JP2010084549A - Control device and method for internal combustion engine - Google Patents

Control device and method for internal combustion engine Download PDF

Info

Publication number
JP2010084549A
JP2010084549A JP2008252121A JP2008252121A JP2010084549A JP 2010084549 A JP2010084549 A JP 2010084549A JP 2008252121 A JP2008252121 A JP 2008252121A JP 2008252121 A JP2008252121 A JP 2008252121A JP 2010084549 A JP2010084549 A JP 2010084549A
Authority
JP
Japan
Prior art keywords
pressure
intake
combustion engine
internal combustion
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008252121A
Other languages
Japanese (ja)
Other versions
JP4969546B2 (en
Inventor
Kunihiko Suzuki
邦彦 鈴木
Seiji Asano
誠二 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2008252121A priority Critical patent/JP4969546B2/en
Publication of JP2010084549A publication Critical patent/JP2010084549A/en
Application granted granted Critical
Publication of JP4969546B2 publication Critical patent/JP4969546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that a multidimensional map of which axes are at least a revolution number, a load, valve timing, and the atmospheric pressure is required to take into consideration influence of an amount of highland correction, in which the atmospheric pressure is reduced, in structure calculating the controlled variables of ignition timing based on the revolution number, load, and valve timing so that the scale of the map mounted on an ECU becomes large to increase required memory capacity. <P>SOLUTION: The control device calculates a packing efficiency reference value and an EGR amount reference value based on a polynominal expression using at least the revolution number, intake absolute pressure, the atmospheric absolute pressure or exhaust absolute pressure, and variable valve controlled variables as input, and performs highland correction by a ratio of the intake absolute pressure to the atmospheric absolute pressure. Under a highland condition in which the highland-corrected atmospheric pressure is decreased, a fuel injection amount is calculated based on the highland-corrected packing efficiency, and ignition timing is calculated based on the revolution number, highland-corrected packing efficiency, and the highland-corrected EGR amount. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、可変バルブを備えた内燃機関の高地条件下において、燃料噴射量と点火時期の制御を好適に行う内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine that suitably controls fuel injection amount and ignition timing under high altitude conditions of the internal combustion engine having a variable valve.

近年の自動車用内燃機関では、吸気バルブや排気バルブにバルブタイミングまたはバルブリフト量を可変とする可変バルブ機構を備えた内燃機関が一般化する傾向にある。上記可変バルブ機構は、制御自由度の増加や動作範囲の拡大,応答性の向上などの観点で技術の向上が図られている。特に、バルブリフト量を連続的に可変制御できる可変バルブ機構が開発されており、上記リフト連続可変バルブ機構によってシリンダへ吸入される空気量を、スロットルバルブを代替して吸気バルブにて制御することで、ポンプ損失の低減やミラーサイクルを実現した内燃機関が開発されている。このような可変バルブ機構を搭載した内燃機関の制御装置においては、吸気管に備えられたエアフローセンサ、または圧力センサによって、吸気管を流れる吸入空気量を検出または推定しており、この値から充填効率を演算し、上記充填効率にもとづき燃料噴射量や点火時期の制御量が演算されている。   In an internal combustion engine for automobiles in recent years, an internal combustion engine having a variable valve mechanism in which a valve timing or a valve lift amount is variable in intake valves and exhaust valves tends to be generalized. The variable valve mechanism has been improved in technology from the viewpoint of increasing the degree of freedom of control, expanding the operation range, and improving the response. In particular, a variable valve mechanism that can continuously variably control the valve lift amount has been developed, and the amount of air drawn into the cylinder by the lift continuously variable valve mechanism is controlled by an intake valve instead of the throttle valve. Therefore, an internal combustion engine that realizes a reduction in pump loss and a mirror cycle has been developed. In a control device for an internal combustion engine equipped with such a variable valve mechanism, the amount of intake air flowing through the intake pipe is detected or estimated by an air flow sensor or a pressure sensor provided in the intake pipe. The efficiency is calculated, and the fuel injection amount and the control amount of the ignition timing are calculated based on the charging efficiency.

特開平9−209895号公報によれば、実バルブタイミングが基本バルブタイミングよりずれた場合に、そのずれに応じて点火時期を好適に補正する技術が開示されている。特開平9−209895号公報に開示されている技術では、バルブタイミングのずれが遅角側にずれた場合、低負荷域においては、内部EGR量(EGR:Exhaust Gas Recirculation)の減少にともなう燃焼速度の増加に対応すべく点火時期を遅角側に補正し、また高負荷域においては実圧縮比の低下にともなう燃焼速度の減少に対応すべく点火時期を進角側に補正している。一方、バルブタイミングのずれが進角側にずれた場合、低負荷域においては内部EGR量の増加にともなう燃焼速度の減少に対応すべく点火時期を進角側に補正し、また高負荷域においては、実圧縮比の増加にともなう燃焼速度の増加に対応すべく点火時期を遅角側に補正している。   Japanese Patent Application Laid-Open No. 9-209895 discloses a technique for suitably correcting the ignition timing in accordance with the deviation of the actual valve timing from the basic valve timing. In the technique disclosed in Japanese Patent Laid-Open No. 9-209895, when the valve timing shifts to the retard side, the combustion speed associated with a decrease in the internal EGR amount (EGR: Exhaust Gas Recirculation) in the low load range. The ignition timing is corrected to the retarded angle side in response to the increase in the ignition timing, and the ignition timing is corrected to the advanced angle side in response to a decrease in the combustion speed accompanying a decrease in the actual compression ratio in the high load range. On the other hand, when the valve timing shifts to the advance side, the ignition timing is corrected to the advance side to cope with the decrease in the combustion speed accompanying the increase in the internal EGR amount in the low load region, and in the high load region. Corrects the ignition timing to the retard side in order to cope with an increase in the combustion speed accompanying an increase in the actual compression ratio.

特開平9−209895号公報Japanese Patent Laid-Open No. 9-209895

しかしながら、高地条件のような大気圧の低下する状態においては、バルブタイミングにもとづき変化する内部EGR量が、大気圧の状態によっても影響を受けるために、バルブタイミングのずれのみにもとづいて点火時期の補正を正確に実施することができない。また、バルブタイミングが進角側あるいは遅角側にずれた場合の実圧縮比の変化は、バルブ作動角によっても異なるために、バルブ作動角を可変とする可変バルブにおいては、バルブタイミングのずれのみで実圧縮比の変化を考慮することができない。さらに、回転速度と負荷とバルブタイミングにもとづいて点火時期制御量を演算する構成に、前述した大気圧の低下する高地補正分の影響を考慮しようとすると、少なくとも回転速度と負荷とバルブタイミングと大気圧を軸とする多次元マップが必要となるために、ECUに搭載するマップが大規模となり、メモリ容量が増大するといった課題があった。   However, in a state where the atmospheric pressure decreases, such as in a high altitude condition, the internal EGR amount that changes based on the valve timing is also affected by the state of the atmospheric pressure. The correction cannot be performed accurately. In addition, since the change in the actual compression ratio when the valve timing deviates to the advance side or the retard side also varies depending on the valve operation angle, in a variable valve with variable valve operation angle, only the valve timing deviation Therefore, the change in the actual compression ratio cannot be taken into consideration. Further, in the configuration for calculating the ignition timing control amount based on the rotational speed, the load, and the valve timing, when considering the above-described effect of the high altitude correction that reduces the atmospheric pressure, at least the rotational speed, the load, the valve timing, and the large Since a multidimensional map with the atmospheric pressure as an axis is required, there is a problem that the map mounted on the ECU becomes large and the memory capacity increases.

本発明は以上のような課題を解決するためになされたもので、その目的とするところは、高地条件のような大気圧が低下した状態で可変バルブを制御した場合においても、充填効率とEGR量を精度良く演算し、これらにもとづき点火時期と燃料噴射量を好適に制御できる内燃機関の制御装置を提供することにある。   The present invention has been made in order to solve the above-described problems. The object of the present invention is to achieve charging efficiency and EGR even when the variable valve is controlled in a state where the atmospheric pressure is lowered as in the high altitude conditions. It is an object of the present invention to provide a control device for an internal combustion engine that can accurately calculate the amount and suitably control the ignition timing and the fuel injection amount based on these.

可変バルブを備えた内燃機関の制御装置であって、
少なくとも回転速度と吸気絶対圧と大気絶対圧または排気絶対圧と可変バルブ制御量にもとづき充填効率を演算する手段と、少なくとも回転速度と吸気絶対圧と大気絶対圧または排気絶対圧と可変バルブ制御量にもとづきEGR量を演算する手段と、少なくとも前記充填効率にもとづき燃料噴射量を演算する手段と、少なくとも前記回転速度と前記充填効率と前記EGR量にもとづき点火時期を演算する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine provided with a variable valve,
Means for calculating the charging efficiency based on at least the rotational speed, the absolute intake pressure, the atmospheric absolute pressure or the exhaust absolute pressure, and the variable valve control amount; at least the rotational speed, the intake absolute pressure, the atmospheric absolute pressure or the exhaust absolute pressure, and the variable valve control amount; Means for calculating an EGR amount on the basis of, a means for calculating a fuel injection amount on the basis of at least the charging efficiency, and a means for calculating an ignition timing on the basis of at least the rotational speed, the charging efficiency, and the EGR amount,
A control device for an internal combustion engine.

請求項1に記載の発明によれば、少なくとも回転速度と吸気絶対圧と大気絶対圧または排気絶対圧と可変バルブ制御量にもとづき充填効率を演算するので、大気圧の低下する高地条件においても精度良く充填効率を演算することができる。また、少なくとも回転速度と吸気絶対圧と大気絶対圧または排気絶対圧と可変バルブ制御量にもとづきEGR量を演算するので、大気圧の低下する高地条件においても精度良くEGR率を演算することができる。また、少なくとも高地条件に対応した充填効率演算手段にもとづき燃料噴射量を演算するので、大気圧の低下する高地条件においても精度良く空燃比制御を行うことができ、燃費悪化や排気の悪化を回避することができる。さらに、少なくとも回転速度と高地条件に対応した充填効率演算手段と高地条件に対応したEGR量演算手段にもとづき点火時期を演算するので、大気圧の低下する高地条件においても精度良く点火時期制御を行うことができ、燃費悪化やトルク低下を回避することができる。   According to the first aspect of the present invention, since the charging efficiency is calculated based on at least the rotational speed, the absolute intake pressure, the atmospheric absolute pressure or the exhaust absolute pressure, and the variable valve control amount, it is accurate even in high altitude conditions where the atmospheric pressure decreases. The filling efficiency can be calculated well. In addition, since the EGR amount is calculated based on at least the rotational speed, the absolute intake pressure, the atmospheric absolute pressure or the exhaust absolute pressure, and the variable valve control amount, the EGR rate can be accurately calculated even under high altitude conditions where the atmospheric pressure decreases. . In addition, since the fuel injection amount is calculated based on the charging efficiency calculation means corresponding to at least the high altitude conditions, the air-fuel ratio control can be performed with high accuracy even in the high altitude conditions where the atmospheric pressure is reduced, and the deterioration of fuel consumption and exhaust is avoided. can do. Furthermore, since the ignition timing is calculated based on at least the charging efficiency calculating means corresponding to the rotational speed and the high altitude condition and the EGR amount calculating means corresponding to the high altitude condition, the ignition timing control is performed accurately even in the high altitude condition where the atmospheric pressure decreases. It is possible to avoid deterioration of fuel consumption and torque reduction.

請求項2に記載の発明によれば、吸気絶対圧と大気絶対圧または排気絶対圧との比である吸気相対圧を演算し、少なくとも回転速度と吸気相対圧と可変バルブ制御量にもとづき充填効率基準値を演算する。さらに、大気絶対圧と大気絶対基準圧との比にもとづいて高地補正量を演算し、充填効率基準値と高地補正量との積によって高地条件での充填効率を演算する。そのため、大気圧の低下する高地条件においても精度良く充填効率を演算することができる。   According to the second aspect of the present invention, the intake relative pressure, which is the ratio of the intake absolute pressure to the atmospheric absolute pressure or the exhaust absolute pressure, is calculated, and the charging efficiency is based on at least the rotational speed, the intake relative pressure, and the variable valve control amount. Calculate the reference value. Further, the high altitude correction amount is calculated based on the ratio between the atmospheric absolute pressure and the atmospheric absolute reference pressure, and the charging efficiency under the high altitude condition is calculated by the product of the charging efficiency reference value and the high altitude correction amount. Therefore, it is possible to calculate the charging efficiency with high accuracy even in high altitude conditions where atmospheric pressure decreases.

請求項3に記載の発明によれば、吸気絶対圧と大気絶対圧または排気絶対圧との比である吸気相対圧を演算し、少なくとも回転速度と吸気相対圧と可変バルブ制御量にもとづき内部EGR量基準値を演算する。さらに、大気絶対圧と大気絶対基準圧との比にもとづいて高地補正量を演算し、充填効率基準値と高地補正量との積によって高地条件での内部EGR量を演算する。そのため、大気圧の低下する高地条件においても精度良く内部EGR量を演算することができる。   According to the third aspect of the present invention, the intake relative pressure, which is the ratio of the intake absolute pressure to the atmospheric absolute pressure or the exhaust absolute pressure, is calculated, and the internal EGR is based on at least the rotational speed, the intake relative pressure, and the variable valve control amount. Calculate the quantity reference value. Further, the high altitude correction amount is calculated based on the ratio between the atmospheric absolute pressure and the atmospheric absolute reference pressure, and the internal EGR amount under the high altitude condition is calculated by the product of the filling efficiency reference value and the high altitude correction amount. Therefore, the internal EGR amount can be calculated with high accuracy even under high altitude conditions where atmospheric pressure decreases.

請求項4に記載の発明によれば、少なくとも回転速度と充填効率と排気温度と大気絶対圧にもとづき排気絶対圧を演算するので、大気圧の低下する高地条件においても精度良く排気絶対圧を演算することができる。   According to the fourth aspect of the present invention, since the exhaust absolute pressure is calculated based on at least the rotational speed, the charging efficiency, the exhaust temperature, and the atmospheric absolute pressure, the exhaust absolute pressure can be calculated accurately even under high altitude conditions where the atmospheric pressure decreases. can do.

請求項5に記載の発明によれば、排気流路に前記排気絶対圧を測定するための排気圧力センサを備えるので、大気圧の低下する高地条件においても精度良く排気絶対圧を検知することができる。   According to the invention described in claim 5, since the exhaust pressure sensor for measuring the exhaust absolute pressure is provided in the exhaust flow path, it is possible to detect the exhaust absolute pressure with high accuracy even in high altitude conditions where the atmospheric pressure decreases. it can.

請求項6に記載の発明によれば、少なくとも点火時期と空燃比とEGR率にもとづき排気温度を演算するので、精度良く排気温度を演算することができる。   According to the sixth aspect of the invention, the exhaust gas temperature is calculated based on at least the ignition timing, the air-fuel ratio, and the EGR rate, so that the exhaust gas temperature can be calculated with high accuracy.

請求項7に記載の発明によれば、排気流路に排気温度を測定するための排気温度センサを備えるので、精度良く排気温度を検知することができる。   According to the seventh aspect of the present invention, since the exhaust gas temperature sensor for measuring the exhaust gas temperature is provided in the exhaust gas channel, the exhaust gas temperature can be detected with high accuracy.

請求項8に記載の発明によれば、少なくとも排気絶対圧と、排気温度と、外部EGRバルブ開度と、吸気絶対圧にもとづき外部EGR量を演算するので、大気圧の低下する高地条件においても精度良く外部EGR量を演算することができる。   According to the eighth aspect of the present invention, since the external EGR amount is calculated based on at least the exhaust absolute pressure, the exhaust temperature, the external EGR valve opening, and the intake absolute pressure, even under high altitude conditions where the atmospheric pressure decreases. The amount of external EGR can be calculated with high accuracy.

