JP2004141840A - Method and apparatus for reducing dissolved oxygen - Google Patents

Method and apparatus for reducing dissolved oxygen Download PDF

Info

Publication number
JP2004141840A
JP2004141840A JP2002346500A JP2002346500A JP2004141840A JP 2004141840 A JP2004141840 A JP 2004141840A JP 2002346500 A JP2002346500 A JP 2002346500A JP 2002346500 A JP2002346500 A JP 2002346500A JP 2004141840 A JP2004141840 A JP 2004141840A
Authority
JP
Japan
Prior art keywords
gas
raw water
dissolved oxygen
inert gas
liquid contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002346500A
Other languages
Japanese (ja)
Other versions
JP4179859B2 (en
Inventor
Hisao Kojima
小嶋 久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANEMOSU KK
Original Assignee
ANEMOSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANEMOSU KK filed Critical ANEMOSU KK
Priority to JP2002346500A priority Critical patent/JP4179859B2/en
Publication of JP2004141840A publication Critical patent/JP2004141840A/en
Application granted granted Critical
Publication of JP4179859B2 publication Critical patent/JP4179859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus capable of efficiently reducing dissolved oxygen in a raw water at a low cost by effectively utilizing the partial pressure difference of an inert gas to lower the consumption of the inert gas. <P>SOLUTION: The raw water is introduced into the upper part of a stripping tower 1 wherein multiple stages of gas-liquid contact sections 2 are disposed, and the inert gas is also introduced into the lower part of the stripping tower 1. The raw water flowing down and the inert gas rising up are repeatedly subjected to countercurrent contact to each other in the gas-liquid contact sections 2 in the stripping tower 1 to strip the dissolved oxygen from the raw water into the inert gas by a mass transfer, thus the dissolved oxygen in the raw water being efficiently reduced. Moreover, the maintenance cost can be reduced by its simple construction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ボイラー給水、飲料水製造用、半導体超純水製造用あるいは各種試験研究用等に用いる原水中の溶存酸素の低減方法及び装置に関する。詳しくは、原水中の溶存酸素を不活性ガスと気液接触させて、不活性ガス側に溶存酸素を物質移動させる、つまり放散(Stripping)させて原水中の溶存酸素を低減させる方法及び装置に関する。
【0002】
【従来の技術】
不活性ガスを用いた原水中の溶存酸素の低減方法としては、主に水と窒素ガスを気液接触させ、窒素ガスのガス分圧差を利用し、水中に溶存している酸素を効率よく放散して窒素ガス側に物質移動させて低減する方法が知られている。
【0003】
液体と気体とを気液接触させる気液接触装置としては、原水を液送ポンプを介して静止型混合器内に圧送し、気体と原水とを混合して原水中の除去対象物質を気体中に物質移動させて除去する装置、あるいは原水が貯槽されたタンク内の水中に静止型混合器を配置し、気体配管を静止型混合器の下部に配置し、気体配管を介して静止型混合器内に気体を供給し、原水を気体と共に混合器内を上昇させて水の循環流を生じさせ、混合器内で気体と原水とを混合させて気体側に酸素を移動させる装置が知られている。
【0004】
また、管壁部内に螺旋状羽根部が配置されてその管軸方向に流体が通流する複数個の流体通路が前記羽根部により形成されてその管軸方向を垂直にして配置された静止型流体混合器と、液体を前記流体混合器よりも高い位置からその静水圧差により前記流体混合器に供給する液体供給手段と、前記流体混合器内に気体を通流させる気体供給手段とを有する気液接触装置(特開平5−15753号公報)が知られている。
【0005】
さらに、回転するインペラーの背面に発生する負圧を利用して、連続的に気体を処理液中に導入し、微細気泡を発生させて微細気泡中の有害成分と処理液とを反応させる装置も公知である。
【0006】
さらにまた、液中に不活性ガスをバブリングして液中の溶存酸素を除去する酸素低減装置(特開平6−190360号公報)が知られている。
【0007】
【発明が解決しようとする課題】
