started, the burned gas is blown back into the cylinder from the exhaust pipe due to the differential pressure between the exhaust pipe pressure Pe and the intake pipe pressure Pm (FIG. 3). -C). At this time, some burned gas flows through the cylinder and flows into the intake pipe, but such burned gas is re-introduced into the cylinder together with fresh air in a subsequent intake stroke. Here, the burned gas introduced into the cylinder by the blow-back from the exhaust pipe during the valve overlap period after the opening of the intake valve is referred to as "burn-back burned gas", and the amount thereof is referred to as "burn-back burned gas". Amount Megr2 ".
[0034]
On the other hand, immediately before the intake valve is opened, a certain amount of burned gas remains in the cylinder without being discharged to the exhaust pipe (see FIG. 3-B). A part of the burned gas continues to stay in the cylinder as it is, and the remaining part flows out once into the intake pipe due to the return of exhaust gas during valve overlap, and is then re-introduced into the cylinder during the intake stroke. . Therefore, any burned gas remaining in the cylinder immediately before the opening of the intake valve is, in any case, present in the cylinder at the time of combustion. Here, the burned gas remaining in the cylinder immediately before the opening of the intake valve is referred to as “residual burned gas”, and the amount thereof is referred to as “residual burned gas amount Megr1”.
[0035]
Therefore, the internal EGR amount MegrALL existing in the cylinder at the time of combustion can be obtained as the sum of the residual burned gas amount Megr1 and the blown back burned gas amount Megr2 as shown in Expression (1).
[0036]
(Equation 1)
Figure 2004251183
(Calculation of residual burned gas amount Megr1)
The residual burned gas amount Megr1 can be represented by a gas state equation based on the state in the cylinder immediately before the intake valve opens as shown in Expression (2). Here, Pm: intake pipe pressure, Pe: exhaust pipe pressure, Re: gas constant of burned gas, Te: exhaust temperature, and V: cylinder volume immediately before opening the intake valve.
[0037]
(Equation 2)
Figure 2004251183
Further, the cylinder volume V immediately before the intake valve is opened is based on the intake valve opening timing Topen (BTDC), the cylinder bore diameter rb, the piston stroke S, and the volume of the combustion chamber when the piston is at the top dead center, that is, the clearance volume Vc. It is determined by equation (3).
[0038]
[Equation 3]
Figure 2004251183
In the above equation (3), the cylinder bore diameter rb, the stroke S, and the clearance volume Vc are constants determined by design specifications and the like. Therefore, in the case of an internal combustion engine provided with a variable valve mechanism that makes the valve timing of the intake and exhaust valves variable, the cylinder volume V is a function f of the intake valve opening timing Topen. 2 (Topen).
[0039]
(Calculation of the burned-back burned gas amount Megr2)
During the valve overlap period, the burned gas flows from the exhaust pipe toward the intake pipe due to the differential pressure between the exhaust pipe pressure Pe and the intake pipe pressure Pm, and the burned gas in the exhaust pipe is blown back into the cylinder. Become. At this time, in the burned gas flow path, the opening of the intake / exhaust valve is a throttle whose flow path area is locally narrowed. Accordingly, the aspect of the flow of the burned gas at this time can be represented by a model as shown in FIG. 4, and the flow rate Q can be obtained by using a flow rate calculation formula of the throttle.
[0040]
Here, equation (4) is used as the equation for calculating the flow rate of the throttle. Here, κ: specific heat ratio of burned gas, μ: flow coefficient, and A: valve opening area.
[0041]
(Equation 4)
Figure 2004251183
Φ (Pm / Pe) in the above equation (4) is expressed by the equation (5) when 1 / (κ + 1) <Pm / Pe.
[0042]
(Equation 5)
Figure 2004251183
On the other hand, when 1 / (κ + 1) ≧ Pm / Pe, Φ (Pm / Pe) in the above equation (4) is expressed by the equation (6).
[0043]
(Equation 6)
Figure 2004251183
Therefore, the amount of burned gas introduced into the cylinder by the return of exhaust gas, that is, the amount of burnt-back burned gas Megr2 can be obtained as a time integrated value of the burned gas flow rate of such a throttle in the valve overlap period. . Furthermore, since the intake pipe pressure Pm, the exhaust pipe pressure Pe, the exhaust temperature Te, and the specific heat ratio κ of the burned gas do not change rapidly, their values during the valve overlap can be regarded as constant. Therefore, the blown back burned gas amount Megr2 can be obtained as a value proportional to the time integral value Σ (μA) of the effective valve opening area μA (= flow coefficient μ × valve opening area A). Therefore, the blown back burned gas amount Megr2 can be expressed by the equation (7).
[0044]
(Equation 7)
Figure 2004251183
(Calculation of time integral value of effective valve opening area Σ (μA))
As shown in FIG. 5A, when the exhaust gas is blown back during the valve overlap period, when the effective valve opening area μi Ai of the intake valve is smaller than the effective valve opening area μe Ae of the exhaust valve, the intake valve functions as a throttle. I do. Also, as shown in FIG. 5B, when the effective valve opening area μe Ae of the exhaust valve is smaller than the effective valve opening area μi Ai of the intake valve, the exhaust valve functions as a throttle. That is, the smaller of the effective valve opening area μA of the exhaust valve and the intake valve functions as a throttle. Therefore, the time integral value Σ (μA) of the effective valve opening area is represented by Expression (8).
[0045]
(Equation 8)
Figure 2004251183
Here, if the flow coefficients of the intake valve and the exhaust valve can be considered to be the same (μi = μe = μ), the equation (8) can be further expressed as the equation (9). Note that the area in parentheses on the right side of the equation (9) indicates the area of the valve lift curve indicated by hatching in FIG. 6, that is, the valve overlap time area.
[0046]
(Equation 9)
Figure 2004251183
Here, in the case of an internal combustion engine having a variable valve mechanism for varying the opening / closing timing of the intake valve and the exhaust valve, that is, the valve timing, the valve overlap time area changes according to the setting state of the valve timing of the intake / exhaust valve. I do. However, since the effective valve opening area μA at each instant is determined by design specifications such as a cam profile, the above time integral value Σ (μA) is used as a function of the valve overlap amount OL of the intake and exhaust valves and the engine speed NE. You can ask. That is, by integrating the effective valve opening area μA with respect to the crank angle, a function f1 (OL) based on only the valve overlap amount OL can be obtained. Then, by dividing the crank angle integral value by the engine rotational speed NE, the valve overlap time area, that is, the time integral value Σ (μA) of the effective valve opening area can be obtained. Therefore, the above equation (9) can be expressed by equation (10). Further, by substituting equation (10) into equation (7), equation (11) is obtained.