請求項9に記載の発明によれば、少なくとも充填効率と内部EGR量と外部EGR量にもとづきEGR率を演算する手段と、少なくとも回転速度と充填効率とEGR率と吸気バルブ閉時期を入力変数とする多項式によって点火時期を演算するので、大気圧の低下する高地条件においても精度良く点火時期を演算することができる。また、多次元マップを用いる必要がないので、ECUのメモリ容量を削減することができる。   According to the ninth aspect of the present invention, the means for calculating the EGR rate based on at least the charging efficiency, the internal EGR amount, and the external EGR amount, and at least the rotational speed, the charging efficiency, the EGR rate, and the intake valve closing timing are input variables. Therefore, the ignition timing can be calculated with high accuracy even under high altitude conditions where the atmospheric pressure decreases. In addition, since it is not necessary to use a multidimensional map, the memory capacity of the ECU can be reduced.

請求項10に記載の発明によれば、少なくとも回転速度と吸気管相対圧と吸気バルブ作動角と吸気バルブ開時期と排気バルブ閉時期を入力変数とする多項式によって基準大気圧条件における充填効率基準値を演算するので、精度良く充填効率基準値を演算することができる。また、多次元マップを用いる必要がないので、ECUのメモリ容量を削減することができる。   According to the tenth aspect of the present invention, the charging efficiency reference value in the reference atmospheric pressure condition is determined by a polynomial having at least the rotational speed, the intake pipe relative pressure, the intake valve operating angle, the intake valve opening timing, and the exhaust valve closing timing as input variables. Therefore, the filling efficiency reference value can be calculated with high accuracy. In addition, since it is not necessary to use a multidimensional map, the memory capacity of the ECU can be reduced.

請求項11に記載の発明によれば、少なくとも回転速度と吸気管相対圧と吸気バルブ作動角と吸気バルブ開時期と排気バルブ閉時期を入力変数とする多項式によって基準大気圧条件における内部EGR量基準値を演算するので、精度良く内部EGR量基準値を演算することができる。また、多次元マップを用いる必要がないので、ECUのメモリ容量を削減することができる。   According to the eleventh aspect of the present invention, the internal EGR amount reference in the reference atmospheric pressure condition is determined by a polynomial having at least the rotational speed, the intake pipe relative pressure, the intake valve operating angle, the intake valve open timing, and the exhaust valve close timing as input variables. Since the value is calculated, the internal EGR amount reference value can be calculated with high accuracy. In addition, since it is not necessary to use a multidimensional map, the memory capacity of the ECU can be reduced.

請求項12に記載の発明によれば、スロットルバルブ上流の吸気流路にエアフローセンサを備え、スロットルバルブ下流の吸気流路に圧力センサを備え、少なくとも充填効率演算手段と圧力センサ検出値にもとづきエアフローセンサ部流量を推定し、エアフローセンサ検出流量とエアフローセンサ部推定流量との偏差を充填効率演算手段のもつ誤差として充填効率演算結果を補正するので、内燃機関の個体ばらつきや環境変化,経時劣化などの誤差要因に対して充填効率演算精度をロバストにすることができる。また、可変バルブやスロットルバルブの急変時に対しても充填効率演算精度が悪化することがない。   According to the twelfth aspect of the present invention, the air flow sensor is provided in the intake passage upstream of the throttle valve, the pressure sensor is provided in the intake passage downstream of the throttle valve, and the air flow is based on at least the charging efficiency calculation means and the pressure sensor detection value. The sensor flow rate is estimated, and the difference between the air flow sensor detected flow rate and the air flow sensor unit estimated flow rate is corrected as the error of the charging efficiency calculation means, so the charging efficiency calculation result is corrected. The filling efficiency calculation accuracy can be made robust against the error factors. Further, the charging efficiency calculation accuracy does not deteriorate even when the variable valve or the throttle valve changes suddenly.

請求項13に記載の発明によれば、スロットルバルブ上流の吸気流路にエアフローセンサを備え、少なくとも充填効率演算手段とエアフローセンサ検出流量にもとづいてスロットルバルブ下流の吸気絶対圧を推定する。さらに推定された吸気絶対圧を充填効率演算手段に用いるので、内燃機関の個体ばらつきや環境変化,経時劣化などの誤差要因に対して充填効率演算精度をロバストにすることができる。また、可変バルブやスロットルバルブの急変時に対しても充填効率演算精度が悪化することがない。   According to the thirteenth aspect of the present invention, the air flow sensor is provided in the intake passage upstream of the throttle valve, and the absolute intake pressure downstream of the throttle valve is estimated based on at least the charging efficiency calculation means and the air flow sensor detected flow rate. Further, since the estimated intake absolute pressure is used for the charging efficiency calculation means, the charging efficiency calculation accuracy can be made robust against error factors such as individual variations, environmental changes, and deterioration over time of the internal combustion engine. Further, the charging efficiency calculation accuracy does not deteriorate even when the variable valve or the throttle valve changes suddenly.

請求項14に記載の発明によれば、少なくとも回転速度と負荷にもとづき目標EGR率を演算する手段と、充填効率と内部EGR量と外部EGR量にもとづき現在のEGR率を演算する手段と、目標EGR率と現在のEGR率と吸気相対圧にもとづき可変バルブの制御量または外部EGRバルブ開度を演算するので、大気圧の低下する高地条件においても可変バルブ制御量または外部EGRバルブ開度を、燃焼安定性を悪化させない範囲で、燃費性能および排気性能を最適点に制御することができる。   According to the fourteenth aspect of the present invention, means for calculating the target EGR rate based on at least the rotational speed and the load, means for calculating the current EGR rate based on the charging efficiency, the internal EGR amount, and the external EGR amount, and the target Since the variable valve control amount or the external EGR valve opening is calculated based on the EGR rate, the current EGR rate, and the intake relative pressure, the variable valve control amount or the external EGR valve opening can be calculated even in high altitude conditions where the atmospheric pressure decreases. The fuel efficiency and exhaust performance can be controlled to the optimum points within a range that does not deteriorate the combustion stability.

請求項15に記載の発明によれば、充填効率を一定に保持した状態で大気圧が低下する高地条件の場合に、同一オーバーラップ期間では、大気圧が低下するほど点火時期を遅角側に補正し、同一大気圧では、オーバーラップ期間が増加するほど点火時期を遅角側に補正するので、大気圧の低下する高地条件においても点火時期を燃費最適点に制御することができる。   According to the fifteenth aspect of the present invention, in the case of a high altitude condition where the atmospheric pressure decreases while the charging efficiency is kept constant, in the same overlap period, the ignition timing is set to the retard side as the atmospheric pressure decreases. Since the ignition timing is corrected to the retard side as the overlap period increases at the same atmospheric pressure, the ignition timing can be controlled to the optimum fuel efficiency even in high altitude conditions where the atmospheric pressure decreases.

以下、本発明の実施の形態を図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

以下、本発明の実施の形態を図にもとづいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態の構成を説明する図である。本実施形態のシステムは内燃機関1を備えている。内燃機関1には吸気流路および排気流路が連通している。吸気流路にはエアフローセンサおよび吸気温度センサ2が組付けられている。エアフローセンサ2の下流にはスロットルバルブ3が設けられている。スロットルバルブ3はアクセル踏量とは独立にスロットル開度を制御することができる電子制御式スロットルバルブである。スロットルバルブ3の下流には吸気マニホールド4が連通している。吸気マニホールド4には吸気管圧力センサ5が組付けられている。吸気マニホールド4の下流には吸気ポートに燃料を噴射する燃料噴射弁7が配置されている。内燃機関1はバルブのタイミングとリフトを連続的に可変とする可変バルブ機構付き吸気弁8を備えている。可変バルブ機構にはバルブタイミングと最大リフトを検知するためのセンサ9が組付けられている。また、内燃機関1には排気バルブ10が備えられている。排気バルブ10には排気バルブタイミングを可変とする可変バルブ機構が備えられており、排気バルブのタイミングをセンサ11によって検知している。シリンダヘッド部にはシリンダ内に電極部を露出させた点火プラグ12が組付けられている。さらにシリンダにはノックの発生を検知するノックセンサ13が組付けられている。クランク軸にはクランク角度センサ14が組付けられている。クランク角度センサ14からの出力信号にもとづき内燃機関1の回転速度を検出することができる。排気流路にはO2センサ15が組付けられている。本実施形態のシステムには排ガスの一部を吸気管へ還流させるための外部EGR管16および外部EGR流量を制御するための外部EGRバルブ17が備えられている。部分負荷運転時には、外部EGRバルブ17を開きEGRを行うことで、ポンプ損失を低減することができる。 FIG. 1 is a diagram for explaining the configuration of an embodiment of the present invention. The system of this embodiment includes an internal combustion engine 1. The internal combustion engine 1 communicates with an intake passage and an exhaust passage. An air flow sensor and an intake air temperature sensor 2 are assembled in the intake passage. A throttle valve 3 is provided downstream of the air flow sensor 2. The throttle valve 3 is an electronically controlled throttle valve that can control the throttle opening independently of the accelerator pedal stroke. An intake manifold 4 communicates with the throttle valve 3 downstream. An intake pipe pressure sensor 5 is assembled to the intake manifold 4. A fuel injection valve 7 for injecting fuel into the intake port is disposed downstream of the intake manifold 4. The internal combustion engine 1 includes an intake valve 8 with a variable valve mechanism that continuously varies valve timing and lift. The variable valve mechanism is assembled with a sensor 9 for detecting the valve timing and the maximum lift. Further, the internal combustion engine 1 is provided with an exhaust valve 10. The exhaust valve 10 is provided with a variable valve mechanism that makes the exhaust valve timing variable. The sensor 11 detects the timing of the exhaust valve. A spark plug 12 having an electrode portion exposed in the cylinder is assembled to the cylinder head portion. Further, a knock sensor 13 for detecting the occurrence of knock is assembled to the cylinder. A crank angle sensor 14 is assembled to the crankshaft. The rotational speed of the internal combustion engine 1 can be detected based on the output signal from the crank angle sensor 14. An O 2 sensor 15 is assembled in the exhaust passage. The system of this embodiment is provided with an external EGR pipe 16 for returning a part of exhaust gas to the intake pipe and an external EGR valve 17 for controlling the external EGR flow rate. During partial load operation, the pump loss can be reduced by opening the external EGR valve 17 and performing EGR.

本実施形態のシステムは図1に示すようにECU(Electronic Control Unit)17を備えている。ECU18には、上述した各種センサが接続されている。スロットルバルブ3,燃料噴射弁7,可変バルブ機構付き吸気バルブ8,可変バルブ機構付き排気バルブ10などのアクチュエータはECU18により制御されている。さらに、上述した各種センサから入力された信号にもとづき内燃機関1の運転状態を検知し、運転状態に応じてECU18により決定されたタイミングで点火プラグ12が点火を行う。   The system of this embodiment includes an ECU (Electronic Control Unit) 17 as shown in FIG. The ECU 18 is connected with the various sensors described above. Actuators such as a throttle valve 3, a fuel injection valve 7, an intake valve 8 with a variable valve mechanism, and an exhaust valve 10 with a variable valve mechanism are controlled by an ECU 18. Furthermore, the operating state of the internal combustion engine 1 is detected based on signals input from the various sensors described above, and the spark plug 12 ignites at a timing determined by the ECU 18 according to the operating state.

図2は、吸気バルブの位相を連続的に変化させた場合の、吸気バルブと排気バルブとのオーバーラップ期間の変化を説明する図である。吸気バルブの位相を進角側に変化させるにしたがって、排気バルブとのオーバーラップ期間が増加する。可変バルブを備えた内燃機関では、部分負荷条件において、上記オーバーラップ期間が生じるように可変バルブが制御され、排気管中の排ガスを一旦、吸気管へ吹き返すことによって内部EGRを生じさせる。内部EGRの増加にしたがって、部分負荷条件でのポンプ損失の低減ができ、燃焼ガス温度を低減できるために排気中の窒素酸化物の低減を行うことができる。   FIG. 2 is a diagram for explaining the change in the overlap period between the intake valve and the exhaust valve when the phase of the intake valve is continuously changed. As the phase of the intake valve is changed to the advance side, the overlap period with the exhaust valve increases. In an internal combustion engine equipped with a variable valve, the variable valve is controlled so that the overlap period occurs under a partial load condition, and internal EGR is generated by once blowing the exhaust gas in the exhaust pipe back to the intake pipe. As the internal EGR increases, the pump loss under the partial load condition can be reduced, and the combustion gas temperature can be reduced, so that the nitrogen oxide in the exhaust gas can be reduced.

図3は、バルブの作動角,リフトおよび位相を同時に変化させることができる可変バルブ機構のバルブリフトパターンを説明する図である。従来のスロットルバルブが主体となって充填効率を制御する内燃機関では、吸気バルブの上流圧をスロットルバルブによって絞ることで負圧を生じさせるため、ポンプ損失による燃費悪化が問題となる。吸気バルブの上流圧を絞ることなく、吸気バルブの開閉時期によって吸気量を制御することができれば、上記ポンプ損失にともなう燃費悪化を回避することが出来る。図3に示す可変バルブでは、吸気バルブにバルブリフトを連続的に可変とするリフト可変機構と、位相を連続的に可変とする位相可変機構とを組合わせて用いることによって、バルブ開時期(IVO)を固定しつつ、バルブ閉時期(IVC)を変化させている。このような可変バルブ機構を備えることで、可変バルブが主体となって充填効率を制御する内燃機関を実現することができる。本リフト可変機構では、バルブ作動角が増加するにしたがって最大リフトが増加する図3下に示すような関係を有しており、要求トルクの小さいときにはリフト量を小さくすると同時にIVCを早期化して吸気量を小さくすることができる。このとき、IVCを早期化することによって、ピストン圧縮量をピストン膨張量と比較して相対的に小さくすることができるので、ポンプ損失の低減に加えてミラーサイクル効果による燃費向上効果も期待できる点が特徴である。   FIG. 3 is a diagram for explaining a valve lift pattern of a variable valve mechanism capable of simultaneously changing the valve operating angle, lift and phase. In an internal combustion engine in which a conventional throttle valve mainly controls the charging efficiency, a negative pressure is generated by restricting the upstream pressure of the intake valve by the throttle valve, so that deterioration of fuel consumption due to pump loss becomes a problem. If the intake air amount can be controlled by the opening / closing timing of the intake valve without reducing the upstream pressure of the intake valve, the fuel consumption deterioration due to the pump loss can be avoided. In the variable valve shown in FIG. 3, the valve opening timing (IVO) is obtained by using a combination of a lift variable mechanism that continuously varies the valve lift and a phase variable mechanism that continuously varies the phase for the intake valve. ) Is fixed, and the valve closing timing (IVC) is changed. By providing such a variable valve mechanism, it is possible to realize an internal combustion engine that mainly controls the variable valve to control the charging efficiency. The variable lift mechanism has a relationship as shown in the lower part of FIG. 3 in which the maximum lift increases as the valve operating angle increases. When the required torque is small, the lift amount is reduced and the IVC is advanced at the same time. The amount can be reduced. At this time, since the piston compression amount can be made relatively small compared with the piston expansion amount by accelerating IVC, the fuel efficiency improvement effect by the Miller cycle effect can be expected in addition to the reduction of the pump loss. Is a feature.

図4は、回転速度と吸気圧力を一定に保持した状態において得られる、低地条件と高地条件でのオーバーラップ期間と内部EGR量との関係を説明する図である。ここでいうEGR量とは、シリンダに残留した既燃ガス質量を行程容積相当の標準状態での空気質量にて除した値である。図4に示すように、内部EGRにはオーバーラップ期間に応じて決まる吹き返しに起因する部分と、排気バルブ閉時期(EVC)のすきま容積部に応じて決まる部分とに分けることができる。さらに、内部EGR量は、排気圧力と吸気圧力との関係によって影響を受ける。オーバーラップが有る条件で高地条件のように排気圧力が低下する場合においては、吹き返し分の減少によって内部EGR量が大幅に減少する。一方、オーバーラップが無い条件では、排気圧力が低下した場合であっても、内部EGR量の低下分はすきま容積に起因する部分に限られるために、その減少幅は相対的に小さい。そのため、可変バルブを搭載した内燃機関の高地条件において、内部EGR量を正確に見積もるためには、少なくともIVO,EVC,吸気圧力および排気圧力(または大気圧力)の情報が必要となる。   FIG. 4 is a diagram for explaining the relationship between the overlap period and the internal EGR amount under the low altitude condition and the high altitude condition obtained in a state where the rotation speed and the intake pressure are kept constant. Here, the EGR amount is a value obtained by dividing the mass of burned gas remaining in the cylinder by the mass of air in a standard state corresponding to the stroke volume. As shown in FIG. 4, the internal EGR can be divided into a part caused by blowback determined according to the overlap period and a part determined according to the clearance volume part of the exhaust valve closing timing (EVC). Further, the internal EGR amount is affected by the relationship between the exhaust pressure and the intake pressure. In the case where the exhaust pressure is reduced under the condition where there is an overlap as in the high altitude condition, the amount of internal EGR is greatly reduced due to the reduction in the amount of blowback. On the other hand, under the condition where there is no overlap, even if the exhaust pressure is reduced, the amount of decrease in the internal EGR amount is limited to the portion caused by the clearance volume, so the amount of decrease is relatively small. Therefore, in order to accurately estimate the internal EGR amount under high altitude conditions of an internal combustion engine equipped with a variable valve, at least information on IVO, EVC, intake pressure and exhaust pressure (or atmospheric pressure) is required.