上記原水を液送ポンプを介して静止型混合器内に圧送し、圧縮空気と原水とを混合して原水中の有害物質を空気中に物質移動させて除去する装置は、空気と原水との体積比が2〜30であり、これ以上空気の比率を大きくすることは困難で、混合器を1回通過しただけでは、有害物質の除去効率が30〜50%と小さく、原水中の有害物質を90%以上除去するには混合器を4〜8台を使用する必要があり、液送ポンプも同数必要となり、装置コストが高くなる。又、気体−液体の容積比率が大きいので、ガスの使用量が多くなる欠点を有している。
【0008】
また、空気配管を介して静止型混合器内に気体を供給し、原水を気体と共に混合器内を上昇させて水の循環流を生じさせる装置は、並流で気液接触させるため、気体−液体の容積比率が低い。
【0009】
特開平5−15753号公報に開示の気液接触装置は、液体と気体とを並流接触させるもので気体と液体との容積比率が高く、不活性ガスの使用量が多くなり溶存酸素の低減装置としては充分ではない。また、回転するインペラーの背面に発生する負圧を利用して、連続的に気体を処理液中に導入し、微細気泡を発生させる装置は、処理時間が長くなり、装置が大きくなる。
【0010】
特開平6−190360号公報に開示の溶存酸素低減装置は気液の接触にバブリング効果を利用しているので、気液接触効率が低い。その為に、バブリング槽の塔高が長くなり、又塔数が多くなり設備費の初期投資が高価となる。又、設置面積が大きくなる。
【0011】
本発明の目的は、上記従来技術の欠点を解消し、不活性ガスのガス分圧差分を有効に利用し、低価格で原水中の溶存酸素を効率よく低減できる溶存酸素の低減方法及び装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明の溶存酸素低減方法の特徴は、溶存酸素の低減方法において、実質的に垂直方向に複数個の気液接触部とその気液接触部間に気液分離部を配置してなる放散塔の上部に原水を供給し、前記放散塔の下部より不活性ガスを導入し、気液接触部内で流下する原水と上昇する不活性ガスを向流接触させることを繰り返し、原水中の溶存酸素を不活性ガス側に放散して物質移動させることにある。更に、気液接触部に高性能の静止型混合器を配置したことにある。
【0013】
このように複数個の気液接触部を多段に配置してなる放散塔の上部に原水を供給し、前記放散塔の下部より不活性ガスを導入し、気液接触部内で流下する原水と上昇する不活性ガスを向流接触させることを繰り返し、原水中の溶存酸素を不活性ガス側に物質移動させることを繰り返すことによって、気液接触部を通流する間に下方向に流下する原水と、微細な気泡となって原水中を上昇する不活性ガスが前記静止型混合器内を右及び左方向の回転及び分割、合流、反転及び剪断応力作用を連続的に繰り返しながら、原水と不活性ガスは接触、攪拌され原水中の溶存酸素が放散されて不活性ガス側に物質移動し、溶存酸素は低減されることとなる。
【0014】
また、本発明の溶存酸素低減装置の特徴は、実質的に垂直方向に複数個の気液接触部を多段に配置し、前記気液接触部間に気液分離部を配置した放散塔の上部に原水の供給管と不活性ガス排出管を放散塔の下部に貯水部を配置し、貯水部の上部に不活性ガス供給管とその貯水部の底部に処理水排出管を接続したことにある。
【0015】
このように、気液接触部を多段に組合せ、前記気液接触部間に気液分離部を配置した放散塔の上部に原水の供給管と不活性ガス排出管を、放散塔の下部に貯水部を配置すると共に、貯水部の上部に不活性ガス供給管とその貯水部の底部に処理水排出管を配置したことによって、気液接触部を通流する間に原水と不活性ガスは回転及び分割、合流、反転、剪断応力作用を連続的に繰り返しながら接触、攪拌し、原水中の溶存酸素は不活性ガス側に放散される。更に、気液分離部で水中から不活性ガスが分離されたのち、順次下方の気液接触部で水と不活性ガスが右及び左方向の回転及び分割、合流、反転、剪断応力作用を連続的に繰り返しながら接触し、気液分離部あるいは貯水部で水中から不活性ガスが分離される際に水中の溶存酸素は不活性ガス側に放散されて物質移動し、溶存酸素は低減される。
【0016】
本発明における気液接触部の特徴は、高性能の静止型混合器を配置したことにある。この静止型混合器は右捻り、左捻りのミキシングエレメントで構成されている。多数の孔を設けた複数の右捻り及び左捻りの螺旋状の羽根を有するミキシングエレメントとを上下交互に配置したことにある。このような、気液接触部を通流する間に下方向に流下する原水と、微細な気泡となって原水中を上昇する不活性ガスが右及び左方向の回転及び分割、合流、反転並びに剪断応力作用を連続的に繰り返しながら、原水と不活性ガスは接触、攪拌され、原水中の溶存酸素が不活性ガス側に放散されて物質移動し、溶存酸素は低減される。なお、静止型混合器は、ミキシングエレメント方式に限定されることなく種々の静止型混合器を選択使用できる。
【0017】
本発明における気液分離部の特徴は、一例として、円盤の厚み方向に複数個の孔を設け、その孔は原水処理量に応じて円盤上面に所定の深さに水を一時滞留するよう孔径を調整した孔を穿孔し、円盤上面に原水の一時滞留部を設けたことにある。このように、多数の孔を有する円盤を配置し、該円盤に原水処理量に応じて円盤上面に水の一時滞留部を設けたことによって、気液接触部で激しく接触、攪拌された原水と不活性ガス混合物は、円盤上面の一時滞留部で一時滞留の間に、原水中から不活性ガスが溶存酸素と共に分離される。
【0018】
本発明における溶存酸素低減装置は、例えば、図1に示すように、筒状の放散塔1内に気液接触部2を多段に組合せ、前記気液接触部2a、2b間に気液分離部3を配置し、放散塔1の下部に貯水部4を配置する。放散塔1の上部には、原水供給管5を、頂部には排気管6を配置する。前記気液接触部2bの下部には、不活性ガス供給管7と、貯水部4の底部に処理水排出管8を配置している。
【0019】
本発明における気液接触部としては、図2に示すように、多数の孔9を有する複数枚の螺旋状の右捻り羽根10を有するミキシングエレメント11と多数の孔12を有する複数枚の螺旋状の左捻り羽根13を有するミキシングエレメント14を交互に図3に示すように2個配置したものを基本構造とする。ミキシングエレメント11、14は、孔9、12を多数穿孔した右捻りまたは左捻りの螺旋状の羽根10、13、を複数枚、例えば4枚内設して4個の流体通路を有している。原水と不活性ガスは複数個のミキシングエレメント11、14を通流する間に、右捻り羽根10及び左捻り羽根13による右及び左方向の回転及び分割、合流、反転、剪断応力作用を連続的に繰り返しながら、4個の流体通路と羽根10、13に穿孔した孔9、12を通過して微細気泡となって原水中を上昇する不活性ガスと接触、攪拌し、原水中の溶存酸素は不活性ガス側に放散されて物質移動する。なお、ミキシングエレメントの羽根の枚数、孔の寸法、孔の開口率等は適宜選択可能である。