[0047]
(Equation 10)
Figure 2004251183
[0048]
[Equation 11]
Figure 2004251183
(Calculation of internal EGR amount MegrALL)
The internal EGR amount MegrALL present in the cylinder at the time of combustion is the sum of the residual burned gas amount Megr1 represented by the above equation (2) and the blown back burned gas amount Megr2 represented by the above equation (11). This is obtained by the equation (12).
[0049]
(Equation 12)
Figure 2004251183
The exhaust pipe pressure Pe and the exhaust gas temperature Te can be estimated from the operating state of the engine, and can be obtained as a function of the engine speed NE and the engine load. Therefore, if the exhaust pipe pressure Pe and the exhaust temperature Te are not always measured or estimated, for example, the engine load factor KL (the ratio of the current load to the full load WOT), the intake air amount GA, the intake pipe pressure Pm, etc. Such a parameter may be obtained as a function of the parameter representing the engine load and the engine speed NE.
[0050]
For example, when the intake pipe pressure Pm is used as an index value of the engine load, the above equation (11) is a function of the valve overlap amount OL, the engine rotation speed NE, and the intake pipe pressure Pm as shown in the equation (13). Can be represented. FIG. 7 shows such a function f 3 An example of a setting mode of (NE, Pm) is shown.
[0051]
(Equation 13)
Figure 2004251183
Similarly, {Pe / (Re · Te)} in the above equation (2) is used to calculate the function f of the engine speed NE and the intake pipe pressure Pm. 4 When given as (NE, Pm), the residual burned gas amount Megr1 can be expressed by equation (14).
[0052]
[Equation 14]
Figure 2004251183
In such a case, the internal EGR amount MegrALL can be determined by a function of the engine speed NE, the intake pipe pressure Pm, the valve overlap amount OL, and the intake valve opening timing Topen, as shown in Expression (15).
[0053]
(Equation 15)
Figure 2004251183
[Calculation of VVT correction amount AVVT of ignition timing]
As described above, the internal EGR amount in an arbitrary engine operating condition is represented by using the engine rotation speed NE, the intake pipe pressure Pm, the valve overlap amount OL (or the valve overlap area AOL) of the intake and exhaust valves, and the like. It was confirmed. From this relationship, the following correction mode of the ignition timing according to the change of the internal EGR amount according to the operation of the variable valve mechanisms 11m and 11e is derived.
[0054]
FIG. 8 shows how the optimum ignition timing tSA changes according to the change in the internal EGR amount at an arbitrary engine speed and an arbitrary engine load. As shown in FIG. 8, if the internal EGR amount increases, the optimal ignition timing tSA becomes earlier. This is because the combustion speed of the fuel in the cylinder decreases as the internal EGR amount increases.
[0055]
Now, if the valve timing of the intake and exhaust valves can be uniquely determined from the engine speed and the engine load, the internal EGR amount can also be uniquely determined from the engine speed and the engine load. However, during engine operation, the actual valve timings VTm, VTe may not match the target valve timings tVTm, tVTe due to a response delay of the variable valve mechanisms 11m, 11e due to a change in the valve timing of the intake and exhaust valves. is there. Therefore, in order to properly correct the ignition timing in accordance with the internal EGR amount at that time, it is necessary to consider a change in the internal EGR amount due to such a deviation between the actual valve timings VTm, VTe and the target valve timings tVTm, tVTe. is there.
[0056]
Here, the optimum ignition timing when the internal EGR amount is “0” is referred to as “reference ignition timing tSA0”, and the internal EGR when the actual valve timings VTm and VTe of the intake and exhaust valves are at the target valve timings tVTmb and tVTeb. The amount is referred to as “target internal EGR amount tEGR”. The difference between the optimal ignition timing tSAb and the reference ignition timing tSA0 when the internal EGR amount is the target internal EGR amount tEGR is referred to as “base correction amount AVVTb”. These “reference ignition timing tSA0”, “target internal EGR amount tEGR”, and “base correction amount AVVTb” can all be uniquely obtained from the engine speed and the engine load. The correlation between the "target internal EGR amount tEGR" and the "base correction amount AVVTb" with respect to the engine speed and the engine load can be obtained in advance by experiments or the like.
[0057]
Using these “reference ignition timing tSA0”, “target internal EGR amount tEGR”, and “base correction amount AVVTb”, the ignition timing tSAb can be expressed by equation (16).
[0058]
(Equation 16)
Figure 2004251183
Further, as shown in FIG. 8, assuming that the optimal ignition timing tSA and the internal EGR amount are in a linear relationship, the ignition timing according to the change in the internal EGR amount due to the operation of the variable valve mechanisms 11m and 11e. The VVT correction amount AVVT, which is the correction amount, can be given as shown in Expression (17). That is, the VVT correction amount AVVT is determined by the ratio r between the actual internal EGR amount realEGR, which is the current value of the internal EGR amount, and the target internal EGR amount tEGR. egr (= RealEGR / tEGR).
[0059]
[Equation 17]
Figure 2004251183
Here, the internal EGR amount MegrALL in an arbitrary engine operating condition can be represented as the sum of the residual burned gas amount Megr1 and the blown back burned gas amount Megr2 as shown in the above equation (1). Therefore, the above ratio r egr Can be expressed as in equation (18). In Expression (18), “realMegr1” and “realMegr2” indicate the current values of the residual burned gas amount and the blown back burned gas amount, respectively. “TMegr1” and “tMegr2” respectively indicate the residual burned gas amount and the blown back burned gas amount when the valve timing of the intake / exhaust valve is converged to the target valve timings tVTm and tVTe.
[0060]
(Equation 18)
Figure 2004251183
Since the residual burned gas present in the cylinder when the intake valve is open is very high temperature and has a low gas density, the residual burned gas amount Megr1 is generally significantly smaller than the blown back burned gas amount Megr2. Value (Megr1 << Megr2). Therefore, when the above ratio is taken, the above equation (18) can be approximated as the equation (19).
[0061]
[Equation 19]
Figure 2004251183
Here, by substituting the equation relating to the blown back burned gas amount Megr2 shown in the above equation (13) into the above equation (19), the equation (20) is obtained. In the equation (20), “realOL”, “realNE”, and “realPm” indicate the current values of the valve overlap amount, the engine rotation speed, and the intake pipe pressure, respectively. “TOL”, “tNE”, and “tPm” represent the valve overlap amount, the engine speed, and the intake pipe pressure when the valve timings of the intake and exhaust valves converge to the target valve timings tVTm, tVTe, respectively. Is shown.
