JP2004242134A - Transmitter-receiver - Google Patents

Transmitter-receiver Download PDF

Info

Publication number
JP2004242134A
JP2004242134A JP2003030388A JP2003030388A JP2004242134A JP 2004242134 A JP2004242134 A JP 2004242134A JP 2003030388 A JP2003030388 A JP 2003030388A JP 2003030388 A JP2003030388 A JP 2003030388A JP 2004242134 A JP2004242134 A JP 2004242134A
Authority
JP
Japan
Prior art keywords
unit
transmission signal
distortion
reception
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003030388A
Other languages
Japanese (ja)
Inventor
Nariyasu Yamamoto
成泰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2003030388A priority Critical patent/JP2004242134A/en
Publication of JP2004242134A publication Critical patent/JP2004242134A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmitter-receiver for compensating distortion of a transmission signal with a simple configuration. <P>SOLUTION: This transmitter-receiver is provided with a modulating part for modulating a transmission signal to be transmitted, a power amplifying part for amplifying the transmission signal modulated by the modulating part, a transmitting part for transmitting the transmission signal amplified by the power amplifying part to the outside, a selecting part for selecting and outputting either a reception signal received from the outside or the transmission signal amplified by the power amplifying part, a receiving part for receiving the transmission signal or the reception signal outputted by the selecting part, and an operating part which is connected to the receiving part, measures distortion of the transmission signal when the receiving part receives the transmission signal and demodulates the reception signal when the receiving part receives the reception signal. The modulating part corrects modulation of the transmission signal on the basis of the distortion of the transmission signal measured by the operating part. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、信号を無線で送受信する送受信装置に関する。特に、本発明は送信信号の歪みを低減する送受信装置に関する。
【0002】
【従来の技術】
従来、無線機は送信信号を変調及び電力増幅して送信している。しかし、送信信号を電力増幅した場合、送信信号に歪みが生じる場合がある。このため、例えばディジタルプリディストーションといった方法によって、電力増幅による送信信号の歪みを補償している(例えば、特許文献1参照)。
【0003】
ディジタルプリディストーションは、予め電力増幅による送信信号の歪みを測定し、測定した歪みの逆歪みを予め送信信号に付加する方法である。図1に、従来の無線機400の構成を示す。
【0004】
無線機400は、アンテナ(410、500)、制御部490、変調部440、電力増幅部430、分配部420、歪検出用受信部450、歪検出用復調部460、受信部470、及び復調部480を備える。送信信号を送信する場合、制御部490から変調部440に送信信号が与えられる。変調部440は、与えられた送信信号を変調し、電力増幅部430に供給する。電力増幅部430は、受け取った送信信号を電力増幅し、分配部420及びアンテナ410を介して外部に送信する。
【0005】
また、受信信号を受信する場合、アンテナ500を介して受信部470が受信信号を受け取り、復調部480に供給する。復調部480は、受信信号を復調し、制御部490に供給する。
【0006】
ここで、送信信号の歪みを測定する場合、分配部420は、電力増幅部430が電力増幅した送信信号を、歪検出用受信部450に供給する。歪み検出用受信部450は、受け取った送信信号を歪検出用復調部460に供給する。歪検出用復調部460は、受け取った送信信号を復調し、復調した送信信号の歪みを測定する。また、歪検出用復調部460は、測定した送信信号の歪みの逆歪みを算出し、変調部440に通知する。変調部440は、受け取った逆歪みに基づいて、ディジタル信号処理により送信信号に逆歪みを付加し、電力増幅部430における歪みを補償する。
【0007】
【特許文献1】
特開2002−290161号公報(第1−4頁、第1−2図)
【0008】
【発明が解決しようとする課題】
しかし、従来の無線機400においては、歪検出用の受信部450及び復調部460、並びに受信信号用の受信部470及び復調部480を備える必要がある。つまり、送信信号と受信信号とは、搬送波の周波数等の特性が異なるため、それぞれの特性に合った受信部及び復調部を備える必要がある。このため、装置の規模が増大し、またコストがかかるという問題が生じている。