【0020】
また、多段に組合わせた気液接触部の間に配置する気液分離部3としては、図4に示すように、放散塔1の内径と同外径の円盤15に多数の孔を設け、原水処理量に応じて円盤上に所定の深さ、例えば100mmの深さに原水が一時滞留されるよう孔径を調整した5個の孔16とその孔16より小径の17を穿孔し円盤15上面に水の一時滞留部18を設けたもので、原水の一時滞留部18で水中に混入した微細気泡の不活性ガスを分離した後、順次孔16,17を介して下部の気液接触部に流下する構造である。
【0021】
更に、気液分離部としては、図5に示すように放散塔1の内径と同一径の円板19の中心部に静止型混合器20を内設した筒状体21を配置して、前記円板19の上部に処理水の滞留部22を設けた構造でもよい。この場合、静止型混合器20を上方から下方へ通流する処理水量及び下方から上方へ通流する不活性ガス量は使用条件により適宜変更可能であるが、処理水量の落下速度は0.05〜1.5m/秒、不活性ガスの上昇速度は0.5〜10m/秒の範囲での使用が好ましい。
【0022】
更に又、気液分離部としては、図6に示すように、放散塔1の内径と同一径の逆截頭円錐状の円板23を配置し、その円板23の厚み方向に複数個の孔24を穿孔して、その円板23の上部に、処理水が一時滞留する滞留部25を設けて、気液分離を行なってもよい。この場合も、前記同様に、不活性ガスの上昇速度と処理水の落下速度は、0.5〜10m/秒と0.05〜1.5m/秒の範囲が好ましい。なお、中心部の孔と円板23の孔24の寸法や開口率及び円板23の軸方向での設置角度は、使用条件に応じて適宜変更可能である。
【0023】
本発明の溶存酸素低減装置は、例えば、前記図1に示すように、気液接触部2を2段組合わせた放散塔1を複数個直列に配置したもの、あるいは要求される処理水の溶存酸素量に応じて、気液接触部2の段数とエレメント数、放散塔の塔数を適宜変更することができる。
【0024】
【実施例】
図7に示すように、4枚の螺旋状の羽根を有するミキシングエレメント11,14を、上下方向に交互に配置した気液接触部27を6段組合わせ、各気液接触部27の間に気液分離部28を5段配置した放散塔26の上部に溶存酸素9mg/l、水温20℃の原水を原水供給管29から通水速度75m/m・Hrで供給し、放散塔26下部の不活性ガス供給管30から純度99.9%の窒素ガスを500m/m・Hrで導入し、放散塔26の頂部の排出管31から窒素と酸素混合ガスを排気し、放散塔26下部の貯水部32底部の処理水排出管33から排出した処理水中の溶存酸素を東亜デイ・ケイ・ケー社製の溶存酸素測定器(DO−32A)を用いて測定した。その結果は0.16mg/lであった。なお、放散塔26内を通流する原水量及び不活性ガス量は、前記実施例に限定されることなく、原水は200〜2000m/m・Hr、不活性ガス量は20〜200m/m・Hrの好ましい範囲で適宜選択利用できる。また、使用される不活性ガスは窒素ガスに限定されることなく、使用目的に応じて、アルゴン、ヘリウムガス等の1種類又はこれらガスの複合種類が適宜選択できる。又、放散塔の材質は金属、ガラス、セラミックス、プラスチックス等の1種類又はこれらの複合材料が適宜選択可能である。
【0025】
【発明の効果】
本発明の溶存酸素低減方法及び装置は、高効率で気液接触可能な気液接触部を多段に組合わせ、原水と不活性ガスを向流接触させることにより、不活性ガスのガス分圧差分を有効に利用して不活性ガスの消費量を低減し、また水中溶存酸素を効率よく低減でき、用途に応じた低い溶存酸素水を低コストで製造することができる。
【図面の簡単な説明】
【図1】本発明の溶存酸素低減装置の一例を示す概略系統図である。
【図2】本発明で用いる気液接触部の一実施例を示すもので、(a)図は右捻りミキシングエレメントの斜視図、(b)図は左捻りミキシングエレメントの斜視図である。
【図3】本発明で用いる気液接触部の一実施例を示す基本構造図である。
【図4】本発明で用いる気液分離部の第一実施例を示すもので、(a)図は平面図、(b)図は断面図である。
【図5】本発明で用いる気液分離部の第二実施例を示すもので(a)図は平面図、(b)図は断面図である。
【図6】本発明で用いる気液分離部の第3実施例を示すもので(a)図は平面図、(b)図は断面図である。
【図7】本発明の一実施例を示す溶存酸素低減装置の概略系統図である。
【符号の説明】
1,26 : 放散塔
2,2a,2b,27a,27b,27c,27d,27e,27f: 気液接触部
3,28a,28b,28c,28d,28e: 気液分離部
4,32 : 貯水部
5,29 : 原水供給管
6,31 : 排出管
7,30 : 不活性ガス供給管
8,33 : 処理水排出管
11,14 : ミキシングエレメント
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for reducing dissolved oxygen in raw water used for boiler water supply, drinking water production, semiconductor ultrapure water production, various kinds of test research, and the like. More specifically, the present invention relates to a method and apparatus for reducing dissolved oxygen in raw water by bringing dissolved oxygen in raw water into gas-liquid contact with an inert gas to mass-transfer dissolved oxygen to the inert gas, that is, stripping the dissolved oxygen. .
[0002]
[Prior art]
As a method of reducing dissolved oxygen in raw water using inert gas, water and nitrogen gas are mainly brought into gas-liquid contact, and the gas partial pressure difference of nitrogen gas is used to efficiently dissipate oxygen dissolved in water. A method is known in which the mass is reduced by mass transfer to the nitrogen gas side.
