JP2004157527A - Variable shape reflecting mirror and manufacturing method thereof - Google Patents

Variable shape reflecting mirror and manufacturing method thereof Download PDF

Info

Publication number
JP2004157527A
JP2004157527A JP2003352342A JP2003352342A JP2004157527A JP 2004157527 A JP2004157527 A JP 2004157527A JP 2003352342 A JP2003352342 A JP 2003352342A JP 2003352342 A JP2003352342 A JP 2003352342A JP 2004157527 A JP2004157527 A JP 2004157527A
Authority
JP
Japan
Prior art keywords
thin film
flexible thin
deformable
shape
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003352342A
Other languages
Japanese (ja)
Other versions
JP4347654B2 (en
JP2004157527A5 (en
Inventor
Shinji Kaneko
新二 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003352342A priority Critical patent/JP4347654B2/en
Publication of JP2004157527A publication Critical patent/JP2004157527A/en
Publication of JP2004157527A5 publication Critical patent/JP2004157527A5/ja
Application granted granted Critical
Publication of JP4347654B2 publication Critical patent/JP4347654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable shape reflecting mirror, which is formed with a deformable film having uniform stiffness configurable with a method of high productivity, operable even at a comparatively low drive voltage, and provides a high imaging performance, without increasing the number of fixed side electrodes. <P>SOLUTION: The mirror is provided with a flexible thin film whose periphery is supported by a frame member, a reflective surface arranged on the film and a plurality of conductive electrodes arranged in the film, and electrostatic force is made to act on the reflective surface to vary the shape through the conductive electrode. The conductive electrode is divided circumferentially around the central part of the film, and also divided in a radial direction. The number of in the circumferential divisions in an external periphery is increased than that of the circumferential ones in the central part. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、可変形状反射鏡に関し、特に、高精度の形状制御が可能である小型の可変形状反射鏡、及びそのような可変形状反射鏡を半導体製造技術を用いて製造する製造方法に関する。   The present invention relates to a deformable reflecting mirror, and more particularly to a small deformable reflecting mirror capable of controlling a shape with high precision, and a manufacturing method for manufacturing such a deformable reflecting mirror using semiconductor manufacturing technology.

光ピックアップなどのマイクロオプティクスに適用される微小な光学系においては、従来は電磁式アクチュエータを用いていたフォーカシング等に関係する機構の簡素化を目的として、反射面の曲率を変えることができる超小型の可変焦点鏡の提案が行われている。また、可変焦点鏡の適用は、小型の撮像用光学系の更なる小型化においても大きく寄与することができる。   In micro optical systems applied to micro optics such as optical pickups, ultra-small optical systems that can change the curvature of the reflecting surface for the purpose of simplifying mechanisms related to focusing etc., which used to use electromagnetic actuators Has been proposed. Further, the application of the variable focus mirror can greatly contribute to further miniaturization of a small-sized imaging optical system.

このような可変焦点鏡では半導体製造技術による、いわゆるMEMS(Micro Electro-Mechanical System)技術を適用する事によって、低コストで高精度な製品の製作が期待できる。この種の技術の一例として、例えば、特許文献1で提案されている技術が挙げられる。この技術について、図17及び図18を用いて説明する。   In such a variable focus mirror, by applying a so-called MEMS (Micro Electro-Mechanical System) technology based on a semiconductor manufacturing technology, it is expected to manufacture a low-cost and highly accurate product. As an example of this type of technology, for example, a technology proposed in Patent Literature 1 is cited. This technique will be described with reference to FIGS.

図17において、ガラス等の絶縁基板11の上面に導電性薄膜からなる固定側の電極層12が被着されている。また、シリコン基板13の一主面には絶縁薄膜として二酸化シリコンの薄膜14が形成されている。シリコン基板13の中央部の他主面には空所15が形成されており、この空所15によって二酸化シリコンの薄膜14の中央部を厚さ方向へ変位可能である。更に、二酸化シリコンの薄膜14には可動側の電極層16が積層されている。また、前述の二酸化シリコンの薄膜14及び電極層16の中央部は反射鏡部17を構成している。そして、この反射鏡部17は、電極層12,16間に印加された電圧により、固定側の電極層12側へ凸入状に変形するようになっている。   In FIG. 17, a fixed-side electrode layer 12 made of a conductive thin film is adhered to an upper surface of an insulating substrate 11 made of glass or the like. On one main surface of the silicon substrate 13, a silicon dioxide thin film 14 is formed as an insulating thin film. A void 15 is formed in the other main surface of the central portion of the silicon substrate 13, and the central portion of the silicon dioxide thin film 14 can be displaced in the thickness direction by the void 15. Further, a movable electrode layer 16 is laminated on the silicon dioxide thin film 14. The central portion of the silicon dioxide thin film 14 and the electrode layer 16 constitutes a reflector 17. The reflecting mirror portion 17 is deformed in a convex shape toward the fixed electrode layer 12 by a voltage applied between the electrode layers 12 and 16.

また、シリコン基板13は、二酸化シリコンの薄膜14側を図面の下側にして絶縁基板11にスペーサ部材18を介して接合されている。なお、シリコン基板13の他主面にも二酸化シリコンの薄膜19が形成されている。   Further, the silicon substrate 13 is joined to the insulating substrate 11 via the spacer member 18 with the silicon dioxide thin film 14 side facing downward in the drawing. A silicon dioxide thin film 19 is also formed on the other main surface of the silicon substrate 13.

このような反射鏡装置の製造は図18(A)〜図18(E)に示すようにして行われる。まず、図18(A)に示すように両面を鏡面研磨した面方位<100>のシリコン基板13の両面に厚さ400〜500nmの二酸化シリコンの薄膜14,19を形成し、更に下側の薄膜14上に厚さ100nm程度の金属膜を電極層16として被着する。   The manufacture of such a reflecting mirror device is performed as shown in FIGS. 18 (A) to 18 (E). First, as shown in FIG. 18 (A), silicon dioxide thin films 14, 19 having a thickness of 400 to 500 nm are formed on both surfaces of a silicon substrate 13 having a plane orientation of <100>, both surfaces of which are mirror-polished. A metal film having a thickness of about 100 nm is deposited as an electrode layer 16 on.

次に図18(B)に示すように所定パターンのフォトレジスト20を塗布し、フォトリソグラフィーにより円形の窓孔21を形成する。その後、基板の下側の面を保護した状態で、フォトレジスト20をマスクとして、フッ酸系の溶液で二酸化シリコンの薄膜14に窓あけを行う。   Next, as shown in FIG. 18B, a photoresist 20 having a predetermined pattern is applied, and a circular window hole 21 is formed by photolithography. After that, while the lower surface of the substrate is protected, a window is formed in the silicon dioxide thin film 14 with a hydrofluoric acid-based solution using the photoresist 20 as a mask.

次に図18(C)に示すようにエチレン・ジアミン・ピロカテコールの水溶液にシリコン基板13を浸して、図18(B)の窓孔21の部分からシリコン基板をエッチングする。この際、図示したようにエッチングは下面側の二酸化シリコンの薄膜14が露出した時点で停止する。このようにして、二酸化シリコンの薄膜14と電極層16よりなる薄膜上の反射鏡部17が残存する。
一方、これとは別に図18(D)に示すように厚さ300μmの絶縁基板11の上面に、固定電極として厚さ100nmの金属膜を電極層12として形成する。
Next, as shown in FIG. 18C, the silicon substrate 13 is immersed in an aqueous solution of ethylene, diamine and pyrocatechol, and the silicon substrate is etched from the window hole 21 in FIG. 18B. At this time, as shown, the etching stops when the silicon dioxide thin film 14 on the lower surface side is exposed. In this manner, the reflecting mirror portion 17 on the thin film composed of the silicon dioxide thin film 14 and the electrode layer 16 remains.
On the other hand, as shown in FIG. 18D, a metal film having a thickness of 100 nm is formed as a fixed electrode on the upper surface of the insulating substrate 11 having a thickness of 300 μm as the electrode layer 12.

次に18(E)に示すように、絶縁基板11上に、厚さ100μm程度のポリエチレン製のスペーサ部材18を介して接着すれば、図17に示した反射鏡装置が製作される。   Next, as shown in FIG. 18 (E), by bonding to the insulating substrate 11 via a polyethylene spacer member 18 having a thickness of about 100 μm, the reflector device shown in FIG. 17 is manufactured.

このような可変形状鏡では、二酸化シリコンの薄膜14と固定側の電極層12との間には均一な電位差が生じることになるが、この場合の変形形状は最大変位量が等しい場合の球面と比較すると概略的に図19のようになり、特に周辺部での変形量が不足して大きな球面収差が生じるので高い結像性能は望めない。更に、小型の反射鏡を撮像用光学系に適用する場合には、斜め入射となるのが一般的で、この場合に良好な結像性能を得るには回転非対称の非球面が必要とされる。   In such a deformable mirror, a uniform potential difference occurs between the silicon dioxide thin film 14 and the fixed-side electrode layer 12, but the deformed shape in this case is different from the spherical surface when the maximum displacement is equal. FIG. 19 schematically shows a comparison, in particular, since the amount of deformation in the peripheral portion is insufficient and large spherical aberration occurs, so that high imaging performance cannot be expected. Further, when a small reflecting mirror is applied to an imaging optical system, it is general that light is obliquely incident. In this case, a rotationally asymmetric aspherical surface is required to obtain good imaging performance. .

このような要求に対して、可変形状鏡を任意に、もしくは特定の理想形状に変形させるためには、固定側電極層を複数の領域に分割して、変形面の電極との間にそれぞれ異なった電位差を与える方法が考えられる。このような電極の分割形態には、同心円状、格子状、ハニカム状などが考えられ、例えば非特許文献1においてはハニカム形状に固定側電極を分割する手法が提案されている。   In response to such demands, in order to deform the deformable mirror arbitrarily or to a specific ideal shape, the fixed-side electrode layer is divided into a plurality of regions, each of which has a different shape from the electrode on the deformed surface. A method of giving a potential difference is considered. Such electrode division forms include concentric circles, grids, and honeycombs. For example, Non-Patent Document 1 proposes a method of dividing the fixed-side electrodes into honeycombs.