【0009】
また、ディジタルプリディストーションの他の方法としては、歪検出用受信部450と、歪検出用復調部460とを無線機400に設けず、歪測定時にのみ、無線機400を外部の歪み検出用受信部450及び歪検出用復調部460と接続する形態もある。この場合、無線機400は、歪測定時に算出した逆歪みをテーブルに記憶し、記憶した値を参照して送信信号の歪みを補償する。
【0010】
この方法では、装置の規模は増大しないが、送信信号の歪みを継続して測定しないため、電力増幅部の温度変化、経年変化等による、電力増幅部の歪み特性の変化を補償することが困難である。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明の第1の形態においては、信号を無線で送受信する送受信装置であって、送信するべき送信信号を変調する変調部と、変調部が変調した送信信号を増幅する電力増幅部と、電力増幅部が増幅した送信信号を、外部に送信する送信部と、外部から受信した受信信号、又は電力増幅部が増幅した送信信号のいずれかを選択して出力する選択部と、選択部が出力した送信信号又は受信信号を受け取り、送信信号を受け取った場合に送信信号を復調して送信信号の歪みを測定し、受信信号を受け取った場合に受信信号を復調する受信部とを備え、変調部は、受信部が測定した送信信号の歪みに基づいて、送信信号の変調を補正することを特徴とする送受信装置を提供する。
【0012】
変調部は、受信部が測定した送信信号の歪みの逆歪みを送信信号に付加してよい。また、受信部は、選択部が送信信号又は受信信号のいずれを選択したかによって、変調部におけるディジタル信号処理の設定を変更してよい。
【0013】
また、変調部は、受信部が測定した送信信号の歪みの逆歪みを示す補償係数を格納し、補償係数に基づいて、送信信号をディジタル信号処理してよい。また、送受信装置は、選択部と受信部を制御する制御部を更に備え、制御部は、選択部が送信信号又は受信信号のいずれを選択するべきかを指示する信号と、受信部における復調用の搬送波の周波数を変更する信号とを、選択部及び受信部に同期して供給してよい。
【0014】
尚、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションも又、発明となりうる。
【0015】
【発明の実施の形態】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではなく、又実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0016】
図2は、本発明の実施形態に係る送受信装置100の構成の一例を示す。送受信装置100は、信号を無線で送受信する装置である。送受信装置100は、送受信装置100を制御する上位装置200に接続される。例えば、上位装置200は、携帯電話等における制御装置であって、送信するべき音声信号を送受信装置100に供給し、送受信装置100が受信した信号を受け取る。送受信装置100は、送信部10、変調部20、電力増幅部30、選択部40、受信部50、演算部55、アンテナ60、及び制御部70を備える。
【0017】
制御部70は、変調部20、選択部40、受信部50、及び演算部55を制御する。例えば、制御部70は、送受信装置100が、送信信号の歪み測定を行うか、又は通常の信号の送受信を行うかに基づいて、変調部20、選択部40、受信部50、及び演算部55を制御する。
【0018】
制御部70は、変調部20に送信するべき送信信号を供給する。変調部20は、受け取った送信信号を変調し、電力増幅部30に供給する。電力増幅部30は、変調部20が変調した送信信号を電力増幅し、送信部10に供給する。送信部10は、電力増幅部30が増幅した送信信号を外部に送信する。送信部10は、アンテナ12及び分配部14を有する。分配部14は、電力増幅部30が増幅した送信信号を、アンテナ12及び選択部40に分配する。
【0019】
選択部40は、外部からアンテナ60を介して受信した受信信号、又は電力増幅部30が増幅した送信信号のいずれかを選択して、受信部50に供給する。ここで、選択部40は、送受信装置100が通常の信号の送受信を行う場合に、受信信号を選択して受信部50に供給し、送受信装置100が送信信号の歪測定を行う場合に、送信信号を受信部50に供給する。本例において、制御部70が、選択部40にいずれの信号を選択するべきかを示す指示信号を供給する。
【0020】
受信部50は、選択部40が選択して出力した送信信号又は受信信号を受信する。受信部50は、例えばPLL、ADコンバータ、フィルタ等を有し、これらの構成のサンプリング周波数、フィルタ特性等が変更可能なソフトウェア受信部である。このとき、制御部70は、選択部40に供給した指示信号に応じて、受信部50におけるサンプリング周波数、フィルタ特性等を変更する。つまり、選択部40に送信信号を選択させた場合には、受信部50を送信信号用に設定し、選択部40に受信信号を選択させた場合には、受信部50を受信信号用に設定する。
【0021】
演算部55は、受信部50に接続され、受信部50が送信信号を受け取った場合、送信信号の歪みを測定する。この場合、演算部55は、送信信号を復調して歪みを測定してよい。この場合、受信部50は、制御部70が変調部20に供給した送信信号と、復調した送信信号とを比較して当該歪みを測定してよい。また、受信部50が受信信号を受け取った場合、受信信号を復調し、制御部70に供給する。このとき、制御部70は、選択部40に供給した指示信号に応じて、演算部55の設定を変更する。例えば、選択部40に送信信号を選択させた場合には、演算部55における復調の搬送波の周波数を送信信号用に設定し、選択部40に受信信号を選択させた場合には、演算部における復調の搬送波の周波数を受信信号用に設定する。
【0022】
また、演算部55が送信信号の歪みを測定する場合、受信部50がサンプリングした離散信号の送信信号を、FFT演算により周波数軸上の信号に変換し、送信信号の占有帯域幅、隣接チャネル漏洩電力、電力等に基づいて、送信信号の歪みを算出してよい。この場合、制御部70が、これらの処理を演算部55に指示してよい。
【0023】
変調部20は、演算部55が測定した送信信号の歪みに基づいて、送信信号の変調を補正する。つまり、変調部20は、演算部55が測定した送信信号の歪みを補償するように、送信信号を信号処理する。本例において、演算部55は、測定した歪みの逆歪みを算出し、変調部20に通知する。変調部20は、演算部55が算出した逆歪みを、ディジタル信号処理によって送信信号に付加する。これにより、電力増幅部30における送信信号の歪みを補償することができる。
【0024】
また、変調部20は、受け取った逆歪みを示す補償係数を格納するテーブルを有する。変調部20は、新たに受けとった補償係数が、テーブルに格納している補償係数と異なる場合に、テーブルに格納している補償係数を更新する。
【0025】