[0003]
As a gas-liquid contacting device for bringing a liquid and a gas into gas-liquid contact, raw water is pumped into a static mixer via a liquid feed pump, and the gas and the raw water are mixed to remove the substance to be removed from the raw water in the gas. A stationary mixer is placed in the water in the tank where raw water is stored, or a static mixer is placed in the lower part of the stationary mixer, and the static mixer is placed through the gas pipe. There is known a device that supplies gas into the inside, raises the raw water together with the gas in the mixer to generate a circulating flow of water, and mixes the gas and the raw water in the mixer to move oxygen to the gas side. I have.
[0004]
A stationary type in which a spiral blade portion is disposed in the tube wall portion and a plurality of fluid passages through which a fluid flows in the tube axis direction are formed by the blade portion and the tube axis direction is arranged vertically. A fluid mixer, liquid supply means for supplying a liquid from a position higher than the fluid mixer to the fluid mixer by a difference in hydrostatic pressure, and gas supply means for flowing gas into the fluid mixer. A gas-liquid contact device (JP-A-5-15753) is known.
[0005]
In addition, there is also a device that utilizes the negative pressure generated on the back of the rotating impeller to continuously introduce gas into the processing liquid, generate fine bubbles, and react the harmful components in the fine bubbles with the processing liquid. It is known.
[0006]
Furthermore, there is known an oxygen reducing apparatus (Japanese Patent Laid-Open No. 6-190360) for removing dissolved oxygen in a liquid by bubbling an inert gas into the liquid.
[0007]
[Problems to be solved by the invention]
A device for pumping the raw water into a static mixer through a liquid feed pump, mixing compressed air and raw water and mass-transferring harmful substances in the raw water into the air, removes the harmful substances from the air and the raw water. The volume ratio is 2 to 30, and it is difficult to increase the ratio of air more than this. The harmful substance removal efficiency is as low as 30 to 50% by passing through the mixer only once, and the harmful substance in raw water is low. In order to remove 90% or more, it is necessary to use 4 to 8 mixers, the same number of liquid feed pumps is required, and the equipment cost is increased. Further, since the volume ratio of gas-liquid is large, there is a disadvantage that the amount of gas used increases.
[0008]
In addition, a device that supplies gas into a static mixer through an air pipe and raises raw water together with the gas in the mixer to generate a circulating flow of water is used for gas-liquid contact in a co-current flow. Low volume ratio of liquid.
[0009]
The gas-liquid contact device disclosed in Japanese Patent Application Laid-Open No. HEI 5-15753 makes a liquid and a gas co-currently contact with each other, has a high volume ratio of the gas and the liquid, uses a large amount of inert gas, and reduces dissolved oxygen. It is not enough as a device. Further, a device that continuously introduces gas into the processing liquid by using a negative pressure generated on the back surface of the rotating impeller to generate fine bubbles requires a long processing time and a large device.
[0010]
The dissolved oxygen reducing device disclosed in Japanese Patent Application Laid-Open No. 6-190360 utilizes the bubbling effect for gas-liquid contact, and therefore has low gas-liquid contact efficiency. For this reason, the tower height of the bubbling tank is increased, and the number of towers is increased. In addition, the installation area increases.
[0011]
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, to effectively utilize the gas partial pressure difference of the inert gas, to reduce the dissolved oxygen in the raw water at a low cost and to reduce the dissolved oxygen efficiently. To provide.
[0012]
[Means for Solving the Problems]
The feature of the dissolved oxygen reducing method of the present invention is that in the dissolved oxygen reducing method, a stripping tower comprising a plurality of gas-liquid contact portions and a gas-liquid separation portion disposed between the gas-liquid contact portions in a substantially vertical direction. The raw water is supplied to the upper part of the stripping tower, an inert gas is introduced from the lower part of the stripping tower, and the raw water flowing down in the gas-liquid contact portion and the rising inert gas are brought into countercurrent contact to repeat dissolved oxygen in the raw water. It is to dissipate to the inert gas side for mass transfer. Further, a high-performance static mixer is disposed at the gas-liquid contact portion.
[0013]
Raw water is supplied to the upper part of the stripping tower in which a plurality of gas-liquid contact parts are arranged in multiple stages as described above, and inert gas is introduced from the lower part of the stripping tower, and the raw water flowing down in the gas-liquid contact part rises. By repeating the countercurrent contact of the inert gas, and by repeating the mass transfer of the dissolved oxygen in the raw water to the inert gas side, the raw water flowing downward through the gas-liquid contact part The inert gas that rises in the raw water as fine bubbles becomes inert with the raw water while continuously rotating and dividing right and left, merging, reversing and shearing in the static mixer. The gas is contacted and agitated, and the dissolved oxygen in the raw water is diffused and mass-transferred to the inert gas side, so that the dissolved oxygen is reduced.
[0014]
Further, the dissolved oxygen reducing apparatus of the present invention is characterized in that a plurality of gas-liquid contact portions are arranged in multiple stages substantially vertically, and a gas-liquid separation portion is arranged between the gas-liquid contact portions. The water supply pipe and the inert gas discharge pipe are located in the lower part of the stripping tower, and the inert gas supply pipe is connected to the upper part of the water storage section and the treated water discharge pipe is connected to the bottom of the water storage section. .
[0015]
As described above, the gas-liquid contact section is combined in multiple stages, and the raw water supply pipe and the inert gas discharge pipe are provided at the upper part of the stripping tower in which the gas-liquid separating section is disposed between the gas-liquid contact sections, and the water is stored at the lower part of the stripping tower. The raw water and inert gas rotate while flowing through the gas-liquid contact part by arranging the inert gas supply pipe at the top of the water storage section and the treated water discharge pipe at the bottom of the water storage section. In addition, the contact and stirring are performed while continuously repeating the splitting, merging, inversion, and shearing stress actions, and the dissolved oxygen in the raw water is released to the inert gas side. In addition, after the inert gas is separated from the water in the gas-liquid separation section, the water and the inert gas sequentially rotate and divide right and left, merge, reverse, and shear stress action successively at the lower gas-liquid contact section. When the inert gas is separated from the water in the gas-liquid separation unit or the water storage unit, the dissolved oxygen in the water is diffused to the inert gas side to perform mass transfer, and the dissolved oxygen is reduced.
[0016]
The feature of the gas-liquid contact part in the present invention is that a high-performance static mixer is arranged. This static mixer is composed of right-handed and left-handed mixing elements. A mixing element having a plurality of right-handed and left-handed spiral blades provided with a large number of holes is alternately arranged vertically. Such raw water flowing downward while flowing through the gas-liquid contact portion and inert gas rising in the raw water as fine bubbles are rotated and divided in the right and left directions, merge, invert, and While the shear stress action is continuously repeated, the raw water and the inert gas come into contact with each other and are stirred, and the dissolved oxygen in the raw water is diffused to the inert gas side to perform mass transfer, and the dissolved oxygen is reduced. Note that the static mixer is not limited to the mixing element system, and various static mixers can be selectively used.
[0017]
The feature of the gas-liquid separation unit in the present invention is, for example, that a plurality of holes are provided in the thickness direction of the disk, and the holes have a diameter such that water temporarily stays at a predetermined depth on the upper surface of the disk according to the raw water treatment amount. In this case, a hole in which raw water is temporarily retained is provided on the upper surface of the disk. Thus, by disposing a disk having a large number of holes, and providing a temporary stagnation portion of water on the upper surface of the disk in accordance with the raw water processing amount, the disk is intensely contacted by the gas-liquid contact portion, and the raw water is stirred. The inert gas mixture is separated from the raw water together with the dissolved oxygen from the raw water during the temporary residence in the temporary residence part on the upper surface of the disk.
[0018]
For example, as shown in FIG. 1, the dissolved oxygen reducing apparatus according to the present invention includes a tubular stripping tower 1 in which gas-liquid contact sections 2 are combined in multiple stages and a gas-liquid separation section is provided between the gas-liquid contact sections 2a and 2b. 3 is disposed, and a water storage unit 4 is disposed below the stripping tower 1. A raw water supply pipe 5 is disposed above the stripping tower 1, and an exhaust pipe 6 is disposed at the top. An inert gas supply pipe 7 is provided below the gas-liquid contact section 2b, and a treated water discharge pipe 8 is provided at the bottom of the water storage section 4.
[0019]
As shown in FIG. 2, the gas-liquid contact portion in the present invention includes a mixing element 11 having a plurality of spiral right-handed wings 10 having a large number of holes 9 and a plurality of spiral elements having a large number of holes 12. As shown in FIG. 3, the basic structure is such that two mixing elements 14 each having the left twisted blade 13 are alternately arranged as shown in FIG. The mixing elements 11 and 14 have four fluid passages in which a plurality of, for example, four, right-handed or left-handed spiral blades 10 and 13 having a large number of holes 9 and 12 formed therein are provided. . While the raw water and the inert gas flow through the plurality of mixing elements 11 and 14, the right-handed and left-handed rotating blades 10 and 13 continuously rotate and divide, merge, reverse, and shear stress action. While contacting and stirring the inert gas rising through the four fluid passages and the holes 9 and 12 formed in the blades 10 and 13 to form fine bubbles and rising in the raw water, the dissolved oxygen in the raw water is It is released to the inert gas side and performs mass transfer. The number of blades of the mixing element, the size of the holes, the aperture ratio of the holes, and the like can be appropriately selected.
[0020]
Further, as shown in FIG. 4, as the gas-liquid separation unit 3 arranged between the gas-liquid contact units combined in multiple stages, a large number of holes are provided in a disk 15 having the same outer diameter as the inner diameter of the stripping tower 1. Five holes 16 whose diameters are adjusted so that the raw water temporarily stays at a predetermined depth, for example, 100 mm, on the disk according to the raw water treatment amount and a hole 17 smaller in diameter than the holes 16 are punched, and the upper surface of the disk 15 is formed. Is provided with a temporary stagnation section 18 for water. After the inert gas of microbubbles mixed in water is separated in the temporary stagnation section 18 for raw water, the gas is temporarily connected to the lower gas-liquid contact section via the holes 16 and 17. It is a structure that flows down.
[0021]
Further, as the gas-liquid separation section, as shown in FIG. 5, a cylindrical body 21 in which a static mixer 20 is provided in the center of a disk 19 having the same diameter as the inner diameter of the stripping tower 1 is disposed. A structure in which a stagnant portion 22 of the treated water is provided above the disk 19 may be used. In this case, the amount of treated water flowing through the static mixer 20 from above to below and the amount of inert gas flowing from below to above can be appropriately changed depending on the use conditions, but the falling speed of the treated water amount is 0.05. It is preferable that the inert gas is used at a rate of 0.5 to 10 m / sec.
[0022]
Further, as the gas-liquid separation unit, as shown in FIG. 6, an inverted truncated conical disk 23 having the same diameter as the inner diameter of the stripping tower 1 is arranged, and a plurality of disks 23 are provided in the thickness direction of the disk 23. A hole 24 may be formed, and a retaining portion 25 for temporarily retaining treated water may be provided above the disk 23 to perform gas-liquid separation. Also in this case, the rising speed of the inert gas and the falling speed of the treated water are preferably in the range of 0.5 to 10 m / sec and 0.05 to 1.5 m / sec. The dimensions and aperture ratio of the hole at the center and the hole 24 of the disk 23 and the installation angle of the disk 23 in the axial direction can be appropriately changed according to the use conditions.
[0023]
For example, as shown in FIG. 1, the dissolved oxygen reducing apparatus of the present invention includes a plurality of stripping towers 1 in which gas-liquid contact sections 2 are combined in a two-stage arrangement, or a required dissolved water treatment. Depending on the amount of oxygen, the number of stages and the number of elements of the gas-liquid contact section 2 and the number of towers of the stripping tower can be appropriately changed.
