JP2004140063A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2004140063A
JP2004140063A JP2002301515A JP2002301515A JP2004140063A JP 2004140063 A JP2004140063 A JP 2004140063A JP 2002301515 A JP2002301515 A JP 2002301515A JP 2002301515 A JP2002301515 A JP 2002301515A JP 2004140063 A JP2004140063 A JP 2004140063A
Authority
JP
Japan
Prior art keywords
heat
wiring
conductor
layer
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002301515A
Other languages
Japanese (ja)
Inventor
Toshisuke Ozaki
尾崎 利介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
O K PRINT KK
Original Assignee
O K PRINT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O K PRINT KK filed Critical O K PRINT KK
Priority to JP2002301515A priority Critical patent/JP2004140063A/en
Publication of JP2004140063A publication Critical patent/JP2004140063A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable heat released from an electronic part to be efficiently dissipated outside. <P>SOLUTION: A wiring layer 4 is formed on each surface of a glass epoxy board 1, a hole 5 is bored in the glass epoxy board 1, a connecting conductor 6 formed of a conductive composition obtained by curing a silver paste is provided inside the hole 5, and the glass epoxy boards 1 are bonded together with prepregs 7 into a wiring base 17. A hole 8 is bored in the prepreg 7, and a connecting conductor 9 formed of a conductive composition obtained by curing silver paste is provided inside the hole 8 to connect the wiring layers 4 together. Holes 11a and 11b are bored in the wiring base 17, a connecting conductor 12 formed of a conductive composition obtained by curing silver paste is provided inside the holes 11b, wiring layers 14 and 15 are provided so as to cover the end faces of the connecting conductor 12, a thermal conductor 19 formed of a conductive composition (thermally conductive composition) obtained by curing silver paste is provided inside the hole 11a, and a thermally conductive layer 18 is provided so as to cover the end face of the thermal conductor 19. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は複数の配線層を有する配線基板に関するものである。
【0002】
【従来の技術】
従来の配線基板としては、絶縁材料からなるコア材に配線層とスルホールとを形成したものがある。
【0003】
【発明が解決しようとする課題】
しかし、このような配線基板においては、発熱量が多い電子部品を搭載したときには、電子部品の温度が上昇して、電子部品が誤動作することがある。とくに、発熱量が多い電子部品を高密度に搭載したときには、電子部品の温度が非常に上昇する。
【0004】
また、スルホールの中央部は空洞となっているから、電子部品のリード線とスルホールとを接続する場合には、スルホールと接続されたリード線接続部を設ける必要があるので、配線層の配線密度が低くなる。
【0005】
本発明は上述の課題を解決するためになされたもので、電子部品から発生する熱を外部に効率よく放熱することができる配線基板を提供することを目的とする。
【0006】
また、本発明は配線層の配線密度を高くすることができる配線基板を提供することを目的とする。
【0007】
【課題を解決するための手段】
この目的を達成するため、本発明においては、複数の配線層を有する配線基板において、上記配線層を有する配線基体の表面に放熱層を設け、上記配線基体および上記放熱層に孔を設け、上記孔内に導電性組成物からなる熱伝導体を設け、上記熱伝導体の端面を覆う熱伝導層を設ける。
【0008】
また、複数の配線層を有する配線基板において、上記配線層を有する配線基体の表面に放熱層を設け、上記配線基体および上記放熱層に第1の孔を設け、上記第1の孔内に導電性組成物からなる熱伝導体を設け、上記配線基体に第2の孔を設け、上記第2の孔内に導電性組成物からなる接続導電体を設け、上記接続導電体の端面を覆う配線層を設ける。
【0009】
また、複数の配線層を有する配線基板において、上記配線層を有する配線基体の表面に放熱層を設け、上記配線基体および上記放熱層に第1の孔を設け、上記第1の孔内に導電性組成物からなる熱伝導体を設け、上記熱伝導体の端面を覆う熱伝導層を設け、上記配線基体に第2の孔を設け、上記第2の孔内に導電性組成物からなる接続導電体を設け、上記接続導電体の端面を覆う配線層を設ける。
【0010】
【発明の実施の形態】
図1は本発明に係る配線基板の一部を示す断面図である。図に示すように、ガラスエポキシ板1の両面に銅箔2、銅メッキ膜3からなる配線層4が形成されている。なお、図1紙面最下方のガラスエポキシ板1の内側表面には銅箔2のみからなる配線層4が形成されている。また、図1紙面最上方のガラスエポキシ板1の外側表面には銅箔2、銅メッキ膜13からなる配線層14および熱伝導層18が形成されている。また、図1紙面最下方のガラスエポキシ板1の外側表面には銅板10、銅メッキ膜13からなる配線層15および放熱層16が形成されている。また、ガラスエポキシ板1に孔5が設けられ、孔5内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子を熱硬化性樹脂であるエポキシ樹脂からなるバインダに混合分散させた銀ペースト(たとえば、化研テック株式会社製の「TKペーストCT−1722」、「電子材料」2001年7月号、工業調査会、第89〜96頁参照、銀粒子を有する銀ペースト)を硬化した導電性組成物からなる接続導電体6が設けられ、接続導電体6により配線層4、14が接続されている。また、複数のガラスエポキシ板1がプリプレーグ7により接着されて、複数の配線層4、14、15を有する配線基体17が形成されている。また、プリプレーグ7に孔8が設けられ、孔8内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子を熱硬化性樹脂であるエポキシ樹脂からなるバインダに混合分散させた銀ペーストを硬化した導電性組成物からなる接続導電体9が設けられ、接続導電体9により配線層4が接続されている。また、配線基体17に第1、第2の孔11a、11bが設けられ、孔11b内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子を熱硬化性樹脂であるエポキシ樹脂からなるバインダに混合分散させた銀ペーストを硬化した導電性組成物からなる接続導電体12が設けられ、接続導電体12により配線層4、14、15が接続され、配線層14、15の一部は接続導電体12の端面を覆っている。また、孔11a内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子を熱硬化性樹脂であるエポキシ樹脂からなるバインダに混合分散させた銀ペーストを硬化した導電性組成物(熱伝導性組成物)からなる熱伝導体19が設けられ、熱伝導体19の端面を覆う熱伝導層18が設けられ、銅板10に熱伝導体19が接触しており、熱伝導体19により熱伝導層18と放熱層16とが接続され、放熱層16、熱伝導層18の一部は熱伝導体19の端面を覆っている。
【0011】
つぎに、図1に示した配線基板の製造方法を図2〜図5により説明する。まず、図2に示すように、配線層4が形成された複数のガラスエポキシ板1をプリプレーグ7により接着することにより、複数の配線層4を有しかつ接続導電体6、9により配線層4が接続された配線基体17を形成する。なお、図2紙面最上方のガラスエポキシ板1の外側表面には銅箔2を形成し、図2紙面最下方のガラスエポキシ板1の外側表面には銅板10を設ける。つぎに、図3に示すように、配線基体17にNCドリルにより孔11a、11bを設ける。つぎに、図4に示すように、孔11a、11b内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子をエポキシ樹脂からなるバインダに混合分散させた銀ペーストを充填し、銀ペーストを硬化して、孔11a、11b内に銀ペーストを硬化した熱伝導体19、接続導電体12を設け、研磨により熱伝導体19、接続導電体12の端面(表面)を平坦にする。つぎに、図5に示すように、無電解銅メッキを行なったのち電解銅メッキを行なうことにより、銅箔2、銅板10の表面および熱伝導体19、接続導電体12の端面に銅メッキ膜13を形成する。つぎに、銅箔2、銅メッキ膜13を選択的にエッチングすることにより、配線層14および熱伝導層18を形成し、また銅板10、銅メッキ膜13を選択的にエッチングすることにより、配線層15および放熱層16を形成する。この場合、配線層4、14、15が接続導電体12により接続され、また熱伝導層18、放熱層16が熱伝導体19により接続される。
【0012】
この配線基板においては、電子部品(図示せず)を搭載し、放熱層16を電子装置の筐体(図示せず)に当接すると、電子部品から発生した熱が熱伝導層18、熱伝導体19、放熱層16、筐体を介して放熱される。
【0013】
このような配線基板においては、放熱層16、熱伝導層18が熱伝導体19の端面を覆っているから、発熱量が多い電子部品を搭載したとしても、電子部品から発生する熱を外部に効率よく放熱することができるので、電子部品が誤動作するのを防止することができ、また電子部品が熱によって劣化、損傷するのを防止することができる。また、配線層14、15が接続導電体12の端面を覆っているから、電子部品のリード線を配線層14、15の接続導電体12の端面を覆う部分で接続することができるので、配線層14、15の配線密度を高くすることができる。また、孔11a、11b内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子をエポキシ樹脂からなるバインダに混合分散させた銀ペーストを充填し硬化した熱伝導体19、接続導電体12を設けているから、銀粒子の突起が絡み合って嵌合連結接合するので、熱伝導体19の熱伝導性、接続導電体12の導電性が非常に良好である。また、熱伝導体19の端面を覆う熱伝導層18が設けられているから、電子部品に設けられた放熱用リード線を熱伝導層18にハンダ等により取り付け、または電子部品を直接熱伝導層18に接触させれば、電子部品から発生する熱を外部に効率よく放熱することができる。また、配線基体17の表面に熱伝導体19と接触した銅板10を有する放熱層16を設けているから、電子部品から発生する熱を外部に効率よく放熱することができる。また、放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子をエポキシ樹脂からなるバインダに混合分散させた銀ペーストを充填し硬化した熱伝導体19、接続導電体12を設けているから、銀ペーストを硬化するときに体積が減少しないので、熱伝導体19、接続導電体12の配線基体17の表面と平行な表面に凹部が形成されないため、銅メッキ膜13を平面状に形成することができる。また、銀と銅とは微細粒子が相互に拡散融着するから、熱伝導体19、接続導電体12中の銀と銅メッキ膜13の銅との結合は密になる。このため、熱伝導体19と放熱層16、熱伝導層18とは相互に良好な熱伝導経路を形成し、電子部品から発生する熱を効率よく外部に放熱することができ、また接続導電体12と配線層14、15とは相互に良好な導電経路を形成し、配線層14、15の間の導通を改善することができ、しかも熱伝導体19、接続導電体12と銅メッキ膜13との間の引離強度(ピール強度)が非常に大きくなる。また、熱伝導体19、接続導電体12の銀粒子(銀粉)の融点は約962℃で十分高温に耐えるから、配線基板を熱処理しても、熱伝導体19の熱伝導性、接続導電体12の導電性が破壊される心配はない。
【0014】
図6は本発明に係る他の配線基板の一部を示す断面図である。図に示すように、ガラスエポキシ板21の両面に銅箔22、銅メッキ膜24からなる配線層26が形成されている。なお、ガラスエポキシ板21に孔23が設けられ、孔23の内面にも銅メッキ膜24が形成されている。また、図6紙面最下方のガラスエポキシ板21の内側表面には銅箔22のみからなる配線層26が形成されている。また、図6紙面最上方のガラスエポキシ板21の外側表面には銅箔22、銅メッキ膜24、31、34からなる配線層35および熱伝導層38が形成されている。また、図6紙面最下方のガラスエポキシ板21の外側表面には銅箔22の厚さよりも大きな厚さ(200〜500μm)を有する銅板25、銅メッキ膜31、34からなる配線層36および放熱層37が形成されている。また、複数のガラスエポキシ板21がプリプレーグ27により接着されて、複数の配線層26、35、36を有する配線基体39が形成されている。また、プリプレーグ27に孔28が設けられ、孔23、28内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子を熱硬化性樹脂であるエポキシ樹脂からなるバインダに混合分散させた銀ペーストを硬化した導電性組成物からなる接続導電体29が設けられ、接続導電体29により配線層26、35が接続されている。また、配線基体39に第1、第2の孔30a、30bが設けられ、孔30a、30bの内面にも銅メッキ膜31が形成されている。そして、孔30b内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子を熱硬化性樹脂であるエポキシ樹脂からなるバインダに混合分散させた銀ペーストを硬化した導電性組成物からなる接続導電体33が設けられ、接続導電体33により配線層26、35、36が接続され、配線層35、36の一部は接続導電体33の端面を覆っている。また、孔30a内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子を熱硬化性樹脂であるエポキシ樹脂からなるバインダに混合分散させた銀ペーストを硬化した導電性組成物(熱伝導性組成物)からなる熱伝導体32が設けられ、配線基体39の表面に直接設けられた銅板25に熱伝導体32が接触しており、熱伝導体32により熱伝導層38、放熱層37が接続され、放熱層37、熱伝導層38の一部は熱伝導体32の端面を覆っている。
【0015】
つぎに、図6に示した配線基板の製造方法を図7〜図11により説明する。まず、図7に示すように、配線層26が形成された複数のガラスエポキシ板21をプリプレーグ27により接着することにより、複数の配線層26を有しかつ接続導電体29により配線層26が接続された配線基体39を形成する。なお、図7紙面最上方のガラスエポキシ板21の外側表面には銅箔22、銅メッキ膜24を形成し、図7紙面最下方のガラスエポキシ板21の外側表面には銅板25を設け、孔23の内面にも銅メッキ膜24を形成する。つぎに、図8に示すように、配線基体39にNCドリルにより孔30a、30bを設ける。つぎに、図9に示すように、無電解銅メッキのみを行なうことにより、銅メッキ膜24、銅板25の表面および孔30a、30bの内面に銅メッキ膜31を形成する。つぎに、図10に示すように、孔30a、30b内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子をエポキシ樹脂からなるバインダに混合分散させた銀ペーストを充填し、銀ペーストを硬化して、孔30a、30b内に銀ペーストを硬化した熱伝導体32、接続導電体33を設け、研磨により熱伝導体32、接続導電体33の端面(表面)を平坦にする。つぎに、図11に示すように、無電解銅メッキを行なったのち電解銅メッキを行なうことにより、銅メッキ膜31の表面および熱伝導体32、接続導電体33の端面に銅メッキ膜34を形成する。つぎに、銅箔22、銅メッキ膜24、31、34を選択的にエッチングすることにより、配線層35および熱伝導層38を形成し、また銅板25、銅メッキ膜31、34を選択的にエッチングすることにより、配線層36および放熱層37を形成する。この場合、配線層26、35、36が接続導電体33により接続され、また熱伝導層38、放熱層37が熱伝導体32により接続される。
【0016】
この配線基板においては、電子部品(図示せず)を搭載し、放熱層37を電子装置の筐体(図示せず)に当接すると、電子部品から発生した熱が熱伝導層38、熱伝導体32、放熱層37、筐体を介して放熱される。
【0017】
このような配線基板においては、放熱層37、熱伝導層38が熱伝導体32の端面を覆っているから、発熱量が多い電子部品を搭載したとしても、電子部品から発生する熱を外部に効率よく放熱することができるので、電子部品が誤動作するのを防止することができ、また電子部品が熱によって劣化、損傷するのを防止することができる。また、配線層35、36が接続導電体33の端面を覆っているから、電子部品のリード線を配線層35、36の接続導電体33の端面を覆う部分で接続することができるので、配線層35、36の配線密度を高くすることができる。また、孔30a、30b内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子をエポキシ樹脂からなるバインダに混合分散させた銀ペーストを充填し硬化した熱伝導体32、接続導電体33を設けているから、銀粒子の突起が絡み合って嵌合連結接合するので、熱伝導体32の熱伝導性、接続導電体33の導電性が非常に良好である。また、熱伝導体32の端面を覆う熱伝導層38が設けられているから、電子部品に設けられた放熱用リード線を熱伝導層38にハンダ等により取り付け、または電子部品を直接熱伝導層38に接触させれば、電子部品から発生する熱を外部に効率よく放熱することができる。また、配線基体39の表面に熱伝導体32と接触した銅板25を有する放熱層37を設けているから、電子部品から発生する熱を外部に効率よく放熱することができる。また、放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子をエポキシ樹脂からなるバインダに混合分散させた銀ペーストを充填し硬化した接続導電体33、熱伝導体32を設けているから、銀ペーストを硬化するときに体積が減少しないので、熱伝導体32、接続導電体33の配線基体39の表面と平行な表面に凹部が形成されないため、銅メッキ膜34を平面状に形成することができる。また、銀と銅とは微細粒子が相互に拡散融着するから、熱伝導体32、接続導電体33中の銀と銅メッキ膜34の銅との結合は密になる。このため、接続導電体33と配線層35、36とは相互に良好な導電経路を形成し、配線層35、36の間の導通を改善することができ、また熱伝導体32と放熱層37、熱伝導層38とは相互に良好な熱伝導経路を形成し、電子部品から発生する熱を効率よく外部に放熱することができ、しかも熱伝導体32、接続導電体33と銅メッキ膜34との間の引離強度(ピール強度)が非常に大きくなる。また、熱伝導体32、接続導電体33の銀粒子(銀粉)の融点は約962℃で十分高温に耐えるから、配線基板を熱処理しても、熱伝導体32の熱伝導性、接続導電体33の導電性が破壊される心配はない。また、無電解銅メッキのみを行なうことにより、孔30a、30bの内面に銅メッキ膜31を形成しているが、銅メッキ膜31の銅と熱伝導体32、接続導電体33の銀とが拡散結合するから、熱伝導層38と放熱層37との間の熱伝導性、配線層35、36間の導電性が良好であるとともに、孔30a、30bの内面の銅メッキ膜31の厚さが均一になる。
【0018】
図12は本発明に係る他の配線基板の一部を示す断面図である。図に示すように、セラミック板41に銅膜45からなる配線層46、放熱層47、熱伝導層48が形成されている。すなわち、セラミック板41が複数の配線層46を有する配線基体を構成している。また、セラミック板41に第1、第2の孔42a、42bが設けられ、孔42b内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子を熱硬化性樹脂であるエポキシ樹脂からなるバインダに混合分散させた銀ペーストを硬化した導電性組成物からなる接続導電体44が設けられ、接続導電体44により配線層46が接続され、配線層46の一部は接続導電体44の端面を覆っている。また、孔42a内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子を熱硬化性樹脂であるエポキシ樹脂からなるバインダに混合分散させた銀ペーストを硬化した導電性組成物(熱伝導性組成物)からなる熱伝導体43が設けられ、熱伝導体43により放熱層47、熱伝導層48が接続され、放熱層47、熱伝導層48の一部は熱伝導体43の端面を覆っている。
【0019】
つぎに、図12に示した配線基板の製造方法を図13〜図15により説明する。まず、図13に示すように、セラミック板41に第1、第2の孔42a、42bを設ける。つぎに、図14に示すように、孔42a、42b内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子をエポキシ樹脂からなるバインダに混合分散させた銀ペーストを充填し、銀ペーストを硬化して、孔42a、42b内に銀ペーストを硬化した熱伝導体43、接続導電体44を設け、研磨により熱伝導体43、接続導電体44の端面(表面)を平坦にする。つぎに、図15に示すように、銅の蒸着を行ない、熱を加え(拡散し)、さらに無電解銅メッキを行なったのち電解銅メッキを行なうことにより、セラミック板41の表面および熱伝導体43、接続導電体44の端面に銅膜45を形成する。つぎに、銅膜45を選択的にエッチングすることにより、配線層46、放熱層47、熱伝導層48を形成する。この場合、配線層46が接続導電体44により接続され、また熱伝導層48、放熱層47が熱伝導体43により接続される。
【0020】
この配線基板においては、電子部品(図示せず)を搭載し、放熱層47を電子装置の筐体(図示せず)に当接すると、電子部品から発生した熱が熱伝導層48、熱伝導体43、放熱層47、筐体を介して放熱される。
【0021】
このような配線基板においては、放熱層47、熱伝導層48が熱伝導体43の端面を覆っているから、発熱量が多い電子部品を搭載したとしても、電子部品から発生する熱を外部に効率よく放熱することができるので、電子部品が誤動作するのを防止することができ、また電子部品が熱によって劣化、損傷するのを防止することができる。また、配線層46が接続導電体44の端面を覆っているから、電子部品のリード線を配線層46の接続導電体44の端面を覆う部分で接続することができるので、配線層46の配線密度を高くすることができる。また、孔42a、42b内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子をエポキシ樹脂からなるバインダに混合分散させた銀ペーストを充填し硬化した熱伝導体43、接続導電体44を設けているから、銀粒子の突起が絡み合って嵌合連結接合するので、熱伝導体43の熱伝導性、接続導電体44の導電性が非常に良好である。また、熱伝導体43の端面を覆う熱伝導層48が設けられているから、電子部品に設けられた放熱用リード線を熱伝導層48にハンダ等により取り付け、または電子部品を直接熱伝導層48に接触させれば、電子部品から発生する熱を外部に効率よく放熱することができる。また、放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子をエポキシ樹脂からなるバインダに混合分散させた銀ペーストを充填し硬化した熱伝導体43、接続導電体44を設けているから、銀ペーストを硬化するときに体積が減少しないので、熱伝導体43、接続導電体44のセラミック板41の表面と平行な表面に凹部が形成されないため、銅膜45を平面状に形成することができる。また、銀と銅とは微細粒子が相互に拡散融着するから、熱伝導体43、接続導電体44中の銀と銅膜45の銅との結合は密になる。このため、接続導電体44と配線層46とは相互に良好な導電経路を形成し、配線層46の間の導通を改善することができ、また熱伝導体43と放熱層47、熱伝導層48とは相互に良好な熱伝導経路を形成し、電子部品から発生する熱を効率よく外部に放熱することができ、しかも接続導電体44、熱伝導体43と銅膜45との間の引離強度(ピール強度)が非常に大きくなる。また、熱伝導体43、接続導電体44の銀粒子(銀粉)の融点は約962℃で十分高温に耐えるから、配線基板を熱処理しても、熱伝導体43の熱伝導性、接続導電体44の導電性が破壊される心配はない。また、銅の蒸着を行ない、熱を加え、さらに無電解銅メッキを行なったのち電解銅メッキを行なうことにより、銅膜45を形成しているから、銅膜45の引離強度(ピール強度)が非常に大きくなる。
【0022】
なお、上述実施の形態においては、銅箔2、銅メッキ膜13からなる熱伝導層18、銅箔22、銅メッキ膜24、31、34からなる熱伝導層38、銅膜45からなる熱伝導層48を設けたが、熱伝導体の端面に他の材料からなる熱伝導層を設けてもよい。また、上述実施の形態においては、配線基体17、39の表面に放熱板である銅板10、25を設けたが、配線基体の表面に他の放熱板たとえばCIC板、アルミニウム板等の金属板、セラミック板を設けてもよい。また、上述実施の形態においては、ガラスエポキシ板1を有する配線基体17、ガラスエポキシ板21を有する配線基体39を用いたが、ポリイミド樹脂板、テフロン(登録商標)板、BTレジン(登録商標)板等の絶縁板を有する配線基体を用いてもよい。また、複数の材質の板を有する配線基体を用いたとき(複合材を用いたとき)には、層ごとに強度、電気特性等の特性を変えることができるから、性能を向上することができるとともに、製造コストを安価にすることができる。また、上述実施の形態においては、配線基体17にNCドリルにより孔11a、11bを設け、配線基体39にNCドリルにより孔30a、30bを設けたが、配線基体にレーザ光により第1、第2の孔を設けてもよい。また、上述実施の形態においては、無電解銅メッキを行なったのち、電解銅メッキを行なうことにより、銅箔2、銅板10の表面および熱伝導体19、接続導電体12の端面に銅メッキ膜13を形成し、銅メッキ膜31の表面および熱伝導体32、接続導電体33の端面に銅メッキ膜34を形成したが、電解メッキのみを行なうことにより、または無電解メッキのみを行なうことにより、接続導電体、熱伝導体の端面にメッキ膜を形成してもよい。また、上述実施の形態においては、研磨により熱伝導体19、32、43、接続導電体12、33、44の端面を平坦にしたが、研磨以外の方法により熱伝導体、熱伝導体の端面を平坦にしてもよい。また、第1、第2の孔内に大きさの異なる銀粒子を有する銀ペーストを充填し硬化してもよい。たとえば、第1、第2の孔内に大きさが1μm、3μm、6μmの銀粒子を有する銀ペーストを充填し硬化してもよく、また第1、第2の孔内に大きさが1μm、2μm、3μm、4μm、5μm、6μmの銀粒子を有する銀ペーストを充填し硬化してもよい。また、第1、第2の孔の径に応じて銀ペーストの銀粒子の大きさを定めてもよい。この場合、第1、第2の孔の径が大きいときには、銀ペーストの銀粒子の大きさを大きくし、反対に第1、第2の孔の径が小さいときには、銀ペーストの銀粒子の大きさを小さくする。また、配線層の配線の一部と熱伝導体とを接続すれば、配線層の配線の一部を容易に接地することができる。また、放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子を熱硬化性樹脂からなるバインダに混合分散させた銀ペースト中に薄片状銀粒子、球状銀粒子を混合してもよく、この場合には放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子の間に薄片状銀粒子、球状銀粒子が入り込み、熱伝導体の熱伝導性、接続導電体の導電性を良好にすることができる。また、放射状の突起の短い銀粒子と放射状の突起の長い銀粒子とを熱硬化性樹脂からなるバインダに混合分散させた銀ペーストを用いてもよい。この場合、銀ペースト中に薄片状銀粒子、球状銀粒子を混合してもよい。この場合、放射状の突起の短い銀粒子、放射状の突起の長い銀粒子、薄片状銀粒子、球状銀粒子の大きさを相違させてもよい。さらに、放射状の突起の短い銀粒子、放射状の突起の長い銀粒子、薄片状銀粒子、球状銀粒子の混合比を任意に定めることができる。すなわち、銀粒子の突起の大小、銀粒子の形状、銀粒子の大きさを任意に組み合わせ、これらの銀粒子の混合比を任意に定めることによって、熱伝導体の熱伝導性、接続導電体の導電性を極めて良好にすることができる。また、上述実施の形態においては、孔11a、11b、孔30a、30b、孔42a、42b内に放射状の突起を有しかつ相互に嵌合連結して導電経路を形成する銀粒子を熱硬化性樹脂であるエポキシ樹脂からなるバインダに混合分散させた銀ペーストを硬化した導電性組成物(熱伝導性組成物)からなる熱伝導体19、32、43、接続導電体12、33、44を設けたが、第1、第2の孔内に他の銀ペーストを焼結または硬化した導電性組成物(熱伝導性組成物)からなる熱伝導体、接続導電体を設けてもよく、また銀粒子および錫粒子等の銀粒子以外の金属粒子を有する金属ペーストを充填し硬化してもよく、また3種類以上の金属粒子を有する金属ペーストを充填し硬化してもよい。また、ガラスエポキシ板1等の絶縁板の厚さを調整することにより、配線基板の厚さを任意に定めることができ、配線基板の厚さを大きくすれば、配線基板の強度を大きくすることができる。また、上述実施の形態においては、無電解銅メッキのみを行なうことにより銅メッキ膜31を形成し、孔30a、30b内に銀ペーストを充填し、銀ペーストを硬化して、孔30a、30b内に銀ペーストを硬化した熱伝導体32、接続導電体33を設け、無電解銅メッキを行なったのち電解銅メッキを行なうことにより銅メッキ膜34を形成したが、無電解銅メッキを行なったのち電解銅メッキを行なうことにより、銅メッキ膜24、銅板25の表面および孔30a、30bの内面に厚さが10μmの銅メッキ膜を形成し、孔30a、30b内に銀ペーストを充填し、銀ペーストを硬化して、孔30a、30b内に銀ペーストを硬化した熱伝導体32、接続導電体33を設け、無電解銅メッキを行なったのち電解銅メッキを行なうことにより、銅メッキ膜31の表面および熱伝導体32、接続導電体33の端面に厚さが15μmの銅メッキ膜を形成してもよい。また、上述実施の形態においては、銅の蒸着を行ない、熱を加え、さらに無電解銅メッキを行なったのち電解銅メッキを行なうことにより銅膜45を形成したが、クロム、ニッケル等の蒸着を行ない、熱を加え、さらに無電解銅メッキを行なったのち電解銅メッキを行なうことにより、セラミック板41の表面および熱伝導体43、接続導電体44の端面に金属膜を形成してもよい。また、上述実施の形態においては、銅の蒸着を行ない、熱を加え、さらに無電解銅メッキを行なったのち電解銅メッキを行なうことにより銅膜45を形成したが、無電解メッキを行なったのち電解メッキを行なうことによりセラミック板の表面および熱伝導体、接続導電体の端面に金属膜を形成してもよい。
【0023】
【発明の効果】
本発明に係る配線基板においては、熱伝導体の端面を覆う熱伝導層が設けられているから、発熱量が多い電子部品を搭載したとしても、電子部品から発生する熱を外部に効率よく放熱することができるので、電子部品が誤動作するのを防止することができ、また電子部品が熱によって劣化、損傷するのを防止することができる。
【0024】
また、接続導電体の端面を覆う配線層が設けられているから、電子部品のリード線を配線層の接続導電体の端面を覆う部分で接続することができるので、配線層の配線密度を高くすることができる。
【図面の簡単な説明】
【図1】本発明に係る配線基板の一部を示す断面図である。
【図2】図1に示した配線基板の製造方法の説明図である。
【図3】図1に示した配線基板の製造方法の説明図である。
【図4】図1に示した配線基板の製造方法の説明図である。
【図5】図1に示した配線基板の製造方法の説明図である。
【図6】本発明に係る他の配線基板の一部を示す断面図である。
【図7】図6に示した配線基板の製造方法の説明図である。
【図8】図6に示した配線基板の製造方法の説明図である。
【図9】図6に示した配線基板の製造方法の説明図である。
【図10】図6に示した配線基板の製造方法の説明図である。
【図11】図6に示した配線基板の製造方法の説明図である。
【図12】本発明に係る他の配線基板の一部を示す断面図である。
【図13】図12に示した配線基板の製造方法の説明図である。
【図14】図12に示した配線基板の製造方法の説明図である。
【図15】図12に示した配線基板の製造方法の説明図である。
【符号の説明】
4…配線層
11a…第1の孔
11b…第2の孔
12…接続導電体
14…配線層
15…配線層
16…放熱層
17…配線基体
18…熱伝導層
19…熱伝導体
26…配線層
30a…第1の孔
30b…第2の孔
32…熱伝導体
33…接続導電体
35…配線層
36…配線層
37…放熱層
38…熱伝導層
39…配線基体
41…セラミック板
42a…第1の孔
42b…第2の孔
43…熱伝導体
44…接続導電体
46…配線層
47…放熱層
48…熱伝導層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board having a plurality of wiring layers.
[0002]
[Prior art]
As a conventional wiring board, there is a wiring board in which a wiring layer and a through hole are formed in a core material made of an insulating material.
[0003]
[Problems to be solved by the invention]
However, in such a wiring board, when an electronic component that generates a large amount of heat is mounted, the temperature of the electronic component increases, and the electronic component may malfunction. In particular, when electronic components generating a large amount of heat are mounted at a high density, the temperature of the electronic components rises extremely.
[0004]
Also, since the center of the through hole is hollow, when connecting the lead wire of the electronic component to the through hole, it is necessary to provide a lead wire connecting portion connected to the through hole, so that the wiring density of the wiring layer is increased. Becomes lower.
[0005]
The present invention has been made to solve the above-described problem, and has as its object to provide a wiring board that can efficiently radiate heat generated from an electronic component to the outside.
[0006]
Another object of the present invention is to provide a wiring board that can increase the wiring density of a wiring layer.
[0007]
[Means for Solving the Problems]
In order to achieve this object, in the present invention, in a wiring board having a plurality of wiring layers, a heat radiation layer is provided on a surface of the wiring substrate having the wiring layer, and holes are provided in the wiring substrate and the heat radiation layer. A heat conductor made of a conductive composition is provided in the hole, and a heat conductive layer covering an end face of the heat conductor is provided.
[0008]
In a wiring board having a plurality of wiring layers, a heat dissipation layer is provided on a surface of the wiring base having the wiring layer, a first hole is provided in the wiring base and the heat dissipation layer, and a conductive hole is provided in the first hole. A heat conductor made of a conductive composition, a second hole in the wiring substrate, a connection conductor made of a conductive composition in the second hole, and a wiring covering an end surface of the connection conductor. Provide a layer.
[0009]
In a wiring board having a plurality of wiring layers, a heat dissipation layer is provided on a surface of the wiring base having the wiring layer, a first hole is provided in the wiring base and the heat dissipation layer, and a conductive hole is provided in the first hole. Providing a heat conductor made of a conductive composition, providing a heat conductive layer covering an end face of the heat conductor, providing a second hole in the wiring substrate, and connecting the conductive composition in the second hole. A conductor is provided, and a wiring layer covering an end face of the connection conductor is provided.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view showing a part of a wiring board according to the present invention. As shown in the figure, a wiring layer 4 composed of a copper foil 2 and a copper plating film 3 is formed on both surfaces of a glass epoxy plate 1. Note that a wiring layer 4 made of only the copper foil 2 is formed on the inner surface of the glass epoxy plate 1 at the bottom of FIG. A copper foil 2, a wiring layer 14 made of a copper plating film 13, and a heat conductive layer 18 are formed on the outer surface of the glass epoxy plate 1 at the uppermost position in FIG. A copper plate 10, a wiring layer 15 made of a copper plating film 13, and a heat radiation layer 16 are formed on the outer surface of the glass epoxy plate 1 at the bottom of the drawing of FIG. Further, a hole 5 is provided in the glass epoxy plate 1, and silver particles which have radial projections in the hole 5 and are fitted and connected to each other to form a conductive path are made of a binder made of an epoxy resin which is a thermosetting resin. Paste (for example, see “TK Paste CT-1722” manufactured by Kaken Tec Co., Ltd., “Electronic Materials” July 2001, Industrial Research Institute, pages 89 to 96, having silver particles. A connection conductor 6 made of a conductive composition obtained by curing silver paste) is provided, and the wiring layers 4 and 14 are connected by the connection conductor 6. Further, a plurality of glass epoxy plates 1 are adhered by a prepreg 7 to form a wiring base 17 having a plurality of wiring layers 4, 14, 15. A hole 8 is provided in the prepreg 7, and silver particles which have radial projections in the hole 8 and are fitted and connected to each other to form a conductive path are mixed with a binder made of an epoxy resin which is a thermosetting resin. A connection conductor 9 made of a conductive composition obtained by curing a dispersed silver paste is provided, and the connection layer 9 connects the wiring layer 4. Further, first and second holes 11a and 11b are provided in the wiring base 17, and silver particles having radial projections in the holes 11b and forming a conductive path by being fitted and connected to each other are formed of a thermosetting resin. A connection conductor 12 made of a conductive composition obtained by curing a silver paste mixed and dispersed in an epoxy resin binder is provided, and the connection layers 12, 14, and 15 are connected by the connection conductor 12, and the wiring layer 14 is formed. , 15 cover the end surface of the connection conductor 12. Also, a conductive paste obtained by curing a silver paste in which silver particles having radial protrusions in the holes 11a and fittingly connected to each other to form a conductive path are mixed and dispersed in a binder made of an epoxy resin which is a thermosetting resin. A heat conductor 19 made of a conductive composition (heat conductive composition) is provided, a heat conductive layer 18 covering an end face of the heat conductor 19 is provided, and the heat conductor 19 is in contact with the copper plate 10. The heat conduction layer 18 and the heat radiation layer 16 are connected by the conductor 19, and a part of the heat radiation layer 16 and the heat conduction layer 18 cover an end face of the heat conductor 19.
[0011]
Next, a method of manufacturing the wiring board shown in FIG. 1 will be described with reference to FIGS. First, as shown in FIG. 2, a plurality of glass epoxy plates 1 on which the wiring layers 4 are formed are adhered by a prepreg 7, so that the plurality of glass epoxy plates 1 have a plurality of wiring layers 4 and are connected to the wiring layers 4 by connecting conductors 6 and 9. Is formed to form a wiring base 17 connected to the wiring base 17. The copper foil 2 is formed on the outer surface of the glass epoxy plate 1 at the top of FIG. 2 and the copper plate 10 is provided on the outer surface of the glass epoxy plate 1 at the bottom of FIG. Next, as shown in FIG. 3, holes 11a and 11b are provided in the wiring base 17 by an NC drill. Next, as shown in FIG. 4, a silver paste in which silver particles having radial projections in the holes 11a and 11b and fitting and connecting with each other to form a conductive path are mixed and dispersed in a binder made of epoxy resin. Is filled, the silver paste is hardened, and the heat conductor 19 and the connection conductor 12 having the silver paste hardened are provided in the holes 11a and 11b, and the heat conductor 19 and the end surface (surface) of the connection conductor 12 are polished. Flatten. Next, as shown in FIG. 5, by performing electroless copper plating and then performing electrolytic copper plating, a copper plating film is formed on the surfaces of the copper foil 2, the copper plate 10, the heat conductor 19, and the connection conductor 12. 13 is formed. Next, the wiring layer 14 and the heat conductive layer 18 are formed by selectively etching the copper foil 2 and the copper plating film 13, and the wiring is formed by selectively etching the copper plate 10 and the copper plating film 13. The layer 15 and the heat radiation layer 16 are formed. In this case, the wiring layers 4, 14 and 15 are connected by the connection conductor 12, and the heat conduction layer 18 and the heat radiation layer 16 are connected by the heat conductor 19.
[0012]
In this wiring board, when an electronic component (not shown) is mounted and the heat radiation layer 16 is brought into contact with a housing (not shown) of the electronic device, heat generated from the electronic component is transferred to the heat conductive layer 18 and the heat conductive layer 18. Heat is radiated through the body 19, the heat radiation layer 16, and the housing.
[0013]
In such a wiring board, since the heat dissipation layer 16 and the heat conduction layer 18 cover the end faces of the heat conductor 19, even if an electronic component generating a large amount of heat is mounted, the heat generated from the electronic component is transmitted to the outside. Since heat can be efficiently dissipated, malfunction of the electronic component can be prevented, and deterioration and damage of the electronic component due to heat can be prevented. Further, since the wiring layers 14 and 15 cover the end faces of the connection conductor 12, the lead wires of the electronic component can be connected at the portions of the wiring layers 14 and 15 covering the end faces of the connection conductor 12, so that the wiring The wiring density of the layers 14 and 15 can be increased. A heat conductor filled with a silver paste in which silver particles having radial projections in the holes 11a and 11b and forming a conductive path by being fitted and connected to each other are mixed and dispersed in a binder made of an epoxy resin. 19. Since the connecting conductor 12 is provided, the protrusions of the silver particles are entangled and connected to each other, so that the thermal conductivity of the thermal conductor 19 and the conductivity of the connecting conductor 12 are very good. Further, since the heat conductive layer 18 covering the end surface of the heat conductor 19 is provided, the heat radiation lead wire provided on the electronic component is attached to the heat conductive layer 18 by soldering or the like, or the electronic component is directly connected to the heat conductive layer 18. When the contact is made, the heat generated from the electronic component can be efficiently radiated to the outside. Further, since the heat radiation layer 16 having the copper plate 10 in contact with the heat conductor 19 is provided on the surface of the wiring base 17, heat generated from the electronic components can be efficiently radiated to the outside. Further, a heat conductor 19 filled with a silver paste in which silver particles having radial projections and being fitted and connected to each other to form a conductive path and mixed and dispersed in a binder made of an epoxy resin, and cured, Is provided, the volume does not decrease when the silver paste is hardened, so that no concave portion is formed on the surface parallel to the surface of the wiring base 17 of the heat conductor 19 and the connection conductor 12, so that the copper plating film 13 It can be formed in a planar shape. Further, since fine particles of silver and copper are diffused and fused to each other, the bonding between silver in the heat conductor 19 and the connection conductor 12 and copper in the copper plating film 13 becomes dense. Therefore, the heat conductor 19, the heat dissipation layer 16, and the heat conduction layer 18 form a mutually favorable heat conduction path, and can efficiently radiate heat generated from the electronic components to the outside. 12 and the wiring layers 14 and 15 mutually form a good conductive path to improve conduction between the wiring layers 14 and 15, and furthermore, the heat conductor 19, the connection conductor 12 and the copper plating film 13 And the peel strength between them (peel strength) becomes very large. Further, since the melting point of the silver particles (silver powder) of the heat conductor 19 and the connection conductor 12 is about 962 ° C., which can withstand a sufficiently high temperature, even if the wiring board is heat-treated, the heat conductivity of the heat conductor 19 and the connection conductor There is no fear that the conductivity of the conductive layer 12 is destroyed.
[0014]
FIG. 6 is a sectional view showing a part of another wiring board according to the present invention. As shown in the figure, a wiring layer 26 made of a copper foil 22 and a copper plating film 24 is formed on both surfaces of a glass epoxy plate 21. In addition, a hole 23 is provided in the glass epoxy plate 21, and a copper plating film 24 is also formed on the inner surface of the hole 23. Further, a wiring layer 26 made of only the copper foil 22 is formed on the inner surface of the glass epoxy plate 21 at the lowermost position in FIG. On the outer surface of the glass epoxy plate 21 at the top of FIG. 6, a copper foil 22, a wiring layer 35 composed of copper plating films 24, 31, and 34 and a heat conductive layer 38 are formed. In addition, a copper plate 25 having a thickness (200 to 500 μm) larger than the thickness of the copper foil 22, a wiring layer 36 made of copper plating films 31 and 34, and a heat radiation A layer 37 is formed. Further, a plurality of glass epoxy plates 21 are adhered by a prepreg 27 to form a wiring base 39 having a plurality of wiring layers 26, 35, 36. A hole 28 is provided in the prepreg 27, and silver particles which have radial projections in the holes 23 and 28 and which are fitted and connected to each other to form a conductive path are made of a binder made of an epoxy resin which is a thermosetting resin. A connecting conductor 29 made of a conductive composition obtained by hardening a silver paste mixed and dispersed in a conductive material is provided, and the wiring layers 26 and 35 are connected by the connecting conductor 29. Further, first and second holes 30a and 30b are provided in the wiring base 39, and a copper plating film 31 is formed on the inner surfaces of the holes 30a and 30b. A conductive paste obtained by curing a silver paste in which silver particles having radial projections in the holes 30b and fitting and connecting with each other to form conductive paths are mixed and dispersed in a binder made of epoxy resin which is a thermosetting resin. A connection conductor 33 made of a conductive composition is provided. The connection conductor 33 connects the wiring layers 26, 35, and 36, and a part of the wiring layers 35 and 36 covers an end surface of the connection conductor 33. Also, a conductive paste obtained by curing a silver paste in which silver particles having radial projections in the holes 30a and being fitted and connected to each other to form conductive paths are mixed and dispersed in a binder made of an epoxy resin as a thermosetting resin. A heat conductor 32 made of a conductive composition (heat conductive composition) is provided, and the heat conductor 32 is in contact with the copper plate 25 directly provided on the surface of the wiring base 39, and the heat conductor 32 allows the heat conductor 32 to conduct heat. The layer 38 and the heat dissipation layer 37 are connected, and a part of the heat dissipation layer 37 and a part of the heat conduction layer 38 cover an end face of the heat conductor 32.
[0015]
Next, a method of manufacturing the wiring board shown in FIG. 6 will be described with reference to FIGS. First, as shown in FIG. 7, a plurality of glass epoxy plates 21 on which the wiring layers 26 are formed are adhered by a prepreg 27 so that the wiring layers 26 have a plurality of wiring layers 26 and are connected by the connection conductor 29. The formed wiring base 39 is formed. A copper foil 22 and a copper plating film 24 are formed on the outer surface of the glass epoxy plate 21 at the top of FIG. 7 and a copper plate 25 is provided on the outer surface of the glass epoxy plate 21 at the bottom of FIG. A copper plating film 24 is also formed on the inner surface of the substrate 23. Next, as shown in FIG. 8, holes 30a and 30b are provided in the wiring base 39 by an NC drill. Next, as shown in FIG. 9, by performing only electroless copper plating, a copper plating film 31 is formed on the surface of the copper plating film 24, the copper plate 25, and the inner surfaces of the holes 30a and 30b. Next, as shown in FIG. 10, silver paste having radial projections in the holes 30a and 30b and forming a conductive path by fitting and connecting with each other is mixed and dispersed in a binder made of epoxy resin. Is filled, the silver paste is hardened, and the heat conductor 32 and the connection conductor 33 having the silver paste hardened are provided in the holes 30a and 30b, and the end faces (surfaces) of the heat conductor 32 and the connection conductor 33 are polished. Flatten. Next, as shown in FIG. 11, by performing electroless copper plating and then performing electrolytic copper plating, a copper plating film 34 is formed on the surface of the copper plating film 31, the heat conductor 32, and the end face of the connection conductor 33. Form. Next, the wiring layer 35 and the heat conductive layer 38 are formed by selectively etching the copper foil 22 and the copper plating films 24, 31 and 34, and the copper plate 25 and the copper plating films 31 and 34 are selectively etched. The wiring layer 36 and the heat radiation layer 37 are formed by etching. In this case, the wiring layers 26, 35 and 36 are connected by the connection conductor 33, and the heat conduction layer 38 and the heat radiation layer 37 are connected by the heat conductor 32.
[0016]
In this wiring board, an electronic component (not shown) is mounted, and when the heat radiation layer 37 is brought into contact with a housing (not shown) of the electronic device, heat generated from the electronic component is transferred to the heat conductive layer 38 and the heat conductive layer 38. Heat is radiated through the body 32, the heat radiation layer 37, and the housing.
[0017]
In such a wiring board, since the heat dissipation layer 37 and the heat conduction layer 38 cover the end surfaces of the heat conductor 32, even if an electronic component generating a large amount of heat is mounted, heat generated from the electronic component is transmitted to the outside. Since heat can be efficiently dissipated, malfunction of the electronic component can be prevented, and deterioration and damage of the electronic component due to heat can be prevented. Further, since the wiring layers 35 and 36 cover the end faces of the connection conductor 33, the lead wires of the electronic components can be connected at the portions of the wiring layers 35 and 36 that cover the end faces of the connection conductor 33. The wiring density of the layers 35 and 36 can be increased. A heat conductor filled with a silver paste in which silver particles having radial protrusions in the holes 30a and 30b and forming a conductive path by fitting and connecting with each other are mixed and dispersed in a binder made of an epoxy resin. Since the connection conductor 33 is provided, the protrusions of the silver particles are entangled and connected to each other, so that the thermal conductivity of the heat conductor 32 and the conductivity of the connection conductor 33 are very good. Further, since the heat conducting layer 38 covering the end face of the heat conductor 32 is provided, the heat radiation lead wire provided on the electronic component is attached to the heat conducting layer 38 by soldering or the like, or the electronic component is directly connected to the heat conducting layer. 38, the heat generated from the electronic component can be efficiently radiated to the outside. Further, since the heat dissipation layer 37 having the copper plate 25 in contact with the heat conductor 32 is provided on the surface of the wiring base 39, the heat generated from the electronic component can be efficiently radiated to the outside. Further, a connection conductor 33 and a heat conductor 32, which are filled with a silver paste in which silver particles having radial projections and fitted and connected to each other to form a conductive path and mixed and dispersed in a binder made of an epoxy resin, are hardened. Is provided, the volume does not decrease when the silver paste is hardened, so that no concave portion is formed on the surface parallel to the surface of the wiring base 39 of the heat conductor 32 and the connection conductor 33. It can be formed in a planar shape. Further, since fine particles of silver and copper are diffused and fused to each other, the bonding between silver in the heat conductor 32 and the connection conductor 33 and copper in the copper plating film 34 is increased. For this reason, the connection conductor 33 and the wiring layers 35 and 36 can form good conductive paths with each other to improve the conduction between the wiring layers 35 and 36, and the heat conductor 32 and the heat radiation layer 37. , The heat conductive layer 38 and the heat conductive layer 38 mutually form a good heat conductive path, and can efficiently radiate heat generated from the electronic components to the outside. In addition, the heat conductor 32, the connection conductor 33, and the copper plating film 34 And the peel strength between them (peel strength) becomes very large. Further, since the melting point of the silver particles (silver powder) of the heat conductor 32 and the connection conductor 33 is about 962 ° C., which sufficiently withstands a high temperature, even if the wiring board is heat-treated, the heat conductivity of the heat conductor 32 and the connection conductor There is no fear that the conductivity of the 33 will be destroyed. Further, the copper plating film 31 is formed on the inner surfaces of the holes 30a and 30b by performing only the electroless copper plating, but the copper of the copper plating film 31 and the silver of the heat conductor 32 and the silver of the connection conductor 33 are not formed. Because of the diffusion bonding, the thermal conductivity between the heat conductive layer 38 and the heat radiation layer 37 and the conductivity between the wiring layers 35 and 36 are good, and the thickness of the copper plating film 31 on the inner surfaces of the holes 30a and 30b is good. Becomes uniform.
[0018]
FIG. 12 is a sectional view showing a part of another wiring board according to the present invention. As shown in the figure, a wiring layer 46 made of a copper film 45, a heat radiation layer 47, and a heat conduction layer 48 are formed on a ceramic plate 41. That is, the ceramic plate 41 constitutes a wiring base having a plurality of wiring layers 46. Further, first and second holes 42a and 42b are provided in the ceramic plate 41, and silver particles which have radial projections in the holes 42b and are fitted and connected to each other to form a conductive path are formed of a thermosetting resin. A connection conductor 44 made of a conductive composition obtained by curing a silver paste mixed and dispersed in an epoxy resin binder is provided. The connection conductor 44 connects the wiring layer 46, and a part of the wiring layer 46 is formed. The end surface of the connection conductor 44 is covered. Also, a conductive paste obtained by curing a silver paste in which silver particles having radial protrusions in the holes 42a and fittingly connected to each other to form a conductive path are mixed and dispersed in a binder made of an epoxy resin which is a thermosetting resin. A heat conductor 43 made of a conductive composition (heat conductive composition) is provided, and the heat conductor 43 connects the heat dissipation layer 47 and the heat conduction layer 48. The end surface of the conductor 43 is covered.
[0019]
Next, a method of manufacturing the wiring board shown in FIG. 12 will be described with reference to FIGS. First, as shown in FIG. 13, the ceramic plate 41 is provided with first and second holes 42a and 42b. Next, as shown in FIG. 14, a silver paste in which silver particles having radial projections in the holes 42a and 42b and fitting and connecting with each other to form a conductive path are mixed and dispersed in a binder made of epoxy resin. Is filled, the silver paste is hardened, and the heat conductor 43 and the connection conductor 44 in which the silver paste is hardened are provided in the holes 42a and 42b, and the end surfaces (surfaces) of the heat conductor 43 and the connection conductor 44 are polished by polishing. Flatten. Next, as shown in FIG. 15, copper is deposited, heat is applied (diffused), electroless copper plating is performed, and then electrolytic copper plating is performed. 43, a copper film 45 is formed on the end surface of the connection conductor 44; Next, by selectively etching the copper film 45, a wiring layer 46, a heat radiation layer 47, and a heat conduction layer 48 are formed. In this case, the wiring layer 46 is connected by the connection conductor 44, and the heat conduction layer 48 and the heat radiation layer 47 are connected by the heat conductor 43.
[0020]
In this wiring board, an electronic component (not shown) is mounted, and when the heat radiation layer 47 is brought into contact with a housing (not shown) of the electronic device, heat generated from the electronic component is transferred to the heat conductive layer 48 and the heat conductive layer 48. Heat is radiated through the body 43, the heat radiation layer 47, and the housing.
[0021]
In such a wiring board, since the heat dissipation layer 47 and the heat conduction layer 48 cover the end surface of the heat conductor 43, even if an electronic component generating a large amount of heat is mounted, heat generated from the electronic component is externally transmitted. Since heat can be efficiently dissipated, malfunction of the electronic component can be prevented, and deterioration and damage of the electronic component due to heat can be prevented. Further, since the wiring layer 46 covers the end surface of the connection conductor 44, the lead wire of the electronic component can be connected at the portion of the wiring layer 46 covering the end surface of the connection conductor 44. Density can be increased. A heat conductor filled and cured with a silver paste in which silver particles having radial projections in the holes 42a and 42b and fitting and connecting with each other to form a conductive path are mixed and dispersed in a binder made of epoxy resin. Since the connection conductors 43 are provided, the protrusions of the silver particles are entangled and connected to each other, so that the thermal conductivity of the heat conductor 43 and the conductivity of the connection conductor 44 are very good. Further, since the heat conducting layer 48 covering the end face of the heat conductor 43 is provided, the heat radiating lead wire provided on the electronic component is attached to the heat conducting layer 48 by soldering or the like, or the electronic component is directly connected to the heat conducting layer. When the contact is made to contact with the component 48, heat generated from the electronic component can be efficiently radiated to the outside. A heat conductor 43 and a connection conductor 44 which are filled with a silver paste in which silver particles having radial protrusions and which are fitted and connected to each other to form a conductive path and mixed and dispersed in a binder made of an epoxy resin, are hardened. Is provided, the volume does not decrease when the silver paste is cured, so that no concave portion is formed on the surface parallel to the surface of the ceramic plate 41 of the heat conductor 43 and the connection conductor 44, so that the copper film 45 It can be formed in a shape. Further, since fine particles of silver and copper are diffused and fused to each other, the bond between silver in the heat conductor 43 and the connection conductor 44 and copper in the copper film 45 is increased. For this reason, the connection conductor 44 and the wiring layer 46 can form a good conductive path with each other to improve conduction between the wiring layer 46, and the heat conductor 43 and the heat radiation layer 47, the heat conduction layer 48 form a mutually favorable heat conduction path, can efficiently radiate the heat generated from the electronic components to the outside, and furthermore, draw the connection conductor 44, the heat conductor 43 and the copper film 45 between the conductors. The separation strength (peel strength) becomes very large. Further, since the melting point of the silver particles (silver powder) of the heat conductor 43 and the connection conductor 44 is about 962 ° C., which sufficiently withstands a high temperature, even if the wiring board is heat-treated, the heat conductivity of the heat conductor 43 and the connection conductor There is no concern that the conductivity of 44 will be destroyed. Further, since the copper film 45 is formed by performing copper deposition, applying heat, performing electroless copper plating, and then performing electrolytic copper plating, the separation strength (peel strength) of the copper film 45 is formed. Becomes very large.
[0022]
In the above-described embodiment, the heat conductive layer 18 made of the copper foil 2 and the copper plated film 13, the heat conductive layer 38 made of the copper foil 22, the copper plated films 24, 31 and 34, and the heat conductive layer made of the copper film 45 are used. Although the layer 48 is provided, a heat conductive layer made of another material may be provided on the end surface of the heat conductor. Further, in the above-described embodiment, the copper plates 10 and 25 serving as heat sinks are provided on the surfaces of the wiring bases 17 and 39, but other heat sinks such as a metal plate such as a CIC plate and an aluminum plate are provided on the surface of the wiring base. A ceramic plate may be provided. In the above embodiment, the wiring base 17 having the glass epoxy plate 1 and the wiring base 39 having the glass epoxy plate 21 are used. However, a polyimide resin plate, a Teflon (registered trademark) plate, and a BT resin (registered trademark) are used. A wiring base having an insulating plate such as a plate may be used. In addition, when a wiring base having a plurality of material plates is used (when a composite material is used), characteristics such as strength and electrical characteristics can be changed for each layer, so that performance can be improved. At the same time, the manufacturing cost can be reduced. Further, in the above-described embodiment, the holes 11a and 11b are provided in the wiring base 17 by the NC drill, and the holes 30a and 30b are provided in the wiring base 39 by the NC drill. Holes may be provided. In the above-described embodiment, the electroless copper plating is performed, and then the electrolytic copper plating is performed, so that the copper foil 2, the surface of the copper plate 10 and the end faces of the heat conductor 19 and the connection conductor 12 are coated with a copper plating film. 13 was formed, and the copper plating film 34 was formed on the surface of the copper plating film 31 and on the end faces of the heat conductor 32 and the connection conductor 33, but by performing only electrolytic plating or performing only electroless plating. Alternatively, a plating film may be formed on the end surfaces of the connection conductor and the heat conductor. Further, in the above-described embodiment, the end faces of the heat conductors 19, 32, 43 and the connection conductors 12, 33, 44 were flattened by polishing, but the end faces of the heat conductor, heat conductor were obtained by a method other than polishing. May be flattened. Alternatively, the first and second holes may be filled with a silver paste having silver particles having different sizes and cured. For example, the first and second holes may be filled with a silver paste having silver particles of 1 μm, 3 μm, and 6 μm in size and cured, and the first and second holes may have a size of 1 μm, A silver paste having silver particles of 2 μm, 3 μm, 4 μm, 5 μm, and 6 μm may be filled and cured. Further, the size of the silver particles of the silver paste may be determined according to the diameters of the first and second holes. In this case, when the diameters of the first and second holes are large, the size of the silver particles of the silver paste is increased. Conversely, when the diameters of the first and second holes are small, the size of the silver particles of the silver paste is large. Make it smaller. Further, if a part of the wiring of the wiring layer is connected to the heat conductor, a part of the wiring of the wiring layer can be easily grounded. Further, flaky silver particles and spherical silver particles are mixed in a silver paste in which silver particles having radial projections and forming a conductive path by being fitted and connected to each other are mixed and dispersed in a binder made of a thermosetting resin. In this case, flaky silver particles and spherical silver particles enter between silver particles having radial projections and being fitted and connected to each other to form a conductive path, and the heat conduction of the heat conductor And the conductivity of the connecting conductor can be improved. Alternatively, a silver paste in which silver particles having short radial projections and silver particles having long radial projections are mixed and dispersed in a binder made of a thermosetting resin may be used. In this case, flaky silver particles and spherical silver particles may be mixed in the silver paste. In this case, silver particles having short radial projections, silver particles having long radial projections, flaky silver particles, and spherical silver particles may have different sizes. Further, the mixing ratio of silver particles having short radial projections, silver particles having long radial projections, flaky silver particles, and spherical silver particles can be arbitrarily determined. That is, by arbitrarily combining the size of the silver particle protrusion, the shape of the silver particle, and the size of the silver particle, and arbitrarily determining the mixing ratio of these silver particles, the thermal conductivity of the heat conductor and the connection conductor The conductivity can be made very good. In the above-described embodiment, silver particles having radial projections in the holes 11a, 11b, holes 30a, 30b, and holes 42a, 42b are fitted and connected to each other to form a conductive path. Thermal conductors 19, 32, and 43, and connection conductors 12, 33, and 44 made of a conductive composition (heat conductive composition) obtained by curing a silver paste mixed and dispersed in a binder made of an epoxy resin as a resin are provided. However, a heat conductor and a connection conductor made of a conductive composition (heat conductive composition) obtained by sintering or hardening another silver paste may be provided in the first and second holes. A metal paste having metal particles other than silver particles such as particles and tin particles may be filled and cured, or a metal paste having three or more types of metal particles may be filled and cured. Further, the thickness of the wiring board can be arbitrarily determined by adjusting the thickness of the insulating plate such as the glass epoxy plate 1, and the strength of the wiring board can be increased by increasing the thickness of the wiring board. Can be. In the above-described embodiment, the copper plating film 31 is formed by performing only the electroless copper plating, the silver paste is filled in the holes 30a and 30b, and the silver paste is hardened to form the holes 30a and 30b. A copper conductor film was formed by providing a heat conductor 32 and a connection conductor 33 obtained by hardening a silver paste, performing electroless copper plating, and then performing electrolytic copper plating. By performing electrolytic copper plating, a copper plating film having a thickness of 10 μm is formed on the surface of the copper plating film 24, the copper plate 25 and the inner surfaces of the holes 30a, 30b, and the holes 30a, 30b are filled with silver paste. By hardening the paste, providing a heat conductor 32 and a connection conductor 33 in which the silver paste is hardened in the holes 30a and 30b, performing electroless copper plating, and then performing electrolytic copper plating. , The surface and the thermal conductor 32 of copper-plated film 31, the thickness of the end face of the connecting conductor 33 may form a copper plating film of 15 [mu] m. Further, in the above-described embodiment, the copper film 45 is formed by performing copper vapor deposition, applying heat, performing electroless copper plating, and then performing electrolytic copper plating. The metal film may be formed on the surface of the ceramic plate 41 and the end surfaces of the heat conductor 43 and the connection conductor 44 by performing the heat treatment, applying electroless copper plating, and then performing electrolytic copper plating. Further, in the above-described embodiment, the copper film is formed by performing copper deposition, applying heat, performing electroless copper plating, and then performing electrolytic copper plating, but performing the electroless plating. A metal film may be formed on the surface of the ceramic plate and the end faces of the heat conductor and the connection conductor by performing electrolytic plating.
[0023]
【The invention's effect】
In the wiring board according to the present invention, since the heat conductive layer covering the end surface of the heat conductor is provided, even when electronic components generating a large amount of heat are mounted, heat generated from the electronic components is efficiently radiated to the outside. Therefore, malfunction of the electronic component can be prevented, and deterioration and damage of the electronic component due to heat can be prevented.
[0024]
Further, since the wiring layer covering the end surface of the connection conductor is provided, the lead wire of the electronic component can be connected at the portion covering the end surface of the connection conductor of the wiring layer, so that the wiring density of the wiring layer can be increased. can do.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a part of a wiring board according to the present invention.
FIG. 2 is an explanatory diagram of a method of manufacturing the wiring board shown in FIG.
FIG. 3 is an explanatory diagram of a method of manufacturing the wiring board shown in FIG.
FIG. 4 is an explanatory diagram of a method of manufacturing the wiring board shown in FIG.
FIG. 5 is an explanatory diagram of a method of manufacturing the wiring board shown in FIG.
FIG. 6 is a cross-sectional view showing a part of another wiring board according to the present invention.
FIG. 7 is an explanatory diagram of a method of manufacturing the wiring board shown in FIG.
FIG. 8 is an explanatory diagram of a method of manufacturing the wiring board shown in FIG.
FIG. 9 is an explanatory diagram of a method of manufacturing the wiring board shown in FIG.
FIG. 10 is an explanatory diagram of a method of manufacturing the wiring board shown in FIG.
11 is an explanatory diagram of the method for manufacturing the wiring board shown in FIG.
FIG. 12 is a sectional view showing a part of another wiring board according to the present invention.
FIG. 13 is an explanatory diagram of a method of manufacturing the wiring board shown in FIG.
14 is an explanatory diagram of the method of manufacturing the wiring board shown in FIG.
15 is an explanatory diagram of the method for manufacturing the wiring board shown in FIG.
[Explanation of symbols]
4: Wiring layer
11a: First hole
11b: second hole
12 Connection conductor
14. Wiring layer
15 Wiring layer
16 ... heat dissipation layer
17 Wiring substrate
18 ... thermal conductive layer
19 ... thermal conductor
26 Wiring layer
30a: first hole
30b: second hole
32 ... thermal conductor
33 ... Connection conductor
35 ... Wiring layer
36. Wiring layer
37 ... heat dissipation layer
38 ... thermal conductive layer
39 Wiring substrate
41 ... Ceramic plate
42a: First hole
42b: second hole
43 ... thermal conductor
44 ... Connection conductor
46 ... Wiring layer
47 ... heat dissipation layer
48 ... thermal conductive layer

Claims (3)

複数の配線層を有する配線基板において、上記配線層を有する配線基体の表面に放熱層を設け、上記配線基体および上記放熱層に第1の孔を設け、上記第1の孔内に導電性組成物からなる熱伝導体を設け、上記熱伝導体の端面を覆う熱伝導層を設けたことを特徴とする配線基板。In a wiring board having a plurality of wiring layers, a heat dissipation layer is provided on a surface of a wiring base having the wiring layer, a first hole is provided in the wiring base and the heat dissipation layer, and a conductive composition is provided in the first hole. A wiring board, comprising: a heat conductor made of a material; and a heat conductive layer covering an end face of the heat conductor. 複数の配線層を有する配線基板において、上記配線層を有する配線基体の表面に放熱層を設け、上記配線基体および上記放熱層に第1の孔を設け、上記第1の孔内に導電性組成物からなる熱伝導体を設け、上記配線基体に第2の孔を設け、上記第2の孔内に導電性組成物からなる接続導電体を設け、上記接続導電体の端面を覆う配線層を設けたことを特徴とする配線基板。In a wiring board having a plurality of wiring layers, a heat dissipation layer is provided on a surface of a wiring base having the wiring layer, a first hole is provided in the wiring base and the heat dissipation layer, and a conductive composition is provided in the first hole. A heat conductor made of an object; a second hole provided in the wiring base; a connection conductor made of a conductive composition provided in the second hole; and a wiring layer covering an end face of the connection conductor. A wiring board, comprising: 複数の配線層を有する配線基板において、上記配線層を有する配線基体の表面に放熱層を設け、上記配線基体および上記放熱層に第1の孔を設け、上記第1の孔内に導電性組成物からなる熱伝導体を設け、上記熱伝導体の端面を覆う熱伝導層を設け、上記配線基体に第2の孔を設け、上記第2の孔内に導電性組成物からなる接続導電体を設け、上記接続導電体の端面を覆う配線層を設けたことを特徴とする配線基板。In a wiring board having a plurality of wiring layers, a heat dissipation layer is provided on a surface of a wiring base having the wiring layer, a first hole is provided in the wiring base and the heat dissipation layer, and a conductive composition is provided in the first hole. A heat conductor made of a material, a heat conductive layer covering an end face of the heat conductor, a second hole in the wiring substrate, and a connection conductor made of a conductive composition in the second hole. And a wiring layer covering an end surface of the connection conductor is provided.
JP2002301515A 2002-10-16 2002-10-16 Wiring board Pending JP2004140063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301515A JP2004140063A (en) 2002-10-16 2002-10-16 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301515A JP2004140063A (en) 2002-10-16 2002-10-16 Wiring board

Publications (1)

Publication Number Publication Date
JP2004140063A true JP2004140063A (en) 2004-05-13

Family

ID=32449831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301515A Pending JP2004140063A (en) 2002-10-16 2002-10-16 Wiring board

Country Status (1)

Country Link
JP (1) JP2004140063A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283561A (en) * 2008-05-20 2009-12-03 Panasonic Electric Works Co Ltd Electronic device
KR101006063B1 (en) * 2008-09-26 2011-01-06 주식회사 심텍 Printed circuit board for solid state drive
WO2011072629A1 (en) * 2009-12-17 2011-06-23 Conti Temic Microelectronic Gmbh Circuit board having a plurality of circuit board layers arranged one over the other having bare die mounting for use as a gearbox controller
JP2012235036A (en) * 2011-05-09 2012-11-29 Shimadzu Corp Thick copper foil printed wiring board for mounting heating component and manufacturing method of the same
CN106486254A (en) * 2015-08-31 2017-03-08 阿尔卑斯电气株式会社 Chip coil part, the fixing body of chip coil part and installation method
CN113632223A (en) * 2019-03-25 2021-11-09 三菱电机株式会社 Power assembly with thick conductive layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283561A (en) * 2008-05-20 2009-12-03 Panasonic Electric Works Co Ltd Electronic device
KR101006063B1 (en) * 2008-09-26 2011-01-06 주식회사 심텍 Printed circuit board for solid state drive
WO2011072629A1 (en) * 2009-12-17 2011-06-23 Conti Temic Microelectronic Gmbh Circuit board having a plurality of circuit board layers arranged one over the other having bare die mounting for use as a gearbox controller
US8895871B2 (en) 2009-12-17 2014-11-25 Conti Temic Microelectronic Gmbh Circuit board having a plurality of circuit board layers arranged one over the other having bare die mounting for use as a gearbox controller
JP2012235036A (en) * 2011-05-09 2012-11-29 Shimadzu Corp Thick copper foil printed wiring board for mounting heating component and manufacturing method of the same
CN106486254A (en) * 2015-08-31 2017-03-08 阿尔卑斯电气株式会社 Chip coil part, the fixing body of chip coil part and installation method
CN113632223A (en) * 2019-03-25 2021-11-09 三菱电机株式会社 Power assembly with thick conductive layer
CN113632223B (en) * 2019-03-25 2024-01-12 三菱电机株式会社 Power assembly with thick conductive layer

Similar Documents

Publication Publication Date Title
KR102151047B1 (en) Power overlay structure and method of making same
KR102182189B1 (en) Power overlay structure and method of making same
JP5100878B1 (en) Component built-in board mounting body, manufacturing method thereof, and component built-in board
JP2660295B2 (en) Substrate for mounting electronic components
JP3588230B2 (en) Manufacturing method of wiring board
WO1998047331A1 (en) Wiring board, wiring board fabrication method, and semiconductor package
JP2006210911A (en) Capacitor material used in circuit board, circuit board utilizing said capacitor material, method of manufacturing circuit board, and information processing system utilizing circuit board
US9269685B2 (en) Integrated circuit package and packaging methods
WO2013015073A1 (en) Wiring board and electronic device
US9105562B2 (en) Integrated circuit package and packaging methods
US10736222B2 (en) Cooling component carrier material by carbon structure within dielectric shell
JP2002246542A (en) Power module and manufacturing method therefor
JP2004140063A (en) Wiring board
JP3733419B2 (en) Electronic component built-in type multilayer substrate, method for manufacturing the same, and metal core substrate used therefor
JPH09199823A (en) Chip-on-board printed wiring board
JP2005101365A (en) Electronic device
JP2001196512A (en) Semiconductor device
JP2008243966A (en) Printed circuit board mounted with electronic component and manufacturing method therefor
JPH09293968A (en) Method of manufacturing multilayer wiring substrate
JP5062583B2 (en) Package for electronic components
JP2004079772A (en) Interconnection substrate
JPH04142068A (en) Electronical component mounting board and manufacture thereof
JPH0818182A (en) Circuit board
WO2022163588A1 (en) Core substrate and interposer
JP2011166029A (en) Wiring board, electronic device using the wiring board, and method of manufacturing the wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060228