JP2004241712A - Ultrasonic bonding method - Google Patents

Ultrasonic bonding method Download PDF

Info

Publication number
JP2004241712A
JP2004241712A JP2003031227A JP2003031227A JP2004241712A JP 2004241712 A JP2004241712 A JP 2004241712A JP 2003031227 A JP2003031227 A JP 2003031227A JP 2003031227 A JP2003031227 A JP 2003031227A JP 2004241712 A JP2004241712 A JP 2004241712A
Authority
JP
Japan
Prior art keywords
bonding
pressing
ultrasonic
joined
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003031227A
Other languages
Japanese (ja)
Inventor
Akihisa Noshita
明久 野下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003031227A priority Critical patent/JP2004241712A/en
Publication of JP2004241712A publication Critical patent/JP2004241712A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic bonding method capable of bonding an object to be joined with high junction quality with simple facility. <P>SOLUTION: In the ultrasonic bonding method, a press load is allowed to operate on the object to be joined by a press means and a vibrator allows ultrasonic vibration to operate for joining to the object to be joined. A bonding process is constituted of a first press process for pressing the object to be joined by first press load F1; and a second press process for pressing the object to be joined by second press load F2 being lower than the first one F1 after the first press process. Constant alternating voltages +V1 to -V1 are applied to the vibrator from the halfway of the first press process to the end of bonding, thus controlling ultrasonic output in the bonding process to appropriate conditions without performing any complicated control and bonding the object to be joined with the high junction quality with simple facilities. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ワイヤやバンプなどの接合対象物を電子部品や基板の電極などの被接合物に超音波振動によって接合する超音波ボンディング方法に関するものである。
【0002】
【従来の技術】
半導体素子の電極にバンプを形成する方法として、ワイヤボンド法を用いる技術が知られている(例えば特許文献1参照)。この方法は、端部が球状に整形されたワイヤを超音波ボンディングによって電極に圧接し、この後ワイヤを引きちぎることにより圧接された球状のワイヤを電極上に残置してバンプを形成するものである。
【0003】
この技術を用いて微小なバンプを安定して形成するためには、ボンディング過程における超音波出力を適正条件に制御する必要がある。このための技術として、超音波発生装置と変換器との間に可変インピーダンス回路網を挿入し、適正条件によるボンディング処理のために予め選定された所望の出力レベルに維持するように回路網インピーダンスを設定する方式が知られている(例えば特許文献2参照)。
【0004】
【特許文献1】
特開2001−284386号公報
【特許文献2】
特開平7−68220号公報
【0005】
【発明が解決しようとする課題】
近年の電子機器の小型化・高機能化および低コスト化の要請に伴い、半導体素子などの電子部品の製造過程においても、微小サイズの電子部品を対象としてバンプ形成や部品実装などの各種作業を高品質且つ低コストで実行するための技術が求められている。しかしながら上述の従来技術による超音波ボンディングにおいては、このような高接合品質のボンディングを低コストで実現することが困難になっている。
【0006】
すなわち、特許文献1記載の技術においては、バンプ形成において初期段階から大きな超音波出力でボンディングが行われるため、ボンディング初期にバンプが部分的に接合面に拘束され、その後のボンディングにおける十分な金属接合面の確保がかえって阻害される傾向があり、最終的なバンプ接合強度を低下させる場合があった。
【0007】
また所望の超音波出力をバンプに印加するためには、特許文献2に示すように、インピーダンス制御回路網を用いた複雑な制御を必要とすることから、設備面でのコスト高が避けられなかった。したがって実用上には、特許文献1に示すような、ボンディング過程における超音波出力を適正条件に制御して良好な接合品質を確保する効果を享受できるのは限定された場合のみであり、高接合品質のボンディングを低コストで実現することが困難であった。そしてこの課題は、電子部品に形成されたバンプを基板の電極に超音波ボンディングによって接合する場合にも共通していた。
【0008】
そこで本発明は、簡便な設備により高い接合品質で接合対象物をボンディングすることができる超音波ボンディング方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1記載の超音波ボンディング方法は、接合対象物に押圧手段によって押圧荷重を作用させるとともに振動子によって超音波振動を作用させて被接合物に接合する超音波ボンディング方法であって、前記接合対象物を第1の押圧荷重で押圧する第1押圧工程と、第1押圧工程の後第1の押圧荷重よりも低い第2の押圧荷重で接合対象物を押圧する第2押圧工程とを含み、前記第1押圧工程の途中からボンディング終了に至るまで前記振動子に一定の駆動電圧を印加する。
【0010】
請求項2記載の超音波ボンディング方法は、請求項1記載の超音波ボンディング方法であって、前記接合対象物がワイヤであり、前記振動子を有するホーンに設けられたキャピラリに挿通した前記ワイヤの端部を、電子部品の電極に超音波ボンディングにより接合する。
【0011】