図5は、回転速度と吸気圧力を一定に保持した状態において得られる、低地条件と高地条件でのオーバーラップ期間と充填効率との関係ならびにオーバーラップ期間と燃料噴射量との関係を説明する図である。ここでいう充填効率とは、シリンダへ吸気された新気の質量を行程容積相当の標準状態での空気質量にて除した値である。吸気圧力が一定に保持されている場合には、オーバーラップが有る条件において、大気圧の低下する高地条件で充填効率が増加する。これは、図4で述べたように、吸気管へ吹き返され再度シリンダ内へ吸気される内部EGR量が減少するからである。オーバーラップ期間が増加するに従って、充填効率の増加が大きくなる一方、オーバーラップが無い条件では、内部EGR量の低下分はすきま容積に起因する部分に限られるために、その減少幅は相対的に小さく、充填効率の増加幅も同様に小さい。上述した充填効率の変化に対して、目標空燃比を一定に保つためには、充填効率の変化に応じて燃料噴射量を変化させる高地補正を行う必要がある。すなわち吸気圧力一定でオーバーラップがある条件で、空燃比を一定に保持するために、高地条件にて増加した充填効率に対して燃料噴射量の増量補正を行う。可変バルブを搭載した内燃機関では、上述した高地補正を、オーバーラップ期間や大気圧に応じて変化させる必要がある。スロットルバルブの上流部にエアフローセンサを備えた内燃機関では、高地条件にて上記充填効率の増加分をエアフローセンサにて検出することができるため、定常条件においては、エアフローセンサにて検出された流量と目標空燃比に応じて燃料噴射量制御を行うことができる。   FIG. 5 is a diagram for explaining the relationship between the overlap period and the charging efficiency in the low altitude condition and the high altitude condition and the relationship between the overlap period and the fuel injection amount, which are obtained in a state where the rotation speed and the intake pressure are kept constant. It is. Here, the charging efficiency is a value obtained by dividing the mass of fresh air sucked into the cylinder by the air mass in a standard state corresponding to the stroke volume. When the intake pressure is kept constant, the filling efficiency increases under high altitude conditions where the atmospheric pressure decreases under conditions where there is an overlap. This is because, as described with reference to FIG. 4, the amount of internal EGR that is blown back into the intake pipe and is again taken into the cylinder decreases. As the overlap period increases, the increase in filling efficiency increases. On the other hand, in the absence of overlap, the decrease in the internal EGR amount is limited to the portion caused by the clearance volume, so the decrease is relatively The increase in filling efficiency is small as well. In order to keep the target air-fuel ratio constant with respect to the change in the charging efficiency described above, it is necessary to perform high altitude correction that changes the fuel injection amount in accordance with the change in the charging efficiency. That is, in order to keep the air-fuel ratio constant under the condition where the intake pressure is constant and there is an overlap, the fuel injection amount increase correction is performed for the charging efficiency increased under the high altitude condition. In an internal combustion engine equipped with a variable valve, it is necessary to change the above-described high altitude correction in accordance with the overlap period and atmospheric pressure. In an internal combustion engine equipped with an air flow sensor upstream of the throttle valve, the increase in the charging efficiency can be detected by the air flow sensor under high altitude conditions. Therefore, under steady conditions, the flow rate detected by the air flow sensor The fuel injection amount can be controlled according to the target air-fuel ratio.

図6は、回転速度と充填効率を一定に保持した状態において得られる、低地条件と高地条件でのオーバーラップ期間と内部EGR率との関係,オーバーラップ期間と燃焼速度との関係、ならびにオーバーラップ期間と点火時期(MBT:Minimum spark advance for Best Torque)との関係を説明する図である。ここでいう内部EGR率とは内部EGR量と充填効率を用いて、次式で求めることができる。   FIG. 6 shows the relationship between the overlap period and the internal EGR rate in the lowland condition and the highland condition, the relationship between the overlap period and the combustion speed, and the overlap obtained in a state where the rotation speed and the charging efficiency are kept constant. It is a figure explaining the relationship between a period and ignition timing (MBT: Minimum spark advance for Best Torque). The internal EGR rate here can be obtained by the following equation using the internal EGR amount and the charging efficiency.

内部EGR率=内部EGR量/(内部EGR量+充填効率+充填効率/空燃比)
・・・式(1)
Internal EGR rate = internal EGR amount / (internal EGR amount + charging efficiency + charging efficiency / air-fuel ratio)
... Formula (1)

図4および図5で説明したように、オーバーラップが有る状態で、高地条件にて大気圧が低下した場合には、低地条件と比較して内部EGR量が減少するとともに充填効率が増す。同一充填効率で比較した場合では、高地条件にて上式で定義される内部EGR率は減少する。EGR率は燃焼速度に影響を与え、EGR率が増加するほど燃焼速度が低下する。燃焼速度が低下すると、燃焼開始時期である点火時期から燃焼終了までに要する時間が増加するため、燃焼期間を最大トルクの発生する時期に設定するためのMBTが進角する。高地条件かつオーバーラップ有りの条件では、上述するように内部EGR率が減少するため、燃焼速度が増加し、MBTが低地条件にて設定されたMBTから遅角側へ変化する。一方、オーバーラップが無い条件では、内部EGR率の減少幅は相対的に小さいため、MBTの遅角量も相対的に小さい。以上述べたように、可変バルブを搭載した内燃機関においては高地条件やオーバーラップ期間の程度に応じて、点火時期の高地補正を適宜行う必要があるといえる。   As described with reference to FIGS. 4 and 5, when the atmospheric pressure is reduced under the high altitude condition with the overlap, the internal EGR amount is reduced and the charging efficiency is increased as compared with the low altitude condition. When compared with the same filling efficiency, the internal EGR rate defined by the above equation decreases at high altitude conditions. The EGR rate affects the combustion rate, and the combustion rate decreases as the EGR rate increases. As the combustion speed decreases, the time required from the ignition timing, which is the combustion start timing, to the end of combustion increases, so that the MBT for setting the combustion period to the timing at which the maximum torque is generated advances. Under the high altitude condition and the condition with overlap, as described above, the internal EGR rate decreases, so the combustion speed increases, and the MBT changes from the MBT set under the low altitude condition to the retard side. On the other hand, under the condition where there is no overlap, the amount of decrease in the internal EGR rate is relatively small, and therefore the retardation amount of MBT is also relatively small. As described above, in an internal combustion engine equipped with a variable valve, it can be said that it is necessary to appropriately correct the high altitude of the ignition timing according to the high altitude conditions and the degree of the overlap period.

図7は、回転速度と充填効率を一定に保持した状態において得られる、低地条件と高地条件での点火時期とトルクとの関係をオーバーラップ期間大および小の場合について説明する図である。点火時期とトルクとの関係には凸の関係が見られ、点火時期は通常トルク最大点(トルク一定の場合には燃費最良点)、すなわちMBTに設定されている。部分負荷運転時にはオーバーラップ期間を増加して、大量の内部EGRを行いポンプ損失の低減を図るため、MBTはオーバーラップ無しの条件と比較して進角側に設定されている。充填効率を一定にした状態で高地条件下のような大気圧低下が生じると、内部EGRが減少し、燃焼速度が増加するとともにMBTが遅角側に変化する。点火時期を充填効率にもとづいて決定すると、本来のMBTからのかい離を生じ、トルクの低下(燃費の悪化)をきたすことになる。この傾向は、オーバーラップ期間が増加するほど、また大気圧が低下するほど大きくなる。オーバーラップ期間や大気圧の程度に応じて適宜、点火時期高地補正を行うことで、可変バルブを搭載した内燃機関の高地条件においても、トルクの低下を生じることなく、運転状態を常に最適点に保持することができる。   FIG. 7 is a diagram for explaining the relationship between the ignition timing and the torque under the low altitude condition and the high altitude condition obtained when the rotational speed and the charging efficiency are kept constant in the case where the overlap period is large and small. There is a convex relationship between the ignition timing and the torque, and the ignition timing is normally set at the maximum torque point (the best fuel efficiency point when the torque is constant), that is, MBT. In order to reduce the pump loss by increasing the overlap period during partial load operation and performing a large amount of internal EGR, the MBT is set to the advance side compared to the condition without overlap. When the atmospheric pressure drop occurs under high altitude conditions with the charging efficiency kept constant, the internal EGR decreases, the combustion speed increases, and the MBT changes to the retard side. If the ignition timing is determined on the basis of the charging efficiency, separation from the original MBT occurs, resulting in a reduction in torque (deterioration of fuel consumption). This tendency increases as the overlap period increases and the atmospheric pressure decreases. By appropriately correcting the ignition timing high altitude according to the overlap period and atmospheric pressure level, the operating state is always set to the optimum point without causing torque reduction even under high altitude conditions of an internal combustion engine equipped with a variable valve. Can be held.

図8は、可変バルブが主体となって充填効率を制御する内燃機関において、回転速度,バルブ作動角,IVO,EVC,吸気絶対圧,大気絶対圧,吸気温度および外部EGR率にもとづいて充填効率を演算する手段を説明する図である。図8に示すブロック線図では、まず吸気絶対圧と大気絶対圧との比を求める。吸気絶対圧は吸気マニホールドに備えられた圧力センサによって測定することができる。大気絶対圧についてもスロットルバルブ上流部に圧力センサを備えて測定することができる。また、内燃機関の始動時やスロットルバルブ開度が全開となったときに、吸気マニホールド圧力と大気圧とが一致しているとみなして、大気絶対圧を吸気マニホールドに備えられた圧力センサによって測定することとしてもよい。吸気絶対圧と大気絶対圧との比をブロック81に入力する。ブロック81では、回転速度,吸気絶対圧と大気絶対圧との比,バルブ作動角,IVOおよびEVCを入力として、基準条件での充填効率を演算する。ここで、基準条件とは、大気絶対圧,吸気温度,外部EGR率がそれぞれ基準条件に設定されているときに得られる充填効率を示している。大気絶対圧と大気絶対基準圧との比を基準充填効率に掛けることで高地補正が行われる。さらに、ブロック82において、吸気温度および外部EGR率の基準条件からの変化分を以下の式を用いて補正する。   FIG. 8 shows a charging efficiency based on the rotational speed, valve operating angle, IVO, EVC, intake absolute pressure, atmospheric absolute pressure, intake air temperature, and external EGR rate in an internal combustion engine that mainly controls the charging efficiency with a variable valve. It is a figure explaining the means to calculate. In the block diagram shown in FIG. 8, the ratio between the absolute intake pressure and the absolute atmospheric pressure is first obtained. The absolute intake pressure can be measured by a pressure sensor provided in the intake manifold. The absolute atmospheric pressure can also be measured by providing a pressure sensor upstream of the throttle valve. Also, when the internal combustion engine is started or when the throttle valve opening is fully open, it is assumed that the intake manifold pressure and the atmospheric pressure match, and the absolute atmospheric pressure is measured by the pressure sensor provided in the intake manifold. It is good to do. The ratio between the absolute intake pressure and the atmospheric absolute pressure is input to the block 81. In block 81, the charging efficiency under the reference condition is calculated with the rotational speed, the ratio of the absolute intake pressure to the atmospheric absolute pressure, the valve operating angle, IVO and EVC as inputs. Here, the reference condition indicates the charging efficiency obtained when the atmospheric absolute pressure, the intake air temperature, and the external EGR rate are set as the reference conditions. High altitude correction is performed by multiplying the reference filling efficiency by the ratio of the atmospheric absolute pressure and the atmospheric absolute reference pressure. Further, in block 82, the change from the reference condition of the intake air temperature and the external EGR rate is corrected using the following equation.

充填効率補正量=(基準吸気温度/吸気温度)0.5
×(1−外部EGR率−基準外部EGR率) ・・・式(2)
Charging efficiency correction amount = (reference intake air temperature / intake air temperature) 0.5
X (1-external EGR rate-reference external EGR rate) (2)

吸気温度の単位はK(ケルビン)である。上で求められる充填効率補正量との積によって、高地補正済みの充填効率を求めることができる。   The unit of the intake air temperature is K (Kelvin). The filling efficiency corrected with the high altitude can be obtained by the product with the filling efficiency correction amount obtained above.

図9は、可変バルブが主体となって充填効率を制御する内燃機関において、回転速度,バルブ作動角,IVO,EVC,吸気絶対圧および大気絶対圧にもとづいて内部EGR量を演算する手段を説明する図である。図9に示すブロック線図では、まず吸気絶対圧と大気絶対圧との比を求める。吸気絶対圧と大気絶対圧との比をブロック91に入力する。ブロック91では、回転速度,吸気絶対圧と大気絶対圧との比,バルブ作動角,IVOおよびEVCを入力として、基準条件での内部EGR量を演算する。ここで、基準条件とは、大気絶対圧が基準条件に設定されているときに得られる内部EGR量を示している。大気絶対圧と大気絶対基準圧との比を基準内部EGR量に掛けることで、高地補正済みの内部EGR量を求めることができる。   FIG. 9 illustrates a means for calculating the internal EGR amount based on the rotational speed, valve operating angle, IVO, EVC, intake absolute pressure and atmospheric absolute pressure in an internal combustion engine that mainly controls a variable valve to control charging efficiency. It is a figure to do. In the block diagram shown in FIG. 9, the ratio between the absolute intake pressure and the absolute atmospheric pressure is first obtained. The ratio of the absolute intake pressure to the absolute atmospheric pressure is input to block 91. At block 91, the internal EGR amount under the reference condition is calculated with the rotational speed, the ratio of the absolute intake pressure to the atmospheric absolute pressure, the valve operating angle, IVO and EVC as inputs. Here, the reference condition indicates an internal EGR amount obtained when the atmospheric absolute pressure is set to the reference condition. By multiplying the reference internal EGR amount by the ratio of the atmospheric absolute pressure and the atmospheric absolute reference pressure, the internal EGR amount corrected for the high altitude can be obtained.

図10は、可変バルブが主体となって充填効率を制御する内燃機関において、排気絶対圧力を演算する手段を備え、前記排気絶対圧力と回転速度,バルブ作動角,IVO,EVC,吸気絶対圧,大気絶対圧,吸気温度および外部EGR率にもとづいて充填効率を演算する手段を説明する図である。図10に示すブロック線図では、まず吸気絶対圧と排気絶対圧との比を求める。吸気絶対圧と排気絶対圧との比をブロック101に入力する。ブロック101では、回転速度,吸気絶対圧と排気絶対圧との比,バルブ作動角,IVOおよびEVCを入力として、基準条件での充填効率を演算する。ここで、基準条件とは、大気絶対圧,吸気温度,外部EGR率がそれぞれ基準条件に設定されているときに得られる充填効率を示している。大気絶対圧と大気絶対基準圧との比を基準充填効率に掛けることで高地補正が行われる。ブロック102では、回転速度,大気絶対圧,空燃比,点火時期,EGR率および、前ステップで求められた充填効率を入力として排気絶対圧を演算する。さらに、ブロック103において、吸気温度および外部EGR率の基準条件からの変化分を補正する。ブロック103において求められた充填効率補正量との積によって、高地補正済みの充填効率を求めることができる。このように図8に示した充填効率演算手段を代替えして、図10に示したブロック線図によっても高地補正済み充填効率を求めることができる。さらに本発明は図8または図10を用いる方式に限定されるものではなく、ブロック101に示した排気絶対圧力演算手段を代替えして、排気管中に圧力センサを備えて直接に排気絶対圧を測定する方法を用いても同様の効果を奏することができる。   FIG. 10 shows an internal combustion engine that mainly controls a variable valve to control the charging efficiency, and includes means for calculating exhaust absolute pressure, the exhaust absolute pressure and rotational speed, valve operating angle, IVO, EVC, intake absolute pressure, It is a figure explaining the means to calculate filling efficiency based on atmospheric | atmosphere absolute pressure, intake air temperature, and an external EGR rate. In the block diagram shown in FIG. 10, the ratio between the absolute intake pressure and the absolute exhaust pressure is first obtained. A ratio between the absolute intake pressure and the absolute exhaust pressure is input to the block 101. In block 101, the charging efficiency under the reference conditions is calculated with the rotational speed, the ratio of the absolute intake pressure to the absolute exhaust pressure, the valve operating angle, IVO and EVC as inputs. Here, the reference condition indicates the charging efficiency obtained when the atmospheric absolute pressure, the intake air temperature, and the external EGR rate are set as the reference conditions. High altitude correction is performed by multiplying the reference filling efficiency by the ratio of the atmospheric absolute pressure and the atmospheric absolute reference pressure. In block 102, the exhaust absolute pressure is calculated by inputting the rotational speed, the atmospheric absolute pressure, the air-fuel ratio, the ignition timing, the EGR rate, and the charging efficiency obtained in the previous step. Further, in block 103, the amount of change from the reference condition of the intake air temperature and the external EGR rate is corrected. The filling efficiency corrected for the high altitude can be obtained by the product of the filling efficiency correction amount obtained in the block 103. In this way, the filling efficiency calculating means shown in FIG. 8 can be substituted, and the highland corrected filling efficiency can also be obtained from the block diagram shown in FIG. Further, the present invention is not limited to the method using FIG. 8 or FIG. 10, and instead of the exhaust absolute pressure calculation means shown in block 101, a pressure sensor is provided in the exhaust pipe to directly control the exhaust absolute pressure. The same effect can be obtained even if a measuring method is used.

図11は、可変バルブが主体となって充填効率を制御する内燃機関において、排気絶対圧力を演算する手段を備え、前記排気絶対圧力と回転速度,バルブ作動角,IVO,EVC,吸気絶対圧および大気絶対圧にもとづいて内部EGR量を演算する手段を説明する図である。図11に示すブロック線図では、まず吸気絶対圧と排気絶対圧との比を求める。吸気絶対圧と排気絶対圧との比をブロック111に入力する。ブロック111では、回転速度,吸気絶対圧と排気絶対圧との比,バルブ作動角,IVOおよびEVCを入力として、基準条件での内部EGR量を演算する。ここで、基準条件とは、大気絶対圧が基準条件に設定されているときに得られる内部EGR量を示している。ブロック112では、回転速度,大気絶対圧,空燃比,点火時期,EGR率および、前ステップで求められた充填効率を入力として排気絶対圧を演算する。大気絶対圧と大気絶対基準圧との比を基準内部EGR量に掛けることで、高地補正済みの内部EGR量を求めることができる。このように図9に示した内部EGR量演算手段を代替して、図11に示したブロック線図によっても高地補正済み内部EGR量を求めることができる。さらに本発明は図9または図11を用いる方式に限定されるものではなく、ブロック112に示した排気絶対圧力演算手段を代替えして、排気管中に圧力センサを備えて直接に排気絶対圧を測定する方法を用いても同様の効果を奏することができる。   FIG. 11 shows an internal combustion engine that mainly controls a variable valve to control the charging efficiency, and includes means for calculating the exhaust absolute pressure, the exhaust absolute pressure and the rotational speed, the valve operating angle, IVO, EVC, the intake absolute pressure, and It is a figure explaining the means to calculate the amount of internal EGR based on atmospheric absolute pressure. In the block diagram shown in FIG. 11, the ratio between the absolute intake pressure and the absolute exhaust pressure is first obtained. The ratio between the absolute intake pressure and the absolute exhaust pressure is input to the block 111. In block 111, the internal EGR amount under the reference condition is calculated by inputting the rotational speed, the ratio of the absolute intake pressure to the absolute exhaust pressure, the valve operating angle, IVO and EVC. Here, the reference condition indicates an internal EGR amount obtained when the atmospheric absolute pressure is set to the reference condition. In block 112, the exhaust absolute pressure is calculated by inputting the rotational speed, the atmospheric absolute pressure, the air-fuel ratio, the ignition timing, the EGR rate, and the charging efficiency obtained in the previous step. By multiplying the reference internal EGR amount by the ratio of the atmospheric absolute pressure and the atmospheric absolute reference pressure, the internal EGR amount corrected for the high altitude can be obtained. In this way, the internal EGR amount calculating means shown in FIG. 9 can be substituted and the high ground corrected internal EGR amount can be obtained also by the block diagram shown in FIG. Further, the present invention is not limited to the system using FIG. 9 or FIG. 11, but instead of the exhaust absolute pressure calculating means shown in the block 112, a pressure sensor is provided in the exhaust pipe to directly control the exhaust absolute pressure. The same effect can be obtained even if a measuring method is used.

図12は、シリンダ排気流量とシリンダ排気温度と出口排気流量と外部EGR量にもとづき排気圧力変化率を演算し、前記排気圧力変化率にもとづき排気絶対圧力を演算する手段を説明する図である。図12に示すブロック線図では、まず回転速度,空燃比および充填効率を入力として、ブロック121においてシリンダより排出される排気流量dGcyl/dtを演算する。また、点火時期,空燃比およびEGR率を入力としてブロック122においてシリンダより排出される排気の温度Texを演算する。排気温度の演算には、点火時期,空燃比およびEGR率を軸としたマップあるいは多項式を用いることができる。また、シリンダより排出される排気温度Tex,大気絶対圧Patm、および排気管の流量係数μvを入力としてブロック123において排気管から大気中へ排出される排気の流量dGout/dtを演算する。大気中へ排出される排気流量の演算には次式を用いる。   FIG. 12 is a diagram for explaining means for calculating the exhaust pressure change rate based on the cylinder exhaust flow rate, the cylinder exhaust temperature, the outlet exhaust flow rate, and the external EGR amount, and calculating the exhaust absolute pressure based on the exhaust pressure change rate. In the block diagram shown in FIG. 12, first, the exhaust flow rate dGcyl / dt discharged from the cylinder is calculated in block 121 with the rotational speed, air-fuel ratio, and charging efficiency as inputs. Further, the ignition temperature, the air-fuel ratio, and the EGR rate are input, and the exhaust gas temperature Tex discharged from the cylinder is calculated in block 122. For the calculation of the exhaust temperature, a map or a polynomial with the ignition timing, the air-fuel ratio and the EGR rate as axes can be used. Further, the exhaust gas flow rate dGout / dt of exhaust gas discharged from the exhaust pipe to the atmosphere is calculated at block 123 with the exhaust temperature Tex discharged from the cylinder, the atmospheric absolute pressure Patm, and the exhaust pipe flow coefficient μv as inputs. The following equation is used to calculate the exhaust flow rate discharged into the atmosphere.

dGout/dt=μout×Aout×(2/RexTex)0.5
×Ψ(Pex,Patm)
Ψ(Pex,Patm)=(2/(k+1))(1/(k-1))×(k/(k+1))0.5
・・・ Patm/Pex<(2/(k+1))(k/(k-1))
Ψ(Pex,Patm)={(k/(k−1))×((Patm/Pex)2/k
−(Patm/Pex)(k+1)/k)}0.5
・・・ Patm/Pex≧(2/(k+1))(k/(k-1))
・・・式(3)
dGout / dt = μout × Aout × (2 / RexTex) 0.5
× Ψ (Pex, Patm)
Ψ (Pex, Patm) = (2 / (k + 1)) (1 / (k−1)) × (k / (k + 1)) 0.5
... Patm / Pex <(2 / (k + 1)) (k / (k-1))
Ψ (Pex, Patm) = {(k / (k−1)) × ((Patm / Pex) 2 / k
− (Patm / Pex) (k + 1) / k) } 0.5
... Patm / Pex ≧ (2 / (k + 1)) (k / (k-1))
... Formula (3)

ここで、μoutは排気出口の流量係数、Aoutは排気管出口の面積、kは比熱比である。また、シリンダより排出される排気温度,吸気絶対圧,EGRバルブ開度,排気絶対圧を入力としてブロック124において外部EGR流量dGegr/dtを演算する。外部EGR流量の演算には次式を用いる。   Here, μout is a flow coefficient of the exhaust outlet, Aout is an area of the exhaust pipe outlet, and k is a specific heat ratio. Further, the external EGR flow rate dGegr / dt is calculated in block 124 with the exhaust temperature discharged from the cylinder, the intake absolute pressure, the EGR valve opening, and the exhaust absolute pressure as inputs. The following equation is used to calculate the external EGR flow rate.

dGegr/dt=μegr×Aegr×(2/RexTex)0.5
×Ψ(Pex,Pin)
Ψ(Pex,Pin)=(2/(k+1))(1/(k-1))×(k/(k+1))0.5
・・・ Pin/Pex<(2/(k+1))(k/(k-1))
Ψ(Pex,Pin)={(k/(k−1))×((Pin/Pex)2/k
−(Pin/Pex)(k+1)/k))0.5
・・・ Pin/Pex≧(2/(k+1))(k/(k-1))
・・・式(4)
dGegr / dt = μegr × Aegr × (2 / RexTex) 0.5
× Ψ (Pex, Pin)
Ψ (Pex, Pin) = (2 / (k + 1)) (1 / (k−1)) × (k / (k + 1)) 0.5
... Pin / Pex <(2 / (k + 1)) (k / (k-1))
Ψ (Pex, Pin) = {(k / (k−1)) × ((Pin / Pex) 2 / k
-(Pin / Pex) (k + 1) / k) ) 0.5
... Pin / Pex≥ (2 / (k + 1)) (k / (k-1))
... Formula (4)

ここで、μegrは外部EGRバルブの流量係数、Aegrは外部EGRバルブの開口面積、kは比熱比である。ブロック125では、ブロック121から124で求められたシリンダ排気流量dGcyl/dt,シリンダ排気温度Texおよび排気出口流量dGout/dtを用いて次式を用いて排気圧力変化率dPex/dtを演算する。   Here, μegr is the flow coefficient of the external EGR valve, Aegr is the opening area of the external EGR valve, and k is the specific heat ratio. In block 125, exhaust pressure change rate dPex / dt is calculated using the following equation using cylinder exhaust flow rate dGcyl / dt, cylinder exhaust temperature Tex and exhaust outlet flow rate dGout / dt obtained in blocks 121 to 124.

dPex/dt=(RexTex/Vex)×(dGcyl/dt−dGout/dt−dGegr/dt) ・・・式(5)     dPex / dt = (RexTex / Vex) × (dGcyl / dt−dGout / dt−dGegr / dt) (5)

ここで、Rexは排ガスのガス定数、Vexは排気管の容積である。ブロック125で求められた排気圧力変化率dPex/dtを時間積分することによって排気絶対圧を演算することができる。本方式によれば、外部EGRを行う内燃機関の大気圧の低下する高地条件においても、排気圧力を精度良く演算することが可能である。   Here, Rex is the gas constant of the exhaust gas, and Vex is the volume of the exhaust pipe. The exhaust absolute pressure can be calculated by integrating the exhaust pressure change rate dPex / dt obtained in block 125 with time. According to this method, the exhaust pressure can be calculated with high accuracy even under high altitude conditions where the atmospheric pressure of the internal combustion engine that performs external EGR decreases.

図13は、可変バルブが主体となって充填効率を制御する内燃機関において、回転速度,吸気相対圧,バルブ作動角,IVOおよびEVCをパラメータとした多項式にもとづいて基準状態での充填効率を演算する手段を説明する図である。本実施形態では、充填効率に与える回転速度,吸気相対圧,吸気バルブ作動角,IVOおよびEVCの影響を考慮に入れた多項式回帰モデルを用いて基準充填効率を演算する。吸気相対圧とは吸気絶対圧と大気絶対圧との比、または吸気絶対圧と排気絶対圧との比である。上記影響因子を説明変数として、4次項までを考慮する。さらに、上記影響因子同士の交互作用の影響をモデル上で表現するために、4次を最大とする交互作用項を備えている。このように高次項や交互作用項を回帰モデルに含めることで、非線形なエンジンの充填効率特性を精度良く演算することができる。なお、本発明では基準状態での充填効率の演算に多項式を用いる構成としたがこれに限定されるものではない。すなわち、回転速度,吸気相対圧,バルブ作動角,IVOおよびEVCをパラメータとしたマップあるいはテーブルにもとづいて演算する方式としても良い。   FIG. 13 shows the calculation of the charging efficiency in the reference state based on a polynomial with the rotational speed, the intake relative pressure, the valve operating angle, the IVO and the EVC as parameters in an internal combustion engine that mainly controls the charging efficiency with a variable valve. It is a figure explaining the means to do. In this embodiment, the reference charging efficiency is calculated using a polynomial regression model that takes into account the effects of the rotational speed, intake relative pressure, intake valve operating angle, IVO, and EVC on the charging efficiency. The intake relative pressure is a ratio between the intake absolute pressure and the atmospheric absolute pressure, or a ratio between the intake absolute pressure and the exhaust absolute pressure. Taking the above influencing factors as explanatory variables, consider up to the fourth order term. Furthermore, in order to express the influence of the interaction between the influence factors on the model, an interaction term that maximizes the fourth order is provided. By including higher order terms and interaction terms in the regression model in this way, it is possible to accurately calculate the charging efficiency characteristics of the nonlinear engine. In the present invention, a polynomial is used for the calculation of the filling efficiency in the reference state, but the present invention is not limited to this. That is, a calculation method based on a map or table using the rotational speed, the intake relative pressure, the valve operating angle, IVO, and EVC as parameters may be employed.

図14は、可変バルブが主体となって充填効率を制御する内燃機関において、回転速度,吸気相対圧,バルブ作動角,IVOおよびEVCをパラメータとした多項式にもとづいて基準状態での内部EGR量を演算する手段を説明する図である。本実施形態では、内部EGR量に与える回転速度,吸気相対圧,吸気バルブ作動角,IVOおよびEVCの影響を考慮に入れた多項式回帰モデルを用いて基準内部EGR量を演算する。吸気相対圧とは吸気絶対圧と大気絶対圧との比、または吸気絶対圧と排気絶対圧との比である。上記影響因子を説明変数として、4次項までを考慮する。さらに、上記影響因子同士の交互作用の影響をモデル上で表現するために、4次を最大とする交互作用項を備えている。このように高次項や交互作用項を回帰モデルに含めることで、非線形なエンジンの内部EGR量特性を精度良く演算することができる。なお、本発明では基準状態での内部EGR量の演算に多項式を用いる構成としたがこれに限定されるものではない。すなわち、回転速度,吸気相対圧,バルブ作動角,IVOおよびEVCをパラメータとしたマップあるいはテーブルにもとづいて演算する方式としても良い。   FIG. 14 shows the internal EGR amount in the reference state based on a polynomial with rotational speed, intake air relative pressure, valve operating angle, IVO and EVC as parameters in an internal combustion engine that mainly controls a variable valve to control charging efficiency. It is a figure explaining the means to calculate. In this embodiment, the reference internal EGR amount is calculated using a polynomial regression model that takes into account the effects of the rotational speed, intake relative pressure, intake valve operating angle, IVO, and EVC on the internal EGR amount. The intake relative pressure is a ratio between the intake absolute pressure and the atmospheric absolute pressure, or a ratio between the intake absolute pressure and the exhaust absolute pressure. Taking the above influencing factors as explanatory variables, consider up to the fourth order term. Furthermore, in order to express the influence of the interaction between the influence factors on the model, an interaction term that maximizes the fourth order is provided. By including higher order terms and interaction terms in the regression model in this way, the internal EGR amount characteristic of the nonlinear engine can be calculated with high accuracy. In the present invention, a polynomial is used to calculate the internal EGR amount in the reference state, but the present invention is not limited to this. That is, a calculation method based on a map or table using the rotational speed, the intake relative pressure, the valve operating angle, IVO, and EVC as parameters may be employed.

図15は、可変バルブが主体となって充填効率を制御する内燃機関において、高地補正済み充填効率,高地補正済み内部EGR量,高地補正済み外部EGR量,回転速度,IVC,吸気温度,空燃比およびオクタン価を入力とした高地補正済み点火時期制御量を演算する手段を説明する図である。図15に示すブロック線図では、まずブロック151において内部EGR量,外部EGR量,空燃比および充填効率にもとづきEGR率を演算する。EGR率は次式を用いて求めることができる。   FIG. 15 shows an internal combustion engine that mainly controls a variable valve to control charging efficiency, high altitude corrected charging efficiency, high altitude corrected internal EGR amount, high altitude corrected external EGR amount, rotational speed, IVC, intake air temperature, air-fuel ratio. FIG. 5 is a diagram for explaining a means for calculating a high altitude corrected ignition timing control amount using an octane number as an input. In the block diagram shown in FIG. 15, first, in block 151, the EGR rate is calculated based on the internal EGR amount, the external EGR amount, the air-fuel ratio, and the charging efficiency. The EGR rate can be obtained using the following equation.

EGR率=(外部EGR量+内部EGR量)
/(内部EGR量+外部EGR量+充填効率+充填効率/空燃比)
・・・式(6)
EGR rate = (external EGR amount + internal EGR amount)
/ (Internal EGR amount + external EGR amount + charging efficiency + charging efficiency / air-fuel ratio)
... Formula (6)

次に、ブロック152において基準点火時期を演算する。基準点火時期とは、EGR率,吸気温度,空燃比、およびオクタン価を基準状態に設定した際に得られる最適点火時期を示している。ブロック153から155では、EGR率,吸気温度,空燃比およびオクタン価を入力として点火時期の各補正量を演算する。さらに基準値に上記演算された補正値を加算することによって点火時期が演算される。充填効率,内部EGR量および外部EGR量は、いずれも高地条件と可変バルブに対応している。これら高地条件と可変バルブに対応した入力を用いる構成とすることによって、点火時期を精度良く演算することが可能となる。   Next, in block 152, the reference ignition timing is calculated. The reference ignition timing indicates the optimum ignition timing obtained when the EGR rate, the intake air temperature, the air-fuel ratio, and the octane number are set to the reference state. In blocks 153 to 155, each correction amount of the ignition timing is calculated using the EGR rate, the intake air temperature, the air-fuel ratio, and the octane number as inputs. Further, the ignition timing is calculated by adding the calculated correction value to the reference value. The charging efficiency, internal EGR amount, and external EGR amount all correspond to high altitude conditions and variable valves. By adopting a configuration using inputs corresponding to these high altitude conditions and variable valves, it is possible to accurately calculate the ignition timing.

図16は、可変バルブが主体となって充填効率を制御する内燃機関において、回転速度,充填効率,IVC,EGR率,吸気温度,空燃比およびオクタン価をパラメータとした多項式にもとづいて点火時期を演算する手段を説明する図である。基準値多項式の入力には、回転速度,充填効率,IVC(吸気バルブ閉じ角)を用いており、これら各変数について高次項および交互作用項を設定している。基準値多項式にIVCを考慮するのは、吸気バルブに作動角および位相を連続的に可変とする可変バルブ機構を備えた本実施形態のシステムでは、IVCによってピストン運動による実圧縮比が大きく変化し、点火時期制御に重要な因子であるノック挙動が上記IVCの影響を大きく受けるからである。EGR率補正値多項式の入力には、回転速度,充填効率,IVCおよびEGR率を用いており、これら各変数について高次項および交互作用項を設定している。同様に、吸気温度補正値多項式,空燃比補正値多項式およびオクタン価補正値多項式を設定している。上述した基準値に各補正値を加算する構成とすることで、点火時期を精度良く演算することが可能となる。なお、本発明では点火時期の演算に多項式を用いる構成としたがこれに限定されるものではない。すなわち、回転速度,充填効率,IVC,内部EGR量,吸気温度,空燃比,外部EGR率およびオクタン価をパラメータとしたマップあるいはテーブルにもとづいて演算する方式としても良い。   FIG. 16 shows the calculation of the ignition timing based on a polynomial in which the rotational speed, the charging efficiency, the IVC, the EGR rate, the intake air temperature, the air-fuel ratio, and the octane number are parameters in an internal combustion engine that mainly controls the charging efficiency with a variable valve. It is a figure explaining the means to do. The reference value polynomial is input using rotational speed, charging efficiency, and IVC (intake valve closing angle), and high-order terms and interaction terms are set for these variables. IVC is taken into consideration for the reference value polynomial in the system of the present embodiment in which the intake valve is provided with a variable valve mechanism in which the operating angle and phase are continuously variable, and the actual compression ratio due to piston motion changes greatly due to IVC. This is because the knock behavior, which is an important factor for ignition timing control, is greatly affected by the IVC. The rotational speed, filling efficiency, IVC, and EGR rate are used to input the EGR rate correction value polynomial, and high-order terms and interaction terms are set for these variables. Similarly, an intake air temperature correction value polynomial, an air-fuel ratio correction value polynomial, and an octane number correction value polynomial are set. By adopting a configuration in which each correction value is added to the reference value described above, the ignition timing can be calculated with high accuracy. In the present invention, a polynomial is used for calculating the ignition timing, but the present invention is not limited to this. That is, a calculation method based on a map or table using parameters such as rotational speed, charging efficiency, IVC, internal EGR amount, intake air temperature, air-fuel ratio, external EGR rate, and octane number may be employed.

以下、本発明の実施の形態2を図にもとづいて説明する。本実施形態のシステムは吸気バルブに位相のみ可変型の可変バルブ機構を備え、スロットルバルブを主体として充填効率を制御に用いる点以外は、実施例1と同様である。   The second embodiment of the present invention will be described below with reference to the drawings. The system of the present embodiment is the same as that of the first embodiment except that the intake valve is provided with a variable valve mechanism of which only the phase is variable, and the charging efficiency is mainly used for controlling the throttle valve.

図17は、スロットルバルブが主体となって充填効率を制御する内燃機関において、回転速度,IVO,EVC,吸気絶対圧,大気絶対圧,吸気温度および外部EGR率にもとづいて充填効率を演算する手段を説明する図である。図17に示すブロック線図では、まず吸気絶対圧と大気絶対圧との比を求める。吸気絶対圧と大気絶対圧との比をブロック171に入力する。ブロック171では、回転速度,吸気絶対圧と大気絶対圧との比,IVOおよびEVCを入力として、基準条件での充填効率を演算する。ここで、基準条件とは、大気絶対圧,吸気温度,外部EGR率がそれぞれ基準条件に設定されているときに得られる充填効率を示している。大気絶対圧と大気絶対基準圧との比を基準充填効率に掛けることで高地補正が行われる。さらに、ブロック172において、吸気温度および外部EGR率の基準条件からのかい離分を補正する。以上のような構成とすることで高地補正済みの充填効率を求めることができる。なお、本発明は、これに限定されるものではなく、図10に示したように、排気絶対圧を演算する手段を備える構成とすることも可能である。また、排気管中に圧力センサを備え、直接的に測定された排気圧力を用いる構成とすることも可能である。   FIG. 17 shows a means for calculating the charging efficiency based on the rotational speed, IVO, EVC, intake absolute pressure, atmospheric absolute pressure, intake air temperature, and external EGR rate in an internal combustion engine that mainly controls the charging efficiency by a throttle valve. FIG. In the block diagram shown in FIG. 17, first, the ratio between the absolute intake pressure and the absolute atmospheric pressure is obtained. The ratio between the absolute intake pressure and the absolute atmospheric pressure is input to block 171. In block 171, the rotational efficiency, the ratio of absolute intake pressure to atmospheric absolute pressure, IVO and EVC are input, and the charging efficiency under the reference conditions is calculated. Here, the reference condition indicates the charging efficiency obtained when the atmospheric absolute pressure, the intake air temperature, and the external EGR rate are set as the reference conditions. High altitude correction is performed by multiplying the reference filling efficiency by the ratio of the atmospheric absolute pressure and the atmospheric absolute reference pressure. Further, in block 172, the deviation from the reference condition of the intake air temperature and the external EGR rate is corrected. By adopting the above-described configuration, it is possible to obtain the filling efficiency corrected for the high altitude. In addition, this invention is not limited to this, As shown in FIG. 10, it can also be set as the structure provided with the means which calculates exhaust absolute pressure. It is also possible to provide a configuration in which a pressure sensor is provided in the exhaust pipe and the directly measured exhaust pressure is used.

図18は、スロットルバルブが主体となって充填効率を制御する内燃機関において、回転速度,IVO,EVC,吸気絶対圧および大気絶対圧にもとづいて内部EGR量を演算する手段を説明する図である。図18に示すブロック線図では、まず吸気絶対圧と大気絶対圧との比を求める。吸気絶対圧と大気絶対圧との比をブロック181に入力する。ブロック181では、回転速度,吸気絶対圧と大気絶対圧との比,IVOおよびEVCを入力として、基準条件での内部EGR量を演算する。ここで、基準条件とは、大気絶対圧が基準条件に設定されているときに得られる内部EGR量を示している。大気絶対圧と大気絶対基準圧との比を基準内部EGR量に掛けることで、高地補正済みの内部EGR量を求めることができる。なお、本発明は、これに限定されるものではなく、図11に示したように、排気絶対圧を演算する手段を備える構成とすることも可能である。また、排気管中に圧力センサを備え、直接的に測定された排気圧力を用いる構成とすることも可能である。   FIG. 18 is a diagram for explaining means for calculating the internal EGR amount based on the rotational speed, IVO, EVC, intake absolute pressure, and atmospheric absolute pressure in an internal combustion engine that mainly controls the throttle valve and controls the charging efficiency. . In the block diagram shown in FIG. 18, first, the ratio between the absolute intake pressure and the absolute atmospheric pressure is obtained. The ratio between the absolute intake pressure and the absolute atmospheric pressure is input to block 181. In block 181, the rotational speed, the ratio of absolute intake pressure to atmospheric absolute pressure, IVO and EVC are input, and the internal EGR amount under the reference condition is calculated. Here, the reference condition indicates an internal EGR amount obtained when the atmospheric absolute pressure is set to the reference condition. By multiplying the reference internal EGR amount by the ratio of the atmospheric absolute pressure and the atmospheric absolute reference pressure, the internal EGR amount corrected for the high altitude can be obtained. In addition, this invention is not limited to this, As shown in FIG. 11, it can also be set as the structure provided with the means which calculates exhaust absolute pressure. It is also possible to provide a configuration in which a pressure sensor is provided in the exhaust pipe and the directly measured exhaust pressure is used.

図19は、スロットルバルブが主体となって充填効率を制御する内燃機関において、回転速度,吸気相対圧,IVOおよびEVCをパラメータとした多項式にもとづいて基準状態での充填効率を演算する手段を説明する図である。本実施形態では、充填効率に与える回転速度,吸気相対圧,IVOおよびEVCの影響を考慮に入れた多項式回帰モデルを用いて基準充填効率を演算する。吸気相対圧とは吸気絶対圧と大気絶対圧との比、または吸気絶対圧と排気絶対圧との比である。上記影響因子を説明変数として、4次項までを考慮する。さらに、上記影響因子同士の交互作用の影響をモデル上で表現するために、4次を最大とする交互作用項を備えている。このように高次項や交互作用項を回帰モデルに含めることで、非線形なエンジンの充填効率特性を精度良く演算することができる。なお、本発明では基準状態での充填効率の演算に多項式を用いる構成としたがこれに限定されるものではない。すなわち、回転速度,吸気相対圧,IVOおよびEVCをパラメータとしたマップあるいはテーブルにもとづいて演算する方式としても良い。   FIG. 19 illustrates a means for calculating the charging efficiency in the reference state based on a polynomial with rotational speed, intake air relative pressure, IVO, and EVC as parameters in an internal combustion engine that mainly controls a throttle valve to control the charging efficiency. It is a figure to do. In the present embodiment, the reference charging efficiency is calculated using a polynomial regression model that takes into account the effects of rotational speed, intake relative pressure, IVO, and EVC on the charging efficiency. The intake relative pressure is a ratio between the intake absolute pressure and the atmospheric absolute pressure, or a ratio between the intake absolute pressure and the exhaust absolute pressure. Taking the above influencing factors as explanatory variables, consider up to the fourth order term. Furthermore, in order to express the influence of the interaction between the influence factors on the model, an interaction term that maximizes the fourth order is provided. By including higher order terms and interaction terms in the regression model in this way, it is possible to accurately calculate the charging efficiency characteristics of the nonlinear engine. In the present invention, a polynomial is used for the calculation of the filling efficiency in the reference state, but the present invention is not limited to this. That is, a calculation method based on a map or a table using the rotational speed, the intake relative pressure, IVO, and EVC as parameters may be used.

図20は、スロットルバルブが主体となって充填効率を制御する内燃機関において、回転速度,吸気相対圧,IVOおよびEVCをパラメータとした多項式にもとづいて基準状態での内部EGR量を演算する手段を説明する図である。本実施形態では、内部EGR量に与える回転速度,吸気相対圧,IVOおよびEVCの影響を考慮に入れた多項式回帰モデルを用いて基準内部EGR量を演算する。吸気相対圧とは吸気絶対圧と大気絶対圧との比、または吸気絶対圧と排気絶対圧との比である。上記影響因子を説明変数として、4次項までを考慮する。さらに、上記影響因子同士の交互作用の影響をモデル上で表現するために、4次を最大とする交互作用項を備えている。このように高次項や交互作用項を回帰モデルに含めることで、非線形なエンジンの内部EGR量特性を精度良く演算することができる。なお、本発明では基準状態での内部EGR量の演算に多項式を用いる構成としたがこれに限定されるものではない。すなわち、回転速度,吸気相対圧,IVOおよびEVCをパラメータとしたマップあるいはテーブルにもとづいて演算する方式としても良い。   FIG. 20 shows a means for calculating the internal EGR amount in the reference state based on a polynomial equation with rotational speed, intake air relative pressure, IVO and EVC as parameters in an internal combustion engine that mainly controls a throttle valve to control charging efficiency. It is a figure explaining. In the present embodiment, the reference internal EGR amount is calculated using a polynomial regression model that takes into account the effects of the rotational speed, intake relative pressure, IVO, and EVC on the internal EGR amount. The intake relative pressure is a ratio between the intake absolute pressure and the atmospheric absolute pressure, or a ratio between the intake absolute pressure and the exhaust absolute pressure. Taking the above influencing factors as explanatory variables, consider up to the fourth order term. Furthermore, in order to express the influence of the interaction between the influence factors on the model, an interaction term that maximizes the fourth order is provided. By including higher order terms and interaction terms in the regression model in this way, the internal EGR amount characteristic of the nonlinear engine can be calculated with high accuracy. In the present invention, a polynomial is used to calculate the internal EGR amount in the reference state, but the present invention is not limited to this. That is, a calculation method based on a map or a table using the rotational speed, the intake relative pressure, IVO, and EVC as parameters may be used.

図21は、スロットルバルブが主体となって充填効率を制御する内燃機関において、高地補正済み充填効率,高地補正済み内部EGR量,高地補正済み外部EGR量,回転速度,吸気温度,空燃比およびオクタン価を入力とした高地補正済み点火時期制御量を演算する手段を説明する図である。図21に示すブロック線図では、まずブロック211において内部EGR量,外部EGR量,空燃比および充填効率にもとづきEGR率を演算する。次に、ブロック212において基準点火時期を演算する。基準点火時期とは、EGR率,吸気温度,空燃比、およびオクタン価を基準状態に設定した際に得られる最適点火時期を示している。ブロック213から215では、EGR率,吸気温度,空燃比およびオクタン価を入力として点火時期の各補正量を演算する。さらに基準値に上記演算された補正値を加算することによって点火時期が演算される。充填効率,内部EGR量および外部EGR量は、いずれも高地条件と可変バルブに対応している。これら高地条件と可変バルブに対応した入力を用いる構成とすることによって、点火時期を精度良く演算することが可能となる。   FIG. 21 shows an internal combustion engine that mainly controls a throttle valve to control charging efficiency, high-ground corrected charging efficiency, high-ground corrected internal EGR amount, high-ground corrected external EGR amount, rotational speed, intake air temperature, air-fuel ratio, and octane number. FIG. 6 is a diagram for explaining a means for calculating a high altitude corrected ignition timing control amount with the input of. In the block diagram shown in FIG. 21, first, in block 211, the EGR rate is calculated based on the internal EGR amount, the external EGR amount, the air-fuel ratio, and the charging efficiency. Next, in block 212, the reference ignition timing is calculated. The reference ignition timing indicates the optimum ignition timing obtained when the EGR rate, the intake air temperature, the air-fuel ratio, and the octane number are set to the reference state. In blocks 213 to 215, each correction amount of the ignition timing is calculated by inputting the EGR rate, the intake air temperature, the air-fuel ratio, and the octane number. Further, the ignition timing is calculated by adding the calculated correction value to the reference value. The charging efficiency, internal EGR amount, and external EGR amount all correspond to high altitude conditions and variable valves. By adopting a configuration using inputs corresponding to these high altitude conditions and variable valves, it is possible to accurately calculate the ignition timing.

図22は、スロットルバルブが主体となって充填効率を制御する内燃機関において、回転速度,充填効率,EGR率,吸気温度,空燃比およびオクタン価をパラメータとした多項式にもとづいて点火時期を演算する手段を説明する図である。基準値多項式の入力には、回転速度,充填効率、を用いており、これら各変数について高次項および交互作用項を設定している。EGR率補正値多項式の入力には、回転速度,充填効率、およびEGR率を用いており、これら各変数について高次項および交互作用項を設定している。同様に、吸気温度補正値多項式,空燃比補正値多項式およびオクタン価補正値多項式を設定している。上述した基準値に各補正値を加算する構成とすることで、点火時期を精度良く演算することが可能となる。なお、本発明では点火時期の演算に多項式を用いる構成としたがこれに限定されるものではない。すなわち、回転速度,充填効率,内部EGR量,吸気温度,空燃比,外部EGR率およびオクタン価をパラメータとしたマップあるいはテーブルにもとづいて演算する方式としても良い。   FIG. 22 shows a means for calculating an ignition timing based on a polynomial expression using rotational speed, charging efficiency, EGR rate, intake air temperature, air-fuel ratio, and octane number as parameters in an internal combustion engine that mainly controls a throttle valve to control the charging efficiency. FIG. The rotational speed and the filling efficiency are used for the input of the reference value polynomial, and the high-order terms and the interaction terms are set for these variables. The rotational speed, filling efficiency, and EGR rate are used to input the EGR rate correction value polynomial, and high-order terms and interaction terms are set for these variables. Similarly, an intake air temperature correction value polynomial, an air-fuel ratio correction value polynomial, and an octane number correction value polynomial are set. By adopting a configuration in which each correction value is added to the reference value described above, the ignition timing can be calculated with high accuracy. In the present invention, a polynomial is used for calculating the ignition timing, but the present invention is not limited to this. That is, a calculation method based on a map or table using parameters such as rotational speed, charging efficiency, internal EGR amount, intake air temperature, air-fuel ratio, external EGR rate, and octane number may be employed.

図23は、充填効率検知手段としてエアフローセンサと圧力センサを用いる内燃機関の吸気管構成を説明する図である。定常運転時にはスロットル上流部に備えられたエアフローセンサ部の流量と、シリンダ部の流量とが一致するため、エアフローセンサ検出流量にもとづいて充填効率を演算することが可能である。しかしながら、スロットルバルブが急激に変化する過渡時の場合には、エアフローセンサ部の流量がスロットルバルブ開口面積とマニホールド内圧力に応じて直ちに変化を開始するのに対して、シリンダ部の流量はマニホールド内圧力の変化にもとづいて徐々に変化する。一方、可変バルブが急激に変化する場合には、シリンダ部の流量が可変バルブの変化に応じて直ちに変化を開始するのに対して、スロットルバルブ上流部の流量は、シリンダとエアフローセンサとの間に介在するマニホールド内の圧縮性流体の圧縮・膨張運動によって、その変化の挙動に遅れを生じる。したがって、過渡時においてはエアフローセンサ部の流量とシリンダ部の流量との間に差異を生じるため、エアフローセンサ検出値にもとづいて適切に燃料噴射量や点火時期を演算することができない。エアフローセンサによる検出には、過渡の予測精度の悪化といった課題があるものの、定常精度は環境変化や経時劣化,個体ばらつきに対してロバストであるという長所を有する。一方、吸気管圧力や可変バルブにもとづく充填効率推定モデルは、過渡の急激な変化への追随性が良いという長所を有するものの、あらゆるばらつき要因をモデル内に記述することは実際上困難であるため、定常精度を所定以内に確保することは困難といえる。これらの長所を利用して、定常時や過渡時のいずれの条件において精度良く充填効率を演算できる手段が必要である。   FIG. 23 is a diagram illustrating an intake pipe configuration of an internal combustion engine that uses an airflow sensor and a pressure sensor as the charging efficiency detection means. During steady operation, the flow rate of the air flow sensor unit provided in the upstream portion of the throttle matches the flow rate of the cylinder unit, so that the charging efficiency can be calculated based on the flow rate detected by the air flow sensor. However, in the case of a transient when the throttle valve changes suddenly, the flow rate of the air flow sensor unit starts to change immediately according to the throttle valve opening area and the pressure in the manifold, whereas the flow rate of the cylinder unit It gradually changes based on changes in pressure. On the other hand, when the variable valve changes abruptly, the flow rate in the cylinder portion starts to change immediately in response to the change in the variable valve, whereas the flow rate in the upstream portion of the throttle valve is between the cylinder and the air flow sensor. The behavior of the change is delayed by the compression / expansion motion of the compressible fluid in the manifold interposed between the two. Therefore, since there is a difference between the flow rate of the air flow sensor unit and the flow rate of the cylinder unit during the transition, the fuel injection amount and the ignition timing cannot be appropriately calculated based on the detected value of the air flow sensor. Although the detection by the air flow sensor has a problem such as deterioration of transient prediction accuracy, the steady accuracy has an advantage that it is robust against environmental change, deterioration with time, and individual variation. On the other hand, although the charging efficiency estimation model based on the intake pipe pressure and variable valve has the advantage of being able to follow a rapid change in transients, it is actually difficult to describe all the variation factors in the model. Therefore, it can be said that it is difficult to ensure the steady accuracy within a predetermined range. Utilizing these advantages, a means capable of calculating the charging efficiency with high accuracy in any of the steady state and transient conditions is required.

図24は、可変バルブが主体となって充填効率を制御するか、またはスロットルバルブが主体となって充填効率を制御し、エアフローセンサおよび圧力センサを備えた内燃機関において、エアフローセンサ検出値とモデル推定値にもとづいて充填効率を演算する手段、および上記充填効率にもとづき燃料噴射量を演算する手段を説明する図である。図24に示すブロック線図において、ブロック242では回転速度,吸気絶対圧,大気絶対圧,可変バルブ,吸気温度および外部EGR率にもとづいて充填効率が演算される。ブロック242には、図8,図10または図17に示した充填効率演算手段のいずれも用いることができる。ブロック242にて演算された充填効率と回転速度の関係にもとづいてブロック244においてシリンダ部の流量が演算される。ブロック244において演算されたシリンダ部の流量dGcyl/dt,吸気管圧力変化率dPin/dt,吸気温度Tinおよび外部EGR流量dGegr/dtにもとづいて、ブロック245では次式によってエアフローセンサ部の流量dGafs/dtを推定する。   FIG. 24 shows an air flow sensor detection value and a model in an internal combustion engine having a variable valve as a main component and controlling the charging efficiency mainly as a throttle valve or a throttle valve as a main component and having an air flow sensor and a pressure sensor. It is a figure explaining the means which calculates filling efficiency based on an estimated value, and the means which calculates fuel injection quantity based on the said filling efficiency. In the block diagram shown in FIG. 24, in block 242, the charging efficiency is calculated based on the rotational speed, the intake absolute pressure, the atmospheric absolute pressure, the variable valve, the intake air temperature, and the external EGR rate. Any of the filling efficiency calculation means shown in FIG. 8, FIG. 10, or FIG. 17 can be used for the block 242. Based on the relationship between the charging efficiency and the rotational speed calculated in block 242, the flow rate of the cylinder portion is calculated in block 244. Based on the cylinder flow rate dGcyl / dt, the intake pipe pressure change rate dPin / dt, the intake air temperature Tin and the external EGR flow rate dGegr / dt calculated in block 244, block 245 calculates the flow rate dGafs / Estimate dt.

dGafs/dt=(Vin/RinTin)×(dPin/dt)+dGcyl/dt −dGegr/dt ・・・式(7)
ここで、Rinは吸気ガスのガス定数、Vinは吸気管の容積である。ブロック245において推定されたエアフローセンサ部流量と、実際に検出されたエアフローセンサ検出流量との差分を求め、これをブロック243にて充填効率に換算する。上記換算された差分はブロック242内のモデルの定常誤差に相当すると考えられる。この定常誤差を用いてブロック242にて演算された充填効率を修正することによって、定常や過渡の状態においても常に精度良く充填効率を演算することが可能となる。上記演算された充填効率を図15または図21に示した点火時期演算手段の入力に用いる。さらに、充填効率と目標空燃比,排気空燃比および過渡・定常判定にもとづいてブロック241にて燃料噴射量が演算される。
dGafs / dt = (Vin / RinTin) × (dPin / dt) + dGcyl / dt−dGegr / dt (7)
Here, Rin is the gas constant of the intake gas, and Vin is the volume of the intake pipe. The difference between the air flow sensor flow rate estimated in block 245 and the actually detected air flow sensor detected flow rate is obtained, and this is converted into charging efficiency in block 243. The converted difference is considered to correspond to the steady state error of the model in block 242. By correcting the filling efficiency calculated in the block 242 using this steady error, the filling efficiency can always be calculated with high accuracy even in a steady state or a transient state. The calculated charging efficiency is used as an input to the ignition timing calculating means shown in FIG. Further, the fuel injection amount is calculated in block 241 based on the charging efficiency, the target air fuel ratio, the exhaust air fuel ratio, and the transient / steady state determination.

図25は、スロットルバルブが主体となって充填効率を制御し、エアフローセンサのみを備えた内燃機関において、エアフローセンサ検出値とモデル推定値にもとづいて充填効率を演算する手段、および上記充填効率にもとづき燃料噴射量を演算する手段を説明する図である。図25に示すブロック線図において、ブロック252では回転速度,吸気絶対圧,大気絶対圧,可変バルブ,吸気温度および外部EGR率にもとづいて充填効率が演算される。ブロック252には、図8,図10または図17に示した充填効率演算手段のいずれも用いることができる。ブロック252にて演算された充填効率と回転速度の関係にもとづいてブロック253においてシリンダ部の流量が演算される。ブロック253において演算されたシリンダ部の流量dGcyl/dt,吸気温度Tin,外部EGR流量dGegr/dtおよびエアフローセンサ検出流量dGcyl/dtにもとづいて、ブロック254では次式によって吸気管圧力変化率dPin/dtを推定する。   FIG. 25 shows a means for calculating the charging efficiency based on the detected value of the air flow sensor and the model estimated value in the internal combustion engine having only the air flow sensor and controlling the charging efficiency mainly by the throttle valve. It is a figure explaining the means to calculate the fuel injection quantity based on. In the block diagram shown in FIG. 25, in block 252, the charging efficiency is calculated based on the rotational speed, the intake absolute pressure, the atmospheric absolute pressure, the variable valve, the intake air temperature, and the external EGR rate. Any of the filling efficiency calculation means shown in FIG. 8, FIG. 10, or FIG. 17 can be used for the block 252. Based on the relationship between the charging efficiency and the rotational speed calculated in block 252, the flow rate of the cylinder portion is calculated in block 253. Based on the cylinder flow rate dGcyl / dt, the intake air temperature Tin, the external EGR flow rate dGegr / dt and the air flow sensor detected flow rate dGcyl / dt calculated in block 253, in block 254, the intake pipe pressure change rate dPin / dt is calculated by the following equation. Is estimated.

dPin/dt=(RinTin/Vin)×(dGafs/dt+dGegr/dt −dGcyl/dt) ・・・式(8)
ここで、Rinは吸気ガスのガス定数、Vinは吸気管の容積である。ブロック254において求められた吸気管圧力変化率を時間積分して吸気管絶対圧力を演算することができる。上記演算された充填効率を図15または図21に示した点火時期演算手段の入力に用いる。さらに、充填効率と目標空燃比,排気空燃比および過渡・定常判定にもとづいてブロック251にて燃料噴射量が演算される。
dPin / dt = (RinTin / Vin) × (dGafs / dt + dGegr / dt−dGcyl / dt) (8)
Here, Rin is the gas constant of the intake gas, and Vin is the volume of the intake pipe. The intake pipe absolute pressure can be calculated by integrating the intake pipe pressure change rate determined in block 254 with time. The calculated charging efficiency is used as an input to the ignition timing calculating means shown in FIG. Further, the fuel injection amount is calculated in block 251 based on the charging efficiency, the target air-fuel ratio, the exhaust air-fuel ratio, and the transient / steady state determination.

図26は、スロットルバルブが主体となって充填効率を制御し、圧力センサのみを備えた内燃機関において、モデル推定値にもとづいて充填効率を演算する手段、および上記充填効率にもとづき燃料噴射量を演算する手段を説明する図である。図26に示すブロック線図において、ブロック262では回転速度,吸気絶対圧,大気絶対圧,可変バルブ,吸気温度および外部EGR率にもとづいて充填効率が演算される。上記演算された充填効率を図15または図21に示した点火時期演算手段の入力に用いる。さらに、充填効率と目標空燃比,排気空燃比および過渡・定常判定にもとづいてブロック261にて燃料噴射量が演算される。   FIG. 26 shows a means for calculating the charging efficiency based on the model estimated value and the fuel injection amount based on the charging efficiency in an internal combustion engine having only a pressure sensor for controlling the charging efficiency mainly by the throttle valve. It is a figure explaining the means to calculate. In the block diagram shown in FIG. 26, in block 262, the charging efficiency is calculated based on the rotational speed, the intake absolute pressure, the atmospheric absolute pressure, the variable valve, the intake air temperature, and the external EGR rate. The calculated charging efficiency is used as an input to the ignition timing calculating means shown in FIG. Further, the fuel injection amount is calculated in block 261 based on the charging efficiency, the target air fuel ratio, the exhaust air fuel ratio, and the transient / steady state determination.

図27は、回転速度と充填効率を一定に保持した状態において得られる、低地条件と高地条件でのオーバーラップ期間と内部EGR率との関係,オーバーラップ期間と燃料消費量および窒素酸化物濃度との関係、ならびにオーバーラップ期間と燃焼安定性との関係を説明する図である。内部EGRを行うと、ポンプ損失の低減や、窒素酸化物の排出量低減ができる一方で、既燃ガスによる希釈の影響で燃焼安定性が悪化する。そのため可変バルブを備える内燃機関では通常、低地条件の下で燃焼安定限界の範囲内で、できる限り多くのEGRを行えるように、可変バルブの制御量が予め設定されている。大気圧の低下する高地条件では、オーバーラップ期間の増加に対して内部EGR率が増加する関係において、同一オーバーラップ期間で比較すると内部EGR率が減少するために、十分なポンプ損失の低減や、窒素酸化物の排出量低減効果が得られないという問題がある。図27に示した場合では、オーバーラップ期間を増加する側に制御することによって、高地条件においても上記効果を得ることができる。高地条件においても十分な効果を得るためには、燃焼安定性が確保される範囲内で、大気圧の状態に応じて可変バルブを適切に制御するための手段を備える必要がある。これは、内部EGR制御を行う可変バルブのみならず、外部EGR制御を行うための外部EGRバルブについても同様である。   FIG. 27 shows the relationship between the overlap period and the internal EGR rate under the lowland condition and the highland condition, the overlap period, the fuel consumption amount, and the nitrogen oxide concentration obtained in a state where the rotation speed and the charging efficiency are kept constant. It is a figure explaining the relationship between these, and the relationship between an overlap period and combustion stability. When internal EGR is performed, pump loss can be reduced and nitrogen oxide emissions can be reduced. On the other hand, combustion stability deteriorates due to the influence of dilution with burned gas. For this reason, in an internal combustion engine having a variable valve, the control amount of the variable valve is usually set in advance so that as many EGRs as possible can be performed within the range of the combustion stability limit under lowland conditions. In high altitude conditions where the atmospheric pressure decreases, the internal EGR rate increases relative to the increase in the overlap period, so that the internal EGR rate decreases when compared with the same overlap period. There is a problem that the effect of reducing the emission amount of nitrogen oxides cannot be obtained. In the case shown in FIG. 27, the above effect can be obtained even in high altitude conditions by controlling the overlap period to be increased. In order to obtain a sufficient effect even under high altitude conditions, it is necessary to provide means for appropriately controlling the variable valve in accordance with the atmospheric pressure state within a range in which combustion stability is ensured. This applies not only to the variable valve that performs internal EGR control, but also to the external EGR valve that performs external EGR control.

図28は、高地条件において目標EGR率となるべく可変バルブおよび外部EGRバルブ制御量を演算する手段を説明する図である。図28に示すブロック線図においては、まずブロック281において内部EGR量と外部EGR量と空燃比と充填効率を入力としてEGR率を演算する。上記EGR率演算手段には、高地補正済みの内部EGR量,外部EGR量および充填効率を用いているので、大気圧の低下する高地条件においても精度良くEGR率を演算することができる。ブロック282では、負荷と回転速度を入力として目標EGR率を演算する。負荷の変数としては充填効率や体積効率,吸気管絶対圧などを用いることができる。ここで、目標EGR率は、燃焼安定性が確保される範囲内で、ポンプ損失の低減や窒素酸化物の排出量低減効果が十分に得られるように、予め適合されている。ブロック283では、EGR率と目標EGR率と回転速度と吸気絶対圧と排気絶対圧との比にもとづいて可変バルブと外部EGRバルブの制御量が演算される。ここでは、排気絶対圧を用いる構成としたが、これに限定されるものではなく、大気絶対圧を用いても同様の効果を奏することができる。   FIG. 28 is a diagram for explaining a means for calculating the variable valve and the external EGR valve control amount as much as possible to achieve the target EGR rate under high altitude conditions. In the block diagram shown in FIG. 28, first, in block 281, the EGR rate is calculated by inputting the internal EGR amount, the external EGR amount, the air-fuel ratio, and the charging efficiency. Since the EGR rate calculating means uses the high altitude corrected internal EGR amount, external EGR amount and filling efficiency, the EGR rate can be calculated with high accuracy even under high altitude conditions where atmospheric pressure decreases. In block 282, the target EGR rate is calculated with the load and the rotational speed as inputs. As load variables, filling efficiency, volumetric efficiency, intake pipe absolute pressure, and the like can be used. Here, the target EGR rate is preliminarily adapted so as to obtain a sufficient pump loss reduction and nitrogen oxide emission reduction effect within a range in which combustion stability is ensured. In block 283, control amounts of the variable valve and the external EGR valve are calculated based on the ratio of the EGR rate, the target EGR rate, the rotation speed, the intake absolute pressure, and the exhaust absolute pressure. Here, the exhaust absolute pressure is used. However, the present invention is not limited to this, and the same effect can be obtained even if the atmospheric absolute pressure is used.

本発明の実施の形態の構成を説明する図。The figure explaining the structure of embodiment of this invention. 吸気バルブの位相を連続的に変化させた場合の、吸気バルブと排気バルブとのオーバーラップ期間の変化を説明する図。The figure explaining the change of the overlap period of an intake valve and an exhaust valve when the phase of an intake valve is changed continuously. バルブの作動角,リフトおよび位相を同時に変化させることができる可変バルブ機構のバルブリフトパターンを説明する図。The figure explaining the valve lift pattern of the variable valve mechanism which can change the operating angle of a valve, a lift, and a phase simultaneously. 回転速度と吸気圧力を一定に保持した状態において得られる、低地条件と高地条件でのオーバーラップ期間と内部EGR量との関係を説明する図。The figure explaining the relationship between the overlap period in low-altitude conditions and high-altitude conditions, and the amount of internal EGR obtained in a state where the rotation speed and the intake pressure are kept constant. 回転速度と吸気圧力を一定に保持した状態において得られる、低地条件と高地条件でのオーバーラップ期間と充填効率との関係ならびにオーバーラップ期間と燃料噴射量との関係を説明する図。The figure explaining the relationship between the overlap period and filling efficiency in a low altitude condition and a high altitude condition, and the relationship between an overlap period and a fuel injection amount, obtained in a state where the rotation speed and the intake pressure are kept constant. 回転速度と充填効率を一定に保持した状態において得られる、低地条件と高地条件でのオーバーラップ期間と内部EGR率との関係,オーバーラップ期間と燃焼速度との関係、ならびにオーバーラップ期間と点火時期(MBT)との関係を説明する図。The relationship between the overlap period and internal EGR rate under low and high altitude conditions, the relationship between overlap period and combustion speed, and the overlap period and ignition timing obtained with the rotational speed and charging efficiency held constant. The figure explaining the relationship with (MBT). 回転速度と充填効率を一定に保持した状態において得られる、低地条件と高地条件での点火時期とトルクとの関係をオーバーラップ期間大および小の場合について説明する図。The figure explaining the relationship between the ignition timing in low ground conditions and high ground conditions, and a torque obtained in the state which hold | maintained rotation speed and charging efficiency constant about the case where an overlap period is large and small. 可変バルブが主体となって充填効率を制御する内燃機関において、回転速度,バルブ作動角,IVO,EVC,吸気絶対圧,大気絶対圧,吸気温度および外部EGR率にもとづいて充填効率を演算する手段を説明する図。Means for calculating charging efficiency based on rotation speed, valve operating angle, IVO, EVC, intake absolute pressure, atmospheric absolute pressure, intake air temperature, and external EGR rate in an internal combustion engine that mainly controls a variable valve to control charging efficiency FIG. 可変バルブが主体となって充填効率を制御する内燃機関において、回転速度,バルブ作動角,IVO,EVC,吸気絶対圧および大気絶対圧にもとづいて内部EGR量を演算する手段を説明する図。The figure explaining the means to calculate the amount of internal EGR based on rotation speed, valve operating angle, IVO, EVC, intake absolute pressure, and atmospheric absolute pressure in the internal combustion engine which mainly controls a variable valve and controls charging efficiency. 可変バルブが主体となって充填効率を制御する内燃機関において、排気絶対圧力を演算する手段を備え、前記排気絶対圧力と回転速度,バルブ作動角,IVO,EVC,吸気絶対圧,大気絶対圧,吸気温度および外部EGR率にもとづいて充填効率を演算する手段を説明する図。In an internal combustion engine that mainly controls a variable valve to control charging efficiency, the engine has means for calculating exhaust absolute pressure, the exhaust absolute pressure and rotational speed, valve operating angle, IVO, EVC, intake absolute pressure, atmospheric absolute pressure, The figure explaining the means which calculates filling efficiency based on intake air temperature and an external EGR rate. 可変バルブが主体となって充填効率を制御する内燃機関において、排気絶対圧力を演算する手段を備え、前記排気絶対圧力と回転速度,バルブ作動角,IVO,EVC,吸気絶対圧および大気絶対圧にもとづいて内部EGR量を演算する手段を説明する図。In an internal combustion engine that mainly controls a variable valve and controls the charging efficiency, the internal combustion engine includes means for calculating exhaust absolute pressure. The exhaust absolute pressure and rotational speed, valve operating angle, IVO, EVC, intake absolute pressure, and atmospheric absolute pressure are included. The figure explaining the means to calculate the amount of internal EGR based on. シリンダ排気流量とシリンダ排気温度と出口排気流量と外部EGR量にもとづき排気圧力変化率を演算し、前記排気圧力変化率にもとづき排気絶対圧力を演算する手段を説明する図。The figure explaining the means which calculates exhaust pressure change rate based on cylinder exhaust flow, cylinder exhaust temperature, outlet exhaust flow, and external EGR amount, and calculates exhaust absolute pressure based on the exhaust pressure change rate. 可変バルブが主体となって充填効率を制御する内燃機関において、回転速度,吸気相対圧,バルブ作動角,IVOおよびEVCをパラメータとした多項式にもとづいて基準状態での充填効率を演算する手段を説明する図。Explains the means for calculating the charging efficiency in the reference state based on a polynomial with rotational speed, intake air relative pressure, valve operating angle, IVO and EVC as parameters in an internal combustion engine that mainly controls the charging efficiency with a variable valve. To do. 可変バルブが主体となって充填効率を制御する内燃機関において、回転速度,吸気相対圧,バルブ作動角,IVOおよびEVCをパラメータとした多項式にもとづいて基準状態での内部EGR量を演算する手段を説明する図。Means for calculating an internal EGR amount in a reference state based on a polynomial with rotational speed, intake air relative pressure, valve operating angle, IVO, and EVC as parameters in an internal combustion engine that mainly controls a variable valve to control charging efficiency Illustration to explain. 可変バルブが主体となって充填効率を制御する内燃機関において、高地補正済み充填効率,高地補正済み内部EGR量,高地補正済み外部EGR量,回転速度,IVC,吸気温度,空燃比およびオクタン価を入力とした高地補正済み点火時期制御量を演算する手段を説明する図。In an internal combustion engine that controls the charging efficiency with a variable valve as the main component, input the high altitude corrected charging efficiency, the high altitude corrected internal EGR amount, the high altitude corrected external EGR amount, the rotational speed, the IVC, the intake air temperature, the air fuel ratio, and the octane number. The figure explaining the means to calculate the high altitude corrected ignition timing control amount. 可変バルブが主体となって充填効率を制御する内燃機関において、回転速度,充填効率,IVC,EGR率,吸気温度,空燃比およびオクタン価をパラメータとした多項式にもとづいて点火時期を演算する手段を説明する図。Explains the means for calculating the ignition timing based on a polynomial whose parameters are rotational speed, charging efficiency, IVC, EGR rate, intake air temperature, air-fuel ratio, and octane number in an internal combustion engine that mainly controls the charging efficiency with a variable valve. To do. スロットルバルブが主体となって充填効率を制御する内燃機関において、回転速度,IVO,EVC,吸気絶対圧,大気絶対圧,吸気温度および外部EGR率にもとづいて充填効率を演算する手段を説明する図。FIG. 6 is a diagram for explaining a means for calculating the charging efficiency based on the rotational speed, IVO, EVC, absolute intake pressure, atmospheric absolute pressure, intake air temperature, and external EGR rate in an internal combustion engine that mainly controls the charging efficiency by a throttle valve. . スロットルバルブが主体となって充填効率を制御する内燃機関において、回転速度,IVO,EVC,吸気絶対圧および大気絶対圧にもとづいて内部EGR量を演算する手段を説明する図。The figure explaining the means which calculates the amount of internal EGR based on rotational speed, IVO, EVC, intake absolute pressure, and atmospheric | air pressure absolute pressure in the internal combustion engine which mainly controls a throttle efficiency by a throttle valve. スロットルバルブが主体となって充填効率を制御する内燃機関において、回転速度,吸気相対圧,IVOおよびEVCをパラメータとした多項式にもとづいて基準状態での充填効率を演算する手段を説明する図。The figure explaining the means which calculates the charging efficiency in a reference state based on the polynomial which uses rotation speed, intake air relative pressure, IVO, and EVC as a parameter in the internal combustion engine which controls charging efficiency mainly by a throttle valve. スロットルバルブが主体となって充填効率を制御する内燃機関において、回転速度,吸気相対圧,IVOおよびEVCをパラメータとした多項式にもとづいて基準状態での内部EGR量を演算する手段を説明する図。The figure explaining the means which calculates the internal EGR amount in a reference | standard state based on the polynomial which uses rotational speed, intake relative pressure, IVO, and EVC as a parameter in the internal combustion engine which mainly controls throttle efficiency by a throttle valve. スロットルバルブが主体となって充填効率を制御する内燃機関において、高地補正済み充填効率,高地補正済み内部EGR量,高地補正済み外部EGR量,回転速度,吸気温度,空燃比およびオクタン価を入力とした高地補正済み点火時期制御量を演算する手段を説明する図。In an internal combustion engine that controls the charging efficiency mainly by a throttle valve, the high altitude corrected charging efficiency, the high altitude corrected internal EGR amount, the high altitude corrected external EGR amount, the rotational speed, the intake air temperature, the air-fuel ratio, and the octane number are input. The figure explaining the means which calculates the high altitude corrected ignition timing control amount. スロットルバルブが主体となって充填効率を制御する内燃機関において、回転速度,充填効率,EGR率,吸気温度,空燃比およびオクタン価をパラメータとした多項式にもとづいて点火時期を演算する手段を説明する図。FIG. 6 is a diagram for explaining a means for calculating an ignition timing based on a polynomial whose parameters are rotational speed, charging efficiency, EGR rate, intake air temperature, air-fuel ratio, and octane number in an internal combustion engine that mainly controls the charging efficiency by a throttle valve. . 充填効率検知手段としてエアフローセンサと圧力センサを用いる内燃機関の吸気管構成を説明する図。The figure explaining the intake pipe structure of the internal combustion engine which uses an airflow sensor and a pressure sensor as a filling efficiency detection means. 可変バルブが主体となって充填効率を制御するか、またはスロットルバルブが主体となって充填効率を制御し、エアフローセンサおよび圧力センサを備えた内燃機関において、エアフローセンサ検出値とモデル推定値にもとづいて充填効率、および上記充填効率にもとづき燃料噴射量を演算する手段を演算する手段を説明する図。In an internal combustion engine equipped with an air flow sensor and a pressure sensor that mainly controls a variable valve to control the charging efficiency or a throttle valve mainly controls the charging efficiency, and based on the detected value of the air flow sensor and the estimated model value. FIG. 6 is a diagram for explaining a charging efficiency and a means for calculating a fuel injection amount based on the charging efficiency. スロットルバルブが主体となって充填効率を制御し、エアフローセンサのみを備えた内燃機関において、エアフローセンサ検出値とモデル推定値にもとづいて充填効率を演算する手段、および上記充填効率にもとづき燃料噴射量を演算する手段を説明する図。Means for calculating the charging efficiency based on the detected value of the air flow sensor and the model estimated value and the fuel injection amount based on the charging efficiency in an internal combustion engine having only the air flow sensor for controlling the charging efficiency mainly by the throttle valve The figure explaining the means to calculate. スロットルバルブが主体となって充填効率を制御し、圧力センサのみを備えた内燃機関において、モデル推定値にもとづいて充填効率を演算する手段、および上記充填効率にもとづき燃料噴射量を演算する手段を説明する図。Means for calculating a charging efficiency based on a model estimated value and a means for calculating a fuel injection amount based on the charging efficiency in an internal combustion engine having only a pressure sensor for controlling the charging efficiency mainly by a throttle valve Illustration to explain. 回転速度と充填効率を一定に保持した状態において得られる、低地条件と高地条件でのオーバーラップ期間と内部EGR率との関係,オーバーラップ期間と燃料消費量および窒素酸化物濃度との関係、ならびにオーバーラップ期間と燃焼安定性との関係を説明する図。The relationship between the overlap period and the internal EGR rate under low and high altitude conditions, the relationship between the overlap period and fuel consumption and nitrogen oxide concentration, obtained with the rotational speed and filling efficiency kept constant, and The figure explaining the relationship between an overlap period and combustion stability. 高地条件において目標EGR率となるべく可変バルブおよび外部EGRバルブ制御量を演算する手段を説明する図。The figure explaining the means which calculates a variable valve and an external EGR valve control amount as much as possible to become a target EGR rate in highland conditions.

符号の説明Explanation of symbols

1 内燃機関
2 エアフローセンサおよび吸気温センサ
3 スロットルバルブ
4 吸気マニホールド
5 吸気管圧力センサ
6 タンブルコントロールバルブ
7 燃料噴射弁
8 吸気可変バルブ機構
9 バルブリフトセンサおよびバルブタイミングセンサ
10 排気可変バルブ機構
11 バルブタイミングセンサ
12 点火プラグ
13 ノックセンサ
14 クランク角度センサ
15 O2センサ
16 外部EGR管
17 外部EGRバルブ
18 ECU(Electronic Control Unit)
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Air flow sensor and intake temperature sensor 3 Throttle valve 4 Intake manifold 5 Intake pipe pressure sensor 6 Tumble control valve 7 Fuel injection valve 8 Intake variable valve mechanism 9 Valve lift sensor and valve timing sensor 10 Exhaust variable valve mechanism 11 Valve timing Sensor 12 Spark plug 13 Knock sensor 14 Crank angle sensor 15 O 2 sensor 16 External EGR pipe 17 External EGR valve 18 ECU (Electronic Control Unit)

Claims (15)

可変バルブを備えた内燃機関の制御装置であって、
少なくとも回転速度と吸気絶対圧と大気絶対圧または排気絶対圧と可変バルブ制御量にもとづき充填効率を演算する手段と、少なくとも回転速度と吸気絶対圧と大気絶対圧または排気絶対圧と可変バルブ制御量にもとづきEGR量を演算する手段と、少なくとも前記充填効率にもとづき燃料噴射量を演算する手段と、少なくとも前記回転速度と前記充填効率と前記EGR量にもとづき点火時期を演算する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine provided with a variable valve,
Means for calculating the charging efficiency based on at least the rotational speed, the absolute intake pressure, the atmospheric absolute pressure or the exhaust absolute pressure, and the variable valve control amount; at least the rotational speed, the intake absolute pressure, the atmospheric absolute pressure or the exhaust absolute pressure, and the variable valve control amount; Means for calculating an EGR amount on the basis of, a means for calculating a fuel injection amount on the basis of at least the charging efficiency, and a means for calculating an ignition timing on the basis of at least the rotational speed, the charging efficiency, and the EGR amount,
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
吸気絶対圧と大気絶対圧または排気絶対圧との比である吸気相対圧を演算する手段と、少なくとも回転速度と前記吸気相対圧と可変バルブ制御量にもとづき充填効率基準値を演算する手段と、前記大気絶対圧と大気絶対基準圧との比にもとづいて高地補正量を演算する手段と、前記充填効率基準値と前記高地補正量との積によって高地条件での充填効率を演算する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
Means for calculating an intake relative pressure which is a ratio of the intake absolute pressure and the atmospheric absolute pressure or the exhaust absolute pressure; means for calculating a charging efficiency reference value based on at least the rotational speed, the intake relative pressure and the variable valve control amount; Means for calculating a high altitude correction amount based on a ratio between the atmospheric absolute pressure and the atmospheric absolute reference pressure; and means for calculating a charging efficiency under a high altitude condition by a product of the filling efficiency reference value and the high altitude correction amount. thing,
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
吸気絶対圧と大気絶対圧または排気絶対圧との比である吸気相対圧を演算する手段と、少なくとも回転速度と前記吸気相対圧と可変バルブ制御量にもとづき内部EGR量基準値を演算する手段と、前記大気絶対圧と大気絶対基準圧との比にもとづいて高地補正量を演算する手段と、前記内部EGR量基準値と前記高地補正量との積によって高地条件での内部EGR量を演算する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
Means for calculating an intake relative pressure which is a ratio of the intake absolute pressure to the atmospheric absolute pressure or the exhaust absolute pressure; means for calculating an internal EGR amount reference value based on at least the rotational speed, the intake relative pressure and the variable valve control amount; Calculating an internal EGR amount under a high altitude condition by means of a product of a high altitude correction amount based on a ratio of the atmospheric absolute pressure and the atmospheric absolute reference pressure, and the internal EGR amount reference value and the high altitude correction amount. Providing means,
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
少なくとも前記回転速度と前記充填効率と排気温度と前記大気絶対圧にもとづき排気絶対圧を演算する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
Means for calculating exhaust absolute pressure based on at least the rotational speed, the charging efficiency, the exhaust temperature, and the atmospheric absolute pressure;
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
排気流路に前記排気絶対圧を測定するための排気圧力センサを備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
An exhaust pressure sensor for measuring the exhaust absolute pressure in the exhaust flow path;
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
少なくとも点火時期と空燃比とEGR率にもとづき排気温度を演算する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
Means for calculating an exhaust temperature based on at least the ignition timing, the air-fuel ratio, and the EGR rate;
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
排気流路に排気温度を測定するための排気温度センサを備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
An exhaust temperature sensor for measuring the exhaust temperature in the exhaust flow path;
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
少なくとも前記排気絶対圧と、前記排気温度と、外部EGRバルブ開度と、吸気絶対圧にもとづき外部EGR量を演算する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
Means for calculating an external EGR amount based on at least the exhaust absolute pressure, the exhaust temperature, the external EGR valve opening, and the intake absolute pressure;
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
少なくとも前記充填効率と前記内部EGR量と前記外部EGR量にもとづきEGR率を演算する手段と、少なくとも前記回転速度と前記充填効率と前記EGR率と吸気バルブ閉時期を入力変数とする多項式によって前記点火時期を演算する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
Means for calculating an EGR rate based on at least the charging efficiency, the internal EGR amount, and the external EGR amount, and at least the ignition by a polynomial having the rotational speed, the charging efficiency, the EGR rate, and the intake valve closing timing as input variables; Having means for calculating the time,
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
少なくとも前記回転速度と前記吸気管相対圧と吸気バルブ作動角と吸気バルブ開時期と排気バルブ閉時期を入力変数とする多項式によって基準大気圧条件における前記充填効率基準値を演算する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
Means for calculating the charging efficiency reference value in a reference atmospheric pressure condition by a polynomial having at least the rotational speed, the intake pipe relative pressure, the intake valve operating angle, the intake valve opening timing, and the exhaust valve closing timing as input variables;
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
少なくとも前記回転速度と前記吸気管相対圧と吸気バルブ作動角と吸気バルブ開時期と排気バルブ閉時期を入力変数とする多項式によって基準大気圧条件における前記内部EGR量基準値を演算する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
And means for calculating the internal EGR amount reference value in a reference atmospheric pressure condition by a polynomial having at least the rotational speed, the intake pipe relative pressure, the intake valve operating angle, the intake valve opening timing, and the exhaust valve closing timing as input variables. ,
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
スロットルバルブ上流の吸気流路にエアフローセンサを備え、スロットルバルブ下流の吸気流路に圧力センサを備え、少なくとも前記充填効率演算手段と前記圧力センサ検出値にもとづきエアフローセンサ部流量を推定する手段と、前記エアフローセンサ検出流量と前記エアフローセンサ部推定流量との偏差を前記充填効率演算手段のもつ誤差として前記充填効率演算結果を補正する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
An air flow sensor in the intake passage upstream of the throttle valve, a pressure sensor in the intake passage downstream of the throttle valve, and means for estimating an air flow sensor unit flow rate based on at least the charging efficiency calculation means and the pressure sensor detection value; Means for correcting the filling efficiency calculation result as an error of the filling efficiency calculating means with a deviation between the air flow sensor detected flow rate and the air flow sensor unit estimated flow rate;
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
スロットルバルブ上流の吸気流路にエアフローセンサを備え、少なくとも前記充填効率演算手段と前記エアフローセンサ検出流量にもとづいてスロットルバルブ下流の吸気絶対圧を推定する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
An air flow sensor in the intake flow path upstream of the throttle valve, and at least means for estimating the intake absolute pressure downstream of the throttle valve based on the charging efficiency calculation means and the flow rate detected by the air flow sensor;
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
少なくとも回転速度と負荷にもとづき目標EGR率を演算する手段と、前記充填効率と前記内部EGR量と前記外部EGR量にもとづき現在のEGR率を演算する手段と、前記目標EGR率と前記現在のEGR率と前記吸気相対圧にもとづき可変バルブの制御量または外部EGRバルブ開度を演算する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
Means for calculating a target EGR rate based on at least the rotational speed and load; means for calculating a current EGR rate based on the charging efficiency, the internal EGR amount and the external EGR amount; and the target EGR rate and the current EGR Means for calculating the control amount of the variable valve or the external EGR valve opening based on the rate and the intake relative pressure;
A control device for an internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
充填効率を一定に保持した状態で大気圧が低下する高地条件の場合に、同一オーバーラップ期間では、大気圧が低下するほど点火時期を遅角側に補正する手段と、同一大気圧では、オーバーラップ期間が増加するほど点火時期を遅角側に補正する手段を備えること、
を特徴とする内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
In high altitude conditions where the atmospheric pressure decreases with the charging efficiency held constant, during the same overlap period, there is a means to correct the ignition timing to the retard side as the atmospheric pressure decreases. A means for correcting the ignition timing to the retard side as the lap period increases;
A control device for an internal combustion engine.
JP2008252121A 2008-09-30 2008-09-30 Control device and method for internal combustion engine Active JP4969546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252121A JP4969546B2 (en) 2008-09-30 2008-09-30 Control device and method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252121A JP4969546B2 (en) 2008-09-30 2008-09-30 Control device and method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010084549A true JP2010084549A (en) 2010-04-15
JP4969546B2 JP4969546B2 (en) 2012-07-04

Family

ID=42248763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252121A Active JP4969546B2 (en) 2008-09-30 2008-09-30 Control device and method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4969546B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108496A (en) * 2011-11-17 2013-06-06 IFP Energies Nouvelles Method of controlling burnt gas fraction in engine cylinder with egr and igr
CN110360013A (en) * 2018-03-26 2019-10-22 三菱自动车工业株式会社 The control equipment of engine
CN111120129A (en) * 2019-12-31 2020-05-08 广西玉柴机器股份有限公司 Method and system for reducing engine plateau power loss through EGR control
JP2020169622A (en) * 2019-04-04 2020-10-15 マツダ株式会社 Engine combustion control device
JP2020169621A (en) * 2019-04-04 2020-10-15 マツダ株式会社 Engine combustion control device
JP2020169624A (en) * 2019-04-04 2020-10-15 マツダ株式会社 Combustion control apparatus of engine
WO2022219765A1 (en) * 2021-04-15 2022-10-20 日産自動車株式会社 Control method and control device for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102152578B1 (en) * 2019-03-13 2020-09-07 현대자동차주식회사 Method for controlling active purge pump during drive high place

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209895A (en) * 1996-01-30 1997-08-12 Toyota Motor Corp Ignition timing control device of internal combustion engine
JP2001248489A (en) * 2000-03-08 2001-09-14 Yanmar Diesel Engine Co Ltd Method for controlling engine heat pump
JP2003293863A (en) * 2002-04-04 2003-10-15 Toyota Motor Corp Control apparatus for internal combustion engine
JP2004211590A (en) * 2002-12-27 2004-07-29 Toyota Motor Corp Device for estimating air intake volume of internal combustion engine
JP2005226655A (en) * 2005-04-25 2005-08-25 Toyota Motor Corp Control device for internal combustion engine
JP2006200396A (en) * 2005-01-19 2006-08-03 Hitachi Ltd Ignition timing control device and ignition timing control logic creation device for internal combustion engine
JP2007100522A (en) * 2005-09-30 2007-04-19 Honda Motor Co Ltd Exhaust gas recirculation control device of internal combustion engine
JP2007224847A (en) * 2006-02-24 2007-09-06 Toyota Motor Corp Controlling device for internal combustion engine
JP2008101626A (en) * 2007-12-03 2008-05-01 Toyota Motor Corp Pressure and temperature calculation device for internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209895A (en) * 1996-01-30 1997-08-12 Toyota Motor Corp Ignition timing control device of internal combustion engine
JP2001248489A (en) * 2000-03-08 2001-09-14 Yanmar Diesel Engine Co Ltd Method for controlling engine heat pump
JP2003293863A (en) * 2002-04-04 2003-10-15 Toyota Motor Corp Control apparatus for internal combustion engine
JP2004211590A (en) * 2002-12-27 2004-07-29 Toyota Motor Corp Device for estimating air intake volume of internal combustion engine
JP2006200396A (en) * 2005-01-19 2006-08-03 Hitachi Ltd Ignition timing control device and ignition timing control logic creation device for internal combustion engine
JP2005226655A (en) * 2005-04-25 2005-08-25 Toyota Motor Corp Control device for internal combustion engine
JP2007100522A (en) * 2005-09-30 2007-04-19 Honda Motor Co Ltd Exhaust gas recirculation control device of internal combustion engine
JP2007224847A (en) * 2006-02-24 2007-09-06 Toyota Motor Corp Controlling device for internal combustion engine
JP2008101626A (en) * 2007-12-03 2008-05-01 Toyota Motor Corp Pressure and temperature calculation device for internal combustion engine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108496A (en) * 2011-11-17 2013-06-06 IFP Energies Nouvelles Method of controlling burnt gas fraction in engine cylinder with egr and igr
CN110360013A (en) * 2018-03-26 2019-10-22 三菱自动车工业株式会社 The control equipment of engine
JP7283187B2 (en) 2019-04-04 2023-05-30 マツダ株式会社 Engine combustion control device
JP7283186B2 (en) 2019-04-04 2023-05-30 マツダ株式会社 Engine combustion control device
JP2020169622A (en) * 2019-04-04 2020-10-15 マツダ株式会社 Engine combustion control device
JP2020169621A (en) * 2019-04-04 2020-10-15 マツダ株式会社 Engine combustion control device
JP2020169624A (en) * 2019-04-04 2020-10-15 マツダ株式会社 Combustion control apparatus of engine
JP7283188B2 (en) 2019-04-04 2023-05-30 マツダ株式会社 Engine combustion control device
CN111120129B (en) * 2019-12-31 2022-04-15 广西玉柴机器股份有限公司 Method and system for reducing engine plateau power loss through EGR control
CN111120129A (en) * 2019-12-31 2020-05-08 广西玉柴机器股份有限公司 Method and system for reducing engine plateau power loss through EGR control
JP7226645B1 (en) * 2021-04-15 2023-02-21 日産自動車株式会社 CONTROL METHOD AND CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
CN115485468A (en) * 2021-04-15 2022-12-16 日产自动车株式会社 Method and device for controlling internal combustion engine
WO2022219765A1 (en) * 2021-04-15 2022-10-20 日産自動車株式会社 Control method and control device for internal combustion engine
CN115485468B (en) * 2021-04-15 2023-10-03 日产自动车株式会社 Control method and control device for internal combustion engine

Also Published As

Publication number Publication date
JP4969546B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4969546B2 (en) Control device and method for internal combustion engine
JP5103459B2 (en) Engine control device
JP5115629B2 (en) Control device for internal combustion engine
US11067041B2 (en) Control device for internal combustion engine
WO2011074475A1 (en) Internal combustion engine control device
JP2012251535A (en) Internal combustion engine
JP2005307847A (en) Air amount calculation device for internal combustion engine
US9228515B2 (en) Controller and control method for internal combustion engine
JP5331613B2 (en) In-cylinder gas amount estimation device for internal combustion engine
JP6462311B2 (en) Engine control device
JP2006307668A (en) Egr flow rate estimating device of engine
US8938960B2 (en) Control apparatus for internal combustion engine
JP5113126B2 (en) Control device for internal combustion engine
JP4761072B2 (en) Ignition timing control device for internal combustion engine
JP4618009B2 (en) Control device for internal combustion engine
JP2015108315A (en) Control device of engine
WO2016190092A1 (en) Engine control device
JP4155036B2 (en) Internal EGR amount estimation device for internal combustion engine
JP5695878B2 (en) Combustion control apparatus and method for internal combustion engine
JP6267280B2 (en) Control device for internal combustion engine
JP6267279B2 (en) Control device for internal combustion engine
CN114026316A (en) Control method and control device for internal combustion engine
JP7177385B2 (en) engine controller
JP4496162B2 (en) Apparatus and method for controlling ignition timing of internal combustion engine
JP4241560B2 (en) Intake air amount estimation device for internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250