[0062]
(Equation 20)
Figure 2004251183
On the other hand, since a transient change in the valve timing of the intake and exhaust valves does not immediately affect the engine speed NE and the intake pipe pressure Pm, the engine speed NE and the intake pipe pressure Pm during the valve timing change are not changed. Can be considered almost constant. Therefore, realNE = tNE, realPm = tPm, and the above equation (20) can be further simplified as equation (21).
[0063]
(Equation 21)
Figure 2004251183
Note that the function f 1 (OL) indicates the valve overlap area AOL of the intake and exhaust valves. Therefore, the ratio r egr Is the actual valve overlap area realAOL, which is the current value of the valve overlap area, and the target valve overlap area tAOL, which is the valve overlap area when the valve timing of the intake and exhaust valves is converged on the control target. It can be expressed as a ratio.
[0064]
On the other hand, as shown in FIG. 9, even if the valve overlap amount OL changes, the shapes of the overlap portions AOL1 and AOL2 are substantially similar. Therefore, if it is considered that the shapes of the overlap portions AOL1 and AOL2 are similar regardless of the change in the valve overlap amount, the valve overlap area AOL is determined by the value of the valve overlap amount OL for an arbitrary valve overlap amount OL. An approximation that is proportional to the square is possible. Therefore, the above equation (21) can be further expressed as equation (22).
[0065]
(Equation 22)
Figure 2004251183
By substituting equations (21) and (22) into equation (17), equations (23) and (24) are obtained. That is, the VVT correction amount AVVT of the ignition timing is determined by the ratio between the actual valve overlap area realAOL and the target valve overlap area tAOL, or the square number of the actual valve overlap amount realOL and the square number of the target valve overlap amount tOL. It can be determined based on the ratio.
[0066]
[Equation 23]
Figure 2004251183
[0067]
(Equation 24)
Figure 2004251183
FIG. 10 shows the relationship between the VVT correction amount AVVT of the ignition timing at a specific engine speed and a specific engine load, and the valve overlap amount OL, which is expressed by the above equation (24). As shown in FIG. 10, the VVT correction amount AVVT when the engine rotation speed and the engine load are constant is a value proportional to the square of the actual valve overlap amount realOL.
[0068]
In the present embodiment, when setting the ignition timing, the electronic control unit 20 corrects the ignition timing using the VVT correction amount AVVT calculated using the above equation (24). Hereinafter, the manner of calculating the VVT correction amount AVVT in this embodiment will be described with reference to FIG.
[0069]
FIG. 11 is a block diagram showing a processing mode relating to the calculation of the VVT correction amount AVVT. As shown in the figure, in this processing, the target valve overlap amount tOL is calculated from the target valve timings tVTm and tVTe of the intake and exhaust valves set in the above-described valve timing control. As described above, in the valve timing control, the target valve timings tVTm and tVTe are calculated based on the engine speed NE and the engine load factor KL. In the example shown in the figure, the target valve timings tVTm and tVTe are calculated using the calculation maps M01 and M02 in which the correlations between the engine speed NE and the engine load factor KL and the target valve timings tVTm and tVTe of the intake and exhaust valves are stored. Is calculated.
[0070]
At the same time, actual valve timings VTm and VTe of the intake and exhaust valves are obtained from the detection results of the cam angle sensors 22m and 22e. Then, the actual valve overlap amount realOL is calculated based on the obtained actual valve timings VTm and VTe of the intake and exhaust valves.
[0071]
Further, the base correction amount AVVTb is calculated based on the engine speed NE and the engine load factor KL. Here, the calculation of the base correction amount AVVTb is performed using the calculation map M03 in which the correlation between the engine speed NE and the engine load factor KL and the base correction amount AVVTb is stored.
[0072]
From the base correction amount AVVTb, the target valve overlap amount tOL, and the actual valve overlap amount realOL calculated as described above, the VVT correction amount AVVT is calculated according to the above equation (24). Then, the ignition timing is corrected using the calculated VVT correction amount AVVT. As a result, an appropriate ignition timing is set according to a change in the internal EGR amount due to the operation of the variable valve mechanisms 11m and 11e.
[0073]
According to the embodiment described above, the following effects can be obtained.
(1) In the present embodiment, the VVT correction amount AVVT of the ignition timing is calculated based on the ratio of the square number of the actual valve overlap amount realOL to the square number of the target valve overlap amount tOL. Here, the ratio of the square numbers represents the ratio between the actual internal EGR amount realEGR and the target internal EGR amount tEGR, as shown in the above equation (22). Therefore, by using the calculated VVT correction amount AVVT, it is possible to easily and appropriately correct the ignition timing according to the change in the internal EGR amount due to the operation of the variable valve mechanisms 11m and 11e.
[0074]
In addition, since the amount of fresh air introduced into the cylinder changes according to the increase or decrease of the internal EGR amount, when strict control of the amount of fresh air is required, the intake air is changed according to the change of the internal EGR amount. The air amount and throttle opening may be corrected. Further, in order to control the air-fuel ratio in response to such a change in the fresh air introduction amount, it may be necessary to correct the fuel injection amount in accordance with the change in the internal EGR amount. Further, in order to cope with a change in the combustion state due to a change in the internal EGR amount, it is necessary to correct the fuel injection timing in accordance with the change in the internal EGR amount. In some cases, the external EGR amount needs to be corrected according to the change in the internal EGR amount for controlling the burned gas amount.
[0075]
Regarding the correction of the engine control amount other than the ignition timing, which is affected by the change of the internal EGR amount due to the operation of the variable valve mechanism, the ratio of the actual valve overlap area to the target valve overlap area and the actual It can also be calculated based on the ratio between the square number of the valve overlap amount and the square number of the target valve overlap amount.
[0076]
(2nd Embodiment)
Next, a second embodiment that embodies the control device for an internal combustion engine of the present invention will be described focusing on differences from the first embodiment.
[0077]
According to the above equation (21), the ratio r between the actual internal EGR amount realEGR and the target internal EGR amount tEGR egr Is equal to the ratio of the actual valve overlap area realAOL to the target valve overlap area tAOL. According to the above equation (22), the same ratio r egr Is further equal to the ratio of the square number of the actual valve overlap amount realOL to the square number of the target valve overlap amount tOL. From these relationships, the following relationships of Expressions (25) and (26) can be derived. That is, the internal EGR amount MegrALL is proportional to the valve overlap area AOL or proportional to the square of the valve overlap amount OL. Here, “k1” and “k2” each indicate a predetermined constant.