請求項3記載の超音波ボンディング方法は、請求項1記載の超音波ボンディング方法であって、前記接合対象物が電子部品に形成された外部接続用のバンプであり、前記振動子を有するホーンに設けられた当接ツールによって前記電子部品を基板に押圧することにより、前記バンプを基板の電極に超音波ボンディングにより接合する。
【0012】
本発明によれば、超音波ボンディング工程を、接合対象物を第1の荷重で押圧する第1押圧工程と、第1押圧工程の後、第1の荷重よりも低い第2の荷重で接合対象物を押圧する第2押圧工程とで構成し、第1押圧工程の途中からボンディング終了に至るまで振動子に一定の駆動電圧を印加する定電圧制御を用いることにより、複雑な制御を行うことなくボンディング過程における超音波出力を適正条件に制御することができ、簡便な設備により高い接合品質で接合対象物をボンディングすることができる。
【0013】
【発明の実施の形態】
(実施の形態1)
図1は本発明の実施の形態1のワイヤボンディング装置の構成を示すブロック図、図2は本発明の実施の形態1のワイヤボンディングによるバンプ形成方法のフロー図、図3は本発明の実施の形態1のワイヤボンディングによるバンプ形成方法における超音波ボンディング条件を示すグラフ、図4は本発明の実施の形態1のワイヤボンディングによるバンプ形成方法における超音波ボンディング過程の説明図である。
【0014】
本実施の形態1は、超音波ボンディングの接合対象物がワイヤであり、このワイヤを被接合物である電子部品の電極に接合するワイヤボンディングの例を示している。このワイヤボンディングにおいては、振動子を有するホーンに設けられたキャピラリに挿通したワイヤの端部を、電子部品の電極に超音波ボンディングにより接合する。
【0015】
まず図1を参照してワイヤボンディング装置のボンディング機構について説明する。図1において、ホーン駆動機構1は水平方向に延出したホーン2を備えている。ホーン2の先端部にはキャピラリ2aが装着されており、ホーン2の後端部には超音波振動を発生する振動子4が結合されている。振動子4はUSドライバ9によって駆動され、これによりホーン2を介してキャピラリ2aには超音波振動が印加される。
【0016】
この振動子4の駆動において、制御部10が記憶部12に記憶された電圧指令値を読み取り、USドライバ9にこの電圧指令値を出力することにより、USドライバ9は常に電圧指令値に応じた一定の駆動電圧、すなわち一定電圧値の交番電圧を振動子4に印加するように構成されている。
【0017】
ホーン2は駆動ブロック3によって支持されており、Z軸ドライバ8に駆動されるVCMモータ5によって、駆動ブロック3は水平な回転軸3a廻りに所定角度の回動が可能となっている。この回動はエンコーダ6によってその回動量が検出され、検出信号はアンプ7を介してZ軸ドライバ8に伝達される。VCMモータ5を駆動してホーン2を回転軸3a廻りに回動させることにより、キャピラリ2aが昇降するとともに、キャピラリ2aを下方に対して押圧する。VCMモータ5は、接合対象物に押圧荷重を作用させる押圧手段となっている。このキャピラリ2aの動作において、制御部10が記憶部12に記憶された荷重指令値を読み取り、荷重制御部11を介してZ軸ドライバ8にこの荷重指令値を出力することにより、キャピラリ2aは荷重指令値に応じた押圧荷重を発生する。
【0018】
ボンディング動作は、キャピラリ2aにボンディングワイヤを挿通させ、ボンディングワイヤの下端にボール13(図4参照)を形成させた状態で行われる。すなわち制御部10によってキャピラリ2aの昇降押圧動作と超音波振動の印加を制御して、ボール13をキャピラリ2aによって被接合物である電子部品の電極14の接合面に押し付け、ボール13に押圧荷重と超音波振動を作用させることにより、電子部品へのワイヤボンディングによるバンプ形成が行われる。
【0019】
このワイヤボンディング装置のボンディング機構は上記の様に構成されており、次に図2のフローに沿って,図3、図4を参照して、ワイヤボンディングによるバンプ形成方法について説明する。図3はこのワイヤボンディング過程における超音波ボンディング条件を示しており、図3(a)、(b)、(c)は、キャピラリ2aによってボール13を押圧する押圧荷重、USドライバ9によって振動子4に印加される駆動電圧、および振動子4が発生する超音波出力の各項目の時間的変化をそれぞれ示している。
【0020】
まずキャピラリ2aを上方から挿通したボンディングワイヤの先端部をスパークによって溶融させて、キャピラリ2aの下端部に球状のボール13を形成する(ST1)。次いでキャピラリ2aをボール13とともに下降させて、ボール13を電極14に当接させる(ST2)。そしてこの後、キャピラリ2aによってボール13を電極14に対して押圧する押圧工程が開始される(図4(a)参照)。
【0021】
ここではまず図3(a)に示すように、押圧開始のタイミングt1から、ボール13を上下方向に塑性変形させるのに必要十分な第1の押圧荷重F1で押圧する(ST3)(第1押圧工程)。図4(a)は、第1の押圧工程において、ボール13を第1の押圧荷重F1で押圧した状態を示している。この第1の押圧工程では、ボール13の略球面状の下端部が電極14の接合面14aに接触した状態から第1の押圧荷重F1で押圧される。
【0022】
これにより、ボール13は上下方向に幾分押しつぶされるとともに、ボール13の下端部は接合面14aにならって水平方向に拡がるように塑性変形する。これにより、当初は下端部のみで接合面14aと接触していたボール13は、より広い範囲で接合面14aと接触するようになる。
【0023】
このとき、ボール13の下面と接合面14aとの接触面における面圧分布は全接触範囲にわたって必ずしも均一ではなく、ばらついている場合が多い。すなわち、ボール13下面の凹凸やキャピラリ2aの下端部がボール13を押圧する位置によって、ボール13が高面圧で集中的に接合面14aに押圧された高面圧部A(図4(a)において太線で示す)と、比較的面圧が低い低面圧部が存在する。
【0024】
そして押圧開始から、上述のボール13の塑性変形に要する所定時間T1(例えば5msec.程度)経過後に、図4(b)に示すように、USドライバ9によって振動子4に一定の駆動電圧を印加する(ST4)。これにより、振動子4には+V1〜−V1の高周波の交番電圧が印加され、振動子4はこの駆動電圧に応じた超音波振動を発生する。そしてこの超音波振動がホーン2,キャピラリ2aを介してボール13に伝達されることにより、ボール13の下面は接合面14aに対して面方向に相対振動し、超音波ボンディングによる接合界面の金属接合が開始される。
【0025】
上述の第1押圧工程での超音波ボンディング(ボンディング初期)は、ボール13に塑性変形を生じさせる程度の高い押圧荷重下で行われ、ボール13と接合面14aの接合界面には、高拘束状態で超音波振動が作用する。そして駆動電圧一定の条件下では、接合界面における超音波振動の振幅は拘束状態に応じたものとなることから、第1押圧工程のように高拘束状態における接合界面での超音波振動の振幅は小さい。この結果、図3(c)に示すように、この間の超音波出力は低出力W1に保たれる。
【0026】
換言すれば、このボンディング初期においては、上述の高面圧部Aに低出力の超音波振動を作用させる形態になっている。すなわち、まずボール13の表面および接合面14aの酸化膜を高面圧によって破壊し易い状態にして、両者の金属面が直接接触するようにした後に、小振幅の超音波振動を作用させる。これにより、まず高面圧部Aにおいてボール13は電極14の接合面14aと金属接合され、後続過程においては高面圧部Aを起点として金属接合範囲が徐々に拡大する。
【0027】
したがって、超音波ボンディング過程の初期において、未だ電極14に対して拘束されていない状態のボール13が振動方向に大きく移動する、いわゆる「ばたつき」を発生することなく、ボール13と接合面14aとの接触面を徐々になじませながら、安定したボンディング進行を実現するようになっている。
【0028】
この後、図3(b)に示すように、タイミングt2から初期ボンディング時間T2(例えば5〜10msec.)が経過したタイミングt3において、押圧荷重を第1の押圧荷重F1よりも低い第2の押圧荷重F2に切り換え、この状態で+V1〜−V1の高周波の交番電圧の印加を継続する(ST5)(第2押圧工程)。
【0029】
この第2押圧工程での超音波ボンディング(ボンディング後期)は、第1の押圧荷重F1よりも低い低押圧荷重下で行われ、ボール13と接合面14aの接合界面には、第1押圧工程での振幅と比べて大きな振幅の超音波振動が作用する。この結果、図3(c)に示すように、第2押圧工程における超音波出力はW1よりも大きい高出力W2に保たれる。
【0030】
すなわち、このボンディング後期においては、ボール13と接合面14aとの接触面の面圧が全体的に低下した状態で、ボンディング初期よりも高出力の超音波振動を作用させる形態となっている。したがって、ボール13と電極14の接合界面には、図4(c)に示すように、大きな振幅の超音波振動によって高応力が作用する。
【0031】
これにより、ボンディング初期においては高面圧部Aの周囲に限定されていた金属接合面が全体に拡大し、より均一な金属接合状態が実現される。そしてこの間、ボール13には塑性変形を発生させるような高押圧荷重が負荷されないことから、ボール13のつぶれ変形が進行せず、ボール13が過度に押しつぶされることによるバンプ形状不良が発生しない。
【0032】
そして図3に示す所定の全体ボンディング時間T(例えば35〜55msec.)が経過したタイミングt4において、駆動電圧の印加および押圧を停止する(ST6)。これにより、ボール13は電極14に荷重と超音波振動によって接合された状態となる。この後、キャピラリ2aを上昇させてボール13の上端に結合した状態のボンディングワイヤを切断することにより、ボール13が電極14上に接合された状態で残置されて、バンプが形成される。これにより、バンプ形成が比較的困難なSAWフィルターチップ等のチップにおける電極に対しても良好なバンプを形成することができる。
【0033】
(実施の形態2)
図5は本発明の実施の形態2の電子部品ボンディング装置の構成を示すブロック図、図6は本発明の実施の形態2の電子部品ボンディング装置によるバンプボンディング動作の工程説明図である。
【0034】
本実施の形態2は、超音波ボンディングの接合対象物が電子部品に設けられた外部接続用のバンプであり、このバンプを被接合物としての基板の電極に接合するバンプボンディング(いわゆるフリップチップボンディング)の例を示している。このバンプボンディングにおいては、振動子を有するホーンに設けられた当接ツールによって電子部品を基板に押圧することにより、バンプを基板の電極に超音波ボンディングにより接合する。
【0035】
図6において基板保持部20上には、電極21aが形成された基板21が保持されている。基板保持部20の上方には、ボンディング部23が配設されている。ボンディング部23はモータおよびエンコーダを内蔵したツール昇降押圧駆動部24を備えており、ツール昇降押圧駆動部24はホルダ25に保持されたボンディングツール26を昇降駆動する。
【0036】
ボンディングツール26は、下方に突出した接合作用部26a(当接ツール)を備えており、接合作用部26aはバンプ付きの電子部品22を吸着して保持するとともに、電子部品22を基板21に対して押圧する。ツール昇降押圧駆動部24は、接合対象物に押圧荷重を作用させる押圧手段となっている。このときボンディングツール26に装着された振動子27を駆動することにより、電子部品22には超音波振動が印加される。なお押圧手段として空圧シリンダを用いてもよい。
【0037】
図6において、制御部31、荷重制御部32,Z軸ドライバ30、アンプ29およびUSドライバ28は、実施の形態1における制御部10、荷重制御部11,Z軸ドライバ8、アンプ7およびUSドライバ9と同様の機能を有しており、記憶部33には、実施の形態1における記憶部12と同様のデータが記憶されている。
【0038】
すなわち、制御部31が記憶部33に記憶された電圧指令値を読み取り、USドライバ28にこの電圧指令値を出力することにより、USドライバ28は常に電圧指令値に応じた一定の駆動電圧、すなわち一定電圧値の交番電圧を振動子27に印加するように構成されている。またツール昇降押圧駆動部24によるボンディングツール26の昇降押圧動作において、制御部31が記憶部33に記憶された荷重指令値を読み取り、荷重制御部32を介してZ軸ドライバ30にこの荷重指令値を出力することにより、ツール昇降押圧駆動部24は荷重指令値に応じた押圧荷重で押圧する。
【0039】
ボンディングツール26による電子部品22の超音波ボンディング工程においては、まずボンディングツール26の接合作用部26aの下端部に、バンプ22aが設けられた電子部品22を保持させ、図6(a)に示すように、ボンディングツール26を移動させてバンプ22aを基板21の電極21aに位置合わせする。
【0040】
次いでボンディングツール26を電子部品22とともに下降させて、バンプ22aを電極21aに当接させる(ST2)。そしてこの後、ボンディングツール26によって電子部品22を押圧して、バンプ22aを電極21aに対して押圧する押圧工程が開始される。この押圧工程においては、実施の形態1の図3に示すボンディング条件と同様の条件、すなわち押圧荷重の高低切換制御と振動子27の駆動電圧の定電圧制御が適用される。
【0041】
まず押圧開始のタイミングt1から、図6(b)に示すように、バンプ22aを上下方向に塑性変形させるのに必要十分な第1の押圧荷重F1で押圧する(第1押圧工程)。そして押圧開始から、上述のバンプ22aの塑性変形に要する所定時間T1経過後のタイミングt2に、USドライバ28によって振動子27に一定の駆動電圧Vを印加する(ST4)。これにより、振動子27には+V1〜−V1の高周波の交番電圧が印加され、振動子27は超音波振動を発生する。そしてこの超音波振動がホーン26,接合作用部26aを介してバンプ22aに伝達されることにより、図6(c)に示すように、バンプ22aの下面は電極21aの接合面に対して面方向に相対振動し、超音波ボンディングが開始される。
【0042】
この後、駆動電圧印加開始から実施の形態1と同様の初期ボンディング時間T2が経過したタイミングt3において、図6(d)に示すように、押圧荷重を第1の押圧荷重F1よりも低い第2の押圧荷重F2に切り換え、+V1〜−V1の交番電圧の印加を継続する(第2押圧工程)。そして所定の全体ボンディング時間Tが経過したタイミングt4において、駆動電圧の印加および押圧を停止する。これにより、バンプ22aは電極21に荷重と超音波振動によって接合される。この後、ボンディングツール26を上昇させることにより、バンプ22aが電極21aに接合されて、電子部品22の超音波ボンディングによる実装が完了する。
【0043】
上述の実施の形態2においても、バンプ22aを電極21aに超音波ボンディングする過程において、実施の形態1と同様に押圧荷重の高低切換制御を行い、振動子の駆動電圧を定電圧制御することにより、良好なボンディング結果を得ることができる。
【0044】
上記説明したように、各実施の形態に示す超音波ボンディング方法においては、接合対象物を第1の押圧荷重で押圧する第1押圧工程と、第1押圧工程の後、第1の荷重よりも低い第2の押圧荷重で接合対象物を押圧する第2押圧工程とでボンディング工程を構成し、第1押圧工程の途中からボンディング終了に至るまで、振動子に一定の駆動電圧を印加するようにしている。
【0045】
これにより、ボンディング初期において接合対象物は適度に押しつぶされて接合面との接触状態が均一化されるとともに、接触面中の高面圧領域では金属面が相互に押し付けられて酸化膜などの異物層が破壊されやすくなる。そしてこの状態で駆動電圧を振動子に印加することにより、前述の高面圧領域では異物層が除去された金属面が相互に接触して金属接合される。
【0046】
このとき、前述のように超音波出力は低出力に保たれることから、接合界面における金属接合面の形成は小振幅の超音波振動によって行われる。これにより、接合界面では高面圧領域を起点として金属接合面が徐々に拡大し、接触面相互をなじませつつ安定した状態でボンディングを進行させることができる。
【0047】
そしてこの状態で、押圧荷重を低荷重に切り換えることにより、接合界面における超音波振動の振幅が増大する。これにより、これ以降のボンディング後期においては大振幅によって接合界面に高応力を作用させて効率よくボンディングを進行させ、接合対象物と接合面との広い範囲により均一な金属接合面を形成することができる。
【0048】
そして上述の超音波ボンディング方法においては、押圧荷重の高低切換制御と、振動子の駆動電圧の定電圧制御のみによって、適正な超音波出力の制御を実現するようにしている。このため、従来において所望の超音波出力を印加するために必要とされたインピーダンス制御回路網などを用いた複雑な制御装置を用いることなく、簡便な設備によって高い接合品質のボンディングを実現することができる。
【0049】
【発明の効果】
本発明によれば、接合対象物を第1の押圧荷重で押圧する第1押圧工程と、第1押圧工程の後、第1の押圧荷重よりも低い第2の押圧荷重で接合対象物を押圧する第2押圧工程とを含み、第1押圧工程の途中からボンディング終了に至るまで前記振動子に一定の駆動電圧を印加することにより、複雑な制御を行うことなくボンディング過程における超音波出力を低出力から高出力へ変化させることができ、簡便な設備により高い接合品質でボンディングすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1のワイヤボンディング装置の構成を示すブロック図
【図2】本発明の実施の形態1のワイヤボンディングによるバンプ形成方法のフロー図
【図3】本発明の実施の形態1のワイヤボンディングによるバンプ形成方法における超音波ボンディング条件を示すグラフ
【図4】本発明の実施の形態1のワイヤボンディングによるバンプ形成方法における超音波ボンディング過程の説明図
【図5】本発明の実施の形態2の電子部品ボンディング装置の構成を示すブロック図
【図6】本発明の実施の形態2の電子部品ボンディング装置によるバンプボンディング動作の工程説明図
【符号の説明】
1 ホーン駆動機構
2a キャピラリ
4、27 振動子
9、28 USドライバ
10、31 制御部
11、32 荷重制御部
13 ボール
14 電極
21 基板
21a 電極
22 電子部品
22a バンプ
24 ツール昇降押圧駆動部
26 ボンディングツール
26a 接合作用部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic bonding method for bonding an object such as a wire or a bump to an object such as an electronic component or an electrode of a substrate by ultrasonic vibration.
[0002]
[Prior art]
As a method of forming a bump on an electrode of a semiconductor element, a technique using a wire bonding method is known (for example, see Patent Document 1). According to this method, a wire whose end is shaped into a sphere is pressed against an electrode by ultrasonic bonding, and then the wire is torn off to leave a pressed spherical wire on the electrode to form a bump. .
[0003]
In order to stably form minute bumps using this technique, it is necessary to control the ultrasonic output in the bonding process to appropriate conditions. As a technique for this, a variable impedance network is inserted between the ultrasonic generator and the transducer, and the network impedance is adjusted so as to maintain a desired output level selected in advance for a bonding process under appropriate conditions. A setting method is known (for example, see Patent Document 2).
[0004]
[Patent Document 1]
JP 2001-284386 A [Patent Document 2]
JP-A-7-68220
[Problems to be solved by the invention]
With the recent demand for miniaturization, higher functionality, and lower cost of electronic equipment, in the manufacturing process of electronic components such as semiconductor devices, various operations such as bump formation and component mounting for micro-sized electronic components are performed. There is a need for a technique for performing high quality and low cost. However, in the above-described ultrasonic bonding according to the related art, it is difficult to realize such high bonding quality bonding at low cost.
[0006]
That is, in the technique described in Patent Document 1, since bonding is performed with a large ultrasonic output from the initial stage in the formation of bumps, the bumps are partially restrained on the bonding surface at the initial stage of bonding, and sufficient metal bonding in subsequent bonding is performed. There is a tendency that the securing of the surface is rather hindered, and the final bump bonding strength may be reduced.
[0007]
In addition, in order to apply a desired ultrasonic output to the bump, as shown in Patent Document 2, complicated control using an impedance control network is required, so that the cost in equipment is unavoidable. Was. Therefore, in practical use, the effect of controlling the ultrasonic output in the bonding process to an appropriate condition and ensuring good joining quality as shown in Patent Document 1 can be enjoyed only in limited cases, It has been difficult to achieve quality bonding at low cost. This problem is common to the case where a bump formed on an electronic component is bonded to an electrode on a substrate by ultrasonic bonding.
[0008]
Therefore, an object of the present invention is to provide an ultrasonic bonding method that can bond an object to be bonded with high bonding quality using simple equipment.
[0009]
[Means for Solving the Problems]
2. The ultrasonic bonding method according to claim 1, wherein the pressing means applies a pressing load to the object to be bonded and applies ultrasonic vibration by a vibrator to bond the object to the object. A first pressing step of pressing the object with a first pressing load, and a second pressing step of pressing the joining object with a second pressing load lower than the first pressing load after the first pressing step And applying a constant drive voltage to the vibrator from the middle of the first pressing step to the end of the bonding.
[0010]
The ultrasonic bonding method according to claim 2 is the ultrasonic bonding method according to claim 1, wherein the object to be bonded is a wire, and the bonding object is a wire that is inserted through a capillary provided in a horn having the vibrator. The ends are joined to the electrodes of the electronic component by ultrasonic bonding.
[0011]
The ultrasonic bonding method according to claim 3 is the ultrasonic bonding method according to claim 1, wherein the object to be bonded is a bump for external connection formed on an electronic component, and the horn having the vibrator. The bump is bonded to the electrode of the substrate by ultrasonic bonding by pressing the electronic component against the substrate with the provided contact tool.
[0012]
According to the present invention, the ultrasonic bonding step includes: a first pressing step of pressing the object to be bonded with the first load; and, after the first pressing step, the bonding object with the second load lower than the first load. A second pressing step of pressing an object, and using a constant voltage control for applying a constant driving voltage to the vibrator from the middle of the first pressing step to the end of bonding, without performing complicated control. The ultrasonic output in the bonding process can be controlled to an appropriate condition, and the object to be bonded can be bonded with high bonding quality using simple equipment.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of a wire bonding apparatus according to Embodiment 1 of the present invention, FIG. 2 is a flowchart of a bump forming method by wire bonding according to Embodiment 1 of the present invention, and FIG. FIG. 4 is a graph showing ultrasonic bonding conditions in the method for forming a bump by wire bonding according to the first embodiment. FIG. 4 is an explanatory diagram of an ultrasonic bonding process in the method for forming a bump by wire bonding according to the first embodiment of the present invention.
[0014]
The first embodiment shows an example of wire bonding in which an object to be bonded by ultrasonic bonding is a wire, and the wire is bonded to an electrode of an electronic component to be bonded. In this wire bonding, an end of a wire inserted into a capillary provided on a horn having a vibrator is bonded to an electrode of an electronic component by ultrasonic bonding.
[0015]
First, the bonding mechanism of the wire bonding apparatus will be described with reference to FIG. In FIG. 1, a horn drive mechanism 1 includes a horn 2 extending in a horizontal direction. A capillary 2a is mounted on the tip of the horn 2, and a vibrator 4 for generating ultrasonic vibration is connected to a rear end of the horn 2. The vibrator 4 is driven by a US driver 9, whereby ultrasonic vibration is applied to the capillary 2 a via the horn 2.
[0016]
In driving the vibrator 4, the control unit 10 reads the voltage command value stored in the storage unit 12 and outputs this voltage command value to the US driver 9, so that the US driver 9 always responds to the voltage command value. A constant drive voltage, that is, an alternating voltage having a constant voltage value is applied to the vibrator 4.
[0017]
The horn 2 is supported by a drive block 3, and the drive block 3 can be turned at a predetermined angle around a horizontal rotation axis 3 a by a VCM motor 5 driven by a Z-axis driver 8. The amount of this rotation is detected by the encoder 6, and a detection signal is transmitted to the Z-axis driver 8 via the amplifier 7. By driving the VCM motor 5 to rotate the horn 2 around the rotation shaft 3a, the capillary 2a moves up and down and presses the capillary 2a downward. The VCM motor 5 is a pressing means for applying a pressing load to the joining object. In the operation of the capillary 2a, the control unit 10 reads the load command value stored in the storage unit 12 and outputs this load command value to the Z-axis driver 8 via the load control unit 11, whereby the capillary 2a A pressing load is generated according to the command value.
[0018]
The bonding operation is performed with a bonding wire inserted through the capillary 2a and a ball 13 (see FIG. 4) formed at the lower end of the bonding wire. That is, the controller 13 controls the vertical pressing operation of the capillary 2 a and the application of ultrasonic vibration, and presses the ball 13 against the bonding surface of the electrode 14 of the electronic component to be bonded by the capillary 2 a, and applies a pressing load to the ball 13. By applying ultrasonic vibration, bump formation is performed on the electronic component by wire bonding.
[0019]
The bonding mechanism of this wire bonding apparatus is configured as described above. Next, a bump forming method by wire bonding will be described with reference to FIGS. 3 and 4 along the flow of FIG. FIG. 3 shows the ultrasonic bonding conditions in the wire bonding process. FIGS. 3A, 3B, and 3C show a pressing load for pressing the ball 13 by the capillary 2a and a vibrator 4 by the US driver 9. , And the temporal change of each item of the ultrasonic output generated by the transducer 4 is shown.
[0020]
First, the tip of the bonding wire, through which the capillary 2a is inserted from above, is melted by a spark to form a spherical ball 13 at the lower end of the capillary 2a (ST1). Next, the capillary 2a is lowered together with the ball 13, and the ball 13 is brought into contact with the electrode 14 (ST2). Thereafter, a pressing step of pressing the ball 13 against the electrode 14 by the capillary 2a is started (see FIG. 4A).
[0021]
Here, first, as shown in FIG. 3A, the ball 13 is pressed with a first pressing load F1 necessary and sufficient to vertically deform the ball 13 from a pressing start timing t1 (ST3) (first pressing). Process). FIG. 4A shows a state in which the ball 13 is pressed by the first pressing load F1 in the first pressing step. In the first pressing step, the substantially spherical lower end of the ball 13 is pressed by the first pressing load F1 from a state in which the ball 13 contacts the joint surface 14a of the electrode 14.
[0022]
As a result, the ball 13 is somewhat crushed in the vertical direction, and the lower end of the ball 13 is plastically deformed so as to expand in the horizontal direction following the joint surface 14a. As a result, the ball 13 initially in contact with the joint surface 14a only at the lower end portion comes into contact with the joint surface 14a in a wider range.
[0023]
At this time, the surface pressure distribution on the contact surface between the lower surface of the ball 13 and the joint surface 14a is not always uniform over the entire contact range, and often varies. That is, depending on the unevenness of the lower surface of the ball 13 and the position where the lower end of the capillary 2a presses the ball 13, the high surface pressure portion A where the ball 13 is intensively pressed against the bonding surface 14a at a high surface pressure (FIG. 4A) , There is a low surface pressure portion having a relatively low surface pressure.
[0024]
After a lapse of a predetermined time T1 (for example, about 5 msec.) Required for the plastic deformation of the ball 13 from the start of pressing, a fixed driving voltage is applied to the vibrator 4 by the US driver 9 as shown in FIG. (ST4). As a result, a high-frequency alternating voltage of + V1 to -V1 is applied to the vibrator 4, and the vibrator 4 generates ultrasonic vibration according to the drive voltage. When this ultrasonic vibration is transmitted to the ball 13 via the horn 2 and the capillary 2a, the lower surface of the ball 13 is vibrated relative to the bonding surface 14a in the surface direction, and the metal bonding of the bonding interface by ultrasonic bonding is performed. Is started.
[0025]
The ultrasonic bonding (initial bonding) in the above-described first pressing step is performed under a pressing load high enough to cause plastic deformation of the ball 13, and the bonding interface between the ball 13 and the bonding surface 14 a is in a highly restricted state. The ultrasonic vibration works. Then, under the condition of a constant drive voltage, the amplitude of the ultrasonic vibration at the bonding interface depends on the constrained state, so that the amplitude of the ultrasonic vibration at the bonding interface in the high constrained state as in the first pressing step is small. As a result, as shown in FIG. 3C, the ultrasonic output during this period is kept at the low output W1.
[0026]
In other words, in the initial stage of the bonding, a low-output ultrasonic vibration is applied to the high surface pressure portion A. That is, first, the surface of the ball 13 and the oxide film on the bonding surface 14a are easily broken by a high surface pressure so that the two metal surfaces are in direct contact with each other, and then a small-amplitude ultrasonic vibration is applied. Thereby, first, the ball 13 is metal-bonded to the bonding surface 14a of the electrode 14 at the high surface pressure portion A, and the metal bonding range gradually increases starting from the high surface pressure portion A in the subsequent process.
[0027]
Therefore, at the beginning of the ultrasonic bonding process, the ball 13 that has not yet been restrained with respect to the electrode 14 moves largely in the vibration direction, that is, does not generate so-called “fluttering”, and the ball 13 and the bonding surface 14 a A stable bonding progress is realized while gradually adjusting the contact surface.
[0028]
Thereafter, as shown in FIG. 3B, at a timing t3 when an initial bonding time T2 (for example, 5 to 10 msec.) Has elapsed from the timing t2, the pressing load is changed to the second pressing lower than the first pressing load F1. The load is switched to the load F2, and in this state, the application of the high-frequency alternating voltage of + V1 to -V1 is continued (ST5) (second pressing step).
[0029]
The ultrasonic bonding (late bonding) in the second pressing step is performed under a low pressing load lower than the first pressing load F1, and the bonding interface between the ball 13 and the bonding surface 14a is formed in the first pressing step. The ultrasonic vibration having a larger amplitude than the amplitude of the ultrasonic wave acts. As a result, as shown in FIG. 3C, the ultrasonic output in the second pressing step is kept at a high output W2 larger than W1.
[0030]
That is, in the latter stage of the bonding, the ultrasonic vibration having a higher output than the initial stage of the bonding is applied while the surface pressure of the contact surface between the ball 13 and the bonding surface 14a is entirely reduced. Therefore, high stress acts on the bonding interface between the ball 13 and the electrode 14 by ultrasonic vibration having a large amplitude, as shown in FIG.
[0031]
As a result, the metal bonding surface limited to the periphery of the high surface pressure portion A in the initial stage of bonding is enlarged as a whole, and a more uniform metal bonding state is realized. During this time, since a high pressing load that causes plastic deformation is not applied to the ball 13, the crushing deformation of the ball 13 does not progress, and a bump shape defect due to excessive crushing of the ball 13 does not occur.
[0032]
Then, at a timing t4 when a predetermined overall bonding time T (for example, 35 to 55 msec.) Shown in FIG. 3 has elapsed, the application of the driving voltage and the pressing are stopped (ST6). Thereby, the ball 13 is in a state of being joined to the electrode 14 by the load and the ultrasonic vibration. Thereafter, the capillary 2a is raised to cut the bonding wire connected to the upper end of the ball 13, leaving the ball 13 bonded to the electrode 14 to form a bump. As a result, it is possible to form a good bump even on an electrode of a chip such as a SAW filter chip in which bump formation is relatively difficult.
[0033]
(Embodiment 2)
FIG. 5 is a block diagram showing a configuration of an electronic component bonding apparatus according to the second embodiment of the present invention, and FIG. 6 is a process explanatory view of a bump bonding operation by the electronic component bonding apparatus according to the second embodiment of the present invention.
[0034]
In the second embodiment, an object to be joined by ultrasonic bonding is a bump for external connection provided on an electronic component, and the bump is joined to an electrode of a substrate as an object to be joined (so-called flip-chip bonding). ) Is shown. In this bump bonding, an electronic component is pressed against a substrate by a contact tool provided on a horn having a vibrator, so that a bump is bonded to an electrode of the substrate by ultrasonic bonding.
[0035]
In FIG. 6, a substrate 21 on which an electrode 21a is formed is held on a substrate holding unit 20. Above the substrate holding section 20, a bonding section 23 is provided. The bonding unit 23 includes a tool lifting / lowering driving unit 24 having a motor and an encoder built therein. The tool lifting / lowering pressing driving unit 24 drives the bonding tool 26 held by the holder 25 up and down.
[0036]
The bonding tool 26 includes a bonding operation portion 26a (contact tool) protruding downward. The bonding operation portion 26a sucks and holds the electronic component 22 with the bump, and also attaches the electronic component 22 to the substrate 21. And press. The tool lifting / lowering drive unit 24 is a pressing unit that applies a pressing load to the object to be joined. At this time, an ultrasonic vibration is applied to the electronic component 22 by driving the vibrator 27 mounted on the bonding tool 26. Note that a pneumatic cylinder may be used as the pressing means.
[0037]
In FIG. 6, the control unit 31, the load control unit 32, the Z-axis driver 30, the amplifier 29, and the US driver 28 are the control unit 10, the load control unit 11, the Z-axis driver 8, the amplifier 7, and the US driver in the first embodiment. The storage unit 33 has the same function as that of the storage unit 12, and stores the same data as the storage unit 12 in the first embodiment.
[0038]
That is, the control unit 31 reads the voltage command value stored in the storage unit 33 and outputs this voltage command value to the US driver 28, so that the US driver 28 always has a constant drive voltage according to the voltage command value, that is, The alternating voltage having a constant voltage value is applied to the vibrator 27. Further, in the lifting / lowering operation of the bonding tool 26 by the tool lifting / lowering driving unit 24, the control unit 31 reads the load command value stored in the storage unit 33 and sends the load command value to the Z-axis driver 30 via the load control unit 32. Is output, the tool lifting / lowering drive unit 24 presses with a pressing load corresponding to the load command value.
[0039]
In the ultrasonic bonding process of the electronic component 22 by the bonding tool 26, first, the electronic component 22 provided with the bump 22a is held at the lower end of the joining action portion 26a of the bonding tool 26, as shown in FIG. Next, the bonding tool 26 is moved to align the bumps 22 a with the electrodes 21 a of the substrate 21.
[0040]
Next, the bonding tool 26 is lowered together with the electronic component 22 to bring the bump 22a into contact with the electrode 21a (ST2). Thereafter, a pressing step of pressing the electronic component 22 by the bonding tool 26 to press the bump 22a against the electrode 21a is started. In this pressing step, the same conditions as the bonding conditions shown in FIG. 3 of the first embodiment, that is, the control of switching the pressing load between high and low and the constant voltage control of the driving voltage of the vibrator 27 are applied.
[0041]
First, from the pressing start timing t1, as shown in FIG. 6B, the bump 22a is pressed with a first pressing load F1 necessary and sufficient to cause the bump 22a to be plastically deformed in the vertical direction (first pressing step). Then, at the timing t2 after the elapse of the predetermined time T1 required for the plastic deformation of the bump 22a from the start of pressing, the US driver 28 applies a constant drive voltage V to the vibrator 27 (ST4). As a result, a high-frequency alternating voltage of + V1 to -V1 is applied to the vibrator 27, and the vibrator 27 generates ultrasonic vibration. Then, the ultrasonic vibration is transmitted to the bump 22a via the horn 26 and the bonding action portion 26a, so that the lower surface of the bump 22a is in a direction perpendicular to the bonding surface of the electrode 21a, as shown in FIG. And the ultrasonic bonding is started.
[0042]
Thereafter, at timing t3 when the same initial bonding time T2 as in the first embodiment has elapsed from the start of the application of the driving voltage, as shown in FIG. 6D, the pressing load is set to the second pressing lower than the first pressing load F1. And the application of the alternating voltage of + V1 to -V1 is continued (second pressing step). Then, at a timing t4 when a predetermined overall bonding time T has elapsed, the application and the pressing of the driving voltage are stopped. Thereby, the bump 22a is joined to the electrode 21 by the load and the ultrasonic vibration. Thereafter, by raising the bonding tool 26, the bump 22a is joined to the electrode 21a, and the mounting of the electronic component 22 by ultrasonic bonding is completed.
[0043]
Also in the second embodiment described above, in the process of ultrasonic bonding the bump 22a to the electrode 21a, the pressing load is controlled to be high and low similarly to the first embodiment, and the driving voltage of the vibrator is controlled by a constant voltage. And good bonding results can be obtained.
[0044]
As described above, in the ultrasonic bonding method described in each of the embodiments, the first pressing step of pressing the object to be bonded with the first pressing load, and the first pressing step, after the first pressing step, the first pressing step. A bonding step is constituted by a second pressing step of pressing the object to be bonded with a low second pressing load, and a constant drive voltage is applied to the vibrator from the middle of the first pressing step to the end of bonding. ing.
[0045]
As a result, in the initial stage of bonding, the object to be bonded is appropriately crushed and the contact state with the bonding surface is made uniform, and in the high surface pressure region in the contact surface, the metal surfaces are pressed against each other and foreign matter such as an oxide film is formed. The layer is easily broken. Then, by applying a drive voltage to the vibrator in this state, the metal surfaces from which the foreign material layer has been removed are brought into contact with each other in the high surface pressure region to form a metal joint.
[0046]
At this time, since the ultrasonic output is maintained at a low level as described above, the formation of the metal bonding surface at the bonding interface is performed by ultrasonic vibration of small amplitude. Thus, at the bonding interface, the metal bonding surface gradually expands from the high surface pressure region as a starting point, and bonding can proceed in a stable state while making the contact surfaces conform to each other.
[0047]
By switching the pressing load to a low load in this state, the amplitude of the ultrasonic vibration at the bonding interface increases. As a result, in the subsequent later stages of bonding, a high amplitude is applied to the bonding interface with a large amplitude to promote efficient bonding, and to form a more uniform metal bonding surface over a wide range between the bonding target and the bonding surface. it can.
[0048]
In the above-described ultrasonic bonding method, proper control of ultrasonic output is realized only by the control of switching the pressing load between high and low and the constant voltage control of the driving voltage of the vibrator. For this reason, it is possible to realize bonding of high bonding quality with simple equipment without using a complicated control device using an impedance control network or the like that was conventionally required to apply a desired ultrasonic output. it can.
[0049]
【The invention's effect】
According to the present invention, the first pressing step of pressing the object to be joined with the first pressing load, and after the first pressing step, the object to be bonded is pressed with the second pressing load lower than the first pressing load. And applying a constant drive voltage to the vibrator from the middle of the first pressing step to the end of bonding, thereby reducing the ultrasonic output in the bonding step without performing complicated control. The output can be changed from high to high, and bonding can be performed with high bonding quality using simple equipment.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a wire bonding apparatus according to a first embodiment of the present invention; FIG. 2 is a flowchart of a bump forming method by wire bonding according to a first embodiment of the present invention; FIG. FIG. 4 is a graph showing ultrasonic bonding conditions in the method of forming a bump by wire bonding according to the first embodiment. FIG. 4 is an explanatory diagram of an ultrasonic bonding process in the method of forming a bump by wire bonding in the first embodiment of the present invention. FIG. 6 is a block diagram showing a configuration of an electronic component bonding apparatus according to a second embodiment of the present invention. FIG. 6 is an explanatory diagram of a process of a bump bonding operation by the electronic component bonding apparatus according to the second embodiment of the present invention.
1 Horn driving mechanism 2a Capillary 4, 27 Vibrator 9, 28 US driver 10, 31 Control unit 11, 32 Load control unit 13 Ball 14 Electrode 21 Substrate 21a Electrode 22 Electronic component 22a Bump 24 Tool lifting / lowering driving unit 26 Bonding tool 26a Joint action part

Claims (3)

接合対象物に押圧手段によって押圧荷重を作用させるとともに振動子によって超音波振動を作用させて被接合物に接合する超音波ボンディング方法であって、前記接合対象物を第1の押圧荷重で押圧する第1押圧工程と、第1押圧工程の後第1の押圧荷重よりも低い第2の押圧荷重で接合対象物を押圧する第2押圧工程とを含み、前記第1押圧工程の途中からボンディング終了に至るまで前記振動子に一定の駆動電圧を印加することを特徴とする超音波ボンディング方法。An ultrasonic bonding method in which a pressing load is applied to an object to be joined by a pressing means and ultrasonic vibration is applied by a vibrator to join the object to be joined, wherein the object to be joined is pressed with a first pressing load. A first pressing step; and a second pressing step of pressing the object to be joined with a second pressing load lower than the first pressing load after the first pressing step, and the bonding is completed in the middle of the first pressing step. An ultrasonic bonding method, wherein a constant drive voltage is applied to the vibrator until the step (a). 前記接合対象物がワイヤであり、前記振動子を有するホーンに設けられたキャピラリに挿通した前記ワイヤの端部を、電子部品の電極に超音波ボンディングにより接合することを特徴とする請求項1記載の超音波ボンディング方法。2. The object to be joined is a wire, and an end of the wire inserted into a capillary provided on a horn having the vibrator is joined to an electrode of an electronic component by ultrasonic bonding. Ultrasonic bonding method. 前記接合対象物が電子部品に形成された外部接続用のバンプであり、前記振動子を有するホーンに設けられた当接ツールによって前記電子部品を基板に押圧することにより、前記バンプを基板の電極に超音波ボンディングにより接合することを特徴とする請求項1記載の超音波ボンディング方法。The object to be joined is a bump for external connection formed on the electronic component, and the bump is pressed against the substrate by pressing the electronic component against the substrate with a contact tool provided on a horn having the vibrator. 2. The ultrasonic bonding method according to claim 1, wherein the bonding is performed by ultrasonic bonding.
JP2003031227A 2003-02-07 2003-02-07 Ultrasonic bonding method Pending JP2004241712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031227A JP2004241712A (en) 2003-02-07 2003-02-07 Ultrasonic bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031227A JP2004241712A (en) 2003-02-07 2003-02-07 Ultrasonic bonding method

Publications (1)

Publication Number Publication Date
JP2004241712A true JP2004241712A (en) 2004-08-26

Family

ID=32957884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031227A Pending JP2004241712A (en) 2003-02-07 2003-02-07 Ultrasonic bonding method

Country Status (1)

Country Link
JP (1) JP2004241712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8308049B2 (en) 2008-10-22 2012-11-13 Kabushiki Kaisha Toshiba Wire bonding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8308049B2 (en) 2008-10-22 2012-11-13 Kabushiki Kaisha Toshiba Wire bonding method

Similar Documents

Publication Publication Date Title
JPH05218147A (en) Control system
JPH0511664B2 (en)
US20060097029A1 (en) Method of flip-chip bonding
JP2004241712A (en) Ultrasonic bonding method
JP3942738B2 (en) Bump bonding apparatus and method, and semiconductor component manufacturing apparatus
JPH11284028A (en) Bonding method and its device
JP6727747B1 (en) Wire bonding method and wire bonding apparatus
JP3351303B2 (en) Method of bonding electronic components with bumps
JPH08181175A (en) Wire bonding method
JP3709714B2 (en) Wire bonding apparatus and wire bonding method
JPWO2020067191A1 (en) Ultrasonic bonding method
JP3531378B2 (en) Wire bonding equipment
JP3313568B2 (en) Wire bonding apparatus and control method therefor
JP2005079117A (en) Bonder and bonding method of semiconductor device
JP4157260B2 (en) Flip chip mounting method
JP4549335B2 (en) Bump bonding equipment
JP2003258042A (en) Method for wire bonding
JP3498285B2 (en) Semiconductor chip joining method and joining device
JPH11265913A (en) Bonding method for electronic component with bump
JP2004014715A (en) Method for chip bonding and chip bonding apparatus
JP4179273B2 (en) Part joining method
JP3493326B2 (en) Bump forming method and apparatus
JPH11163029A (en) Wire bonding method and device therefor
JP2003224162A (en) Ultrasonic flip chip mounting method and its device
JP4508151B2 (en) Bonding apparatus and bonding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711