また、制御部70は、上述した歪測定を、所定の期間毎に実行させてよい。また、制御部70は、送信信号の送信を開始する毎に、上述した歪測定を実行させてもよい。また、制御部70は、選択部40、受信部50、及び演算部55を制御するための信号を、それぞれに同期して供給することが好ましい。
【0026】
以上説明した送受信装置100によれば、簡易な構成によって送信信号の歪みを容易に補償することができる。また、電力増幅部30の温度変化及び経年変化による歪み特性の変化をも容易に補償することができる。
【0027】
図3は、受信部50及び変調部20の構成の一例を説明する図である。本例において、送受信装置100は、図2において説明した送受信装置100の構成から、演算部55の除いた構成を有する。本例における送受信装置100においては、図2において説明した演算部55における歪測定を、受信部50又は変調部20において行う。
【0028】
図3(a)は、変調部20において歪測定を行う場合の、受信部50及び変調部20の構成の一例を示す。本例において、変調部20は、変調手段22及び演算手段24を有する。変調手段22は、図2において説明した変調部20と同一の機能を有する。また、演算手段24は、図2において説明した演算部55と同一の歪測定を行う。また、受信部50は、受信復調手段52を有する。受信復調手段52は、図2において説明した受信部50の機能及び演算部55における復調機能を有する。
【0029】
送信信号50が送信信号を受信した場合、受信復調手段52は、受信した送信信号を演算手段24に供給する。演算手段24は、受け取った送信信号の歪みを測定し、変調手段22に通知する。
【0030】
図3(b)は、受信部50において歪測定を行う場合の、受信部50及び変調部20の構成の一例を示す。本例において、変調部20は図3(a)において説明した変調手段22を有し、受信部40は、図3(a)において説明した演算手段24及び受信復調手段52を有する。
【0031】
図3において説明した送受信装置100においても、図2において説明した送受信装置100と同様に、簡易な構成で送信信号の歪みを容易に補償することができる。
【0032】
図4は、送受信装置100の歪測定の動作の一例を示すフローチャートである。まず、送受信装置100は、通常の送受信処理を行う(S300)。通常の送受信処理を行っているとき、歪測定を行う旨の指示を上位装置200から受け取ったか否かを判定する(S302)。歪測定を行う旨の指示を受け取っていない場合、通常の送受信処理を続行する。
【0033】
また、歪測定を行う旨の指示を受け取った場合、制御部70は、選択部40に送信信号を受信部50に供給させる(S304)。次に、演算部55は、受信部50から受け取った送信信号の歪特性、逆歪特性を算出し、変調部20に通知する(S306)。
【0034】
変調部20は、受け取った逆歪特性が、テーブルに格納している逆歪特性と異なる場合に、テーブルに格納している逆歪特性を、受け取った逆歪特性に変更する(S308)。そして、制御部70は、選択部40を切り替えて、受信部50に受信信号を供給させ、通常の送受信処理に戻る(S310)。
【0035】
図5は、上位装置200の構成の一例を示す。本例において、上位装置200は、送受信装置100を図2及び図3において説明したように機能させるプログラムを格納する。上位装置200は、CPU700と、ROM702と、RAM704と、通信インターフェース706と、ハードディスクドライブ710と、FDディスクドライブ712と、CD−ROMドライブ716とを備える。CPU700は、ROM702、RAM704、ハードディスク710、FDディスク714、及び/又はCD−ROM718に格納されたプログラムに基づいて動作する。
【0036】
通信インターフェース706は、制御部70と通信し、送受信装置100を制御を図2及び図3において説明した送受信装置100として機能させる。格納装置の一例としてのハードディスクドライブ710は、設定情報及びCPU700を動作させるプログラムを格納する。ROM702、RAM704、及び/又はハードディスクドライブ710は、送受信装置100を図2及び図3に関連して説明した送受信装置100として機能させるためのプログラムを格納する。
【0037】
フレキシブルディスクドライブ712はフレキシブルディスク714からプログラムを読み取りCPU700に提供する。CD−ROMドライブ716はCD−ROM718からプログラムを読み取りCPU700に提供する。
【0038】
また、プログラムは記録媒体から直接RAMに読み出されて実行されても、一旦ハードディスクドライブにインストールされた後にRAMに読み出されて実行されても良い。更に、上記プログラムは単一の記録媒体に格納されても複数の記録媒体に格納されても良い。また記録媒体に格納されるプログラムは、オペレーティングシステムとの共同によってそれぞれの機能を提供してもよい。例えば、プログラムは、機能の一部または全部を行うことをオペレーティングシステムに依頼し、オペレーティングシステムからの応答に基づいて機能を提供するものであってもよい。
【0039】
プログラムを格納する記録媒体としては、フレキシブルディスク、CD−ROMの他にも、DVD、PD等の光学記録媒体、MD等の光磁気記録媒体、テープ媒体、磁気記録媒体、ICカードやミニチュアーカードなどの半導体メモリー等を用いることができる。又、専用通信ネットワークやインターネットに接続されたサーバシステムに設けたハードディスクまたはRAM等の格納装置を記録媒体として使用してもよい。
【0040】
また、上位装置200は、図1において説明した演算部55の機能を有していてもよい。例えば、上位装置200は、受信部50が受信した送信信号を、制御部70を介して受け取り、受け取った送信信号の歪み、及び逆歪みを算出してよい。この場合、上位装置200は、算出した歪み、及び逆歪みを制御部70を介して変調部20に通知する。
【0041】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0042】
【発明の効果】
上記説明から明らかなように、本発明によれば、簡易な構成で送信信号の歪みを容易に測定し、補償することができる。また、電力増幅部の温度変化及び経年変化による特性の変化をも補償することができる。
【図面の簡単な説明】
【図1】従来の無線機400の構成を示す図である。
【図2】本発明の実施形態に係る送受信装置100の構成の一例を示す図である。
【図3】受信部50及び変調部20の構成の一例を説明する図である。図3(a)は、変調部20において歪測定を行う場合の、受信部50及び変調部20の構成の一例を示し、図3(b)は、受信部50において歪測定を行う場合の、受信部50及び変調部20の構成の一例を示す。
【図4】送受信装置100の歪測定の動作の一例を示すフローチャートである。
【図5】上位装置200の構成の一例を示す図である。
【符号の説明】
10・・・送信部、12・・・アンテナ、14・・・分配部、20・・・変調部、22・・・変調手段、24・・・演算手段、52・・・受信復調手段、30・・・電力増幅部、40・・・選択部、50・・・受信部、55・・・演算部、60・・・アンテナ、70・・・制御部、100・・・送受信装置、200・・・上位装置、210・・・アンテナ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transmitting / receiving apparatus for transmitting and receiving signals wirelessly. In particular, the present invention relates to a transmission / reception device that reduces distortion of a transmission signal.
[0002]
[Prior art]
Conventionally, a radio device modulates and amplifies power of a transmission signal and transmits the signal. However, when the transmission signal is power-amplified, the transmission signal may be distorted. For this reason, for example, distortion of a transmission signal due to power amplification is compensated by a method such as digital pre-distortion (for example, see Patent Document 1).
[0003]
Digital pre-distortion is a method of measuring the distortion of a transmission signal due to power amplification in advance and adding the inverse distortion of the measured distortion to the transmission signal in advance. FIG. 1 shows a configuration of a conventional wireless device 400.
[0004]
The wireless device 400 includes an antenna (410, 500), a control unit 490, a modulation unit 440, a power amplification unit 430, a distribution unit 420, a distortion detection reception unit 450, a distortion detection demodulation unit 460, a reception unit 470, and a demodulation unit. 480. When transmitting a transmission signal, the transmission signal is provided from control section 490 to modulation section 440. Modulating section 440 modulates the given transmission signal and supplies the modulated signal to power amplifying section 430. Power amplification section 430 power-amplifies the received transmission signal, and transmits the transmission signal to the outside via distribution section 420 and antenna 410.
[0005]
When receiving a received signal, receiving section 470 receives the received signal via antenna 500 and supplies the received signal to demodulating section 480. Demodulation section 480 demodulates the received signal and supplies it to control section 490.
[0006]
Here, when measuring the distortion of the transmission signal, distribution section 420 supplies the transmission signal whose power has been amplified by power amplification section 430 to reception section 450 for distortion detection. The distortion detection reception section 450 supplies the received transmission signal to the distortion detection demodulation section 460. The distortion detection demodulation unit 460 demodulates the received transmission signal and measures distortion of the demodulated transmission signal. Also, the distortion detection demodulation unit 460 calculates an inverse distortion of the measured distortion of the transmission signal, and notifies the modulation unit 440 of the inverse distortion. Modulating section 440 adds inverse distortion to the transmission signal by digital signal processing based on the received inverse distortion, and compensates for distortion in power amplifying section 430.
[0007]
[Patent Document 1]
JP-A-2002-290161 (pages 1-4, FIG. 1-2)
[0008]
[Problems to be solved by the invention]
However, the conventional wireless device 400 needs to include the reception unit 450 and the demodulation unit 460 for distortion detection, and the reception unit 470 and the demodulation unit 480 for a received signal. That is, since the transmission signal and the reception signal have different characteristics such as the frequency of the carrier wave, it is necessary to provide a receiving unit and a demodulation unit that match the respective characteristics. For this reason, there has been a problem that the scale of the apparatus is increased and the cost is increased.
[0009]
As another method of digital pre-distortion, the distortion detection receiving section 450 and the distortion detection demodulation section 460 are not provided in the radio 400, and the radio 400 is connected to the external distortion detection reception only during distortion measurement. There is also a mode in which it is connected to the unit 450 and the demodulation unit 460 for distortion detection. In this case, wireless device 400 stores the inverse distortion calculated at the time of distortion measurement in a table, and compensates for the distortion of the transmission signal with reference to the stored value.
[0010]
This method does not increase the scale of the device, but does not continuously measure the distortion of the transmission signal. Therefore, it is difficult to compensate for a change in the distortion characteristic of the power amplifier due to a temperature change, aging, or the like of the power amplifier. It is.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, in a first aspect of the present invention, there is provided a transmitting / receiving apparatus for transmitting / receiving a signal wirelessly, comprising: a modulating section for modulating a transmitting signal to be transmitted; A power amplifying unit that amplifies, a transmitting unit that transmits a transmission signal amplified by the power amplifying unit to the outside, and a selected one of a received signal received from the outside and a transmission signal amplified by the power amplifying unit are selected and output. A selection unit, receives the transmission signal or the reception signal output by the selection unit, demodulates the transmission signal when the transmission signal is received, measures the distortion of the transmission signal, and demodulates the reception signal when the reception signal is received. A transmission / reception device, comprising: a reception unit; and a modulation unit that corrects modulation of the transmission signal based on distortion of the transmission signal measured by the reception unit.
[0012]
The modulation unit may add an inverse distortion of the distortion of the transmission signal measured by the reception unit to the transmission signal. Further, the receiving unit may change the setting of the digital signal processing in the modulating unit depending on whether the selecting unit has selected the transmission signal or the received signal.
[0013]
Further, the modulation section may store a compensation coefficient indicating an inverse distortion of the distortion of the transmission signal measured by the reception section, and perform digital signal processing on the transmission signal based on the compensation coefficient. Further, the transmitting and receiving apparatus further includes a control unit that controls the selection unit and the reception unit, and the control unit includes a signal indicating whether the selection unit should select a transmission signal or a reception signal; May be supplied in synchronization with the selection unit and the reception unit.
[0014]
Note that the above summary of the present invention does not list all of the necessary features of the present invention, and a sub-combination of these features may also be an invention.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described through embodiments of the present invention. However, the following embodiments do not limit the invention according to the claims, and all of the combinations of the features described in the embodiments are not limited thereto. It is not always essential to the solution of the invention.
[0016]
FIG. 2 shows an example of a configuration of the transmission / reception device 100 according to the embodiment of the present invention. The transmitting and receiving device 100 is a device that transmits and receives signals wirelessly. The transmission / reception device 100 is connected to a higher-level device 200 that controls the transmission / reception device 100. For example, the host device 200 is a control device in a mobile phone or the like, and supplies an audio signal to be transmitted to the transmission / reception device 100 and receives a signal received by the transmission / reception device 100. The transmission / reception device 100 includes a transmission unit 10, a modulation unit 20, a power amplification unit 30, a selection unit 40, a reception unit 50, a calculation unit 55, an antenna 60, and a control unit 70.
[0017]
The control unit 70 controls the modulation unit 20, the selection unit 40, the reception unit 50, and the calculation unit 55. For example, the control unit 70 controls the modulation unit 20, the selection unit 40, the reception unit 50, and the calculation unit 55 based on whether the transmission / reception device 100 performs distortion measurement of a transmission signal or performs normal signal transmission / reception. Control.
[0018]
The control unit 70 supplies a transmission signal to be transmitted to the modulation unit 20. The modulator 20 modulates the received transmission signal and supplies the modulated signal to the power amplifier 30. The power amplification unit 30 power-amplifies the transmission signal modulated by the modulation unit 20 and supplies the transmission signal to the transmission unit 10. The transmission unit 10 transmits the transmission signal amplified by the power amplification unit 30 to the outside. The transmission unit 10 includes an antenna 12 and a distribution unit 14. The distribution unit 14 distributes the transmission signal amplified by the power amplification unit 30 to the antenna 12 and the selection unit 40.
[0019]
The selection unit 40 selects either a reception signal received from the outside via the antenna 60 or a transmission signal amplified by the power amplification unit 30 and supplies the selected signal to the reception unit 50. Here, the selecting section 40 selects the received signal and supplies it to the receiving section 50 when the transmitting and receiving apparatus 100 transmits and receives a normal signal, and transmits the transmission signal when the transmitting and receiving apparatus 100 performs distortion measurement of the transmitted signal. The signal is supplied to the receiving unit 50. In the present example, the control unit 70 supplies an instruction signal indicating which signal should be selected to the selection unit 40.
[0020]
The receiving unit 50 receives the transmission signal or the reception signal selected and output by the selection unit 40. The receiving unit 50 is, for example, a software receiving unit that includes a PLL, an AD converter, a filter, and the like, and can change a sampling frequency, a filter characteristic, and the like of these components. At this time, the control unit 70 changes a sampling frequency, a filter characteristic, and the like in the reception unit 50 according to the instruction signal supplied to the selection unit 40. That is, when the selection unit 40 selects the transmission signal, the reception unit 50 is set for the transmission signal, and when the selection unit 40 selects the reception signal, the reception unit 50 is set for the reception signal. I do.
[0021]
The calculation unit 55 is connected to the reception unit 50, and measures the distortion of the transmission signal when the reception unit 50 receives the transmission signal. In this case, the arithmetic unit 55 may measure the distortion by demodulating the transmission signal. In this case, the reception unit 50 may measure the distortion by comparing the transmission signal supplied to the modulation unit 20 by the control unit 70 with the demodulated transmission signal. When receiving section 50 receives the received signal, it demodulates the received signal and supplies it to control section 70. At this time, the control unit 70 changes the setting of the calculation unit 55 according to the instruction signal supplied to the selection unit 40. For example, when the selection unit 40 selects the transmission signal, the frequency of the demodulated carrier in the calculation unit 55 is set for the transmission signal, and when the selection unit 40 selects the reception signal, the calculation unit 55 Set the demodulation carrier frequency for the received signal.
[0022]
When the calculation unit 55 measures the distortion of the transmission signal, the transmission signal of the discrete signal sampled by the reception unit 50 is converted into a signal on the frequency axis by the FFT operation, and the occupied bandwidth of the transmission signal and the adjacent channel leakage are calculated. The distortion of the transmission signal may be calculated based on the power, the power, and the like. In this case, the control unit 70 may instruct the arithmetic unit 55 to perform these processes.
[0023]
The modulation unit 20 corrects the modulation of the transmission signal based on the distortion of the transmission signal measured by the calculation unit 55. That is, the modulation unit 20 performs signal processing on the transmission signal so as to compensate for the distortion of the transmission signal measured by the calculation unit 55. In this example, the calculation unit 55 calculates the inverse distortion of the measured distortion, and notifies the modulation unit 20 of the calculated inverse distortion. The modulator 20 adds the inverse distortion calculated by the calculator 55 to the transmission signal by digital signal processing. Thereby, the distortion of the transmission signal in the power amplifying unit 30 can be compensated.
[0024]
Further, the modulation unit 20 has a table for storing the compensation coefficient indicating the received inverse distortion. When the newly received compensation coefficient is different from the compensation coefficient stored in the table, the modulator 20 updates the compensation coefficient stored in the table.
[0025]
Further, the control unit 70 may execute the above-described distortion measurement at predetermined intervals. Further, the control unit 70 may cause the above-described distortion measurement to be performed each time transmission of a transmission signal is started. Further, it is preferable that the control unit 70 supplies signals for controlling the selection unit 40, the reception unit 50, and the calculation unit 55 in synchronization with each other.
[0026]
According to transmitting / receiving apparatus 100 described above, distortion of a transmission signal can be easily compensated for with a simple configuration. Further, it is possible to easily compensate for a change in distortion characteristics due to a temperature change and an aging change of the power amplifying unit 30.
[0027]
FIG. 3 is a diagram illustrating an example of the configuration of the receiving unit 50 and the modulating unit 20. In this example, the transmission / reception device 100 has a configuration in which the calculation unit 55 is removed from the configuration of the transmission / reception device 100 described in FIG. In the transmission / reception device 100 in this example, the distortion measurement in the calculation unit 55 described in FIG. 2 is performed in the reception unit 50 or the modulation unit 20.
[0028]
FIG. 3A shows an example of the configuration of the receiving unit 50 and the modulating unit 20 when distortion measurement is performed in the modulating unit 20. In this example, the modulation unit 20 includes a modulation unit 22 and a calculation unit 24. The modulation unit 22 has the same function as the modulation unit 20 described with reference to FIG. The computing means 24 performs the same distortion measurement as the computing unit 55 described in FIG. In addition, the receiving unit 50 includes a reception demodulation unit 52. The reception demodulation unit 52 has the function of the reception unit 50 and the demodulation function of the calculation unit 55 described with reference to FIG.
[0029]
When the transmission signal 50 receives the transmission signal, the reception demodulation unit 52 supplies the received transmission signal to the calculation unit 24. The calculating unit 24 measures the distortion of the received transmission signal and notifies the modulating unit 22 of the distortion.