[0024]
【Example】
As shown in FIG. 7, six stages of gas-liquid contact portions 27 in which mixing elements 11 and 14 having four spiral blades are alternately arranged in the vertical direction are combined, and between each gas-liquid contact portion 27. Raw water having a dissolved oxygen content of 9 mg / l and a water temperature of 20 ° C. is supplied from a raw water supply pipe 29 at a flow rate of 75 m 3 / m 2 · Hr to the upper part of the diffusion tower 26 in which the gas-liquid separation section 28 is arranged in five stages. Nitrogen gas having a purity of 99.9% is introduced at 500 m 3 / m 2 · Hr from the lower inert gas supply pipe 30 at 500 m 3 / m 2 · Hr, and the nitrogen and oxygen mixed gas is exhausted from the discharge pipe 31 at the top of the stripping tower 26. The dissolved oxygen in the treated water discharged from the treated water discharge pipe 33 at the bottom of the water storage part 32 at the lower part of 26 was measured using a dissolved oxygen meter (DO-32A) manufactured by TOA DK KK. The result was 0.16 mg / l. The amount of the raw water flowing through the stripping tower 26 and the amount of the inert gas are not limited to those in the above embodiment, and the raw water is 200 to 2000 m 3 / m 2 · Hr, and the amount of the inert gas is 20 to 200 m 3. / M 2 · Hr within a preferred range. Further, the inert gas used is not limited to nitrogen gas, and one type such as argon and helium gas or a composite type of these gases can be appropriately selected depending on the purpose of use. Further, as the material of the stripping tower, one kind of metal, glass, ceramics, plastics or the like or a composite material thereof can be appropriately selected.
[0025]
【The invention's effect】
The method and apparatus for reducing dissolved oxygen of the present invention provide a gas-liquid contact portion capable of gas-liquid contact with high efficiency in multiple stages, and contacting the raw water and the inert gas in countercurrent to obtain a gas partial pressure difference of the inert gas. Can be effectively used to reduce the amount of inert gas consumed, to efficiently reduce dissolved oxygen in water, and to produce low-dissolved oxygen water at low cost depending on the application.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram showing an example of a dissolved oxygen reducing device of the present invention.
FIGS. 2A and 2B show an embodiment of a gas-liquid contact portion used in the present invention. FIG. 2A is a perspective view of a right-handed mixing element, and FIG. 2B is a perspective view of a left-handed mixing element.
FIG. 3 is a basic structural diagram showing one embodiment of a gas-liquid contact portion used in the present invention.
4A and 4B show a first embodiment of a gas-liquid separation unit used in the present invention, wherein FIG. 4A is a plan view and FIG. 4B is a cross-sectional view.
5A and 5B show a second embodiment of the gas-liquid separation unit used in the present invention, wherein FIG. 5A is a plan view and FIG. 5B is a cross-sectional view.
6 (a) is a plan view and FIG. 6 (b) is a sectional view showing a third embodiment of the gas-liquid separation section used in the present invention.
FIG. 7 is a schematic system diagram of a dissolved oxygen reducing apparatus showing one embodiment of the present invention.
[Explanation of symbols]
1,26: stripping towers 2, 2a, 2b, 27a, 27b, 27c, 27d, 27e, 27f: gas-liquid contact parts 3, 28a, 28b, 28c, 28d, 28e: gas-liquid separation parts 4, 32: water storage parts 5, 29: raw water supply pipe 6, 31: discharge pipe 7, 30: inert gas supply pipe 8, 33: treated water discharge pipe 11, 14: mixing element

Claims (4)

原水中の溶存酸素低減方法に於いて、実質的に垂直方向に複数個の気液接触部とその気液接触部間に気液分離部を配置してなる筒状の放散塔の上部に原水を供給し、前記放散塔の下部より不活性ガスを導入し、気液接触部内で流下する原水と上昇する不活性ガスを向流接触させることを繰り返し、原水中の溶存酸素を不活性ガス側に物質移動させることを特徴とする溶存酸素低減方法。In the method for reducing dissolved oxygen in raw water, raw water is placed on the upper part of a cylindrical stripping tower having a plurality of gas-liquid contact sections and a gas-liquid separation section between the gas-liquid contact sections in a substantially vertical direction. And introducing an inert gas from the lower part of the stripping tower, and repeatedly contacting the raw water flowing down in the gas-liquid contact portion with the rising inert gas in a countercurrent manner, to dissolve dissolved oxygen in the raw water into the inert gas side. A method for reducing dissolved oxygen, comprising: 前記不活性ガスは窒素、アルゴン、ヘリウム、クリプトンガスの1種類又はこれらガスの複合種類であることを特徴とする請求項第1項記載の溶存酸素低減方法。2. The method for reducing dissolved oxygen according to claim 1, wherein the inert gas is one of nitrogen, argon, helium, and krypton gas or a combination of these gases. 原水中の溶存酸素低減装置であって、実質的に垂直方向に複数個の気液接触部とその複数個の前記気液接触部間に気液分離部を配置した前記放散塔の上部に原水の供給管と不活性ガス排出管を、前記放散塔の下部に不活性ガス供給管と貯水部を、前記放散塔の底部に処理水排出管を配置したことを特徴とする溶存酸素低減装置。A device for reducing dissolved oxygen in raw water, comprising a plurality of gas-liquid contact portions in a substantially vertical direction and a gas-liquid separation portion disposed between the plurality of gas-liquid contact portions. A dissolved oxygen reducing device, wherein a supply pipe and an inert gas discharge pipe are disposed at a lower portion of the stripping tower, and an inert gas supply pipe and a water storage section are disposed at a bottom of the stripping tower. 前記気液接触部に静止型混合器を配置したことを特徴とする請求項第3項記載の溶存酸素低減装置。4. The dissolved oxygen reducing device according to claim 3, wherein a static mixer is arranged at the gas-liquid contact portion.
JP2002346500A 2002-10-25 2002-10-25 Dissolved oxygen reduction device Expired - Fee Related JP4179859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002346500A JP4179859B2 (en) 2002-10-25 2002-10-25 Dissolved oxygen reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002346500A JP4179859B2 (en) 2002-10-25 2002-10-25 Dissolved oxygen reduction device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008193673A Division JP5020902B2 (en) 2008-07-28 2008-07-28 Method and apparatus for reducing dissolved oxygen

Publications (2)

Publication Number Publication Date
JP2004141840A true JP2004141840A (en) 2004-05-20
JP4179859B2 JP4179859B2 (en) 2008-11-12

Family

ID=32462838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002346500A Expired - Fee Related JP4179859B2 (en) 2002-10-25 2002-10-25 Dissolved oxygen reduction device

Country Status (1)

Country Link
JP (1) JP4179859B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523349A (en) * 2004-12-07 2008-07-03 ウエストレイク・ペトロケミカルズ・エル・ピー Method and apparatus for deaeration of boiler feed water
JP2009136739A (en) * 2007-12-05 2009-06-25 Fisheries Research Agency Water purification method and foam separation apparatus using this method
CN103641196A (en) * 2013-12-20 2014-03-19 上海化工研究院 Bubbling-type degasser for removing trace gas impurities in water and application of bubbling-type degasser
WO2022107392A1 (en) * 2020-11-17 2022-05-27 株式会社アネモス Air diffuser and water treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020902B2 (en) * 2008-07-28 2012-09-05 株式会社アネモス Method and apparatus for reducing dissolved oxygen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523349A (en) * 2004-12-07 2008-07-03 ウエストレイク・ペトロケミカルズ・エル・ピー Method and apparatus for deaeration of boiler feed water
JP2009136739A (en) * 2007-12-05 2009-06-25 Fisheries Research Agency Water purification method and foam separation apparatus using this method
CN103641196A (en) * 2013-12-20 2014-03-19 上海化工研究院 Bubbling-type degasser for removing trace gas impurities in water and application of bubbling-type degasser
CN103641196B (en) * 2013-12-20 2016-05-25 上海化工研究院 A kind of bubbling degasifying apparatus and application that removes minimum gas impurity in water
WO2022107392A1 (en) * 2020-11-17 2022-05-27 株式会社アネモス Air diffuser and water treatment apparatus
JP7414333B2 (en) 2020-11-17 2024-01-16 株式会社アネモス Air diffuser and water treatment equipment

Also Published As

Publication number Publication date
JP4179859B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
US3775307A (en) System for gas sparging into liquid
US6857774B2 (en) Devices for cavitational mixing and pumping and methods of using same
US3969446A (en) Apparatus and method for aerating liquids
US3206176A (en) Apparatus for aerating sewage
US4117048A (en) Apparatus for introducing gas into a liquid
TWI503289B (en) Gas dispersion apparatus for improved gas-liquid mass transfer
US20160193573A1 (en) Method and system for enhancing mass transfer in aeration/oxygenation systems
WO2005039746A1 (en) Air diffusing device
US4193950A (en) Apparatus for introducing gas into a liquid
JP5020902B2 (en) Method and apparatus for reducing dissolved oxygen
FI96388B (en) Gas solution and method
US20130041312A1 (en) Using Aqueous Oxygenation to Improve Human Wellness
JP2004141840A (en) Method and apparatus for reducing dissolved oxygen
JP2005218955A (en) Gas/liquid contactor
JP4544017B2 (en) Air diffuser
JPH10225696A (en) Pressurization type ozone treating device
JP2004261691A (en) Method and apparatus for manufacturing deoxidized water
JPH08299971A (en) Separating injection type ozone contact method
JP3953127B2 (en) Aeration treatment equipment
JPH09206769A (en) Downward injecting type ozone treating device
JPH05146796A (en) Device for purifying closed natural water area
JPH0515753A (en) Gas-liquid contact apparatus
WO2019037759A1 (en) Method and system for generating nanobubble-containing liquid
RU2264847C2 (en) Method of intensification of the reactive and mass-exchange processes in the heterogeneous systems and the apparatus for its realization
JP2005205396A (en) Separating device, separating system provided with the same, and method for using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R150 Certificate of patent or registration of utility model

Ref document number: 4179859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees