JP2004094500A - Method for controlling automatic guided vehicles - Google Patents

Method for controlling automatic guided vehicles Download PDF

Info

Publication number
JP2004094500A
JP2004094500A JP2002253454A JP2002253454A JP2004094500A JP 2004094500 A JP2004094500 A JP 2004094500A JP 2002253454 A JP2002253454 A JP 2002253454A JP 2002253454 A JP2002253454 A JP 2002253454A JP 2004094500 A JP2004094500 A JP 2004094500A
Authority
JP
Japan
Prior art keywords
vehicle
distance
automatic guided
straight line
laser radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002253454A
Other languages
Japanese (ja)
Inventor
Hideki Yamamoto
山本 秀基
Masakatsu Nomura
野村 昌克
Toshio Nagaya
長屋 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002253454A priority Critical patent/JP2004094500A/en
Publication of JP2004094500A publication Critical patent/JP2004094500A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling an automatic guided vehicle, which enables the vehicle to run in parallel with a horizontal surface selected from straight line surfaces of an object around the vehicle by detecting a position of the vehicle in a broad measurement range as well as diagonally detecting the vehicle position within a trivial error range. <P>SOLUTION: The method detects a distance between the automatic guided vehicle and an object 3 by using a laser radar 2 mounted on the vehicle, recognizes the straight line surface by analyzing detected data for the distance, and controls the vehicle so that it runs along with the surface being selected from the recognized surfaces as a quasi-horizontal surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はレーザレーダを用いて位置を検出して無人搬送車の走行を制御する方法に関する。
【0002】
【従来の技術】
超音波センサを距離センサとして用いて走行する無人搬送車が知られており、超音波センサで壁などの物体との距離を計測しながら、その物体との間隔を適正な状態に保つように制御を行って走行するようにしている。
【0003】
【発明が解決しようとする課題】
しかし、超音波センサを用いて走行する無人搬送車では、超音波センサの性質上、計測できる範囲があまり広くなく、また、斜めからの計測では値に誤差が生じたり計測できない、といった問題が生じる。
【0004】
本発明は、レーザレーダを用いることで、上記の問題点を解決できる無人搬送車の走行制御方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
第1発明は上記課題を解決する無人搬送車の走行制御方法であり、距離センサとしてレーザレーダを用い、該レーザレーダにより自車周囲の物体との距離を検出し、この距離の検出データを解析して自車周囲の直線状部を認識し、認識した直線状部のうち自車と平行に近いものに沿って走行するように制御することを特徴とする。
【0006】
【発明の実施の形態】
以下、図面を参照して、本発明に係る無人搬送車の走行制御方法の実施の形態を説明する。
【0007】
本発明では、図1、図2、図3に示すように、無人搬送車1にレーザレーダ2を搭載し、壁等の周囲の物体3との距離Rを計測することで位置検出しながら、物体3との間隔を適正な状態に保つように無人搬送車1を制御して走行させる。4は無人搬送車1の進行方向を示す。
【0008】
まず、無人搬送車1に搭載したレーザレーダ2により位置検出を行う方法について説明する。ここでは、以下の状況▲1▼▲2▼▲3▼を想定している。
▲1▼無人搬送車1の位置、方位は大体判っている。
▲2▼レーザレーダ2を使用する。
▲3▼レーザレーダ2の出力としては等角度毎の物体3までの距離が得られる。
【0009】
[第1実施例]
無人搬送車1の前部あるいは後部あるいは側面部に、レーザレーダ2を設置する。レーザレーダ2から出力される等角度α毎のその方向での物体3までの距離Rを用いて、測定角度毎に、出力(距離R)の2階微分に対応する値Bi を式(1)の計算により求める。
i =(Ri+1−Ri )−(Ri − Ri−1)        …式(1)
ここで、−W≦i<W、Wは測定角度範囲を(α/2)で割った値、iは測定角度がレーザレーダ2の正面(通常、無人搬送車1の進行方向と同じ)である場合を0とした整数とする。
【0010】
ここで、距離Rの1階微分値は物体3が直線状であっても、その傾きによって値が変わるので、直線の端点(エッジ:一般に物体3のコーナー部に相当)の検出には適切でない。
【0011】
これに対して、2階微分値Bi は線の曲がり方を示すので、直線の端点では値が強調されるため、2階微分値Bi の絶対値が或る設定値より大きいかどうかで直線の端点かどうかを判断することができる。直線そのもの、あるいは、少し曲がっていたり多少の凹凸あってもも直線に近いものであれば、2階微分値Bi の絶対値は小さくなる。
【0012】
従って、2階微分値Bi の絶対値が予め設定した値より大きく、また別の2階微分値Bn の絶対値が同じく予め設定した値より大きくなったとすると、それぞれが直線の端点に対応していると考えられるから、端点間を結ぶ仮想的な直線を考える。この直線は一応、物体3に実際に存在する直線状部(直線そのもの、あるいは、直線に近いもの)と考えられる。但し、端点間を結ぶ直線と物体3の被検出面との距離が大きく離れているものは除外する。例えば、被検出面が滑らかでない場合は、端点間を結ぶ直線から大きく外れる部分が出てくるので、除外す。かくして得られた端点間を結ぶ直線を検出直線と呼ぶ。検出直線は必ずしも1つとは限らないので、そのような場合は、無人搬送車1に距離が近く、かつ、平行に近い角度をなす直線を選択することにより、誤検出を防ぐことができる。
【0013】
以上のことにより、絶対値が予め設定した値より大きい2階微分値Bi と、絶対値が同じく予め設定した値より大きい別の2階微分値Bn とを見いだし、i+1≦j<nの範囲の全ての距離データRj に対して、式(2)で与えられる点(xi ,yi )と式(3)で与えられる点(xn ,yn )とを結ぶ直線と、式(4)で与えられる点(xj ,yj )との距離が設定値より小さいとき、点(xi ,yi )と点(xn ,yn )とを結ぶ直線を、検出直線として認識する。検出直線は一般に複数得られる。
i =Ri ・cos(a・i)
i =Ri ・sin(a・i)            …式(2)
n =Rn ・cos(a・n)
n =Rn ・sin(a・n)            …式(3)
j =Rj ・cos(a・j)
j =Rj ・sin(a・j)            …式(4)
【0014】
そして、無人搬送車1の概略の現在位置及び方位は走行制御装置の情報として既知なので、この現在位置及び方位と、検出直線(点(xi ,yi )と点(xn ,yn )とを結ぶ直線)との幾何学的関係から、検出直線のうちでも、無人搬送車1に距離が近く、かつ、平行に近い角度をなす直線を選択する。このようにして選択した直線と一定の距離を保ちながら平行して自律走行するように、無人搬送車1の車体を制御する。選択した直線は物体3を表している。
【0015】
上記の検出直線を求める解析により、検出直線は無人搬送車1周囲の物体3の直線状の面を表しており、選択した直線は認識した直線状の面のうち自車に近く、かつ、自車の進行方向4と平行に近い面を表しており、その結果、レーザレーダを用いて自車の位置を検出しながら無人搬送車を走行制御する際に、認識した面のうち自車に近く自車と平行に近い面に沿って自律走行するように制御することができる。
【0016】
[第2実施例]
無人搬送車1が物体3の直線状部に対して傾いている場合は、無人搬送車1の概略の現在位置及び方位は前述のように既知なので、検出直線の端点の位置(Xi ,Yi )と(Xn ,Yn )を式(5)、(6)により計算して求める。但し、bは車体の傾き角、(Xa ,Ya )は無人搬送車1の概略の現在位置とする。
i =Ri ・cos(a・i+b)+Xa 
i =Ri ・sin(a・i+b)+Ya        …式(5)
n =Rn ・cos(a・n+b)+Xa 
n =Rn ・sin(a・n+b)+Ya        …式(6)
【0017】
そして、これらの端点(Xi ,Yi )と端点(Xn ,Yn )とを結んだ直線の傾きと、車体の傾きbとを比較して、お互いがなす角度が平行あるいは予め決められた角度に所定範囲で近い角度である場合に、その直線を無人搬送車1の自律走行制御に使用する。この直線は物体3を表している。
【0018】
第1実施例、第2実施例いずれでも、無人搬送車1と壁等の物体3を表す直線とのなす角度が実質的に平行である場合に、レーザレーダ2の測定角度90°(あるいは−90°)における距離を、無人搬送車1と平行な直線との相対的な距離を見なすことができる。
【0019】
図1に示すように、走行路が直線で進行方向の前方に十分な間隔rがある場合は、この相対的な距離を一定に保つように制御することで、複雑な演算を行うことなく、無人搬送車1を物体3に沿って自律走行させることができる。
【0020】
図2、図3に示すように、物体3がコーナー部を有していて物体の一部3aが前方近くに存在する場合は、第1実施例や第2実施例と同様の手順で前方の直線を求める。前方近くに物体3aがあって前方との間隔r’が不十分で、前方の直線との距離が予め設定した閾値以内になった場合は、無人搬送車1と平行な直線との相対的な距離を保持する上記の制御に加えて、前方の直線との距離もある値の範囲に収まるように制御を行うことで、コーナー部での自律走行制御を行うことができる。
【0021】
[第3実施例]
第3実施例として、コーナー部での走行制御では、前方の直線との距離ではなく、特定の反射板5をコーナー部に設置しておくことにより、反射板5との距離をレーザレーダ2で検出し、その距離が閾値以内になった場合に、直線での自律走行からコーナーでの自律走行に制御を切り替えるようにすることができる。コーナー走行の後は、次の直線を認識し、この直線との相対的な距離を保持しながら直線走行の自律制御を行う。
【0022】
[第4実施例]
第4実施例として、両側面の物体と車体との距離がともに閾値以内の狭路の場合には、レーザレーダ2を用いた上記第1実施例や第2実施例による自律走行の制御を行い、そうでない広路の場合には、他の適宜な位置検出方式を用いて自律走行の制御を行う。
【0023】
[第5実施例]
車体の両側に進行方向と実質的に平行な直線を検出した場合は、基本的には、どちらか任意の直線との距離を一定に保持して走行制御すれば良いので、どちらかの直線を選択しても構わない。しかし、車体からの距離が近い方の直線を選択することにより、走行制御の精度が良くなると考えられる。
【0024】
[第6実施例]
実際には物体3の1つの直線状部であるが、これを2つの別れた直線のように検出することが考えられる。このような場合は、車体と直線間の概略の距離、位置関係が判っているため、車体に近い方の直線を判別し、その直線に沿って走行するように制御すると良い。
【0025】
ここで、図4〜図6を参照して、レーザレーダ2による距離計測、2階微分による直線の検出について、更に説明する。今、図4に示すように物体3に突出部3bがある場合を考え、レーザレーダ2により角度θでの距離Rを計測すると、図5に示すような、角度θと距離Rとの関係が得られる。図5から、距離計測値を角度θで2階微分することにより、物体3のエッジの急激な点b、cを検出する。図4中のa、a’、b、c、d、d’は物体3上でのレーザレーダ2による距離計測点を示しており、図5中のa、a’、b、c、d、d’に対応している。図6は距離計測結果6と、その1階微分結果7と、2階微分結果8との関係を示している。2階微分結果8では、図4、図5中のエッジ点b、c付近で2階微分のピーク値を持っており、2階微分値の絶対値が大きい所を調べることによりb−c間の直線を検出直線として認識し、走行制御に利用できることが判る。
【0026】
【発明の効果】
本発明によれば、レーザレーダを用いて自車の位置を検出するので、計測範囲が広い。また、斜めからの計測でも誤差が少なく、計測できないといったことがない。更に、レーザレーダを用いて自車の位置を検出しながら、無人搬送車が周囲の直線状の面のうち自車と平行に近い面に沿って走行することができる。
【図面の簡単な説明】
【図1】レーザレーダで無人搬送車周囲の物体との距離を計測する様子を示す図。
【図2】レーザレーダで無人搬送車周囲の物体との距離を計測する様子を示す図。
【図3】レーザレーダで無人搬送車周囲の物体との距離を計測する様子を示す図。
【図4】レーザレーダで無人搬送車周囲の物体との距離を計測する様子を示す図。
【図5】レーザレーダによる距離計測結果を示す図。
【図6】距離計測結果と1階微分結果と2階微分結果を示す図。
【符号の説明】
1 無人搬送車
2 レーザレーダ
3 物体
4 進行方向
5 反射板
6 距離計測結果
7 1階微分結果
8 2階微分結果
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for controlling the travel of an automatic guided vehicle by detecting a position using a laser radar.
[0002]
[Prior art]
Autonomous guided vehicles that travel using an ultrasonic sensor as a distance sensor are known. While measuring the distance to an object such as a wall using an ultrasonic sensor, control is performed so that the distance from the object is kept in an appropriate state To run.
[0003]
[Problems to be solved by the invention]
However, in an automatic guided vehicle that travels using an ultrasonic sensor, there is a problem that, due to the nature of the ultrasonic sensor, the measurable range is not very wide, and there is an error in the value or measurement cannot be performed when obliquely measuring. .
[0004]
An object of the present invention is to provide a traveling control method for an automatic guided vehicle that can solve the above-mentioned problems by using a laser radar.
[0005]
[Means for Solving the Problems]
A first invention is a traveling control method of an automatic guided vehicle that solves the above-mentioned problem, and uses a laser radar as a distance sensor, detects a distance to an object around the own vehicle by the laser radar, and analyzes detection data of the distance. Then, a linear portion around the own vehicle is recognized, and control is performed such that the vehicle travels along a recognized linear portion that is close to being parallel to the own vehicle.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a traveling control method for an automatic guided vehicle according to the present invention will be described with reference to the drawings.
[0007]
In the present invention, as shown in FIGS. 1, 2, and 3, the laser radar 2 is mounted on the automatic guided vehicle 1, and the position is detected by measuring a distance R to a surrounding object 3 such as a wall. The automatic guided vehicle 1 is controlled to travel so as to keep an appropriate distance from the object 3. Reference numeral 4 denotes the traveling direction of the automatic guided vehicle 1.
[0008]
First, a method for performing position detection by the laser radar 2 mounted on the automatic guided vehicle 1 will be described. Here, the following situations (1), (2), and (3) are assumed.
(1) The position and orientation of the automatic guided vehicle 1 are roughly known.
(2) The laser radar 2 is used.
{Circle around (3)} As the output of the laser radar 2, the distance to the object 3 at equal angles can be obtained.
[0009]
[First embodiment]
A laser radar 2 is installed at the front, rear or side of the automatic guided vehicle 1. Using the distance R to the object 3 in that direction, such as each angle α which is output from the laser radar 2, for each measurement angle, the output (Distance R) 2 floor equation corresponding values B i to the derivative of (1 ).
B i = (R i + 1 -R i) - (R i - R i-1) ... formula (1)
Here, -W ≦ i <W, W is a value obtained by dividing the measurement angle range by (α / 2), and i is the measurement angle at the front of the laser radar 2 (usually the same as the traveling direction of the automatic guided vehicle 1). An integer is set to 0 in a certain case.
[0010]
Here, even if the object 3 is linear, the value of the first-order differential value of the distance R changes depending on the inclination of the object 3. Therefore, it is not appropriate for detecting the end point (edge: generally corresponding to the corner of the object 3) of the straight line. .
[0011]
On the other hand, since the second derivative B i indicates how the line bends, the value is emphasized at the end point of the straight line. Therefore, it is determined whether the absolute value of the second derivative B i is larger than a certain set value. It can be determined whether or not the end point of the straight line. Straight itself or, as long as close to even straight even slight unevenness or a little bent, the absolute value of the second-order differential value B i decreases.
[0012]
Therefore, if the absolute value of the second derivative B i is larger than the preset value and the absolute value of another second derivative B n is larger than the preset value, each corresponds to the end point of the straight line. Therefore, a virtual straight line connecting the end points is considered. This straight line is considered to be a linear portion actually existing in the object 3 (a straight line itself or a line close to a straight line). However, those in which the distance between the straight line connecting the end points and the detected surface of the object 3 is significantly large are excluded. For example, if the detected surface is not smooth, a portion that greatly deviates from a straight line connecting the end points appears, and is excluded. The straight line connecting the end points thus obtained is called a detection straight line. Since the number of detected straight lines is not always one, in such a case, by selecting a straight line that is close to the automatic guided vehicle 1 and has an angle close to parallel, erroneous detection can be prevented.
[0013]
From the above, the second order differential value B i whose absolute value is larger than the preset value and another second order differential value B n whose absolute value is also larger than the preset value are found, and i + 1 ≦ j <n for all distance data R j in the range, the straight line connecting the point given by equation (2) (x i, y i) and a point given by equation (3) (x n, y n) and the formula (4) at given point (x j, y j) when the distance between is less than the set value, the point (x i, y i) and the point (x n, y n) a straight line connecting the, as detected linear recognize. Generally, a plurality of detection straight lines are obtained.
x i = R i · cos (a · i)
y i = R i · sin (a · i) Equation (2)
x n = R n · cos (a · n)
y n = R n · sin (a · n) Equation (3)
x j = R j · cos (a · j)
y j = R j · sin (a · j) Equation (4)
[0014]
Since the approximate current position and direction of the automatic guided vehicle 1 are known as information of the travel control device, the current position and direction, the detection straight line (point (x i , y i ) and point (x n , y n )) are detected. From the geometrical relationship with the unmanned carrier 1, a straight line having an angle close to and parallel to the automatic guided vehicle 1 is selected from among the detected straight lines. The vehicle body of the automatic guided vehicle 1 is controlled such that the vehicle travels autonomously in parallel with the selected straight line while maintaining a certain distance. The selected straight line represents the object 3.
[0015]
According to the analysis for obtaining the detection straight line described above, the detection straight line represents the linear surface of the object 3 around the automatic guided vehicle 1, and the selected straight line is closer to the own vehicle among the recognized linear surfaces, and It represents a plane that is nearly parallel to the traveling direction 4 of the car. As a result, when controlling the automatic guided vehicle while detecting the position of the self-vehicle using the laser radar, the face that is closer to the own car is recognized. It is possible to control the vehicle to travel autonomously along a plane parallel to the own vehicle.
[0016]
[Second embodiment]
If the automatic guided vehicle 1 is inclined with respect to the linear portion of the object 3, since the current position and orientation of the schematic of the automatic guided vehicle 1 is known as described above, the position of the end points of the detected straight lines (X i, Y i ) and (X n , Y n ) are calculated by equations (5) and (6). However, b is the body tilt angle, (X a, Y a) is the current position of the outline of the automatic guided vehicle 1.
X i = R i · cos (a · i + b) + X a
Y i = R i · sin (a · i + b) + Y a Equation (5)
X n = R n · cos (a · n + b) + X a
y n = R n · sin (a · n + b) + Y a Equation (6)
[0017]
Then, the inclination of a straight line connecting these end points (X i , Y i ) and the end points (X n , Y n ) is compared with the inclination b of the vehicle body, and the angles formed by each other are parallel or predetermined. When the angle is close to the angle within a predetermined range, the straight line is used for the autonomous traveling control of the automatic guided vehicle 1. This straight line represents the object 3.
[0018]
In both the first and second embodiments, when the angle between the automatic guided vehicle 1 and a straight line representing the object 3 such as a wall is substantially parallel, the measurement angle of the laser radar 2 is 90 ° (or −). The distance at 90 °) can be regarded as a relative distance from a straight line parallel to the automatic guided vehicle 1.
[0019]
As shown in FIG. 1, when the traveling path is straight and has a sufficient distance r ahead in the traveling direction, by controlling the relative distance to be constant, it is possible to perform a complicated calculation without performing a complicated calculation. The automatic guided vehicle 1 can autonomously travel along the object 3.
[0020]
As shown in FIGS. 2 and 3, when the object 3 has a corner portion and a part 3a of the object exists near the front, the front 3 is moved in the same procedure as in the first and second embodiments. Find a straight line. When there is the object 3a near the front and the distance r ′ from the front is insufficient and the distance from the front straight line is within a predetermined threshold, the relative distance between the straight line and the straight line parallel to the automatic guided vehicle 1 is set. In addition to the above-described control for maintaining the distance, by performing control so that the distance to the straight line in front also falls within a certain value range, it is possible to perform autonomous traveling control in a corner portion.
[0021]
[Third embodiment]
As a third embodiment, in traveling control at a corner, a specific reflector 5 is installed at the corner instead of a distance to a straight line in front, and the distance to the reflector 5 is adjusted by the laser radar 2. When the distance is detected and the distance falls within the threshold value, control can be switched from autonomous traveling in a straight line to autonomous traveling in a corner. After the corner traveling, the next straight line is recognized, and the autonomous control of the straight traveling is performed while maintaining a relative distance from the next straight line.
[0022]
[Fourth embodiment]
As a fourth embodiment, when the distance between the object on both sides and the vehicle body is a narrow road within a threshold value, the autonomous traveling control according to the first embodiment or the second embodiment using the laser radar 2 is performed. In the case of a wide road that is not so, the control of autonomous traveling is performed using another appropriate position detection method.
[0023]
[Fifth embodiment]
When a straight line that is substantially parallel to the traveling direction is detected on both sides of the vehicle body, basically, it is only necessary to keep the distance to any one of the straight lines constant and control the travel. You can choose. However, it is considered that the accuracy of the traveling control is improved by selecting the straight line closer to the vehicle body.
[0024]
[Sixth embodiment]
Although it is actually one linear portion of the object 3, it is conceivable to detect this as two separate straight lines. In such a case, since the approximate distance and positional relationship between the vehicle body and the straight line are known, it is preferable to determine the straight line closer to the vehicle body and control the vehicle to travel along the straight line.
[0025]
Here, with reference to FIGS. 4 to 6, the distance measurement by the laser radar 2 and the detection of a straight line by the second-order differentiation will be further described. Now, considering the case where the object 3 has the protruding portion 3b as shown in FIG. 4, when the distance R at the angle θ is measured by the laser radar 2, the relationship between the angle θ and the distance R as shown in FIG. can get. From FIG. 5, the sharp points b and c of the edge of the object 3 are detected by second-order differentiation of the distance measurement value with the angle θ. A, a ', b, c, d, and d' in FIG. 4 indicate distance measurement points on the object 3 by the laser radar 2, and a, a ', b, c, d, and d '. FIG. 6 shows the relationship between the distance measurement result 6, the first-order differential result 7, and the second-order differential result 8. The second derivative result 8 has the peak value of the second derivative near the edge points b and c in FIGS. 4 and 5, and by examining the place where the absolute value of the second derivative value is large, the value between bc is obtained. Is recognized as a detection straight line, and can be used for traveling control.
[0026]
【The invention's effect】
According to the present invention, the position of the host vehicle is detected using the laser radar, so that the measurement range is wide. In addition, there is little error even when measuring obliquely, and there is no possibility that measurement cannot be performed. Further, while detecting the position of the own vehicle using the laser radar, the automatic guided vehicle can travel along a surface that is parallel to the own vehicle among the surrounding linear surfaces.
[Brief description of the drawings]
FIG. 1 is a diagram showing how a laser radar measures a distance to an object around an automatic guided vehicle.
FIG. 2 is a diagram showing how a laser radar measures a distance to an object around an automatic guided vehicle.
FIG. 3 is a diagram showing how a laser radar measures a distance to an object around an automatic guided vehicle.
FIG. 4 is a diagram showing how a laser radar measures a distance to an object around an automatic guided vehicle.
FIG. 5 is a diagram showing a result of distance measurement by a laser radar.
FIG. 6 is a diagram showing a distance measurement result, a first-order differentiation result, and a second-order differentiation result.
[Explanation of symbols]
Reference Signs List 1 automatic guided vehicle 2 laser radar 3 object 4 traveling direction 5 reflector 6 distance measurement result 7 first-order differentiation result 8 second-order differentiation result

Claims (1)

距離センサを用いて自車の位置を検出しながら走行する無人搬送車の走行制御方法において、前記距離センサとしてレーザレーダを用い、該レーザレーダにより自車周囲の物体との距離を検出し、この距離の検出データを解析して自車周囲の直線状部を認識し、認識した直線状部のうち自車と平行に近いものに沿って走行するように制御することを特徴とする無人搬送車の走行制御方法。In a traveling control method for an automatic guided vehicle that travels while detecting the position of the own vehicle using a distance sensor, a laser radar is used as the distance sensor, and the distance between the laser radar and an object around the own vehicle is detected. Automatic guided vehicle characterized by analyzing distance detection data and recognizing a linear portion around the own vehicle, and controlling to run along the recognized linear portion that is close to being parallel to the own vehicle. Traveling control method.
JP2002253454A 2002-08-30 2002-08-30 Method for controlling automatic guided vehicles Withdrawn JP2004094500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253454A JP2004094500A (en) 2002-08-30 2002-08-30 Method for controlling automatic guided vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253454A JP2004094500A (en) 2002-08-30 2002-08-30 Method for controlling automatic guided vehicles

Publications (1)

Publication Number Publication Date
JP2004094500A true JP2004094500A (en) 2004-03-25

Family

ID=32059447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253454A Withdrawn JP2004094500A (en) 2002-08-30 2002-08-30 Method for controlling automatic guided vehicles

Country Status (1)

Country Link
JP (1) JP2004094500A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002880A (en) * 2009-06-16 2011-01-06 Hitachi Industrial Equipment Systems Co Ltd Mobile robot
CN102427976A (en) * 2009-07-09 2012-04-25 威伯科有限公司 Method for correctly carrying out autonomous emergency braking in a road vehicle
JP2021033999A (en) * 2019-08-23 2021-03-01 深セン市優必選科技股▲ふん▼有限公司Ubtech Pobotics Corp Ltd Robot, and method and device for determining recharging position thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002880A (en) * 2009-06-16 2011-01-06 Hitachi Industrial Equipment Systems Co Ltd Mobile robot
CN102427976A (en) * 2009-07-09 2012-04-25 威伯科有限公司 Method for correctly carrying out autonomous emergency braking in a road vehicle
JP2021033999A (en) * 2019-08-23 2021-03-01 深セン市優必選科技股▲ふん▼有限公司Ubtech Pobotics Corp Ltd Robot, and method and device for determining recharging position thereof

Similar Documents

Publication Publication Date Title
Hata et al. Road marking detection using LIDAR reflective intensity data and its application to vehicle localization
JP4343536B2 (en) Car sensing device
CN115220033A (en) Automated vehicle object detection system with camera image and radar data fusion
JP4843571B2 (en) Vehicle object detection device
JP5890788B2 (en) Parking space detector
JP5843948B1 (en) Parking assistance device and parking assistance method
US20080238722A1 (en) Parking Aid for a Vehicle and Parking Aid Method
JPH11175149A (en) Autonomous traveling vehicle
JP2009096306A (en) Parking assist method
JP7487388B2 (en) Measurement device, measurement method, and program
JP2010140247A (en) Moving object system
JP7489014B2 (en) Location Estimation System
JP2008134743A (en) Self-location recognition method
KR102545582B1 (en) System for avoiding collision in crossroad and method for control thereof
JP2000181541A (en) Self-traveling type vehicle
KR20140074105A (en) System and method for autonomous driving of vehicle
JP3991731B2 (en) Parking direction setting device for vehicles
JP5446559B2 (en) Vehicle position calculation device and vehicle position calculation method
JP4110922B2 (en) Vehicle external recognition device
JP2004094500A (en) Method for controlling automatic guided vehicles
JP2008298741A (en) Distance measuring apparatus and distance measuring method
JP3229226B2 (en) Leading vehicle recognition device and recognition method
JP6772588B2 (en) Object tracking method and object tracking device
KR101244475B1 (en) Method and System for Controlling Parking
JP7135884B2 (en) travel control device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101