また、変形形状を例えば球面や放物面といった特定の形状に合わせ込むための手法としては、非特許文献2で、部位によって厚さが異なる変形面を形成する手法が提案されている。
特開平2−101402号公報 特開平8−334708号公報 J.Opt.Soc.Am.,Vol.67,No.3,March 1977「The membrane mirror as an adaptive optical element」 精密工学会誌Vol.61,No5,1995「Siダイアフラム式可変焦点ミラーの収差軽減」
In addition, as a method for adjusting a deformed shape to a specific shape such as a spherical surface or a paraboloid, Non-Patent Document 2 proposes a method of forming a deformed surface having a different thickness depending on a portion.
JP-A-2-101402 JP-A-8-334708 J. Opt. Soc. Am., Vol. 67, No. 3, March 1977, `` The membrane mirror as an adaptive optical element '' Journal of the Japan Society of Precision Engineering, Vol.61, No5, 1995, "Aberration Reduction of Si Diaphragm Variable Focus Mirror"

しかしながら、固定側電極を複数の領域に分割する手法で高い形状精度を得るためには、電極の分割数を多くする必要がある。つまり、異なった電圧を印加するための多くのリード線の接続を要し、結果として素子の小型化を妨げることになる。加えて、電極数の増大が制御回路の複雑化を招いてしまう。更に、図19に示したように、均一な電位差では、球面や放物面の場合に外周部の変形量が不足するのが一般的で、必然的に外周部に大きな電位差を与えることになるが、これは実質的な駆動電圧を増大させることにつながってしまう。   However, in order to obtain high shape accuracy by a method of dividing the fixed electrode into a plurality of regions, it is necessary to increase the number of divided electrodes. That is, many lead wires for applying different voltages are required to be connected, which hinders miniaturization of the device. In addition, an increase in the number of electrodes leads to a complicated control circuit. Further, as shown in FIG. 19, with a uniform potential difference, the amount of deformation of the outer peripheral portion is generally insufficient in the case of a spherical surface or a paraboloid, and a large potential difference is necessarily applied to the outer peripheral portion. However, this leads to a substantial increase in drive voltage.

一方、変形面の剛性に分布を持たせる手法では、前述のような問題が発生することはないが、厚さもしくは弾性率を局部的に制御するのは難しく、生産性の高い形成方法で高精度の変形形状を得ることが非常に困難である。加えて、例えば厚さに分布を持たせる手法では最も小さい剛性が求められる領域(球面や放物面に変形させる場合は外周部近傍となるのが一般的)で、変形膜を技術的に可能なレベルで最も薄くすることになり、他の領域では必然的にそれよりも厚くすることになる。したがって、平均的な変形膜の厚さが大きくなるので、均一な厚さを用いる場合と比較して大きな駆動電圧を必要とすることになる。   On the other hand, although the above-mentioned problem does not occur in the method of giving a distribution to the rigidity of the deformed surface, it is difficult to locally control the thickness or the elastic modulus, and a high productivity method is required. It is very difficult to obtain an accurate deformed shape. In addition, for example, in the area where the thickness is distributed, the minimum rigidity is required (in the case of deformation into a spherical surface or parabolic surface, it is generally near the outer periphery). It will be thinnest at a certain level, and inevitably thicker in other areas. Therefore, since the average thickness of the deformed film becomes large, a large driving voltage is required as compared with the case where a uniform thickness is used.

本発明は前記の事情に鑑みてなされたもので、固定側電極の数を増やすことなく、生産性の高い方法で構成可能な一様な剛性を有する変形膜で形成され、比較的低い駆動電圧であっても動作可能であって、高い結像性能が得られる可変形状反射鏡、及びそのような可変形状反射鏡の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is formed of a deformable film having uniform rigidity that can be configured in a highly productive manner without increasing the number of fixed electrodes, and has a relatively low driving voltage. It is an object of the present invention to provide a deformable reflecting mirror which is operable even with the above and can obtain high imaging performance, and a method of manufacturing such a deformable reflecting mirror.

前記の目的を達成するために、本願第1の発明による可変形状反射鏡は、反射面と複数の導電性電極とを備え、枠部材に周囲を支持された可撓性薄膜の前記複数の導電性電極に静電気力を作用させて前記反射面の形状を変化させる可変形状反射鏡において、前記複数の導電性電極は、前記可撓性薄膜の中央部を中心とする円周方向に分割されているとともに、半径方向にも分割されており、前記可撓性薄膜は、その外周部における円周方向の分割数が中央部における円周方向の分割数よりも多いことを特徴とする。   In order to achieve the above object, a deformable reflecting mirror according to the first aspect of the present invention includes a reflecting surface and a plurality of conductive electrodes, and the plurality of conductive thin films of a flexible thin film supported around a frame member. In the deformable reflecting mirror that changes the shape of the reflecting surface by applying an electrostatic force to a flexible electrode, the plurality of conductive electrodes are divided in a circumferential direction around a central portion of the flexible thin film. In addition, the flexible thin film is divided in the radial direction, and the number of divisions in the circumferential direction at the outer peripheral portion of the flexible thin film is larger than the number of divisions in the circumferential direction at the central portion.

つまり、可撓性薄膜上に設けられた分割された導電性電極は、外周部における円周方向の分割数が中央部における円周方向の分割数よりも多いので、外周部における反射面の形状の制御が細かく行われる。   In other words, the divided conductive electrode provided on the flexible thin film has a larger number of divisions in the circumferential direction in the outer peripheral portion than in the central portion. Is finely controlled.

また、前記の目的を達成するために、本願第2の発明による可変形状反射鏡は、反射面と複数の導電性電極とを備え、枠部材に周囲を支持された可撓性薄膜の前記複数の導電性電極に静電気力を作用させて前記反射面の形状を変化させる可変形状反射鏡において、前記可撓性薄膜の外周部近傍に、可撓性薄膜の他の領域よりも剛性の低い部位を設けたことを特徴とする。   In order to achieve the above object, a deformable reflecting mirror according to the second invention of the present application includes a reflecting surface and a plurality of conductive electrodes, and the plurality of flexible thin films supported around by a frame member. A deformable mirror that changes the shape of the reflective surface by applying electrostatic force to the conductive electrode of the flexible thin film, in the vicinity of the outer periphery of the flexible thin film, a portion having lower rigidity than other regions of the flexible thin film. Is provided.

つまり、可変形状反射鏡の外周部に剛性の低い部位を設けることにより、この領域での曲げ剛性が低下し、小さな力でも反射面の形状が大きく変形する。   That is, by providing a portion having low rigidity on the outer peripheral portion of the deformable reflecting mirror, the bending rigidity in this region is reduced, and the shape of the reflecting surface is greatly deformed even with a small force.

また、前記の目的を達成するために、本願第3の発明による可変形状反射鏡は、本願第2の発明において、前記剛性の低い部位は、前記可撓性薄膜、前記反射面、又は前記導電性電極の少なくとも一つに離散的に設けられた開口であることを特徴とする。   In order to achieve the above object, in the deformable reflecting mirror according to the third aspect of the present invention, in the second aspect of the present invention, the low rigidity portion may be the flexible thin film, the reflecting surface, or the conductive film. The opening is provided discretely in at least one of the conductive electrodes.

つまり、可変形状反射鏡に、離散的に開口を設けることにより、この領域での曲げ剛性が低下し、小さな力でも反射面の形状が大きく変形する。   That is, by providing discrete openings in the deformable reflecting mirror, the bending rigidity in this region is reduced, and the shape of the reflecting surface is greatly deformed even with a small force.

また、前記の目的を達成するために、本願第4の発明による可変形状反射鏡は、本願第2の発明において、前記可撓性薄膜は、変形時における外周部近傍での、平坦時の前記反射面に対する鉛直方向の変位勾配が部位によって異なっており、変位勾配が大きい部位における前記剛性の低い部位の占める割合が、変位勾配が小さい部位における前記剛性の低い部位の占める割合よりも大きいことを特徴とする。   In order to achieve the above object, a deformable reflecting mirror according to a fourth aspect of the present invention is the deformable mirror according to the second aspect of the present invention, wherein the flexible thin film is provided near the outer peripheral portion at the time of deformation, and at the time of flattening. The displacement gradient in the vertical direction with respect to the reflecting surface is different depending on the region, and the proportion of the low rigidity portion in the portion where the displacement gradient is large is larger than the proportion of the low rigidity portion in the portion where the displacement gradient is small. Features.

つまり、反射面に同じ静電気力を作用させても、剛性の低い部位では変位勾配が大きくなり、剛性の高い部位では変位勾配が小さくなる。   In other words, even when the same electrostatic force is applied to the reflection surface, the displacement gradient becomes large in a portion having low rigidity, and the displacement gradient becomes small in a portion having high rigidity.

また、前記の目的を達成するために、本願第5の発明による可変形状反射鏡は、本願第3の発明において、前記可撓性薄膜は、変形時における外周部近傍での、平坦時の前記反射面に対する鉛直方向の変位勾配が部位によって異なっており、変位勾配が大きい部位における前記開口の占める割合が、変位勾配が小さい部位における前記開口の占める割合よりも大きいことを特徴とする。   In order to achieve the above object, a deformable reflecting mirror according to a fifth aspect of the present invention is the deformable reflecting mirror according to the third aspect of the present invention, wherein the flexible thin film is provided near the outer peripheral portion at the time of deformation and at the time of flattening. The displacement gradient in the vertical direction with respect to the reflecting surface differs depending on the region, and the ratio of the opening in a region with a large displacement gradient is larger than the ratio of the opening in a region with a small displacement gradient.

また、前記の目的を達成するために、本願第6の発明による可変形状反射鏡は、反射面と複数の導電性電極とを備え、枠部材に周囲を支持された可撓性薄膜の前記複数の導電性電極に静電気力を作用させて前記反射面の形状を変化させる可変形状反射鏡において、前記可撓性薄膜の円周方向に沿って剛性の低い部位が設けられており、この剛性の低い部位の剛性の分布は円周方向で異なっていることを特徴とする。   In order to achieve the above object, a deformable reflecting mirror according to a sixth aspect of the present invention includes a reflecting surface and a plurality of conductive electrodes, and the plurality of flexible thin films supported around by a frame member. In the deformable reflecting mirror that changes the shape of the reflecting surface by applying an electrostatic force to the conductive electrode, a portion having low rigidity is provided along the circumferential direction of the flexible thin film, It is characterized in that the distribution of the stiffness of the low part is different in the circumferential direction.

つまり、可撓性薄膜の円周方向に剛性の分布が異なる部位が設けられているので、この剛性の違いにより、同じ静電気力を作用させても反射面の変形量が異なる。   That is, since portions having different rigidity distributions are provided in the circumferential direction of the flexible thin film, the amount of deformation of the reflecting surface is different due to the difference in rigidity even when the same electrostatic force is applied.