[0030]
FIG. 3B shows an example of the configuration of the receiving unit 50 and the modulation unit 20 when distortion measurement is performed in the receiving unit 50. In this example, the modulating unit 20 includes the modulating unit 22 described with reference to FIG. 3A, and the receiving unit 40 includes the calculating unit 24 and the receiving demodulating unit 52 described with reference to FIG.
[0031]
3, the transmission signal distortion can be easily compensated for with a simple configuration, similarly to the transmission / reception apparatus 100 described with reference to FIG.
[0032]
FIG. 4 is a flowchart illustrating an example of the operation of the transmission / reception device 100 for measuring distortion. First, the transmission / reception device 100 performs a normal transmission / reception process (S300). During normal transmission / reception processing, it is determined whether or not an instruction to perform distortion measurement has been received from the higher-level device 200 (S302). If an instruction to perform distortion measurement has not been received, normal transmission / reception processing is continued.
[0033]
Further, when receiving the instruction to perform the distortion measurement, the control unit 70 causes the selection unit 40 to supply the transmission signal to the reception unit 50 (S304). Next, the arithmetic unit 55 calculates the distortion characteristics and the inverse distortion characteristics of the transmission signal received from the reception unit 50, and notifies the modulation unit 20 of the distortion characteristics and the inverse distortion characteristics (S306).
[0034]
If the received inverse distortion characteristic is different from the inverse distortion characteristic stored in the table, the modulator 20 changes the inverse distortion characteristic stored in the table to the received inverse distortion characteristic (S308). Then, the control unit 70 switches the selection unit 40 to supply the reception signal to the reception unit 50, and returns to the normal transmission / reception processing (S310).
[0035]
FIG. 5 shows an example of the configuration of the host device 200. In this example, the host device 200 stores a program that causes the transmitting / receiving device 100 to function as described with reference to FIGS. 2 and 3. The host device 200 includes a CPU 700, a ROM 702, a RAM 704, a communication interface 706, a hard disk drive 710, an FD disk drive 712, and a CD-ROM drive 716. The CPU 700 operates based on programs stored in the ROM 702, the RAM 704, the hard disk 710, the FD disk 714, and / or the CD-ROM 718.
[0036]
The communication interface 706 communicates with the control unit 70 and causes the transmitting / receiving device 100 to function as the transmitting / receiving device 100 described with reference to FIGS. 2 and 3. A hard disk drive 710 as an example of a storage device stores setting information and a program for operating the CPU 700. The ROM 702, the RAM 704, and / or the hard disk drive 710 store a program for causing the transmitting / receiving device 100 to function as the transmitting / receiving device 100 described with reference to FIGS.
[0037]
The flexible disk drive 712 reads a program from the flexible disk 714 and provides the program to the CPU 700. The CD-ROM drive 716 reads a program from the CD-ROM 718 and provides the program to the CPU 700.
[0038]
Further, the program may be directly read out from the recording medium to the RAM and executed, or may be once installed in the hard disk drive and then read out and executed in the RAM. Further, the program may be stored on a single recording medium or a plurality of recording media. Further, the program stored in the recording medium may provide each function in cooperation with the operating system. For example, the program may request the operating system to perform part or all of the function, and provide the function based on a response from the operating system.
[0039]
As a recording medium for storing the program, in addition to a flexible disk and a CD-ROM, an optical recording medium such as a DVD and a PD, a magneto-optical recording medium such as an MD, a tape medium, a magnetic recording medium, an IC card and a miniature card, and the like Semiconductor memory or the like can be used. Further, a storage device such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet may be used as a recording medium.
[0040]
Further, the host device 200 may have the function of the calculation unit 55 described in FIG. For example, the host device 200 may receive the transmission signal received by the reception unit 50 via the control unit 70, and calculate the distortion and the inverse distortion of the received transmission signal. In this case, the host device 200 notifies the modulation unit 20 of the calculated distortion and the inverse distortion via the control unit 70.
[0041]
As described above, the present invention has been described using the embodiments, but the technical scope of the present invention is not limited to the scope described in the above embodiments. It is apparent to those skilled in the art that various changes or improvements can be made to the above embodiment. It is apparent from the description of the appended claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.
[0042]
【The invention's effect】
As is clear from the above description, according to the present invention, it is possible to easily measure and compensate for distortion of a transmission signal with a simple configuration. Further, it is possible to compensate for a change in characteristics of the power amplifying unit due to a temperature change and an aging change.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a conventional wireless device 400.
FIG. 2 is a diagram illustrating an example of a configuration of a transmission / reception device 100 according to the embodiment of the present invention.
FIG. 3 is a diagram illustrating an example of a configuration of a reception unit 50 and a modulation unit 20. FIG. 3A shows an example of the configuration of the receiving unit 50 and the modulating unit 20 when distortion is measured in the modulating unit 20, and FIG. 3B shows the case where distortion is measured in the receiving unit 50. 3 shows an example of the configuration of the receiving unit 50 and the modulating unit 20.
FIG. 4 is a flowchart illustrating an example of a distortion measurement operation of the transmission / reception device 100.
FIG. 5 is a diagram illustrating an example of a configuration of a host device 200.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Transmission part, 12 ... Antenna, 14 ... Distribution part, 20 ... Modulation part, 22 ... Modulation means, 24 ... Calculation means, 52 ... Reception demodulation means, 30 ... power amplifying section, 40 ... selecting section, 50 ... receiving section, 55 ... calculating section, 60 ... antenna, 70 ... controlling section, 100 ... transmitting / receiving apparatus, 200 ..High-order devices, 210 ... antennas

Claims (1)

信号を無線で送受信する送受信装置であって、
送信するべき送信信号を変調する変調部と、
前記変調部が変調した前記送信信号を増幅する電力増幅部と、
前記電力増幅部が増幅した前記送信信号を、外部に送信する送信部と、
外部から受信した受信信号、又は前記電力増幅部が増幅した前記送信信号のいずれかを選択して出力する選択部と、
前記選択部が出力した前記送信信号又は前記受信信号を受信する受信部と、
前記受信部に接続され、前記受信部が前記送信信号を受け取った場合に前記送信信号の歪みを測定し、前記受信部が前記受信信号を受け取った場合に前記受信信号を復調する演算部と
を備え、
前記変調部は、前記演算部が測定した前記送信信号の歪みに基づいて、前記送信信号の変調を補正することを特徴とする送受信装置。
A transmitting and receiving device for transmitting and receiving signals wirelessly,
A modulator for modulating a transmission signal to be transmitted;
A power amplification unit that amplifies the transmission signal modulated by the modulation unit,
A transmission unit that transmits the transmission signal amplified by the power amplification unit to the outside,
A selection unit that selects and outputs any of a reception signal received from the outside or the transmission signal amplified by the power amplification unit,
A reception unit that receives the transmission signal or the reception signal output by the selection unit,
An arithmetic unit connected to the receiving unit, measuring the distortion of the transmission signal when the receiving unit receives the transmission signal, and demodulating the reception signal when the receiving unit receives the reception signal. Prepare,
The transmission / reception device, wherein the modulation unit corrects the modulation of the transmission signal based on the distortion of the transmission signal measured by the arithmetic unit.
JP2003030388A 2003-02-07 2003-02-07 Transmitter-receiver Pending JP2004242134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030388A JP2004242134A (en) 2003-02-07 2003-02-07 Transmitter-receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030388A JP2004242134A (en) 2003-02-07 2003-02-07 Transmitter-receiver

Publications (1)

Publication Number Publication Date
JP2004242134A true JP2004242134A (en) 2004-08-26

Family

ID=32957288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030388A Pending JP2004242134A (en) 2003-02-07 2003-02-07 Transmitter-receiver

Country Status (1)

Country Link
JP (1) JP2004242134A (en)

Similar Documents

Publication Publication Date Title
JP3887316B2 (en) Method for determining the gain of different carriers, radio transmission unit and module for such a unit
JP4802190B2 (en) Polar modulation transmission circuit and communication device
US8665017B2 (en) Amplifier circuit and radio communication apparatus
KR20010015388A (en) Power amplifying circuit with supply adjust to control adjacent and alternate channel power
JP2001358606A (en) Time-division multiplexing type radio equipment
JP2006506900A (en) Relaxed specifications through compensation for analog radio component failures
US20080054880A1 (en) Measurement device, method, program, and recording medium
US9100842B2 (en) Apparatus and method for supporting calibration for radio frequency circuit in communication device
JP2009118454A (en) Wireless transmission equipment
JP5036109B2 (en) Radio transmission apparatus and mobile station apparatus
JP2004242134A (en) Transmitter-receiver
JP3578957B2 (en) Amplifier
JP3197467B2 (en) Transmission output control device
JP2004320295A (en) Nonlinear distortion compensating apparatus
JP3446674B2 (en) Nonlinear distortion compensator
JP2004304627A (en) Rssi presenting apparatus in wireless receiver, rssi presenting method in wireless receiver, and program
JP4409706B2 (en) Transmission signal processing apparatus, base station, mobile station, and digital radio communication system
JPH04291829A (en) Distortion compensation circuit
WO2008082882A2 (en) Method and device for generating constant envelope modulation using a quadrature modulator
JP2002290166A (en) Amplifier unit
JP2679445B2 (en) Transmission power control method
JP2004134913A (en) Transmitter and communication apparatus
JP2008098781A (en) Communication apparatus
JP2012095071A (en) Radio communication apparatus
EP3605865B1 (en) Signal correction method and signal correction system