[0078]
(Equation 25)
Figure 2004251183
[0079]
(Equation 26)
Figure 2004251183
Based on these relationships, it is possible to accurately grasp the operating state of the variable valve mechanisms 11m and 11e, particularly the relationship between the valve overlap area AOL and the valve overlap amount OL set according to the operation and the internal EGR amount. Can be. For example, as shown in FIG. 12, when the internal EGR amount MegrALL is reduced to 1 / of the current value, the valve overlap amount OL may be set to の of the current value.
[0080]
Therefore, the internal EGR amount can be easily and reliably adjusted to the target internal EGR amount tEGR by controlling the variable valve mechanisms 11m and 11e as in the following (a) and (b).
(A) The variable valve mechanisms 11m and 11e are set so that the valve overlap area AOL of the intake and exhaust valves is a product of the ratio of the target internal EGR amount tEGR to the actual internal EGR amount realEGR and the actual valve overlap area realAOL. Control.
(B) The variable valve mechanism 11m, so that the valve overlap amount OL of the intake / exhaust valve is a product of the square root of the ratio of the target internal EGR amount tEGR to the actual internal EGR amount realEGR and the actual valve overlap amount realOL. 11e.
[0081]
From the above equations (25) and (26), the relations shown in the following equations (27) and (28) can be derived. Here, the basic valve overlap area baseAOL, the basic valve overlap amount baseOL, and the basic EGR amount baseEGR are the valve overlap area, the valve overlap amount, and the internal when the intake and exhaust valves are at the basic target valve timings tbVTm, tbVTe. The respective EGR amounts are shown.
[0082]
[Equation 27]
Figure 2004251183
[0083]
[Equation 28]
Figure 2004251183
Since the basic valve overlap area baseAOL and the basic valve overlap amount baseOL are uniquely determined by the basic target valve timings tbVTm and tbVTe, they can be uniquely determined from the engine speed and the engine load. The basic EGR amount base EGR can also be uniquely determined from the engine speed and the engine load, and can be obtained in advance through experiments or the like.
[0084]
According to the equations (27) and (28), the valve overlap area and the valve overlap amount necessary for setting the internal EGR amount to a desired value can be easily and appropriately obtained. That is, if the variable valve mechanisms 11m and 11e are controlled such that the target valve overlap area tAOL or the target valve overlap amount tOL calculated by the equation (27) or the equation (28) is obtained, a highly accurate internal The adjustment of the EGR amount can be easily performed.
[0085]
Hereinafter, an example in which the adjustment of the internal EGR amount is applied to the internal EGR limit control will be described.
FIG. 13 shows a flowchart of the “internal EGR limit control routine” in the present embodiment. The process of this routine is periodically executed by the electronic control unit 20 as a periodic interrupt process.
[0086]
When the process proceeds to this routine, first, in step 100, basic target valve timings tbVTm and tbVTe of the intake and exhaust valves are calculated. The calculation here is performed using a calculation map based on the engine speed NE and the engine load, which is stored in the electronic control unit 20 in advance. In step 100, the basic valve overlap amount baseOL is calculated from the calculated basic target valve timings tbVTm and tbVTe. The basic valve overlap amount baseOL indicates the valve overlap amount when the valve timings of the intake and exhaust valves are both at the basic target valve timings tbVTm and tbVTe.
[0087]
In step 110, a basic EGR amount base EGR is calculated based on the engine speed NE and the engine load factor KL. The basic EGR amount base EGR indicates the internal EGR amount at the current engine rotational speed NE and the current engine load factor KL on the assumption that the valve timing of the intake and exhaust valves is the basic target valve timing tbVTm, tbVTe.
[0088]
In step 120, the torque fluctuation amount ΔTL of the internal combustion engine 10 is calculated based on the transition of the engine speed NE. Then, at step 130, it is determined whether or not the calculated torque variation ΔTL is equal to or greater than a determination value α. The determination value α is set to a value slightly smaller than the upper limit value of the allowable torque fluctuation amount ΔTL, that is, a value slightly smaller than the lower limit value of the torque fluctuation amount ΔTL indicating unstable combustion.
[0089]
Here, if torque variation ΔTL is equal to or greater than determination value α (“YES” in step 130), in step 140, a predetermined value γ is added to internal EGR decrease value ΔEGR. If torque variation ΔTL is smaller than determination value α (“NO” in step 130), in step 150, predetermined value β is subtracted from internal EGR decrease value ΔEGR. The predetermined value β is set to a value smaller than the predetermined value γ.
[0090]
The internal EGR decrease value ΔEGR indicates the amount of internal EGR to be reduced from the basic EGR amount base EGR. Incidentally, when the internal EGR decrease value ΔEGR becomes a negative value, the internal EGR amount is increased from the basic EGR amount baseEGR.
[0091]
When the internal EGR reduction value ΔEGR is set in this way, in the next step 160, the target internal EGR amount tEGR is calculated from the basic EGR amount base EGR and the internal EGR reduction value ΔEGR based on equation (29).
[0092]
(Equation 29)
Figure 2004251183
FIG. 14 shows an example of a setting mode of the target internal EGR amount tEGR by the above processing. As shown in the figure, the target internal EGR amount tEGR is gradually increased by a predetermined value β when the torque variation ΔTL is less than the determination value α. On the other hand, when the internal EGR amount becomes excessive, combustion becomes unstable, and the torque fluctuation amount ΔTL becomes equal to or larger than the determination value α (time t1, t2 in the figure), the target internal EGR amount tEGR is greatly reduced by the predetermined value γ. It is. As a result, the target internal EGR amount tEGR is increased to near the upper limit of the internal EGR amount range that does not cause unstable combustion.
[0093]
Therefore, if the variable valve mechanisms 11m and 11e are controlled so that the internal EGR amount becomes equal to the target internal EGR amount tEGR, as much internal EGR as possible is introduced within a range where a preferable combustion state can be maintained, and fuel consumption is increased. The efficiency can be reduced and the exhaust emission performance can be improved. The calculation of the target valve timings tVTm and tVTe of the variable valve mechanisms 11m and 11e necessary for the adjustment of the internal EGR amount is performed in the following steps 170 and 180.
[0094]
In step 170, the limit correction amount ΔOL is calculated using the following equation (30). As shown in FIG. 15, the limit correction amount ΔOL indicates a difference (baseOL−tOL) between the basic valve overlap amount baseOL and the target valve overlap amount tOL.
[0095]
[Equation 30]
Figure 2004251183
In the following step 180, the basic target valve timings tbVTm and tbVTe are corrected so that the valve overlap amount is reduced by the limit correction amount ΔOL, and the final target valve timings tVTm and tVTe are calculated. Here, the basic target valve timing tbVTe of the exhaust valve is corrected to the advance side by the limit correction amount ΔVT to obtain the final target valve timing tVTe (tVTe = baseVTe + ΔOL). On the other hand, for the intake valve, the basic target valve timing tbVTm is used as it is as the final target valve timing tVTm (tVTm = baseVTm).
[0096]
The electronic control unit 20 sets the final target valve timings tVTm and tVTe of the intake and exhaust valves in this way, and ends the processing of this routine once. When the variable valve mechanisms 11m and 11e are controlled based on the final target valve timings tVTm and tVTe thus set, the valve overlap amount OL of the intake and exhaust valves becomes the target valve overlap amount tOL, and the internal EGR amount Is adjusted to the calculated target internal EGR amount tEGR.
[0097]
According to the embodiment described above, the following effects can be obtained.
(1) In the present embodiment, the variable valve operating mechanism is configured to obtain a target valve overlap amount tOL which is a product of a square root of a ratio of the target internal EGR amount tEGR to the basic EGR amount baseEGR and the basic valve overlap amount baseOL. 11m and 11e are controlled. Thus, the internal EGR amount is adjusted to the target internal EGR amount tEGR. As described above, in the present embodiment, the internal EGR amount is adjusted by controlling the variable valve mechanisms 11m and 11e based on the relationship between the internal EGR amount and the valve overlap amount shown in Expression (22) and the like. Therefore, the adjustment of the internal EGR amount can be performed with high accuracy.
[0098]
Each of the above embodiments can be modified and implemented as follows.
In the calculation logic of FIG. 11, the VVT correction amount AVVT is calculated using the equation (24) based on the actual valve overlap amount realOL and the target valve overlap amount tOL, and the equation (23) is used for the calculation. It may be used. At this time, the actual valve overlap area realAOL and the target valve overlap area tAOL can be obtained from the target value and the current value of the valve timing of the intake and exhaust valves. In such a case, the present invention can be applied to a configuration in which the valve overlap area AOL cannot be regarded as being proportional to the square number of the valve overlap amount OL.
[0099]
In the internal EGR limit control routine of FIG. 13, the target valve timings tVTm and tVTe of the intake and exhaust valves are calculated based on the relationship between the valve overlap amount and the internal EGR amount shown in Expression (28). This calculation may be performed based on the relationship between the valve overlap area and the internal EGR amount shown in Expression (27). In such a case, the present invention can be applied to a configuration in which the valve overlap area AOL cannot be regarded as being proportional to the square of the valve overlap amount OL.
[0100]
In the calculation of the VVT correction amount AVVT in the first embodiment, the actual internal EGR amount realEGR and the target internal EGR amount tEGR are respectively obtained by using equation (15) and the like, and the actual internal EGR amount is calculated as shown in equation (17). The determination may be performed based on a ratio between the amount realEGR and the target internal EGR amount tEGR.
[0101]
The control of the variable valve mechanism relating to the adjustment of the internal EGR amount in the second embodiment is a limit of the internal EGR if the control is to adjust the internal EGR amount through the change of the valve overlap state by the variable valve mechanism. Control other than control can be applied in a similar or similar manner. In any case, if the control of the variable valve mechanisms 11m and 11e is performed based on the relationships shown in the equations (21) and (22), the internal EGR amount can be easily adjusted with high accuracy.
[0102]
In each of the above embodiments, the application example of the present invention to the internal combustion engine 10 including the two variable valve mechanisms 11m and 11e for respectively varying the valve timings of the intake and exhaust valves has been described. The present invention can also be applied to an internal combustion engine having a variable valve mechanism on only one side. Further, the present invention can be applied to an internal combustion engine having another type of variable valve mechanism such as a mechanism that makes the valve lift variable. In short, the present invention can be applied to any internal combustion engine in which the valve overlap state of the intake and exhaust valves is made variable by a variable valve mechanism.
[0103]
The technical ideas grasped from the above embodiments and the modified examples are listed below.
(A) A variable valve mechanism that varies the valve overlap state of the intake and exhaust valves based on the basic target operation amount set from the engine speed and the engine load, and the internal EGR is operated by the operation of the variable valve mechanism. A control device for an internal combustion engine applied to an internal combustion engine that changes the amount and corrects a predetermined engine control amount in accordance with a change in the internal EGR amount accompanying the operation of the variable valve mechanism. Multiplying the calculated base correction amount by a ratio of the actual internal EGR amount to the target internal EGR amount to calculate a correction amount related to the correction of the predetermined engine control amount; Control device.
[0104]
(B) applied to an internal combustion engine having a variable valve mechanism for varying the valve overlap state of the intake and exhaust valves based on a basic target operation amount set from the engine speed and the engine load; In a control device for an internal combustion engine, which corrects a predetermined engine control amount in accordance with a change in an internal EGR amount accompanying operation of a mechanism, an actual valve overlap area with respect to a base correction amount calculated from an engine speed and an engine load. A control device for an internal combustion engine, wherein a correction amount relating to the correction of the predetermined engine control amount is calculated by multiplying a ratio of the base correction amount to a target valve overlap area.
[0105]
(C) applied to an internal combustion engine having a variable valve mechanism for varying the valve overlap state of the intake and exhaust valves based on a basic target operation amount set from the engine speed and the engine load; In a control device for an internal combustion engine, which corrects a predetermined engine control amount according to a change in an internal EGR amount accompanying operation of a mechanism, an actual valve overlap amount is compared with a base correction amount calculated from an engine speed and an engine load. A multiplication of the ratio of the square number of the target valve overlap amount to the square number of the target valve overlap amount to calculate a correction amount related to the correction of the predetermined engine control amount.
[0106]
(D) The control device for an internal combustion engine according to any one of claims 1 to 3 and (a) to (c), wherein the engine control amount is an ignition timing.
(E) The control device for an internal combustion engine according to any one of (1) to (3) and (A) to (C), wherein the engine control amount is an intake air amount.
[0107]
(F) The control device for an internal combustion engine according to any one of (1) to (3) and (A) to (C), wherein the engine control amount is a fuel injection amount.
(G) The control device for an internal combustion engine according to any one of (1) to (3) and (A) to (C), wherein the engine control amount is a fuel injection timing.
[0108]
(H) The control device for an internal combustion engine according to any one of claims 1 to 3, and (a) to (c), wherein the engine control amount is an external EGR amount.
(I) The control device for an internal combustion engine according to any one of claims 4 to 7, wherein the target internal EGR amount is calculated according to a degree of torque fluctuation of the engine.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the entire structure of a first embodiment of the present invention.
FIG. 2 is a graph showing a setting example of valve timing according to the embodiment;
FIG. 3 is a schematic diagram showing the behavior of burned gas in an internal combustion engine.
FIG. 4 is a model diagram showing the flareback of burned gas from an exhaust pipe.
FIG. 5 is a schematic diagram showing the behavior of burned gas blown back from an exhaust pipe.
FIG. 6 is a graph showing a change in a valve lift of an intake / exhaust valve.
FIG. 7: Function f 3 9 is a graph showing a setting example of (NE, Pm).
FIG. 8 is a graph showing an example of a correspondence relationship between an internal EGR amount and an optimal ignition timing.
FIG. 9 is a graph showing a change in a valve lift curve according to a change in a valve overlap amount.
FIG. 10 is a graph showing a relationship between an actual valve overlap amount and a VVT correction amount.
FIG. 11 is a block diagram of a VVT correction amount calculation logic in the first embodiment.
FIG. 12 is a graph showing a change in an internal EGR amount according to a valve overlap amount.
FIG. 13 is a flowchart of an internal EGR limit control routine according to the second embodiment.
FIG. 14 is a time chart showing an example of controlling the target EGR amount by the same routine.
FIG. 15 is a graph showing a change in an internal EGR amount according to a valve overlap amount.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 11m, 11e ... Variable valve mechanism, 12 ... Injector, 13 ... Throttle valve, 14 ... Spark plug, 20 ... Electronic control unit, 21 ... Crank angle sensor, 22m, 22e ... Cam angle sensor, 23 ... Intake pipe pressure sensor, 24 ... air flow meter.

Claims (7)

吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構によって内部EGR量を調整可能な内燃機関に適用されて、該可変動弁機構の作動に伴う内部EGR量の変化に応じて所定の機関制御量を補正する内燃機関の制御装置において、
前記所定の機関制御量の補正に係る補正量を、実内部EGR量と目標内部EGR量との比に基づき算出する
ことを特徴とする内燃機関の制御装置。
The present invention is applied to an internal combustion engine in which the internal EGR amount can be adjusted by a variable valve mechanism that makes the valve overlap state of the intake and exhaust valves variable, and a predetermined value is set according to a change in the internal EGR amount accompanying the operation of the variable valve mechanism. In a control device for an internal combustion engine that corrects an engine control amount,
A control device for an internal combustion engine, wherein a correction amount related to the correction of the predetermined engine control amount is calculated based on a ratio between an actual internal EGR amount and a target internal EGR amount.
吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構の可変動弁機構を備える内燃機関に適用されて、該可変動弁機構の作動に伴う内部EGR量の変化に応じて所定の機関制御量を補正する内燃機関の制御装置において、
前記所定の機関制御量の補正に係る補正量を、実バルブオーバーラップ面積と目標バルブオーバーラップ面積との比に基づき算出する
ことを特徴とする内燃機関の制御装置。
The present invention is applied to an internal combustion engine including a variable valve operating mechanism of a variable valve operating mechanism that makes a valve overlap state of an intake / exhaust valve variable, and a predetermined engine is operated according to a change in an internal EGR amount accompanying the operation of the variable valve operating mechanism. In the control device of the internal combustion engine for correcting the control amount,
A control device for an internal combustion engine, wherein a correction amount related to the correction of the predetermined engine control amount is calculated based on a ratio between an actual valve overlap area and a target valve overlap area.
吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構の可変動弁機構を備える内燃機関に適用されて、該可変動弁機構の作動に伴う内部EGR量の変化に応じて所定の機関制御量を補正する内燃機関の制御装置において、
前記所定の機関制御量の補正に係る補正量を、実バルブオーバーラップ量の平方数と目標バルブオーバーラップ量の平方数との比に基づき算出する
ことを特徴とする内燃機関の制御装置。
The present invention is applied to an internal combustion engine including a variable valve operating mechanism of a variable valve operating mechanism that makes a valve overlap state of an intake / exhaust valve variable, and a predetermined engine is operated according to a change in an internal EGR amount accompanying the operation of the variable valve operating mechanism. In the control device of the internal combustion engine for correcting the control amount,
A control apparatus for an internal combustion engine, wherein a correction amount related to the correction of the predetermined engine control amount is calculated based on a ratio between a square number of an actual valve overlap amount and a square number of a target valve overlap amount.
吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構を備える内燃機関に適用され、そのバルブオーバーラップ状態の変更を通じて内部EGR量を制御する内燃機関の制御装置において、
前記吸排気弁のバルブオーバーラップ面積が、実内部EGR量に対する目標内部EGR量の比率と実バルブオーバーラップ面積との乗算値となるように前記可変動弁機構の制御を行う
ことを特徴とする内燃機関の制御装置。
A control apparatus for an internal combustion engine, which is applied to an internal combustion engine having a variable valve operating mechanism that makes a valve overlap state of an intake and exhaust valve variable and controls an internal EGR amount through a change in the valve overlap state,
The variable valve mechanism is controlled such that a valve overlap area of the intake / exhaust valve is a product of a ratio of a target internal EGR amount to an actual internal EGR amount and an actual valve overlap area. Control device for internal combustion engine.
吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構を備える内燃機関に適用され、そのバルブオーバーラップ状態の変更を通じて内部EGR量を制御する内燃機関の制御装置において、
前記吸排気弁のバルブオーバーラップ量が、実内部EGR量に対する目標内部EGR量の比の平方根と実バルブオーバーラップ量との乗算値となるように前記可変動弁機構を制御する
ことを特徴とする内燃機関の制御装置。
A control apparatus for an internal combustion engine, which is applied to an internal combustion engine having a variable valve operating mechanism that makes a valve overlap state of an intake and exhaust valve variable and controls an internal EGR amount through a change in the valve overlap state,
The variable valve mechanism is controlled such that the valve overlap amount of the intake and exhaust valves is a product of the square root of the ratio of the target internal EGR amount to the actual internal EGR amount and the actual valve overlap amount. Control device for an internal combustion engine.
吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構を備える内燃機関に適用されて、そのバルブオーバーラップ状態の変更を通じて内部EGR量を制御する内燃機関の制御装置において、
機関回転速度及び機関負荷より一義的に設定される基本バルブオーバーラップ面積、及び吸排気弁のバルブオーバーラップ面積がその基本バルブオーバーラップ面積であるときの内部EGR量である基本内部EGR量、及び内部EGR量の制御目標値である目標内部EGR量に基づいて、前記基本内部EGR量に対する前記目標内部EGR量の比と前記基本バルブオーバーラップ面積との乗算値を前記バルブオーバーラップ面積の制御目標値として前記可変動弁機構を制御して、前記内部EGR量の制御を行う
ことを特徴とする内燃機関の制御装置。
A control apparatus for an internal combustion engine, which is applied to an internal combustion engine having a variable valve operating mechanism that makes a valve overlap state of an intake and exhaust valve variable and controls an internal EGR amount through a change in the valve overlap state,
A basic valve overlap area uniquely set from the engine speed and the engine load, and a basic internal EGR amount which is an internal EGR amount when the valve overlap area of the intake and exhaust valves is the basic valve overlap area, and Based on a target internal EGR amount that is a control target value of the internal EGR amount, a product of a ratio of the target internal EGR amount to the basic internal EGR amount and the basic valve overlap area is used as a control target of the valve overlap area. A control device for an internal combustion engine, wherein the control unit controls the internal EGR amount by controlling the variable valve mechanism as a value.
吸排気弁のバルブオーバーラップ状態を可変とする可変動弁機構を備える内燃機関に適用されて、そのバルブオーバーラップ状態の変更を通じて内部EGR量を制御する内燃機関の制御装置において、
機関回転速度及び機関負荷より一義的に設定される基本バルブオーバーラップ量、及び吸排気弁のバルブオーバーラップ量がその基本バルブオーバーラップ量であるときの内部EGR量である基本内部EGR量、及び内部EGR量の制御目標値である目標内部EGR量に基づいて、前記基本内部EGR量に対する前記目標内部EGR量の比の平方根と前記基本バルブオーバーラップ量との乗算値を前記バルブオーバーラップ量の制御目標値として前記可変動弁機構を制御して、前記内部EGR量の制御を行う
ことを特徴とする内燃機関の制御装置。
A control apparatus for an internal combustion engine, which is applied to an internal combustion engine having a variable valve operating mechanism that makes a valve overlap state of an intake and exhaust valve variable and controls an internal EGR amount through a change in the valve overlap state,
A basic internal EGR amount, which is an internal EGR amount when the basic valve overlap amount uniquely set based on the engine speed and the engine load, and the valve overlap amount of the intake and exhaust valves is the basic valve overlap amount, and Based on a target internal EGR amount that is a control target value of the internal EGR amount, a multiplication value of a square root of a ratio of the target internal EGR amount to the basic internal EGR amount and the basic valve overlap amount is calculated as a value of the valve overlap amount. A control device for an internal combustion engine, wherein the control unit controls the variable valve mechanism as a control target value to control the internal EGR amount.
JP2003041742A 2003-02-19 2003-02-19 Control device for internal combustion engine Pending JP2004251183A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003041742A JP2004251183A (en) 2003-02-19 2003-02-19 Control device for internal combustion engine
CNB2004100043747A CN1270067C (en) 2003-02-19 2004-02-17 Apparatus for controlling internal combustion engine
US10/778,110 US6917874B2 (en) 2003-02-19 2004-02-17 Apparatus for controlling internal combustion engine
DE602004001529T DE602004001529T2 (en) 2003-02-19 2004-02-18 Device for controlling an internal combustion engine
EP04003655A EP1452708B1 (en) 2003-02-19 2004-02-18 Apparatus for controlling internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041742A JP2004251183A (en) 2003-02-19 2003-02-19 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004251183A true JP2004251183A (en) 2004-09-09

Family

ID=32767699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041742A Pending JP2004251183A (en) 2003-02-19 2003-02-19 Control device for internal combustion engine

Country Status (5)

Country Link
US (1) US6917874B2 (en)
EP (1) EP1452708B1 (en)
JP (1) JP2004251183A (en)
CN (1) CN1270067C (en)
DE (1) DE602004001529T2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032402A (en) * 2005-07-26 2007-02-08 Yanmar Co Ltd Exhaust gas recirculation device for internal combustion engine
JP2007255200A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Control device of variable valve train
JP2008138658A (en) * 2006-11-09 2008-06-19 Nissan Motor Co Ltd Residual gas amount estimation method and residual gas amount estimation device for engine
WO2009122794A1 (en) * 2008-04-02 2009-10-08 本田技研工業株式会社 Internal egr control device for internal combustion engine
JP2010169095A (en) * 2009-01-21 2010-08-05 Ifp Method for controlling mass of in-cylinder trapped gas in variable timing gasoline engine
JP2016031037A (en) * 2014-07-28 2016-03-07 日産自動車株式会社 Engine remaining gas rate estimation apparatus and ignition timing control device

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180894A (en) * 2000-12-12 2002-06-26 Toyota Motor Corp Controller of internal combustion engine
JP4277535B2 (en) * 2003-02-19 2009-06-10 トヨタ自動車株式会社 Internal EGR amount estimation device for internal combustion engine
EP1496231B1 (en) * 2003-07-01 2008-05-14 Ford Global Technologies, LLC An arrangement and a computer readable storage device for controlling homogeneous charge compression ignition combustion
JP4136926B2 (en) * 2003-12-24 2008-08-20 日産自動車株式会社 Start control device and start control method for internal combustion engine
JP4089641B2 (en) * 2004-03-02 2008-05-28 トヨタ自動車株式会社 EGR control device for internal combustion engine
JP4500595B2 (en) * 2004-06-15 2010-07-14 本田技研工業株式会社 Control device for internal combustion engine
JP4026689B2 (en) * 2004-09-29 2007-12-26 本田技研工業株式会社 Tappet clearance automatic adjustment device and tappet clearance adjustment method
JP4224448B2 (en) * 2004-09-29 2009-02-12 本田技研工業株式会社 Tappet clearance automatic adjustment device
JP4244979B2 (en) * 2005-09-22 2009-03-25 トヨタ自動車株式会社 Supercharging pressure control device for internal combustion engine
DE112006002631B4 (en) * 2005-10-06 2015-10-08 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Fuel adaptation in a homogeneous charge compression ignition engine
JP4253339B2 (en) * 2006-09-21 2009-04-08 株式会社日立製作所 Control device for internal combustion engine
JP4807670B2 (en) * 2007-09-06 2011-11-02 株式会社デンソー Control device
US8127734B2 (en) * 2008-07-10 2012-03-06 Jolley Jr Jack Internal combustion engine having guillotine sliding valve
US8041497B2 (en) 2008-07-15 2011-10-18 Ford Global Technologies, Llc Fuel based engine operation control
JP2010090872A (en) * 2008-10-10 2010-04-22 Toyota Motor Corp Ignition timing control device for internal combustion engine
FR2943100B1 (en) * 2009-03-16 2014-05-16 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING THE ADVANCE AT IGNITION OF A THERMAL ENGINE
EP2514952A4 (en) * 2009-12-18 2014-02-19 Honda Motor Co Ltd Control device for internal-combustion engine
JP5273295B2 (en) * 2010-04-09 2013-08-28 トヨタ自動車株式会社 Control device for internal combustion engine
EP2388461A1 (en) * 2010-05-21 2011-11-23 C.R.F. Società Consortile per Azioni Internal exhaust gas recirculation control in an internal combustion engine
DE102010033005A1 (en) * 2010-07-31 2012-02-02 Daimler Ag Internal combustion engine and associated operating method
US20130305707A1 (en) * 2011-01-24 2013-11-21 Toyota Jidosha Kabushiki Kaisha Control apparatus for supercharger-equipped internal combustion engine
JP5648040B2 (en) * 2012-12-18 2015-01-07 本田技研工業株式会社 Internal EGR amount calculation device for internal combustion engine
EP3222840B1 (en) * 2014-11-19 2019-09-11 Hitachi Automotive Systems, Ltd. Drive device for fuel injection device
JP5905066B1 (en) * 2014-11-20 2016-04-20 三菱電機株式会社 Control device and control method for internal combustion engine
US10914264B2 (en) * 2016-06-23 2021-02-09 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus and method for internal combustion engine
JP6583295B2 (en) * 2017-01-18 2019-10-02 トヨタ自動車株式会社 Vehicle control device
CN110382844A (en) * 2017-03-23 2019-10-25 马自达汽车株式会社 The control device of engine
US11739701B2 (en) * 2018-11-08 2023-08-29 Marelli Europe S.P.A. Method to determine the mass of air trapped in each cylinder of an internal combustion engine
KR20200074519A (en) * 2018-12-17 2020-06-25 현대자동차주식회사 Air-fuel ratio control method in vehicle comprising continuosly variable vale duration appratus and active purge system
IT201900006862A1 (en) * 2019-05-15 2020-11-15 Marelli Europe Spa Method for estimating and controlling the intake efficiency of an internal combustion engine
JP7360261B2 (en) * 2019-07-03 2023-10-12 株式会社Subaru engine system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2001A (en) * 1841-03-12 Sawmill
US2004A (en) * 1841-03-12 Improvement in the manner of constructing and propelling steam-vessels
JP3085181B2 (en) 1996-01-30 2000-09-04 トヨタ自動車株式会社 Ignition timing control device for internal combustion engine
JP2001050091A (en) * 1999-08-06 2001-02-23 Nissan Motor Co Ltd Cylinder intake air volume calculation unit in engine with variable valve timing
JP3743607B2 (en) 1999-12-02 2006-02-08 株式会社デンソー Control device for internal combustion engine
US6827051B2 (en) * 1999-12-03 2004-12-07 Nissan Motor Co., Ltd. Internal EGR quantity estimation, cylinder intake air quantity calculation, valve timing control, and ignition timing control
EP1211402B1 (en) 2000-12-01 2007-05-16 Nissan Motor Co., Ltd. Internal EGR quantity estimation for controlling intake/exhaust valves and ignition timing
JP4524528B2 (en) 2001-02-05 2010-08-18 日産自動車株式会社 Engine internal EGR rate estimation device
JP2002227694A (en) * 2001-02-05 2002-08-14 Nissan Motor Co Ltd Cylinder suction air amount calculating device for engine
US6999864B2 (en) 2002-07-15 2006-02-14 Hitachi, Ltd. Apparatus and method for estimating residual gas amount of internal combustion engine, and apparatus and method for controlling intake air amount of internal combustion engine using estimated residual gas amount

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032402A (en) * 2005-07-26 2007-02-08 Yanmar Co Ltd Exhaust gas recirculation device for internal combustion engine
JP2007255200A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Control device of variable valve train
JP2008138658A (en) * 2006-11-09 2008-06-19 Nissan Motor Co Ltd Residual gas amount estimation method and residual gas amount estimation device for engine
WO2009122794A1 (en) * 2008-04-02 2009-10-08 本田技研工業株式会社 Internal egr control device for internal combustion engine
US8396646B2 (en) 2008-04-02 2013-03-12 Honda Motor Co., Ltd. Internal EGR control device for internal combustion engine
JP2010169095A (en) * 2009-01-21 2010-08-05 Ifp Method for controlling mass of in-cylinder trapped gas in variable timing gasoline engine
JP2016031037A (en) * 2014-07-28 2016-03-07 日産自動車株式会社 Engine remaining gas rate estimation apparatus and ignition timing control device

Also Published As

Publication number Publication date
DE602004001529T2 (en) 2006-12-28
US6917874B2 (en) 2005-07-12
EP1452708B1 (en) 2006-07-19
DE602004001529D1 (en) 2006-08-31
EP1452708A2 (en) 2004-09-01
CN1523225A (en) 2004-08-25
US20040230364A1 (en) 2004-11-18
CN1270067C (en) 2006-08-16
EP1452708A3 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
JP2004251183A (en) Control device for internal combustion engine
US7159547B2 (en) Control apparatus for multi-cylinder internal combustion engine and control method
JP4277535B2 (en) Internal EGR amount estimation device for internal combustion engine
JP3805840B2 (en) Engine control device
US9103293B2 (en) Method for reducing sensitivity for engine scavenging
EP1245811B1 (en) Fuel metering method for an engine operating with controlled auto-ignition
JP2005307847A (en) Air amount calculation device for internal combustion engine
JP4192759B2 (en) Injection quantity control device for diesel engine
JP2004019450A (en) Intake air amount detecting device for internal combustion engine
JP4600308B2 (en) Control device for internal combustion engine
JP2010084549A (en) Control device and method for internal combustion engine
JP2010090872A (en) Ignition timing control device for internal combustion engine
JP4154972B2 (en) Internal EGR amount estimation device for internal combustion engine
JP2005220925A (en) Control apparatus for multi-cylinder internal combustion engine
JP3988650B2 (en) Internal EGR amount estimation device for internal combustion engine
JP2008025374A (en) Ignition timing control device for internal combustion engine
CN111315976B (en) Control system for a vehicle powertrain and method of operating a vehicle powertrain
JP4761072B2 (en) Ignition timing control device for internal combustion engine
US7209825B2 (en) Control apparatus for internal combustion engine
JP4155036B2 (en) Internal EGR amount estimation device for internal combustion engine
EP3075991B1 (en) Control device for internal combustion engine
JP4304415B2 (en) Control device for internal combustion engine
US6807942B2 (en) Control system for internal combustion engine
JP3216299B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0874675A (en) Exhaust-gas reflux control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007