また、前記の目的を達成するために、本願第7の発明による可変形状反射鏡は、反射面と複数の導電性電極とを備え、枠部材に周囲を支持された可撓性薄膜の前記複数の導電性電極に静電気力または電磁気力を作用させて前記反射面の形状を変化させる可変形状反射鏡において、前記可撓性薄膜の円周方向に沿って開口が設けられており、この開口の占める割合は円周方向で異なっていることを特徴とする。   In order to achieve the above object, a deformable reflecting mirror according to a seventh aspect of the present invention includes a reflecting surface and a plurality of conductive electrodes, and the plurality of flexible thin films supported around by a frame member. In the deformable reflecting mirror that changes the shape of the reflecting surface by applying an electrostatic force or an electromagnetic force to the conductive electrode, an opening is provided along a circumferential direction of the flexible thin film. It is characterized in that the occupying ratio differs in the circumferential direction.

つまり、可撓性薄膜の円周方向に開口が設けられているので、同じ静電気力を作用させても反射面の変形量が異なる。   That is, since the opening is provided in the circumferential direction of the flexible thin film, the amount of deformation of the reflection surface is different even when the same electrostatic force is applied.

また、前記の目的を達成するために、本願第8の発明による可変形状反射鏡は、固定された下部電極と、枠部材に周囲を支持されており、反射面と複数の導電性電極とを有する可撓性薄膜と、を有する可変形状反射鏡であって、前記下部電極の一部に、部位によって異なる間隔で離散的に配置された開口が設けられており、前記可撓性薄膜の外周部に他の領域よりも剛性の低い部分を設けられていることを特徴とする。   In order to achieve the above object, a deformable reflecting mirror according to an eighth aspect of the present invention includes a fixed lower electrode, a periphery supported by a frame member, and a reflection surface and a plurality of conductive electrodes. And a flexible thin film having a flexible thin film, wherein the lower electrode is provided with openings which are discretely arranged at different intervals depending on the portion, and an outer periphery of the flexible thin film is provided. The portion is provided with a portion having lower rigidity than other regions.

つまり、可撓性薄膜の外周部に他の領域よりも剛性の低い部位を設け、さらに、下部電極にも開口を設けることで、可撓性薄膜の変形がより細かく制御される。   That is, by providing a portion having lower rigidity than the other region on the outer peripheral portion of the flexible thin film, and further providing an opening in the lower electrode, the deformation of the flexible thin film is more finely controlled.

また、前記の目的を達成するために、本願第9の発明による可変形状反射鏡は、本願第8の発明において、前記剛性の低い部位は、前記可撓性薄膜、前記反射面、又は前記導電性電極の少なくとも一つに離散的に設けられた開口であることを特徴とする。   In order to achieve the above object, a ninth aspect of the present invention provides the deformable reflecting mirror according to the eighth aspect of the present invention, wherein the low rigidity portion is formed of the flexible thin film, the reflecting surface, or the conductive film. The opening is provided discretely in at least one of the conductive electrodes.

つまり、可撓性薄膜の外周部に他の領域よりも剛性の低い部位を設け、更に、下部電極にも開口を設けることで、可撓性薄膜の変形がより細かく制御される。   That is, by providing a portion having lower rigidity than the other region on the outer peripheral portion of the flexible thin film, and further providing an opening in the lower electrode, the deformation of the flexible thin film is more finely controlled.

また、前記の目的を達成するために、本願第10の発明による可変形状反射鏡の製造方法は、半導体基板の第1及び第2の主面に保護膜を形成する工程と、前記第1の主面に可撓性薄膜を形成する工程と、フォトリソグラフィーにより、前記可撓性薄膜に開口を離散的に形成する工程と、前記可撓性薄膜上に電極を形成する工程と、前記半導体基板の第2の主面からフォトリソグラフィーによる開口を形成し、残った半導体基板により外枠を形成する工程とを有することを特徴とする。   In order to achieve the above object, a method of manufacturing a deformable reflector according to a tenth aspect of the present invention includes a step of forming a protective film on first and second main surfaces of a semiconductor substrate; A step of forming a flexible thin film on the main surface, a step of discretely forming openings in the flexible thin film by photolithography, a step of forming an electrode on the flexible thin film, Forming an opening by photolithography from the second main surface, and forming an outer frame with the remaining semiconductor substrate.

つまり、可撓性薄膜にフォトリソグラフィーで開口を形成し、開口を形成した後に電極を形成するので、微細で高精度の貫通孔が容易に形成される。   That is, since an opening is formed in the flexible thin film by photolithography, and the electrode is formed after the opening is formed, a fine and high-precision through hole is easily formed.

本発明によれば、固定側電極の数を増やすことなく、生産性の高い方法で構成可能な一様な剛性を有する変形膜で形成され、比較的低い駆動電圧であっても動作可能であって、高い結像性能が得られる可変形状反射鏡、及びそのような可変形状反射鏡の製造方法を提供することができる。   According to the present invention, without increasing the number of fixed-side electrodes, it is formed of a deformable film having uniform rigidity that can be configured in a highly productive manner, and can operate even at a relatively low drive voltage. Thus, it is possible to provide a deformable reflecting mirror capable of obtaining high imaging performance and a method for manufacturing such a deformable reflecting mirror.

以下、本発明の実施の形態を図面を参照して説明する。
[第1の実施の形態]
本発明の第1の実施の形態について図1〜図6を用いて説明する。図1は本実施の形態の可変形状反射鏡を適用する光学系の構成を模式的に示したものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 schematically shows a configuration of an optical system to which the deformable reflecting mirror according to the present embodiment is applied.

入射側の前群レンズ101と固体撮像素子102側の後群レンズ103とは光軸が直交するように配置され、その交点に可変形状反射鏡104が配置される。この可変形状反射鏡104の反射面を有する変形膜105は、静電気力によって平面(図中の破線の状態)から凹面(図中の実線の状態)まで連続的に変形することによって、光学系の焦点位置を変化させる。すなわち、可変形状反射鏡104の変形によってレンズ群の繰り出しを行うことなくピント調整が可能となる。   The front-group lens 101 on the incident side and the rear-group lens 103 on the solid-state imaging device 102 are arranged so that their optical axes are orthogonal to each other, and a variable-shape reflecting mirror 104 is arranged at the intersection. The deformable film 105 having the reflecting surface of the deformable reflecting mirror 104 is continuously deformed from a flat surface (shown by a broken line in the drawing) to a concave surface (shown by a solid line in the drawing) by an electrostatic force, thereby forming an optical system. Change the focus position. That is, the focus can be adjusted without extending the lens group by deforming the deformable reflecting mirror 104.

この場合、反射面が平面の時には無限遠にピントが合い、凹面の時に近点にピントが合うことになるが、凹面鏡に対しては光束が斜め方向から入射することになるので、その変形面が単純な球面や放物面の場合には、大きな球面収差が発生する。このとき、高精細の撮像を行うことはできないので、反射面を回転非対称の自由曲面に変形させる必要がある。   In this case, when the reflecting surface is flat, the focus is at infinity, and when the reflecting surface is concave, the focus is on the near point. However, since the light flux enters the concave mirror obliquely, the deformed surface In the case where is a simple spherical surface or parabolic surface, large spherical aberration occurs. At this time, since high-resolution imaging cannot be performed, it is necessary to transform the reflecting surface into a rotationally asymmetric free-form surface.

図2及び図3は実際のレンズ構成に対して近点時の球面収差を抑制するように設計した反射面の形状の例を示している。図2は、反射面の形状を立体的に示した図である。ここで反射面が変形する領域のサイズは、半径3mmの一対の半円で、6mm×2mmの長方形を挟んだ形状となっている。図3は反射面の変位を表したコンター図である。なお、この図3には、図2及び図3で示す反射面を持つ可変形状反射鏡を図1の光学系に適用した場合の固体撮像素子102の有効画素に対するイメージエリアも併せて示している。   2 and 3 show examples of the shape of the reflecting surface designed to suppress the spherical aberration at the near point with respect to the actual lens configuration. FIG. 2 is a diagram three-dimensionally showing the shape of the reflection surface. Here, the size of the region where the reflection surface is deformed is a shape in which a pair of semicircles having a radius of 3 mm sandwich a rectangle of 6 mm × 2 mm. FIG. 3 is a contour diagram showing the displacement of the reflection surface. Note that FIG. 3 also shows an image area for an effective pixel of the solid-state imaging device 102 when the deformable reflecting mirror having the reflecting surface shown in FIGS. 2 and 3 is applied to the optical system of FIG. .

ここで、可変形状反射鏡の変形面に対して一様な静電気力を作用させた場合の変形形状と、図2あるいは図3に示した光学設計に基づく理想形状との誤差の分布を図4に示す。実際には図示されたイメージエリア内の誤差のみが問題となるが、誤差は変形面の外周近傍において特に大きくなっている。加えて、変形面の外周部では、円周方向に対して誤差が一様ではなく、誤差の程度について大きな差があることがわかる。当然のことであるが、このような誤差分布は光学系の設計によって異なる。しかし、通常の回転対称形状のレンズと組み合わせる場合はおおむね同様の傾向を示すことになる。   Here, the distribution of the error between the deformed shape when uniform electrostatic force is applied to the deformed surface of the deformable reflecting mirror and the ideal shape based on the optical design shown in FIG. 2 or FIG. 3 is shown in FIG. Shown in Actually, only the error in the illustrated image area becomes a problem, but the error is particularly large near the outer periphery of the deformed surface. In addition, it can be seen that the error is not uniform in the outer circumferential portion of the deformed surface in the circumferential direction, and there is a large difference in the degree of the error. As a matter of course, such an error distribution differs depending on the design of the optical system. However, when combined with a normal rotationally symmetric lens, the same tendency is generally exhibited.

また、高精細の撮像を行うためには反射面の変形形状を理想形状に近づけることが不可欠であり、そのためには前述の従来技術で提案されているように、対向する電極の一方を分割して、可変形状反射鏡の変形面に作用させる静電気力に分布を持たせることが必要である。   In addition, in order to perform high-definition imaging, it is indispensable to bring the deformed shape of the reflecting surface closer to the ideal shape. For that purpose, as proposed in the above-described conventional technology, one of the opposing electrodes is divided. Therefore, it is necessary to provide a distribution to the electrostatic force acting on the deformable surface of the deformable reflecting mirror.

ここで、本実施の形態における可変形状反射鏡104の構成について図5を用いて説明する。可変形状反射鏡104は、上部基板106と下部基板107を、下部基板107に形成されたスペーサ108を隔てて張り合わせた構成となっている。なお、図5では、説明のために上部基板106と下部基板107とを分離した状態を示している。上部基板106は枠部材109によって支持された変形膜105を有している。また、下部基板107上の、変形膜105に対向する領域には複数の領域に分割された固定電極110が形成されている。なお、変形膜105は特許請求の範囲に記載の「可撓性薄膜」に対応する。   Here, the configuration of the deformable reflecting mirror 104 in the present embodiment will be described with reference to FIG. The deformable reflecting mirror 104 has a configuration in which an upper substrate 106 and a lower substrate 107 are bonded together with a spacer 108 formed on the lower substrate 107 therebetween. Note that FIG. 5 shows a state in which the upper substrate 106 and the lower substrate 107 are separated for explanation. The upper substrate 106 has a deformation film 105 supported by a frame member 109. Further, a fixed electrode 110 divided into a plurality of regions is formed in a region on the lower substrate 107 facing the deformation film 105. The deformable film 105 corresponds to a “flexible thin film” described in the claims.

また、ここでは図示を省略しているが、変形膜105には「反射面」が形成されている。更に、この変形膜105は導電性を有するものであって、これと固定電極110の各領域は外部コントローラに電気的に接続され、各々独立した電位を与えられるものである。   Although not shown here, a “reflective surface” is formed on the deformable film 105. Further, the deformable film 105 has conductivity, and the respective regions of the deformable film 105 and the fixed electrode 110 are electrically connected to an external controller to be given independent potentials.

なお、枠部材109の光入射側を黒く塗装するか、変形膜105のイメージエリアに開口を設けた黒い板を張り付けておくことがフレア防止上望ましい。   It is desirable to paint the light incident side of the frame member 109 black or to attach a black plate having an opening in the image area of the deformable film 105 in order to prevent flare.

図6は、図2あるいは図3において示した形状に合わせ込むように分割した固定電極110の形状と、この中心近傍に作用させる静電気力を1とした場合に、他の領域に作用させる静電気力を示している。このように静電気力を作用させれば、イメージエリアのほぼ全域で形状誤差を100nm以下とすることができる。   FIG. 6 shows the shape of the fixed electrode 110 divided so as to conform to the shape shown in FIG. 2 or FIG. 3, and the electrostatic force acting on other areas when the electrostatic force acting on the vicinity of the center is set to 1. Is shown. By applying the electrostatic force in this manner, the shape error can be reduced to 100 nm or less over almost the entire image area.

ここで、図6から判るように、固定電極110の円周方向での分割線は、変形領域の外周部では中心部と比較して細かく分割されている。これは、前述したように、変形領域の外周部では中心近傍と比較して、円周方向に対する誤差の違いが大きいので、細かく静電気力を作用させる必要があることを示している。なお、半径方向への分割線に関しては、図3に示した等高線にほぼ沿った形状となっている。   Here, as can be seen from FIG. 6, the dividing line in the circumferential direction of the fixed electrode 110 is finely divided at the outer peripheral portion of the deformation region as compared with the central portion. This indicates that, as described above, the difference in the error in the circumferential direction is larger in the outer peripheral portion of the deformation region than in the vicinity of the center, so that it is necessary to apply electrostatic force finely. Note that the dividing line in the radial direction has a shape substantially along the contour line shown in FIG.

また、図3においてイメージエリア外周もしくは変形領域外周を複数の等高線が横切っていることから判るように、光学設計上の変形領域外周の高さは一様でない。しかし、可変形状反射鏡の場合は、その構造上、変形領域外周の高さを等しくする必要があり、変形領域外周からイメージエリア外周までの領域では、半径方向の勾配が、円周方向で大きく異なるのが一般的である。   In addition, as can be seen from FIG. 3, a plurality of contour lines cross the outer circumference of the image area or the outer circumference of the deformation area, the height of the outer circumference of the deformation area in the optical design is not uniform. However, in the case of a deformable reflecting mirror, it is necessary to make the height of the outer periphery of the deformation area equal due to its structure, and in the area from the outer circumference of the deformation area to the outer circumference of the image area, the radial gradient is large in the circumferential direction. It is generally different.

したがって、誤差量の円周方向での違いが比較的大きくなる変形領域の外周部の電極を、中心近傍の電極よりも細かく分割することによって、単純に矩形状もしくはハニカム状に電極を分割する手法と比較して、より少ない分割数で理想形状との誤差を小さくすることができる。   Therefore, the electrode at the outer peripheral portion of the deformation region where the difference in the amount of error in the circumferential direction is relatively large is divided more finely than the electrode near the center, thereby simply dividing the electrode into a rectangular shape or a honeycomb shape. The error from the ideal shape can be reduced with a smaller number of divisions as compared with.

[第2の実施の形態]
本発明の第2の実施の形態について図7及び図8を用いて説明する。第1の実施の形態にあっては図5に示したように、中心部と比較して外周部に著しく大きな静電気力を作用させる必要がある。このため、外周部には特に高電圧を印加する必要があり、駆動電圧の増大につながる。この原因の1つは変形領域の外周部では変形膜が完全に固定されており、この領域で急峻に変形膜を曲げるには大きな力を有することにある。
[Second embodiment]
A second embodiment of the present invention will be described with reference to FIGS. In the first embodiment, as shown in FIG. 5, it is necessary to apply an extremely large electrostatic force to the outer peripheral portion as compared to the central portion. Therefore, it is necessary to apply a particularly high voltage to the outer peripheral portion, which leads to an increase in the driving voltage. One of the causes is that the deformed film is completely fixed in the outer peripheral portion of the deformed region, and a large force is required to sharply bend the deformed film in this region.

この問題はイメージエリアから変形領域外周までの距離を大きくすることによって回避できるが、これは可変形状反射鏡自体の大型化につながるので望ましくない。そこで、本第2の実施の形態の目的は、駆動電圧を高くすることなく小型で形状精度の高い可変形状反射鏡を得ることにある。   This problem can be avoided by increasing the distance from the image area to the outer periphery of the deformation area, but this is not desirable because it leads to an increase in the size of the deformable reflecting mirror itself. Therefore, an object of the second embodiment is to obtain a small-sized variable-shape reflecting mirror with high shape accuracy without increasing the driving voltage.

図7は本実施の形態の可変形状反射鏡の上部基板の形状を示している。枠部材201に支持された直径7.5mmの円形の変形膜202は、反射膜兼電極膜となる厚さ50nmのアルミ薄膜203と厚さ1μmのポリイミド薄膜204との2層構造となっており、その外周部近傍において、等しい間隔で円形の開口205が形成されている。   FIG. 7 shows the shape of the upper substrate of the deformable reflecting mirror according to the present embodiment. The circular deformable film 202 having a diameter of 7.5 mm supported by the frame member 201 has a two-layer structure of an aluminum thin film 203 having a thickness of 50 nm serving as a reflective film and an electrode film and a polyimide thin film 204 having a thickness of 1 μm. In the vicinity of the outer peripheral portion, circular openings 205 are formed at equal intervals.

この上部基板は半導体製造技術に基づいて製作され、また、開口205の形成は、通常のフォトリソグラフィー技術を適用することで簡単に行うことができる。このように外周部に離散的に開口を設けることによって、外周部での変形膜の曲げ剛性が著しく低下し、結果として外周部にそれほど強い静電気力を作用させなくても所定の形状に変形させることが可能となる。   The upper substrate is manufactured based on a semiconductor manufacturing technique, and the formation of the opening 205 can be easily performed by applying a normal photolithography technique. By providing discrete openings in the outer peripheral portion in this way, the bending rigidity of the deformable film at the outer peripheral portion is significantly reduced, and as a result, the deformable film is deformed into a predetermined shape without applying a strong electrostatic force to the outer peripheral portion. It becomes possible.

なお、図7においては図をわかり易くするために比較的大きな開口を記述したが、あまり開口のサイズが大きいと反射面に剛性の不均一に起因したうねりが生じる可能性があるので、可能な限り小さな開口を細かな間隔で配置することが望ましい。   Although a relatively large opening is described in FIG. 7 for easy understanding, if the size of the opening is too large, swelling due to uneven rigidity may occur on the reflecting surface. It is desirable to arrange small openings at fine intervals.

また、本実施の形態にあっては、開口205を完全な貫通孔としているが、これは離散的に曲げ剛性の小さい領域を形成することが肝要であるからで、アルミ薄膜203もしくはポリイミド薄膜204のいずれか一方のみに開口を形成してもよい。   Further, in the present embodiment, the opening 205 is a complete through-hole. However, since it is important to discretely form a region having low bending rigidity, the aluminum thin film 203 or the polyimide thin film 204 is required. The opening may be formed only in any one of them.

また、本実施の形態では円周方向に1列の開口を形成しているが、これを図8に示すように2列とすることも可能である。このように複数列配置すれば、それだけ大幅にこの領域での曲げ剛性を低下させることができる。   Further, in this embodiment, one row of openings is formed in the circumferential direction, but it is also possible to form two rows as shown in FIG. By arranging a plurality of rows in this manner, the bending rigidity in this area can be significantly reduced.

[第3の実施の形態]
次に、本発明の第3の実施の形態について、図9及び図10を用いて説明する。
図9は本第3の実施の形態における可変形状反射鏡の上部基板の形状を示している。枠部材301に支持された変形膜302は反射膜兼電極膜となる厚さ50nmのアルミ薄膜303と、厚さ1μmのポリイミド薄膜304の2層構造となっており、その外周部近傍において、不均一な間隔で円形の開口305が形成されている。一般的に、図1に示したような構成で適用される可変形状反射鏡は回転非対称の変形形状が求められるので、外周部近傍における中心方向への変位勾配は部位によって異なる。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIGS.
FIG. 9 shows the shape of the upper substrate of the deformable reflecting mirror according to the third embodiment. The deformation film 302 supported by the frame member 301 has a two-layer structure of an aluminum thin film 303 having a thickness of 50 nm serving as a reflection film and an electrode film and a polyimide thin film 304 having a thickness of 1 μm. Circular openings 305 are formed at uniform intervals. In general, a deformable reflecting mirror applied in the configuration as shown in FIG. 1 is required to have a rotationally asymmetric deformed shape. Therefore, the displacement gradient toward the center in the vicinity of the outer peripheral portion differs depending on the portion.

図10は本実施の形態における光学設計に基づく変形形状を立体的に示している。ここで、可変形状反射鏡の変形領域は図9に示すような直径7.5mmの円形である。このとき、図中のCで示した部位を基点として、外周の円周方向に反時計回りで、中心部に向かう平均変位勾配を示したのが図11である。この図から判るように、図9のC,Eの部位では変位勾配が小さく、D,Fの部位では変位勾配が大きい。このため、変形膜302に静電気力を作用させる場合には、C,Eの部位では曲げ剛性を大きくして、D,Fの領域では曲げ剛性が小さくなるようにすることが望ましい。このとき、外周部の曲げ剛性は開口305の間隔に依存するので、この間隔を小さくすれば曲げ剛性を小さくすることができる。一方、間隔を大きくする、もしくは開口305を形成しないことによって曲げ剛性を大きくすることができる。   FIG. 10 three-dimensionally shows a deformed shape based on the optical design in the present embodiment. Here, the deformation area of the deformable reflecting mirror is a circle having a diameter of 7.5 mm as shown in FIG. At this time, FIG. 11 shows the average displacement gradient toward the center in the counterclockwise direction in the circumferential direction of the outer circumference with the portion indicated by C in the figure as a base point. As can be seen from this figure, the displacement gradient is small at the portions C and E in FIG. 9 and large at the portions D and F in FIG. For this reason, when applying an electrostatic force to the deformable film 302, it is desirable that the bending stiffness be increased in the portions C and E and be reduced in the regions D and F. At this time, since the bending rigidity of the outer peripheral portion depends on the interval between the openings 305, the bending rigidity can be reduced by reducing the interval. On the other hand, by increasing the interval or not forming the opening 305, the bending rigidity can be increased.

したがって、外周部の各部位の変位勾配に応じて開口305の間隔を調整することによって、変形膜302に作用させる静電気力を変形膜の部位によって大きく変えることなく、図10に示された変形形状に近づけることができる。   Therefore, by adjusting the interval between the openings 305 in accordance with the displacement gradient of each portion of the outer peripheral portion, the electrostatic force acting on the deformable film 302 does not largely change depending on the portions of the deformable film, and the deformed shape shown in FIG. Can be approached.

なお、本実施の形態においては全ての開口305の大きさ及び形状を等しくして間隔を部位によって異なるようにしたが、同一の間隔で開口の大きさもしくは形状を変えることによっても同様の効果が得られることは言うまでもない。また、前述の図8に示したのと同様に、開口305を2列に配置することによって部位による曲げ剛性の差を大きくすることも可能である。   In the present embodiment, the size and shape of all the openings 305 are equalized so that the intervals are different depending on the portions. However, the same effect can be obtained by changing the size or shape of the openings at the same interval. Needless to say, it can be obtained. Also, as shown in FIG. 8 described above, by disposing the openings 305 in two rows, it is possible to increase the difference in bending stiffness between the parts.

[第4の実施の形態]
次に、本発明の第4の実施の形態について図12を用いて説明する。
図12は本実施の形態における可変形状反射鏡の上部基板の形態を示している。枠部材401に支持された変形膜402は反射膜兼電極膜となる厚さ50nmのアルミ薄膜403と厚さ1μmのポリイミド薄膜404との2層構造となっており、その外周部近傍において、不均一な間隔で円形の開口405が形成され、変形膜402の中心から半径2mmの円周上に不均一な間隔で円形の開口406が形成されている。変形膜402の変形すべき形状については第3の実施の形態と同じ図10に示された形状とし、変形領域に関しても図10に示された形状である。また、開口405は、図9における開口305と同じ形状、間隔で配置されているものとする。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG.
FIG. 12 shows a form of the upper substrate of the deformable reflecting mirror in the present embodiment. The deformation film 402 supported by the frame member 401 has a two-layer structure of an aluminum thin film 403 having a thickness of 50 nm serving as a reflection film and an electrode film and a polyimide thin film 404 having a thickness of 1 μm. Circular openings 405 are formed at uniform intervals, and circular openings 406 are formed at irregular intervals on a circumference having a radius of 2 mm from the center of the deformation film 402. The shape of the deformation film 402 to be deformed is the same as that of the third embodiment shown in FIG. 10, and the deformation region is also the shape shown in FIG. The openings 405 are arranged at the same shape and at the same interval as the openings 305 in FIG.

ここで、図12に示された変形膜402の中心を中心とする半径2mmの円周上で図中のGに示した部位を基点として円周方向に反時計回りで、中心部に向かう平均変位勾配を示したのが図13である。この図から判るように、図12のG,Iの部位では変位勾配が大きく、H,Jの部位では変位勾配が小さい。このため、変形膜402に静電気力を作用させる場合には、G,Iの部位では剛性を小さくして、H,Jの領域では剛性が大きくなるようにすることが望ましい。このとき、図12の円周GHIJ近傍における剛性は開口406の間隔に依存するので、この間隔を小さくすれば剛性を小さくすることができる。一方、間隔を大きくする、もしくは開口406を形成しないことによって剛性を相対的に大きくすることができる。   Here, on the circumference having a radius of 2 mm centered on the center of the deformable film 402 shown in FIG. 12, the average going toward the center in the counterclockwise direction in the circumferential direction with the portion shown in FIG. FIG. 13 shows the displacement gradient. As can be seen from this figure, the displacement gradient is large at the portions G and I in FIG. 12, and small at the portions H and J in FIG. For this reason, when applying an electrostatic force to the deformable film 402, it is desirable that the rigidity be reduced in the G and I regions and the rigidity be increased in the H and J regions. At this time, the rigidity in the vicinity of the circumference GHIJ in FIG. 12 depends on the interval between the openings 406. Therefore, the rigidity can be reduced by reducing the interval. On the other hand, by increasing the interval or not forming the opening 406, the rigidity can be relatively increased.

したがって、外周部の各部位の変位勾配に応じて開口406の間隔を調整することによって、変形膜402に作用させる静電気力を部位によって大きく変えることなく、図10に示された変形形状に近づけることができる。   Therefore, by adjusting the interval between the openings 406 in accordance with the displacement gradient of each portion of the outer peripheral portion, the electrostatic force acting on the deformable film 402 can be brought close to the deformed shape shown in FIG. Can be.

なお、本実施の形態においては全ての開口406の大きさ及び形状を等しくして間隔を部位によって異なるようにしたが、同一の間隔で開口の大きさもしくは形状を変えることによっても同様の効果が得られることは言うまでもない。   In the present embodiment, the size and shape of all the openings 406 are equalized so that the interval differs depending on the region. However, the same effect can be obtained by changing the size or shape of the openings at the same interval. Needless to say, it can be obtained.

また、図8に示したのと同様に、開口406を2列に配置することによって部位による曲げ剛性の差を大きくすることも可能である。更に、本実施の形態にあっては説明を簡単にするために、変形膜402に形成する開口406を円周GHIJ上に限って配置したが、開口406は変位勾配に応じた密度で変形膜402全面に配置しても良いことは言うまでもない。   Also, as shown in FIG. 8, by disposing the openings 406 in two rows, it is possible to increase the difference in bending stiffness depending on the location. Further, in the present embodiment, for the sake of simplicity, the opening 406 formed in the deformable film 402 is arranged only on the circumference GHIJ, but the opening 406 has a density corresponding to the displacement gradient. Needless to say, it may be arranged on the entire surface 402.

更に、均一な密度で円周GHIJ上もしくは変形膜402の全面に開口406を形成しても、変形膜402の剛性を、低下させる効果があり、駆動電圧の低減に寄与できる。また、第2の実施の形態及び第3の実施の形態の場合と異なり、イメージエリア内に開口406を形成する本実施の形態の手法では、光学系の結像性能がある程度低下するのは避けられず、開口406の数は許容される結像性能の低下に応じて決められることになる。開口406の大きさについては端部での回折及び光量損失の両面から可能な限り小さくすることが望ましく、光の波長以下の直径とすることが特に望ましい。   Furthermore, even if the openings 406 are formed on the circumference GHIJ or on the entire surface of the deformed film 402 at a uniform density, the rigidity of the deformed film 402 is reduced, and the driving voltage can be reduced. Also, unlike the second and third embodiments, in the method of the present embodiment in which the opening 406 is formed in the image area, the imaging performance of the optical system is not reduced to some extent. However, the number of apertures 406 is determined according to the permissible degradation of the imaging performance. The size of the aperture 406 is desirably as small as possible in terms of both diffraction at the end and light loss, and is particularly desirably a diameter equal to or smaller than the wavelength of light.

また、本実施の形態にあっては、外周部近傍と半径2mmの円周上の、2つの円周上に開口405もしくは406を設けたが、より多くの円周上の変位勾配に応じた密度の開口を配置したり、変形膜の全面にわたって変形すべき形状の変位勾配に応じた密度の開口を設けても良い。さらに、本実施の形態では変形膜402を円形としたが、楕円形などの他の形状であっても同様に適用可能であることは言うまでもない。   In the present embodiment, the openings 405 or 406 are provided on two circumferences near the outer circumference and on a circumference with a radius of 2 mm. An opening having a density may be provided, or an opening having a density corresponding to a displacement gradient of a shape to be deformed over the entire surface of the deformable film. Furthermore, in the present embodiment, the deformable film 402 has a circular shape, but it goes without saying that other shapes such as an elliptical shape can be similarly applied.

また、第2の実施の形態から本第4の実施の形態にあっては、前述の第1の実施の形態に示した静電駆動式可変形状反射鏡の構成を前提に説明したが、変形膜にコイルを形成して、それに直交する磁界を発生させる磁石を配置した電磁式可変形状反射鏡に適用することも可能である。電磁式可変形状反射鏡、特に小型の電磁式の場合には、例えば特許文献2に記載されているように、その構造上、変形膜の各部位で異なる力を作用させることが難しい。このため、第2の実施の形態から本第4の実施の形態に示したように、変形膜に剛性分布を持たせる手法は形状の制御性を考えると特に有効である。   Further, in the second to fourth embodiments, the description has been made on the premise of the configuration of the electrostatically driven variable shape reflecting mirror shown in the first embodiment. It is also possible to apply the present invention to an electromagnetic deformable reflecting mirror in which a coil is formed on a film and a magnet for generating a magnetic field orthogonal to the coil is arranged. In the case of an electromagnetic variable shape reflecting mirror, particularly a small electromagnetic type, it is difficult to apply different forces to each part of the deformable film due to its structure, as described in Patent Document 2, for example. For this reason, as shown in the second embodiment to the fourth embodiment, the method of giving the rigidity distribution to the deformable film is particularly effective considering the controllability of the shape.

次に本実施の形態における可変形状反射鏡の上部基板の製造方法について、図14(A)〜図14(D)を用いて説明する。まず、図14(A)に示すようにシリコン基板451の両面にシリコン窒化膜452を形成し、裏面側のシリコン窒化膜に通常のフォトリソグラフィー技術により開口部453を形成する。   Next, a method of manufacturing the upper substrate of the deformable reflecting mirror according to the present embodiment will be described with reference to FIGS. First, as shown in FIG. 14A, a silicon nitride film 452 is formed on both surfaces of a silicon substrate 451, and an opening 453 is formed in the silicon nitride film on the back surface by ordinary photolithography.

次に、図14(B)に示すように表面側にスピンコートによって厚さ1μmのポリイミド薄膜404を形成し、フォトリソグラフィー技術によってポリイミド薄膜404の所定部位に開口405及び開口406を形成する。   Next, as shown in FIG. 14B, a polyimide thin film 404 having a thickness of 1 μm is formed on the surface side by spin coating, and openings 405 and 406 are formed at predetermined portions of the polyimide thin film 404 by photolithography.

次に、図14(C)に示すように表面側を保護した状態で裏面側からシリコン窒化膜の開口部453からアルカリ系水溶液で表面側のシリコン窒化膜452が露出するまでシリコン基板をエッチングする。この際、シリコン基板451の残存部位が上部基板の枠部材401となる。   Next, as shown in FIG. 14 (C), the silicon substrate is etched from the back surface side with the alkaline solution until the silicon nitride film 452 on the front surface is exposed from the back surface while protecting the front surface side. . At this time, the remaining portion of the silicon substrate 451 becomes the frame member 401 of the upper substrate.

次に図14(D)に示すように反応性イオンエッチングによって裏面側から露出した表面側のシリコン窒化膜452をエッチングする。次に表面側に厚さ50nmのアルミ薄膜403をスパッタもしくは蒸着で形成する。この時、開口405及び開口406の大きさをアルミ薄膜403の厚さよりも十分に大きくすることによって、開口405及び開口406は貫通孔となる。ここで、アルミ薄膜403は反射面兼静電気力を作用させるための電極として機能する。   Next, as shown in FIG. 14D, the silicon nitride film 452 on the front side exposed from the back side is etched by reactive ion etching. Next, an aluminum thin film 403 having a thickness of 50 nm is formed on the surface side by sputtering or vapor deposition. At this time, by making the size of the openings 405 and 406 sufficiently larger than the thickness of the aluminum thin film 403, the openings 405 and 406 become through holes. Here, the aluminum thin film 403 functions as a reflection surface and an electrode for applying an electrostatic force.

このようにして貫通孔をフォトリソグラフィーで形成することによって、微細かつ多数の貫通孔を高精度に形成することが容易に可能となる。   By forming the through holes by photolithography in this way, it is possible to easily form a large number of fine through holes with high precision.

次に、本実施の形態における可変形状反射鏡の上部基板の他の製造方法について図15(A)〜図15(D)を用いて説明する。まず、図14(A)に示したようにシリコン基板451の両面にシリコン窒化膜452を形成し、裏面側のシリコン窒化膜に通常のフォトリソグラフィー技術で開口部453を形成した後、図15(A)に示すように表面側にスピンコートによって厚さ1μmのポリイミド薄膜404と厚さ50nmのアルミ薄膜403を順次形成する。   Next, another method of manufacturing the upper substrate of the deformable reflecting mirror according to the present embodiment will be described with reference to FIGS. First, as shown in FIG. 14A, a silicon nitride film 452 is formed on both surfaces of a silicon substrate 451, and an opening 453 is formed in the silicon nitride film on the back surface by ordinary photolithography. 1A, a polyimide thin film 404 having a thickness of 1 μm and an aluminum thin film 403 having a thickness of 50 nm are sequentially formed on the surface side by spin coating.

次に、図15(B)に示すように、通常のフォトリソグラフィー技術によってアルミ薄膜403に開口454及び開口455を形成する。これらは、図14(B)における開口405及び開口406の部位にそれぞれ対応する。
次に、図15(C)に示すように、表面側を保護した状態で裏面側からシリコン窒化膜の開口部453からアルカリ系水溶液で表面側のシリコン窒化膜452が露出するまでシリコン基板をエッチングする。
次に、図15(D)に示すように反応性イオンエッチングによって裏面側から露出した表面側のシリコン窒化膜452をエッチングする。
Next, as shown in FIG. 15B, an opening 454 and an opening 455 are formed in the aluminum thin film 403 by a normal photolithography technique. These correspond to the opening 405 and the opening 406 in FIG.
Next, as shown in FIG. 15C, the silicon substrate is etched from the back surface side with an alkaline aqueous solution until the silicon nitride film 452 on the front surface is exposed from the back surface while protecting the front surface. I do.
Next, as shown in FIG. 15D, the silicon nitride film 452 on the front side exposed from the back side is etched by reactive ion etching.

このような製造方法に基づく上部基板にあっては開口454及び開口455は貫通孔ではないが、該当領域にあっては変形膜の剛性が低下するため、貫通孔を形成した場合と比較して程度の差はあるものの同様の効果が期待できる。   In the upper substrate based on such a manufacturing method, the openings 454 and 455 are not through-holes, but the rigidity of the deformable film is reduced in the corresponding region. A similar effect can be expected, though varying in degree.

[第5の実施の形態]
本発明の第5の実施の形態について図16を用いて説明する。図16は本実施の形態における下部基板の電極構造を示している。シリコン基板501に絶縁膜502を介して下部電極503が形成され、この中心部近傍には多数の開口504が形成されている。また、下部電極503の外側にはスペーサ505が形成されており、これは図5におけるスペーサ108に対応し、これに張り合わされる上部基板は図301に示されたもので、変形領域の外周に不均一間隔で開口が設けられているものとする。また、本実施の形態の可変形状反射鏡の動作に当たっては、変形膜とシリコン基板501とを接地して、下部電極503に電圧を印加するものとする。なお、シリコン基板501の代わりにガラス基板を用いてもよい。この場合は、絶縁膜502が不要である。
[Fifth Embodiment]
A fifth embodiment of the present invention will be described with reference to FIG. FIG. 16 shows the electrode structure of the lower substrate in the present embodiment. A lower electrode 503 is formed on a silicon substrate 501 with an insulating film 502 interposed therebetween, and a number of openings 504 are formed near the center. A spacer 505 is formed outside the lower electrode 503. The spacer 505 corresponds to the spacer 108 in FIG. 5, and the upper substrate bonded thereto is the one shown in FIG. It is assumed that openings are provided at uneven intervals. In the operation of the deformable reflecting mirror of the present embodiment, the deformed film and the silicon substrate 501 are grounded, and a voltage is applied to the lower electrode 503. Note that a glass substrate may be used instead of the silicon substrate 501. In this case, the insulating film 502 is unnecessary.

前述の第3の実施の形態おいて説明した上部基板では、外周部における円周方向の変位勾配に応じて曲げ剛性を変えることによって光学的な設計形状に近づけたが、一般的には変形領域に均一な電位差を与えて静電気力を作用させると理想形状との誤差が生じるので、変形膜に開口を設けない場合と比較すると少数で良いものの、第1の実施の形態に示したように下部電極をいくつかの領域に分割する必要はある。   In the upper substrate described in the third embodiment, the bending rigidity is changed according to the circumferential displacement gradient at the outer peripheral portion to approximate the optical design shape. When an electrostatic force is applied by giving a uniform potential difference to the deformed film, an error from the ideal shape occurs. Therefore, the number of the lower portion may be smaller than that in the case where the opening is not provided in the deformed film, but as shown in the first embodiment, It is necessary to divide the electrode into several regions.

しかしながら本実施の形態にあっては下部電極の一部に開口を設けることによって、変形膜に作用する静電気力に分布を持たせて変形形状を制御する。第4の実施の形態の手法と比較すると、外周部を除く変形膜自体の剛性を小さくする効果はないので駆動電圧は高くなるが、変形膜の開口での回折に起因した結像性能の劣化はなく、単一もしくは非常に少数の駆動電圧で所定の形状に変形させることが可能で、制御回路を単純化して低コスト化と小型化に寄与できる。   However, in the present embodiment, by providing an opening in a part of the lower electrode, the deformation shape is controlled by giving a distribution to the electrostatic force acting on the deformation film. Compared with the method of the fourth embodiment, there is no effect of reducing the rigidity of the deformed film itself except for the outer peripheral portion, so that the driving voltage is increased, but the imaging performance is deteriorated due to diffraction at the opening of the deformed film. However, it can be deformed into a predetermined shape with a single or a very small number of drive voltages, and the control circuit can be simplified to contribute to cost reduction and miniaturization.

なお、本実施の形態にあっては説明を簡略化するために中心近傍に一様な密度の比較的大きな開口を図示したが、変形膜が所定の形状に変形するように、大きな静電気力を作用させる必要がある領域では、開口の密度を小さく、小さな開口の配置が静電気力を作用させる必要がある領域では、開口の密度を大きくし、開口自体のサイズは可能な限り小さくすることが望ましい。   In this embodiment, a relatively large opening having a uniform density is shown near the center for simplicity of description, but a large electrostatic force is applied so that the deformed film is deformed into a predetermined shape. It is desirable to reduce the density of the opening in the area where it is necessary to operate, and to increase the density of the opening and reduce the size of the opening itself as much as possible in the area where the arrangement of the small opening needs to apply the electrostatic force. .

また、本実施の形態にあっては変形膜に作用する静電気力に所定の分布を持たせる手法として、下部電極に領域によって密度の異なる開口を配置したが、変形膜に対向して変形膜と異なる電位が与えられる下部電極の存在する領域の割合が部位によって異なるように形成されていればよい。   Further, in the present embodiment, as a method of giving a predetermined distribution to the electrostatic force acting on the deformed film, openings having different densities are arranged in the lower electrode depending on the region. It suffices if the ratio of the region where the lower electrode to which a different potential is applied is present is different depending on the region.

以上実施の形態に基づいて本発明を説明したが、本発明は前述した実施の形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。   Although the present invention has been described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications and applications are possible within the scope of the present invention. is there.

さらに、上記した実施形態には種々の段階の発明が含まれており、開示される複数の構成要件の適当な組合せにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成も発明として抽出され得る。   Furthermore, the embodiments described above include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent features. For example, even if some components are deleted from all the components shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effects described in the column of the effect of the invention can be solved. Is obtained, a configuration from which this configuration requirement is deleted can be extracted as an invention.

ここで、本願第1の発明の効果では、外周部において形状の誤差が大きくなりやすいが、電極を単純に矩形あるいはハニカム状に分割するよりも、少ない分割数で理想的な変形形状を達成することができる。   Here, in the effect of the first invention of the present application, an error in the shape is likely to be large in the outer peripheral portion, but an ideal deformed shape is achieved with a smaller number of divisions than simply dividing the electrode into a rectangular or honeycomb shape. be able to.

また、本願第2及び第3の発明では、外周部に大きな静電気力を作用させることなく、所定の形状に変形させることができる。   Further, according to the second and third aspects of the present invention, the outer peripheral portion can be deformed into a predetermined shape without applying a large electrostatic force to the outer peripheral portion.

また、本願第4〜第7の発明では、電極に作用させる静電気力の大きさを部位によって大きく変化させることなく、理想的な形状に変形させることができる。   Further, in the fourth to seventh inventions of the present application, it is possible to deform the electrode into an ideal shape without largely changing the magnitude of the electrostatic force acting on the electrode depending on the part.

また、本願第8及び第9の発明では、可変形状反射鏡の変形量を細かく制御して、より理想的な光学的設計形状とすることができる。   In the eighth and ninth aspects of the present invention, the amount of deformation of the deformable reflecting mirror can be finely controlled to obtain a more ideal optical design shape.

また、本願第10の発明の効果では、可撓性薄膜にフォトリソグラフィーで開口を形成し、開口を形成した後に電極を形成するので、微細で高精度の貫通孔を容易に形成することができる。   In the effect of the tenth aspect of the present invention, since an opening is formed in a flexible thin film by photolithography, and an electrode is formed after the opening is formed, a fine and high-precision through hole can be easily formed. .

本発明の第1の実施の形態に係る可変形状反射鏡を適用した光学系の構成を模式的に示した図である。FIG. 1 is a diagram schematically illustrating a configuration of an optical system to which a deformable reflecting mirror according to a first embodiment of the present invention is applied. 第1の実施の形態における反射面の変形形状の立体図である。It is a three-dimensional figure of the deformation | transformation shape of the reflection surface in 1st Embodiment. 反射面の変位を表したコンター図である。FIG. 3 is a contour diagram showing displacement of a reflection surface. 可変形状反射鏡の変形面に対して一様な静電気力を作用させた場合の変形形状と理想形状との誤差の分布図である。FIG. 9 is a distribution diagram of an error between a deformed shape and an ideal shape when a uniform electrostatic force is applied to a deformed surface of the deformable reflecting mirror. 本発明の第1の実施の形態に係る可変形状反射鏡の構成図である。FIG. 1 is a configuration diagram of a deformable reflecting mirror according to a first embodiment of the present invention. 固定電極の形状と、この中心近傍に作用させる静電気力を1とした場合の他の領域に作用させる静電気力を示す図である。It is a figure which shows the shape of a fixed electrode, and the electrostatic force which acts on another area | region when the electrostatic force acting near this center is set to 1. FIG. 本発明の第2の実施の形態に係る可変形状反射鏡の上部基板の形状を示す図である。It is a figure showing the shape of the upper substrate of the deformable reflector according to the second embodiment of the present invention. 第2の実施の形態の変形例に対する説明図である。FIG. 14 is an explanatory diagram for a modification of the second embodiment. 本発明の第3の実施の形態に係る可変形状反射鏡の上部基板の形状を示す図である。It is a figure showing the shape of the upper substrate of the deformable reflector according to the third embodiment of the present invention. 第3の実施の形態における反射面の変形形状の立体図である。It is a three-dimensional figure of the deformation | transformation shape of the reflective surface in 3rd Embodiment. 第3の実施の形態における中心部に向かう平均変位勾配を示す分布図である。It is a distribution figure showing the average displacement gradient which goes to the center in a 3rd embodiment. 本発明の第4の実施の形態に係る可変形状反射鏡の上部基板の形状を示す図である。It is a figure showing the shape of the upper substrate of the variable shape reflector according to the fourth embodiment of the present invention. 第4の実施の形態における中心部に向かう平均変位勾配を示す分布図である。It is a distribution figure showing the average displacement gradient which goes to the center in a 4th embodiment. 可変形状反射鏡の製造方法の説明図である。It is explanatory drawing of the manufacturing method of a variable shape reflection mirror. 可変形状反射鏡の他の製造方法の説明図である。It is explanatory drawing of another manufacturing method of a variable shape reflection mirror. 本発明の第5の実施の形態に係る可変形状反射鏡の下部電極の電極構造図である。It is an electrode structure figure of a lower electrode of a variable shape reflector according to a fifth embodiment of the present invention. 従来例の可変形状鏡の構造図である。It is a structural diagram of the conventional deformable mirror. 従来例の可変形状鏡の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the conventional deformable mirror. 均一な電位差を与えた場合における可変形状鏡の変形量の異なりに関する説明図である。It is explanatory drawing regarding the difference of the deformation amount of a deformable mirror when a uniform electric potential difference is given.

符号の説明Explanation of reference numerals

101…前群レンズ、102…固体撮像素子、103…後群レンズ、104…可変形状反射鏡、105,202,302,402…変形膜、106…上部基板、107…下部基板、108,505…スペーサ、109,201,301,401…枠部材、110…固定電極、203,303,403…アルミ薄膜、204,304,404…ポリイミド薄膜、205,305,405,406,454,455,504…開口、451,501…シリコン基板、452…シリコン窒化膜、453…開口部、502…絶縁膜、503…下部電極   Reference numeral 101: front group lens, 102: solid-state image sensor, 103: rear group lens, 104: variable shape reflecting mirror, 105, 202, 302, 402 ... deformable film, 106: upper substrate, 107: lower substrate, 108, 505 ... Spacer, 109, 201, 301, 401 frame member, 110 fixed electrode, 203, 303, 403 aluminum thin film, 204, 304, 404 polyimide thin film, 205, 305, 405, 406, 454, 455, 504 ... Opening, 451, 501: silicon substrate, 452: silicon nitride film, 453: opening, 502: insulating film, 503: lower electrode

Claims (10)

反射面と複数の導電性電極とを備え、枠部材に周囲を支持された可撓性薄膜の前記複数の導電性電極に静電気力を作用させて前記反射面の形状を変化させる可変形状反射鏡において、
前記複数の導電性電極は、前記可撓性薄膜の中央部を中心とする円周方向に分割されているとともに、半径方向にも分割されており、
前記可撓性薄膜は、その外周部における円周方向の分割数が中央部における円周方向の分割数よりも多いことを特徴とする可変形状反射鏡。
A deformable reflecting mirror comprising a reflecting surface and a plurality of conductive electrodes, wherein the shape of the reflecting surface is changed by applying an electrostatic force to the plurality of conductive electrodes of a flexible thin film supported around a frame member. At
The plurality of conductive electrodes are divided in the circumferential direction around the center of the flexible thin film, and are also divided in the radial direction,
The flexible thin film is characterized in that the number of divisions in the circumferential direction at the outer peripheral portion of the flexible thin film is larger than the number of divisions in the circumferential direction at the central portion.
反射面と複数の導電性電極とを備え、枠部材に周囲を支持された可撓性薄膜の前記複数の導電性電極に静電気力を作用させて前記反射面の形状を変化させる可変形状反射鏡において、
前記可撓性薄膜の外周部近傍に、可撓性薄膜の他の領域よりも剛性の低い部位を設けたことを特徴とする可変形状反射鏡。
A deformable reflecting mirror comprising a reflecting surface and a plurality of conductive electrodes, wherein the shape of the reflecting surface is changed by applying an electrostatic force to the plurality of conductive electrodes of a flexible thin film supported around a frame member. At
A deformable reflecting mirror, wherein a portion having lower rigidity than other regions of the flexible thin film is provided near an outer peripheral portion of the flexible thin film.
前記剛性の低い部位は、前記可撓性薄膜、前記反射面、又は前記導電性電極の少なくとも一つに離散的に設けられた開口であることを特徴とする請求項2に記載の可変形状反射鏡。   The variable shape reflection according to claim 2, wherein the low rigidity portion is an opening discretely provided in at least one of the flexible thin film, the reflection surface, or the conductive electrode. mirror. 前記可撓性薄膜は、変形時における外周部近傍での、平坦時の前記反射面に対する鉛直方向の変位勾配が部位によって異なっており、
変位勾配が大きい部位における前記剛性の低い部位の占める割合が、変位勾配が小さい部位における前記剛性の低い部位の占める割合よりも大きいことを特徴とする請求項2に記載の可変形状反射鏡。
The flexible thin film, in the vicinity of the outer peripheral portion at the time of deformation, the displacement gradient in the vertical direction with respect to the reflective surface at the time of flat is different depending on the portion,
3. The deformable mirror according to claim 2, wherein a ratio of the low rigidity portion in a portion having a large displacement gradient is larger than a ratio of the low rigidity portion in a portion having a small displacement gradient.
前記可撓性薄膜は、変形時における外周部近傍での、平坦時の前記反射面に対する鉛直方向の変位勾配が部位によって異なっており、
変位勾配が大きい部位における前記開口の占める割合が、変位勾配が小さい部位における前記開口の占める割合よりも大きいことを特徴とする請求項3に記載の可変形状反射鏡。
The flexible thin film, in the vicinity of the outer peripheral portion at the time of deformation, the displacement gradient in the vertical direction with respect to the reflective surface at the time of flat is different depending on the portion,
4. The deformable mirror according to claim 3, wherein a ratio of the opening in a portion having a large displacement gradient is larger than a ratio of the opening in a portion having a small displacement gradient. 5.
反射面と複数の導電性電極とを備え、枠部材に周囲を支持された可撓性薄膜の前記複数の導電性電極に静電気力を作用させて前記反射面の形状を変化させる可変形状反射鏡において、
前記可撓性薄膜の円周方向に沿って剛性の低い部位が設けられており、この剛性の低い部位の剛性の分布は円周方向で異なっていることを特徴とする可変形状反射鏡。
A deformable reflecting mirror comprising a reflecting surface and a plurality of conductive electrodes, wherein the shape of the reflecting surface is changed by applying an electrostatic force to the plurality of conductive electrodes of a flexible thin film supported around a frame member. At
A deformable reflecting mirror, wherein a portion having low rigidity is provided along a circumferential direction of the flexible thin film, and a distribution of rigidity of the low rigidity portion differs in a circumferential direction.
反射面と複数の導電性電極とを備え、枠部材に周囲を支持された可撓性薄膜の前記複数の導電性電極に静電気力または電磁気力を作用させて前記反射面の形状を変化させる可変形状反射鏡において、
前記可撓性薄膜の円周方向に沿って開口が設けられており、この開口の占める割合は円周方向で異なっていることを特徴とする可変形状反射鏡。
A variable, which includes a reflecting surface and a plurality of conductive electrodes, and changes the shape of the reflecting surface by applying an electrostatic force or an electromagnetic force to the plurality of conductive electrodes of a flexible thin film supported around a frame member. In the shape reflector,
An opening is provided along the circumferential direction of the flexible thin film, and the ratio of the opening is different in the circumferential direction.
固定された下部電極と、枠部材に周囲を支持されており、反射面と複数の導電性電極とを有する可撓性薄膜と、を有する可変形状反射鏡であって、
前記下部電極の一部に、部位によって異なる間隔で離散的に配置された開口が設けられており、
前記可撓性薄膜の外周部に他の領域よりも剛性の低い部分を設けられていることを特徴とする可変形状反射鏡。
A fixed lower electrode, the periphery of which is supported by the frame member, a flexible thin film having a reflective surface and a plurality of conductive electrodes, a deformable reflecting mirror having:
A part of the lower electrode is provided with openings that are discretely arranged at different intervals depending on the site,
A deformable reflecting mirror, wherein a portion having lower rigidity than other regions is provided on an outer peripheral portion of the flexible thin film.
前記剛性の低い部位は、前記可撓性薄膜、前記反射面、又は前記導電性電極の少なくとも一つに離散的に設けられた開口であることを特徴とする請求項8に記載の可変形状反射鏡。   The variable shape reflection according to claim 8, wherein the low rigidity portion is an opening discretely provided in at least one of the flexible thin film, the reflection surface, or the conductive electrode. mirror. 半導体基板の第1及び第2の主面に保護膜を形成する工程と、
前記第1の主面に可撓性薄膜を形成する工程と、
フォトリソグラフィーにより、前記可撓性薄膜に開口を離散的に形成する工程と、
前記可撓性薄膜上に電極を形成する工程と、
前記半導体基板の第2の主面からフォトリソグラフィーによる開口を形成し、残った半導体基板により外枠を形成する工程と、
を有することを特徴とする可変形状反射鏡の製造方法。
Forming a protective film on the first and second main surfaces of the semiconductor substrate;
Forming a flexible thin film on the first main surface;
Forming discrete openings in the flexible thin film by photolithography;
Forming an electrode on the flexible thin film,
Forming an opening by photolithography from the second main surface of the semiconductor substrate, and forming an outer frame with the remaining semiconductor substrate;
A method for manufacturing a deformable reflecting mirror, comprising:
JP2003352342A 2002-10-16 2003-10-10 Variable shape reflector and method of manufacturing the same Expired - Fee Related JP4347654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003352342A JP4347654B2 (en) 2002-10-16 2003-10-10 Variable shape reflector and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002301995 2002-10-16
JP2003352342A JP4347654B2 (en) 2002-10-16 2003-10-10 Variable shape reflector and method of manufacturing the same

Publications (3)

Publication Number Publication Date
JP2004157527A true JP2004157527A (en) 2004-06-03
JP2004157527A5 JP2004157527A5 (en) 2006-10-26
JP4347654B2 JP4347654B2 (en) 2009-10-21

Family

ID=32827931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003352342A Expired - Fee Related JP4347654B2 (en) 2002-10-16 2003-10-10 Variable shape reflector and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP4347654B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023684A (en) * 2004-07-09 2006-01-26 Topcon Corp Deformable mirror and eyeground observation device
EP1635208A1 (en) * 2004-09-10 2006-03-15 Olympus Corporation Deformable mirror
JP2009042456A (en) * 2007-08-08 2009-02-26 Toshiba Corp Shape variable mirror device and eyegrounds observing device using shape variable device
US7604353B2 (en) 2006-12-18 2009-10-20 Kabushiki Kaisha Toshiba Deformable mirror device and apparatus for observing retina of eye
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7660031B2 (en) 2004-09-27 2010-02-09 Qualcomm Mems Technologies, Inc. Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US7706042B2 (en) 2006-12-20 2010-04-27 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US7830586B2 (en) 1999-10-05 2010-11-09 Qualcomm Mems Technologies, Inc. Transparent thin films
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7863079B2 (en) 2008-02-05 2011-01-04 Qualcomm Mems Technologies, Inc. Methods of reducing CD loss in a microelectromechanical device
US7893919B2 (en) 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US8064124B2 (en) 2006-01-18 2011-11-22 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US8085458B2 (en) 2005-10-28 2011-12-27 Qualcomm Mems Technologies, Inc. Diffusion barrier layer for MEMS devices
US8226836B2 (en) 2004-09-27 2012-07-24 Qualcomm Mems Technologies, Inc. Mirror and mirror layer for optical modulator and method
US8638491B2 (en) 2004-09-27 2014-01-28 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
CN103576282A (en) * 2013-11-13 2014-02-12 苏州大学 Method for manufacturing static stretching thin film reflecting mirror
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8830557B2 (en) 2007-05-11 2014-09-09 Qualcomm Mems Technologies, Inc. Methods of fabricating MEMS with spacers between plates and devices formed by same
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US8964280B2 (en) 2006-06-30 2015-02-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8970939B2 (en) 2004-09-27 2015-03-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US9001412B2 (en) 2004-09-27 2015-04-07 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US9086564B2 (en) 2004-09-27 2015-07-21 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7684104B2 (en) 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7711239B2 (en) 2006-04-19 2010-05-04 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing nanoparticles
US8068268B2 (en) 2007-07-03 2011-11-29 Qualcomm Mems Technologies, Inc. MEMS devices having improved uniformity and methods for making them

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US7830586B2 (en) 1999-10-05 2010-11-09 Qualcomm Mems Technologies, Inc. Transparent thin films
JP2006023684A (en) * 2004-07-09 2006-01-26 Topcon Corp Deformable mirror and eyeground observation device
EP1635208A1 (en) * 2004-09-10 2006-03-15 Olympus Corporation Deformable mirror
JP2006078838A (en) * 2004-09-10 2006-03-23 Olympus Corp Deformable mirror
JP4602722B2 (en) * 2004-09-10 2010-12-22 オリンパス株式会社 Deformable mirror
US7830589B2 (en) 2004-09-27 2010-11-09 Qualcomm Mems Technologies, Inc. Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US9001412B2 (en) 2004-09-27 2015-04-07 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7660031B2 (en) 2004-09-27 2010-02-09 Qualcomm Mems Technologies, Inc. Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US8638491B2 (en) 2004-09-27 2014-01-28 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US9086564B2 (en) 2004-09-27 2015-07-21 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US8970939B2 (en) 2004-09-27 2015-03-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US7893919B2 (en) 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US8226836B2 (en) 2004-09-27 2012-07-24 Qualcomm Mems Technologies, Inc. Mirror and mirror layer for optical modulator and method
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US9097885B2 (en) 2004-09-27 2015-08-04 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8085458B2 (en) 2005-10-28 2011-12-27 Qualcomm Mems Technologies, Inc. Diffusion barrier layer for MEMS devices
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8064124B2 (en) 2006-01-18 2011-11-22 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US8964280B2 (en) 2006-06-30 2015-02-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7604353B2 (en) 2006-12-18 2009-10-20 Kabushiki Kaisha Toshiba Deformable mirror device and apparatus for observing retina of eye
US7706042B2 (en) 2006-12-20 2010-04-27 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
US8830557B2 (en) 2007-05-11 2014-09-09 Qualcomm Mems Technologies, Inc. Methods of fabricating MEMS with spacers between plates and devices formed by same
JP2009042456A (en) * 2007-08-08 2009-02-26 Toshiba Corp Shape variable mirror device and eyegrounds observing device using shape variable device
US7863079B2 (en) 2008-02-05 2011-01-04 Qualcomm Mems Technologies, Inc. Methods of reducing CD loss in a microelectromechanical device
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
CN103576282A (en) * 2013-11-13 2014-02-12 苏州大学 Method for manufacturing static stretching thin film reflecting mirror
CN103576282B (en) * 2013-11-13 2016-01-20 苏州大学 A kind of preparation method of electrostatic stretch film reflecting mirror

Also Published As

Publication number Publication date
JP4347654B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4347654B2 (en) Variable shape reflector and method of manufacturing the same
US6986587B2 (en) Variable-shape reflection mirror and method of manufacturing the same
JP5255565B2 (en) Adjustable lens manufacturing method
JP2000002842A (en) Fast deformation mirror light valve
JP3165444B2 (en) M × N thin-film actuated mirror array and method of manufacturing the same
JP4851443B2 (en) Micro mechanical structure
US20040233553A1 (en) Form variable mirror element and method for producing form variable mirror element and form variable mirror unit and optical pick-up
WO2005085125A1 (en) Micro actuator and device having micro actuator
US6682199B2 (en) Variable geometry mirror having high-precision, high geometry controllability
CN212723526U (en) MEMS actuator
WO2015145943A1 (en) Optical scanning device
JP5374860B2 (en) Microactuator and manufacturing method thereof, microactuator array, microactuator device, optical device, display device, exposure apparatus, and device manufacturing method
WO2014154646A1 (en) Steerable moems device comprising a micro mirror
CN102650734B (en) Single-piezoelectric patch deformable mirror and manufacturing method thereof
JP2008206333A (en) Piezoelectric thin-film device and method of manufacturing the same
JP4033663B2 (en) Reflector
EP3100080B1 (en) Deformable lens structure for adaptive optics devices
JP5740819B2 (en) Spatial light modulator manufacturing method, spatial light modulator, illumination light generator, and exposure apparatus
JP5513184B2 (en) Micro structure and manufacturing method thereof
CN100417970C (en) Microliquid drop driving continuous mirror surface active deformation reflective mirror
JP2008205263A (en) Piezoelectric thin-film device and method of manufacturing the same
JP2006018176A (en) Electrostatic type variable shape mirror
JP2006003814A (en) Shape variable mirror element
TW202328752A (en) Euv multi-mirror arrangement
JP3767836B2 (en) Deformable mirror and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees