JP2008298741A - Distance measuring apparatus and distance measuring method - Google Patents

Distance measuring apparatus and distance measuring method Download PDF

Info

Publication number
JP2008298741A
JP2008298741A JP2007148271A JP2007148271A JP2008298741A JP 2008298741 A JP2008298741 A JP 2008298741A JP 2007148271 A JP2007148271 A JP 2007148271A JP 2007148271 A JP2007148271 A JP 2007148271A JP 2008298741 A JP2008298741 A JP 2008298741A
Authority
JP
Japan
Prior art keywords
distance
light
light source
arbitrary point
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007148271A
Other languages
Japanese (ja)
Inventor
Toshihiko Tsukada
敏彦 塚田
Akinobu Fujii
亮暢 藤井
Hitoshi Yamada
整 山田
Kazuhiro Shintani
和宏 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2007148271A priority Critical patent/JP2008298741A/en
Publication of JP2008298741A publication Critical patent/JP2008298741A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distance measuring apparatus and a distance measuring method that provide wider measuring ranges and higher measuring accuracy. <P>SOLUTION: A distance computing section 26 computes a distance from a given point on the surface of a floor in accordance with reflected light received by a light-receiving device 20. An attitude detecting section 28 detects an attitude angle θ in accordance with the distance from the point as computed by the distance computing section 26. A light source control section 24 controls the intensity of light from a light source 18 in accordance with the attitude angle θ and the distance from the point so that the intensity of irradiation at the point is an intensity of irradiation obtained as a function of distance from the point. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、距離計測装置及び距離計測方法に係り、特に、受光手段で受光された反射光に基づいて距離を計測する距離計測装置及び距離計測方法に関する。   The present invention relates to a distance measuring device and a distance measuring method, and more particularly to a distance measuring device and a distance measuring method for measuring a distance based on reflected light received by a light receiving means.

従来、対象物に対して光を出射してから、対象物からの反射光を受光部で受光するまでの時間に基づいて対象物までの距離を計測するタイムオブフライト方式の距離画像センサを搭載し、この距離画像センサを用いて床面までの距離を計測する障害物検出装置が知られている(例えば、特許文献1参照)。
特開2006−262009号公報
Conventionally, equipped with a time-of-flight distance image sensor that measures the distance to the object based on the time from when the light is emitted to the object until the reflected light from the object is received by the light receiving unit And the obstacle detection apparatus which measures the distance to a floor surface using this distance image sensor is known (for example, refer patent document 1).
JP 2006-262009 A

しかしながら、特許文献1に記載の障害物検出装置では、距離画像センサから遠い床面部分からの反射光の強度は、近い床面部分からの反射光の強度より弱くなる。これは、受光された反射光の各々の強度は、光が投光されてから受光するまでの移動距離の2乗に反比例する等の理由による。これによって、受光された複数の反射光の強度に差が生じる。そのため、特許文献1に記載の障害物検出装置における距離画像センサは、計測範囲が狭くなり、また、計測精度が悪化する、という問題点がある。   However, in the obstacle detection device described in Patent Document 1, the intensity of reflected light from the floor surface portion far from the distance image sensor is weaker than the intensity of reflected light from the near floor surface portion. This is because the intensity of each reflected light received is inversely proportional to the square of the moving distance from when the light is projected until it is received. As a result, a difference occurs in the intensity of the plurality of reflected lights received. Therefore, the distance image sensor in the obstacle detection apparatus described in Patent Document 1 has a problem that the measurement range becomes narrow and the measurement accuracy deteriorates.

本発明は上記問題点を解決するために成されたもので、計測範囲が広くなり、かつ計測精度が良好となる距離計測装置及び距離計測方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a distance measuring device and a distance measuring method in which a measurement range is widened and measurement accuracy is good.

上記の目的を達成するために第1の発明に係る距離計測装置は、床面上に変調光を照射する光源、及び前記光源から照射された光の反射光を受光する複数の受光素子が配列された受光手段を備え、前記床面から所定の高さの位置に前記床面に対して所定の姿勢角になるように設けられた計測手段と、前記受光手段で受光された反射光に基づいて、前記床面上の任意の点までの距離を演算する距離演算手段と、前記姿勢角を検出する姿勢角検出手段と、前記姿勢角検出手段で検出された姿勢角と、前記距離演算手段により演算された任意の点までの距離とに基づいて、前記任意の点の照射強度が前記任意の点までの距離の関数により得られた照射強度となるように、前記光源から照射される光の強度を制御する光源制御手段とを含んで構成されている。   In order to achieve the above object, a distance measuring device according to a first aspect of the present invention includes a light source that emits modulated light on a floor surface, and a plurality of light receiving elements that receive reflected light of light emitted from the light source. Based on the reflected light received by the light receiving means and the measuring means provided at a predetermined height from the floor so as to have a predetermined posture angle with respect to the floor. A distance calculating means for calculating a distance to an arbitrary point on the floor, an attitude angle detecting means for detecting the attitude angle, an attitude angle detected by the attitude angle detecting means, and the distance calculating means. The light emitted from the light source so that the irradiation intensity at the arbitrary point becomes the irradiation intensity obtained by the function of the distance to the arbitrary point based on the distance to the arbitrary point calculated by Light source control means for controlling the intensity of There.

第1の発明に係る距離計測装置によれば、距離演算手段は、受光手段で受光された反射光に基づいて、床面上の任意の点までの距離を演算する。姿勢角検出手段は、姿勢角を検出する。光源制御手段は、検出された姿勢角と、演算された任意の点までの距離とに基づいて、任意の点の照射強度が任意の点までの距離の関数により得られた照射強度となるように、光源から照射される光の強度を制御する。これにより、遠い床面部分からの反射光の強度は、近い床面部分からの反射光の強度と差が小さくなる。従って、第1の発明に係る距離計測装置は、本構成を有していない場合と比較して、計測範囲が広くなり、かつ計測精度が良好となる。   According to the distance measuring device according to the first invention, the distance calculating means calculates the distance to an arbitrary point on the floor surface based on the reflected light received by the light receiving means. The posture angle detection means detects the posture angle. Based on the detected attitude angle and the calculated distance to the arbitrary point, the light source control means causes the irradiation intensity at the arbitrary point to be the irradiation intensity obtained as a function of the distance to the arbitrary point. In addition, the intensity of light emitted from the light source is controlled. As a result, the intensity of the reflected light from the far floor surface portion becomes smaller in difference from the intensity of the reflected light from the near floor surface portion. Therefore, the distance measuring device according to the first aspect of the invention has a wider measurement range and better measurement accuracy than the case where this configuration is not provided.

また、第1の発明に係る距離計測装置によれば、姿勢角が変動した場合であっても、その姿勢角を検出することができ、検出した姿勢角に基づいて適切に光源から照射される光の強度を制御することができる。   Moreover, according to the distance measuring device according to the first aspect of the present invention, even when the posture angle varies, the posture angle can be detected, and the light source is appropriately irradiated based on the detected posture angle. The intensity of light can be controlled.

また、第1の発明に係る距離計測装置において、前記光源制御手段は、更に、前記姿勢角検出手段で検出された姿勢角と、前記距離演算手段により演算された任意の点までの距離とに基づいて、前記任意の点の照射強度が前記任意の点までの距離の関数により得られた照射強度となるように、前記光源から照射される光の強度を制御する前に、前記所定の姿勢角における前記床面までの任意の点までの距離に基づいて、前記任意の点の照射強度が前記任意の点までの距離の関数により得られた照射強度となるように、前記光源から照射される光の強度を制御することができる。   In the distance measuring device according to the first invention, the light source control means further includes an attitude angle detected by the attitude angle detection means and a distance to an arbitrary point calculated by the distance calculation means. On the basis of the predetermined posture before controlling the intensity of light emitted from the light source so that the irradiation intensity at the arbitrary point becomes an irradiation intensity obtained by a function of the distance to the arbitrary point. Based on the distance to an arbitrary point to the floor surface at a corner, the light source is irradiated so that the irradiation intensity at the arbitrary point becomes an irradiation intensity obtained by a function of the distance to the arbitrary point. It is possible to control the intensity of light.

また、第1の発明に係る距離計測装置において、前記姿勢角検出手段は、前記受光手段の各受光素子の出力から演算された各々の距離と、複数の候補姿勢角の各々の場合における前記計測手段から前記床面までの理論上の各々の距離とに基づいて、前記姿勢角を検出することができる。   Further, in the distance measuring device according to the first invention, the posture angle detection unit is configured to measure the distance in each case calculated from the output of each light receiving element of the light receiving unit and a plurality of candidate posture angles. The posture angle can be detected based on each theoretical distance from the means to the floor surface.

また、第2の発明に係る距離計測方法は、床面上に変調光を照射する光源、及び前記光源から照射された光の反射光を受光する複数の受光素子が配列された受光手段を備え、前記床面から所定の高さの位置に前記床面に対して所定の姿勢角になるように設けられた計測手段の受光手段が前記反射光を受光し、前記受光手段で受光された反射光に基づいて、前記床面上の任意の点までの距離を演算し、前記姿勢角を検出し、検出された姿勢角と、演算された任意の点までの距離とに基づいて、前記任意の点の照射強度が前記任意の点までの距離の関数により得られた照射強度となるように、前記光源から照射される光の強度を制御する。   The distance measuring method according to the second invention includes a light source that irradiates modulated light on the floor, and a light receiving means in which a plurality of light receiving elements that receive reflected light of the light emitted from the light source are arranged. The light receiving means of the measuring means provided at a predetermined height position with respect to the floor surface from the floor surface receives the reflected light and the reflection received by the light receiving means. A distance to an arbitrary point on the floor surface is calculated based on light, the posture angle is detected, and the arbitrary angle is determined based on the detected posture angle and the calculated distance to the arbitrary point. The intensity of light emitted from the light source is controlled so that the irradiation intensity at the point becomes the irradiation intensity obtained by the function of the distance to the arbitrary point.

第2の発明に係る距離計測方法では、受光手段で受光された反射光に基づいて、床面上の任意の点までの距離を演算する。そして、本距離計測方法では、演算された任意の点までの距離に基づいて、姿勢角を検出する。そして、本距離計測方法は、検出された姿勢角と、演算された任意の点までの距離とに基づいて、任意の点の照射強度が任意の点までの距離の関数により得られた照射強度となるように、光源から照射される光の強度を制御する。これにより、遠い床面部分からの反射光の強度は、近い床面部分からの反射光の強度と差が小さくなる。従って、第2の発明に係る距離計測方法は、計測範囲が広くなり、かつ計測精度が良好となる。   In the distance measuring method according to the second invention, the distance to an arbitrary point on the floor surface is calculated based on the reflected light received by the light receiving means. In this distance measurement method, the posture angle is detected based on the calculated distance to an arbitrary point. And this distance measurement method is based on the detected attitude angle and the calculated distance to the arbitrary point, and the irradiation intensity obtained from the irradiation intensity at the arbitrary point as a function of the distance to the arbitrary point. Thus, the intensity of light emitted from the light source is controlled. As a result, the intensity of the reflected light from the far floor surface portion becomes smaller in difference from the intensity of the reflected light from the near floor surface portion. Therefore, the distance measurement method according to the second invention has a wide measurement range and good measurement accuracy.

また、第2の発明に係る距離計測方法によれば、姿勢角が変動した場合であっても、その姿勢角を検出することができ、検出した姿勢角に基づいて適切に光源から照射される光の強度を制御することができる。   In addition, according to the distance measurement method according to the second aspect of the present invention, even when the posture angle fluctuates, the posture angle can be detected, and the light source is appropriately irradiated based on the detected posture angle. The intensity of light can be controlled.

以上説明したように、本発明の距離計測装置及び距離計測方法によれば、計測範囲が広くなり、かつ計測精度が良好となる、という効果が得られる。   As described above, according to the distance measuring device and the distance measuring method of the present invention, it is possible to obtain the effects that the measurement range is widened and the measurement accuracy is good.

以下、図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示すように、本発明の実施の形態の距離計測装置10は、床面を走行する走行体16に搭載されている。   As shown in FIG. 1, a distance measuring device 10 according to an embodiment of the present invention is mounted on a traveling body 16 that travels on a floor surface.

距離計測装置10は、図2に示すように、床面から所定の高さH、例えば床面からの高さ0.5mの位置に、光源18から照射される光の光軸70と水平方向との成す角度が所定の姿勢角θ、例えば姿勢角30°で設置されている。   As shown in FIG. 2, the distance measuring device 10 is arranged in a horizontal direction with the optical axis 70 of light emitted from the light source 18 at a predetermined height H from the floor surface, for example, at a height of 0.5 m from the floor surface. Is set at a predetermined posture angle θ, for example, a posture angle of 30 °.

距離計測装置10は、図3に示すように、制御装置14と、光源18と、受光装置20とを備えている。   As shown in FIG. 3, the distance measuring device 10 includes a control device 14, a light source 18, and a light receiving device 20.

光源18は、図4に示すように、マトリックス状に配列された光を照射するLEDを複数個、例えば50〜60個含んで構成されている。各LEDは、以下で詳細を説明する光源制御部24からの制御によって、所定周波数、例えば20MHzの正弦波で強度変調された光を照射する。また、各LEDは、光源制御部24によって、照射する光の強度が制御される。   As illustrated in FIG. 4, the light source 18 includes a plurality of, for example, 50 to 60 LEDs that irradiate light arranged in a matrix. Each LED emits light whose intensity is modulated with a sine wave having a predetermined frequency, for example, 20 MHz, under the control of the light source control unit 24 described in detail below. In addition, the intensity of light emitted from each LED is controlled by the light source control unit 24.

受光装置20は、複数の受光素子を含んで構成されており、例えば、複数の画素を備えたCMOSセンサを含んで構成されている。受光装置20は、対象物22または床面からの反射光を受光する。   The light receiving device 20 includes a plurality of light receiving elements. For example, the light receiving device 20 includes a CMOS sensor including a plurality of pixels. The light receiving device 20 receives reflected light from the object 22 or the floor surface.

制御装置14は、反射光一様化処理ルーチンを実行するプログラム、姿勢検出処理ルーチンを実行するプログラム、及び各種処理ルーチンを実行するプログラム等を記憶した記憶媒体としてのROM(図示せず)、プログラムをROMから読み出して実行するCPU(図示せず)、データを一時的に記憶するRAM(図示せず)、及びI/O(入出力)ポート(図示せず)を含んだマイクロコンピュータで構成されている。制御装置14は、光源制御部24、距離演算部26、姿勢検出部28、設置条件記憶部30、及び理論距離演算部32を備えている。   The control device 14 stores a ROM (not shown) as a storage medium storing a program for executing the reflected light equalization processing routine, a program for executing the attitude detection processing routine, a program for executing various processing routines, and the like. It consists of a microcomputer (not shown) that reads and executes from the ROM, a RAM (not shown) that temporarily stores data, and a microcomputer that includes an I / O (input / output) port (not shown). Yes. The control device 14 includes a light source control unit 24, a distance calculation unit 26, an attitude detection unit 28, an installation condition storage unit 30, and a theoretical distance calculation unit 32.

光源制御部24は、姿勢検出部28によって検出された姿勢角と、距離演算部26によって演算された任意の点までの距離とに基づいて、光源18の各LEDから照射される光の強度を制御する。   The light source controller 24 determines the intensity of light emitted from each LED of the light source 18 based on the attitude angle detected by the attitude detector 28 and the distance to an arbitrary point calculated by the distance calculator 26. Control.

距離演算部26は、光源18から光が照射されてから対象物からの反射光が受光装置20で受光されるまでの時間に基づいて、対象物までの距離を受光装置20の受光素子毎に演算する。   The distance calculation unit 26 determines the distance to the object for each light receiving element of the light receiving device 20 based on the time from when the light source 18 irradiates light until the reflected light from the object is received by the light receiving device 20. Calculate.

設置条件記憶部30には、候補姿勢角θ´が複数記憶されている。この候補姿勢角θ´は、走行体16が走行した際に距離計測装置10に振動が加わったことにより姿勢角θが所定の姿勢角θ(本実施の形態では、例えばθ=30°)からずれた場合に予想される距離計測装置10の姿勢角θを表す。例えば、本実施の形態では、予め距離計測装置10の姿勢角を30°として設置した場合に、走行体16が走行した際に姿勢角が最大で±5°ずれることが予想されるとする。このときには、設置条件記憶部30に、25°から35°までの、例えば1°毎の候補姿勢角θ´を記憶しておく。また、設置条件記憶部30には、床面から距離計測装置10までの高さH(例えば、0.5m)が記憶されている。   The installation condition storage unit 30 stores a plurality of candidate posture angles θ ′. This candidate posture angle θ ′ is determined from the predetermined posture angle θ (in this embodiment, for example, θ = 30 °) due to vibration applied to the distance measuring device 10 when the traveling body 16 travels. It represents the attitude angle θ of the distance measuring device 10 that is expected when it deviates. For example, in this embodiment, when the posture angle of the distance measuring device 10 is set to 30 ° in advance, it is assumed that the posture angle is expected to be shifted by ± 5 ° at the maximum when the traveling body 16 travels. At this time, the installation condition storage unit 30 stores the candidate posture angle θ ′ from 25 ° to 35 °, for example, every 1 °. Further, the installation condition storage unit 30 stores a height H (for example, 0.5 m) from the floor surface to the distance measuring device 10.

理論距離演算部32は、設置条件記憶部30に記憶されている高さH及び候補姿勢角θ´を用いて、距離計測装置10の姿勢角θが各候補姿勢角θ´である場合の距離計測装置10から床面までの光源18の光軸70上における理論上の距離(理論距離)を演算する。   The theoretical distance calculation unit 32 uses the height H and the candidate posture angle θ ′ stored in the installation condition storage unit 30, and the distance when the posture angle θ of the distance measuring device 10 is each candidate posture angle θ ′. A theoretical distance (theoretical distance) on the optical axis 70 of the light source 18 from the measuring device 10 to the floor surface is calculated.

姿勢検出部28は、距離演算部26で演算された、受光装置20の複数の受光素子のそれぞれの距離のうち、N個の受光素子のそれぞれに対応する距離と、理論距離演算部32によって演算された、候補姿勢角θ´毎の理論距離とに基づいて、距離計測装置10の姿勢角θを検出する。   The posture detection unit 28 calculates the distance corresponding to each of the N light receiving elements among the distances of the plurality of light receiving elements of the light receiving device 20 calculated by the distance calculation unit 26 and the theoretical distance calculation unit 32. The posture angle θ of the distance measuring device 10 is detected based on the theoretical distance for each candidate posture angle θ ′.

走行体16は、走行を制御する走行体制御部34を備えている。   The traveling body 16 includes a traveling body control unit 34 that controls traveling.

走行体制御部34は、距離演算部26で演算された受光素子毎の距離、姿勢検出部28によって検出された姿勢角θ等を用いて床面を検出する。そして、走行体制御部34は、検出した床面に対する障害物を検出する。そして、走行体制御部34は、検出した障害物に対応するように、走行体16の走行(例えば、移動速度及び移動方向)を制御する。   The traveling body control unit 34 detects the floor using the distance for each light receiving element calculated by the distance calculation unit 26, the posture angle θ detected by the posture detection unit 28, and the like. And the traveling body control part 34 detects the obstruction with respect to the detected floor surface. And the traveling body control part 34 controls the driving | running | working (for example, moving speed and moving direction) of the traveling body 16 so that it may correspond to the detected obstruction.

次に、制御装置14のCPUが行う反射光一様化処理ルーチンについて図5を用いて説明する。なお、本実施の形態において、この反射光一様化処理ルーチンは、走行体制御部34からの信号に基づいて走行体16が所定距離を走行する毎に実行される。   Next, the reflected light equalization processing routine performed by the CPU of the control device 14 will be described with reference to FIG. In the present embodiment, the reflected light equalization processing routine is executed every time the traveling body 16 travels a predetermined distance based on a signal from the traveling body control unit 34.

まず、ステップ100で、姿勢検出処理が実行される。   First, in step 100, posture detection processing is executed.

この姿勢検出処理のルーチンについて図6を参照して説明すると、まずステップ200で、距離演算部26は、図7に示すように、光源18から照射された光の反射光を受光した受光装置20の複数の受光素子のうち、N個の受光素子の各々から床面m(i)(i=1、2、・・・、N)までの距離Lm(i)(i=1、2、・・・、N)を演算する。ここで、N個の受光素子についてはどのような方法で選んでもよく、受光装置20の複数の受光素子のうち、等間隔となるようにN個の受光素子を選んでもよい。なお、同図に図示されるθm(i)(i=1、2、・・・、N)は、床面m(i)の各々から反射されて受光装置20(P)まで到達する光と、床面との成す角度を表している。 The routine of the posture detection process will be described with reference to FIG. 6. First, in step 200, the distance calculation unit 26 receives the reflected light of the light emitted from the light source 18, as shown in FIG. The distance Lm (i) (i = 1, 2,... ) From each of the N light receiving elements to the floor m (i) (i = 1, 2,..., N). .., N) is calculated. Here, the N light receiving elements may be selected by any method, and among the plurality of light receiving elements of the light receiving device 20, N light receiving elements may be selected so as to be equally spaced. It should be noted that θm (i) (i = 1, 2,..., N) illustrated in the figure is the light reflected from each of the floor surfaces m (i) and reaching the light receiving device 20 (P). Represents the angle formed with the floor surface.

次のステップ202では、理論距離演算部32は、図8に示すように、設置条件記憶部30に記憶されている各候補姿勢θ´と高さHとから、距離計測装置10の姿勢角θが各候補姿勢角θ´である場合の距離計測装置10から床面までの光源18の光軸70上における理論距離Lr(θ´)(θ´=25、26、・・・、35)を下記の式(1)により演算する。 In the next step 202, the theoretical distance calculation unit 32, as shown in FIG. 8, uses the posture angle θ of the distance measuring device 10 from each candidate posture θ ′ and the height H stored in the installation condition storage unit 30. Is a theoretical distance Lr (θ ′) (θ ′ = 25, 26,..., 35) on the optical axis 70 of the light source 18 from the distance measuring device 10 to the floor surface when each is a candidate posture angle θ ′. Calculation is performed according to the following equation (1).

Lr(θ´)=H/sinθ´・・・・・式(1)
なお、図8には、例として、候補姿勢角θ´が25°の場合(A)、候補姿勢角θ´が26°の場合(B)、候補姿勢角θ´が35°の場合(C)における理論距離Lr(25)、Lr(26)、Lr(35)が示されている。
Lr (θ ′) = H / sin θ ′ (1)
In FIG. 8, for example, when the candidate posture angle θ ′ is 25 ° (A), the candidate posture angle θ ′ is 26 ° (B), and the candidate posture angle θ ′ is 35 ° (C The theoretical distances Lr (25) , Lr (26) , and Lr (35) in FIG.

この結果、複数の候補姿勢角θ´の各々について、理論距離Lr(θ´)が演算される。 As a result, the theoretical distance Lr (θ ′) is calculated for each of the plurality of candidate posture angles θ ′.

次のステップ204では、姿勢角検出部28は、ステップ202で演算した理論距離Lr(θ´)(θ´=25、26、・・・、35)とステップ200で演算した距離Lm(i)(i=1、2、・・・、N)の各々とを比較して、比較結果に基づいたヒストグラムを作成する。具体的には、姿勢角検出部28は、各々の候補姿勢角θ´において、理論距離Lr(θ´)と複数の距離Lm(i)の各々との絶対値の差を示すN個の差分を算出する。そして、姿勢角検出部28は、算出したN個の差分のうち所定の閾値Q以下となる数を候補姿勢角θ´の点数として、θ´=25〜35の点数をそれぞれ算出する。(すなわち、|Lm(i)−Lr(θ)|≦Qとなる数を候補姿勢角θ´の点数として、θ´=25〜35の点数をそれぞれ算出する。) In the next step 204, the posture angle detection unit 28 calculates the theoretical distance Lr (θ ′) (θ ′ = 25, 26,..., 35) calculated in step 202 and the distance Lm (i) calculated in step 200. Each of (i = 1, 2,..., N) is compared to create a histogram based on the comparison result. Specifically, the posture angle detection unit 28, for each candidate posture angle θ ′, N differences indicating a difference in absolute value between the theoretical distance Lr (θ ′) and each of the plurality of distances Lm (i). Is calculated. Then, the posture angle detection unit 28 calculates a score of θ ′ = 25 to 35, with the number of calculated N differences equal to or less than the predetermined threshold Q as the score of the candidate posture angle θ ′. (That is, the number of θ ′ = 25 to 35 is calculated by setting the number satisfying | Lm (i) −Lr (θ) | ≦ Q as the number of candidate posture angles θ ′.)

以上のステップ200〜ステップ204の処理により、図9に示すようなヒストグラムが作成される。このヒストグラムは、候補姿勢角θ´の点数が高くなるに従って、その候補姿勢角θ´が実際の姿勢角θである可能性が高いことを表す。   A histogram as shown in FIG. 9 is created by the processing in steps 200 to 204 described above. This histogram indicates that the candidate posture angle θ ′ is more likely to be the actual posture angle θ as the number of candidate posture angles θ ′ increases.

次のステップ206では、姿勢角検出部28は、点数が最大の候補姿勢角θ´を現在の距離計測装置10の姿勢角θとして検出する。   In the next step 206, the posture angle detector 28 detects the candidate posture angle θ ′ having the maximum score as the current posture angle θ of the distance measuring device 10.

なお、図9に示すようなヒストグラムが作成された場合には、点数が最大である候補姿勢角θ´は29°であるので、姿勢角検出部28は、29°を現在の距離計測装置10の姿勢角θとして検出する。   When the histogram as shown in FIG. 9 is created, the candidate posture angle θ ′ having the maximum score is 29 °, so the posture angle detection unit 28 sets 29 ° to the current distance measuring device 10. Is detected as the posture angle θ of the.

以上の姿勢角検出処理によって、距離計測装置10の実際の姿勢角θが検出される。   Through the above attitude angle detection process, the actual attitude angle θ of the distance measuring device 10 is detected.

次のステップ102では、光源制御部24は、光源18の各LEDの投射光強度比を決定する。具体的には、ステップ102で、光源制御部24は、図7に示すように、光源18から照射される光と床面との成す角度の最大の照射角度(θ+α)と、床面から距離計測装置10までの高さHとを用いて、光源18の照射範囲において、床面から反射された反射光を距離計測装置10の受光装置20が受光するまでの光の最短の移動距離PAを下記の式(2)によって演算する。
PA=H/sin(θ+α)・・・・・式(2)
In the next step 102, the light source control unit 24 determines the projection light intensity ratio of each LED of the light source 18. Specifically, in step 102, the light source control unit 24, as shown in FIG. 7, the maximum irradiation angle (θ + α) of the angle formed by the light irradiated from the light source 18 and the floor surface, and the distance from the floor surface. Using the height H to the measuring device 10, the shortest moving distance PA of the light until the light receiving device 20 of the distance measuring device 10 receives the reflected light reflected from the floor surface in the irradiation range of the light source 18. It calculates by the following formula (2).
PA = H / sin (θ + α) (2)

そして、光源制御部24は、光源18から照射される光と床面との成す角度の最小の照射角度(θ−α)と、床面から距離計測装置10までの高さHとを用いて、光源18の照射範囲において、床面から反射された反射光を距離計測装置10の受光装置20が受光するまでの光の最長の移動距離PBを下記の式(3)によって演算する。
PB=H/sin(θ−α)・・・・・式(3)
Then, the light source control unit 24 uses the minimum irradiation angle (θ−α) of the angle formed between the light emitted from the light source 18 and the floor and the height H from the floor to the distance measuring device 10. In the irradiation range of the light source 18, the longest moving distance PB of the light until the light receiving device 20 of the distance measuring device 10 receives the reflected light reflected from the floor surface is calculated by the following equation (3).
PB = H / sin (θ−α) (3)

さらに、光源制御部24は、床面m(1)、・・・、m(n)の各々から反射された反射光を距離計測装置10の受光装置20が受光するまでの光の移動距離Lm(1)、・・・、Lm(n)を下記の式(4)によって演算する。
Lm(k)=H/sin(θm(k))(k=1、2、・・・、n)・・・・・式(4)
Further, the light source control unit 24 moves the light travel distance Lm until the light receiving device 20 of the distance measuring device 10 receives the reflected light reflected from each of the floor surfaces m (1) ,..., M (n). (1) ,..., Lm (n) is calculated by the following equation (4).
Lm (k) = H / sin (θm (k) ) (k = 1, 2,..., N) Expression (4)

次のステップ104では、光源制御部24は、反射光の強度分布の差を所定値以下とするために、PからA、m(1)、・・・、m(n)、Bの各々に向けて照射する光の照射強度の比を決定する。例えば、光源制御部24は、光の強度はその光の移動距離の2乗に反比例するという事象に基づいて、ステップ102で演算した移動距離PA、PB、Lm(1)〜Lm(n)の比の関係を表す以下の式(5)における各値を2乗した以下の式(6)を光の照射強度の比として決定する。 In the next step 104, the light source control unit 24, in order to make difference in the intensity distribution of the reflected light below the predetermined value, A from P, m (1), ··· , m (n), each of B The ratio of the irradiation intensity of the light irradiated toward is determined. For example, the light source control unit 24 sets the movement distances PA, PB, Lm (1) to Lm (n) calculated in Step 102 based on the phenomenon that the light intensity is inversely proportional to the square of the movement distance of the light. The following formula (6) obtained by squaring each value in the following formula (5) representing the relationship of the ratio is determined as the ratio of the light irradiation intensity.

PA:Lm(1):・・・:Lm(n):PB
={sin(θ−α)×sin(θm(1))×・・・×sin(θm(n))}:{sin(θ−α)×sin(θm(2))×・・・×sin(θm(n))×sin(θ+α)}:・・・:{sin(θ−α)×sin(θm(1))×・・・×sin(θm(n−1))×sin(θ+α)}:{sin(θm(1))×・・・×sin(θm(n))×sin(θ+α)}・・・・式(5)
(PA):(Lm(1):・・・:(Lm(n):(PB)
={sin(θ−α)×sin(θm(1))×・・・×sin(θm(n))}:{sin(θ−α)×sin(θm(2))×・・・×sin(θm(n))×sin(θ+α)}:・・・:{sin(θ−α)×sin(θm(1))×・・・×sin(θm(n−1))×sin(θ+α)}:{sin(θm(1))×・・・×sin(θm(n))×sin(θ+α)}・・・・式(6)
PA: Lm (1) : ...: Lm (n) : PB
= {Sin (θ−α) × sin (θm (1) ) ×... × sin (θm (n) )}: {sin (θ−α) × sin (θm (2) ) ×. sin (θm (n) ) × sin (θ + α)}:... {sin (θ−α) × sin (θm (1) ) ×... × sin (θm (n−1) ) × sin ( θ + α)}: {sin (θm (1) ) ×... × sin (θm (n) ) × sin (θ + α)}... Equation (5)
(PA) 2 : (Lm (1) ) 2 :...: (Lm (n) ) 2 : (PB) 2
= {Sin (θ−α) × sin (θm (1) ) ×... × sin (θm (n) )} 2 : {sin (θ−α) × sin (θm (2) ) ×. * Sin ((theta ) m (n) ) * sin ((theta) + (alpha))} 2 : ...: {sin ((theta)-(alpha)) * sin ((theta) m (1) )) * ... * sin ((theta) m (n-1) ) * sin (θ + α)} 2 : {sin (θm (1) ) ×... sin (θm (n) ) × sin (θ + α)} 2 ... Equation (6)

次のステップ106では、光源制御部24は、PからA、m(1)、・・・、m(n)、Bの各々に向けて照射する光の照射強度の比が、距離の関数である上記の式(6)により得られた照射強度となるように、例えば、上記の式(6)が示す比となるように光源18から照射される光を制御する。すなわち、光源制御部24は、床面上の任意の点の照射強度がこの任意の点までの距離の関数により得られた照射強度となるように、例えば、床面上の任意の点の照射強度がこの任意の点までの距離の2乗に比例するように光源18から照射される光の強度を制御する。 In the next step 106, the light source control unit 24 determines that the ratio of the irradiation intensity of light emitted from P toward each of A, m (1) ,..., M (n) , B is a function of distance. For example, the light emitted from the light source 18 is controlled so as to have the ratio indicated by the above equation (6) so that the irradiation intensity obtained by the above equation (6) is obtained. That is, the light source control unit 24 irradiates an arbitrary point on the floor surface so that the irradiation intensity at an arbitrary point on the floor surface becomes an irradiation intensity obtained by a function of the distance to the arbitrary point, for example. The intensity of light emitted from the light source 18 is controlled so that the intensity is proportional to the square of the distance to this arbitrary point.

以上の反射光強度一様化処理によれば、図10(B)に示すように、光源制御部24は、PからA、m(1)、・・・、m(n)、Bの各々に向けて照射する光の照射強度の比が上記の式(6)と同様になるように光源18から照射される光の強度を制御する。これにより、図10(A)に示すように、反射光強度が一様でなく、距離が遠いほど小さくなっていた反射光の強度が、図10(C)に示すように、反射光の強度分布の差が所定値以下となる。そのため、距離計測装置10の受光装置20が受光する床面からの反射光の強度が一様化される。 According to the above reflected light intensity equalization processing, as shown in FIG. 10 (B), the light source control unit 24 uses each of P to A, m (1) ,..., M (n) , B. The intensity of the light irradiated from the light source 18 is controlled so that the ratio of the irradiation intensity of the light irradiated toward is similar to that in the above formula (6). As a result, the intensity of the reflected light is not uniform as shown in FIG. 10A, and the intensity of the reflected light that becomes smaller as the distance is longer is the intensity of the reflected light as shown in FIG. 10C. The difference in distribution is below a predetermined value. Therefore, the intensity of the reflected light from the floor surface received by the light receiving device 20 of the distance measuring device 10 is made uniform.

以上説明したように、本実施の形態の距離計測装置10によれば、姿勢検出部28によって検出された姿勢角θと、床面上の任意の点であるm(1)〜m(n)までの距離Lm(1)〜Lm(n)とに基づいて、任意の点m(1)〜m(n)の照射強度が任意の点m(1)〜m(n)までの距離Lm(1)〜Lm(n)の関数により得られた照射強度となるように、例えば、距離Lm(1)〜Lm(n)の各々の2乗に比例するように、光源18から照射される光の強度を制御する。これにより、受光装置20で受光する反射光の強度分布の差が所定値以下となり、すなわち受光装置20で受光する反射光の強度が一様化される。この結果、本実施の形態の距離計測装置10は、計測範囲が広くなり、かつ計測精度が良好となる。 As described above, according to the distance measurement device 10 of the present embodiment, the posture angle θ detected by the posture detection unit 28 and m (1) to m (n) that are arbitrary points on the floor surface. based on the distance Lm (1) ~Lm (n) up to an arbitrary point m (1) ~m (n) irradiation intensity given point m (1) of the distance to ~m (n) Lm ( 1) so that the illumination intensity obtained by the function to L m (n), for example, the distance Lm (1) to be proportional to the square of each to L m (n), the light emitted from the light source 18 To control the intensity. As a result, the difference in the intensity distribution of the reflected light received by the light receiving device 20 becomes a predetermined value or less, that is, the intensity of the reflected light received by the light receiving device 20 is made uniform. As a result, the distance measuring device 10 of the present embodiment has a wide measurement range and good measurement accuracy.

また、本実施の形態の距離計測装置10は、姿勢角θが変動した場合であっても、その姿勢角θを検出できるので、検出した姿勢角θに基づいて適切に光源18から照射される光の強度を制御することができる。   In addition, since the distance measurement device 10 of the present embodiment can detect the posture angle θ even when the posture angle θ varies, the distance measurement device 10 appropriately irradiates from the light source 18 based on the detected posture angle θ. The intensity of light can be controlled.

なお、上記で説明した姿勢検出処理ルーチンは、上述したステップ204及びステップ206に限定されるものではない。例えば、ステップ204及びステップ206において、姿勢検出部28は、理論距離Lr(θ´)と複数の距離Lm(i)の差分の絶対値の総和(Σ|Lr(θ´)−Lm(i)|)が最も小さくなる候補姿勢角θ´を現在の距離計測装置10の姿勢角θとして検出してもよい。 Note that the posture detection processing routine described above is not limited to step 204 and step 206 described above. For example, in step 204 and step 206, the posture detection unit 28 determines the sum of absolute values of differences between the theoretical distance Lr (θ ′) and the plurality of distances Lm (i) (Σ | Lr (θ ′) − Lm (i) The candidate posture angle θ ′ with the smallest |) may be detected as the current posture angle θ of the distance measuring device 10.

また、本実施の形態において、距離計測装置10の姿勢角θを、光源18から照射される光の光軸70と水平方向との成す角度とする例について説明したが、光源18から照射される光の光軸70と鉛直方向との成す角度としてもよい。このとき、上記の説明で用いたsinθはsin(90−θ)として用いることができる。   In the present embodiment, the example in which the attitude angle θ of the distance measuring device 10 is an angle formed by the optical axis 70 of the light emitted from the light source 18 and the horizontal direction has been described. It may be an angle formed by the optical axis 70 of light and the vertical direction. At this time, sin θ used in the above description can be used as sin (90−θ).

また、上記で説明した姿勢検出処理ルーチンのステップ200で、光源18から照射される光は、以下のようなものであってもよい。すなわち、図11に示すように、姿勢角θが設計時の所定の値(本実施の形態では30°)の場合に、光源18の照射範囲において、床面から反射された反射光を距離計測装置10の受光装置20が受光するまでの光の最短の移動距離PA、光の最長の移動距離PB、及び床面m(1)、・・・、m(n)の各々から反射された反射光を距離計測装置10の受光装置20が受光するまでの光の移動距離Lm(1)、・・・、Lm(n)を上記で説明した処理と同様に演算し、演算した移動距離PA、PB、Lm(1)〜Lm(n)の比の関係を表す以下の式(7)における各値を2乗した以下の式(8)を光の照射強度の比として決定する。 In addition, the light emitted from the light source 18 in step 200 of the posture detection processing routine described above may be as follows. That is, as shown in FIG. 11, when the attitude angle θ is a predetermined value at the time of design (30 ° in the present embodiment), the distance of the reflected light reflected from the floor surface in the irradiation range of the light source 18 is measured. Reflection reflected from each of the shortest moving distance PA of light until the light receiving device 20 of the apparatus 10 receives light, the longest moving distance PB of light, and the floor surfaces m (1) ,..., M (n). The light moving distances Lm (1) ,..., Lm (n) until light is received by the light receiving device 20 of the distance measuring device 10 are calculated in the same manner as the processing described above, and the calculated moving distance PA, The following formula (8) obtained by squaring each value in the following formula (7) representing the relationship of the ratio of PB, Lm (1) to Lm ( n) is determined as the ratio of the light irradiation intensity.

PA:Lm(1):・・・:Lm(n):PB
={sin(30°−α)×sin(θm(1))×・・・×sin(θm(n))}:{sin(30°−α)×sin(θm(2))×・・・×sin(θm(n))×sin(30°+α)}:・・・:{sin(30°−α)×sin(θm(1))×・・・×sin(θm(n−1))×sin(30°+α)}:{sin(θm(1))×・・・×sin(θm(n))×sin(30°+α)}・・・・式(7)
(PA):(Lm(1):・・・:(Lm(n):(PB)
={sin(30°−α)×sin(θm(1))×・・・×sin(θm(n))}:{sin(30°−α)×sin(θm(2))×・・・×sin(θm(n))×sin(30°+α)}:・・・:{sin(30°−α)×sin(θm(1))×・・・×sin(θm(n−1))×sin(30°+α)}:{sin(θm(1))×・・・×sin(θm(n))×sin(30°+α)}・・・・式(8)
PA: Lm (1) : ...: Lm (n) : PB
= {Sin (30 ° -α) × sin (θm (1) ) ×... × sin (θm (n) )}: {sin (30 ° -α) × sin (θm (2) ) × * Sin ([theta] m (n) ) * sin (30 [deg.] + [Alpha])}: ...: {sin (30 [deg.]-[Alpha]) * sin ([theta] m (1) ) * ... * sin ([theta] m (n-1) ) ) × sin (30 ° + α)}: {sin (θm (1) ) ×... × sin (θm (n) ) × sin (30 ° + α)} (7)
(PA) 2 : (Lm (1) ) 2 :...: (Lm (n) ) 2 : (PB) 2
= {Sin (30 ° -α) × sin (θm (1) ) ×... × sin (θm (n) )} 2 : {sin (30 ° -α) × sin (θm (2) ) ×. .. * sin ([theta] m (n) ) * sin (30 [deg.] + [Alpha])} 2 : ...: {sin (30 [deg.]-[Alpha]) * sin ([theta] m (1) ) * ... * sin ([theta] m (n) −1) ) × sin (30 ° + α)} 2 : {sin (θm (1) ) ×... × sin (θm (n) ) × sin (30 ° + α)} 2. )

そして、光源制御部24は、PからA、m(1)、・・・、m(n)、Bの各々に向けて照射する光の照射強度の比が、上記の式(8)が示す比となるように光源18から照射される光の強度を制御するようにしてもよい。すなわち、光源制御部24は、ステップ106において、姿勢検出処理のステップ206で検出された姿勢角θと、床面上の任意の点であるm(1)〜m(n)までの距離Lm(1)〜Lm(n)とに基づいて、任意の点m(1)〜m(n)の照射強度が任意の点m(1)〜m(n)までの距離Lm(1)〜Lm(n)の各々の2乗に比例するように、光源18から照射される光の強度を制御する前に、ステップ200において、所定の姿勢角θ(本実施の形態では30°)における床面上の任意の点であるm(1)〜m(n)までの距離Lm(1)〜Lm(n)に基づいて、任意の点m(1)〜m(n)の照射強度が任意の点m(1)〜m(n)までの距離Lm(1)〜Lm(n)の2乗に比例するように、光源18から照射される光の強度を制御するようにしてもよい。 Then, the light source control unit 24, A from P, m (1), shows · · ·, m (n), the ratio of the irradiation intensity of light emitted to the respective B is, the above equation (8) You may make it control the intensity | strength of the light irradiated from the light source 18 so that it may become ratio. That is, in step 106, the light source control unit 24 determines the posture angle θ detected in step 206 of the posture detection process and the distance Lm ( m ) from m (1) to m (n) that is an arbitrary point on the floor surface. 1) based on the to L m (n), an arbitrary point m (1) ~m (n) illumination intensity arbitrary point m (1 in) ~m (n) distance Lm (1 up) to L m ( Before controlling the intensity of light emitted from the light source 18 so as to be proportional to the square of each of n) , in step 200, on the floor surface at a predetermined posture angle θ (30 ° in the present embodiment). any in which on the basis of m (1) ~m distance to (n) Lm (1) to L m (n) point, an arbitrary point m (1) ~m irradiation intensity of any (n) point m (1) ~m (n) distance to Lm (1) to be proportional to the square of the to L m (n), or the light source 18 It may be to control the intensity of the irradiated light.

本実施の形態における距離計測装置の配置位置を示す図である。It is a figure which shows the arrangement position of the distance measuring device in this Embodiment. 本実施の形態における距離計測装置の配置位置を示す図である。It is a figure which shows the arrangement position of the distance measuring device in this Embodiment. 本実施の形態を示す概略図である。It is the schematic which shows this Embodiment. 本実施の形態における光源を説明するための図である。It is a figure for demonstrating the light source in this Embodiment. 本実施の形態における制御装置のCPUが行う反射光一様化処理ルーチンのフローチャートを示す図である。It is a figure which shows the flowchart of the reflected light equalization processing routine which CPU of the control apparatus in this Embodiment performs. 本実施の形態における制御装置のCPUが行う姿勢検出処理ルーチンのフローチャートを示す図である。It is a figure which shows the flowchart of the attitude | position detection process routine which CPU of the control apparatus in this Embodiment performs. 本実施の形態における光源からの光の照射範囲を示す図である。It is a figure which shows the irradiation range of the light from the light source in this Embodiment. 本実施の形態における理論距離を説明するための図である。It is a figure for demonstrating the theoretical distance in this Embodiment. 本実施の形態における候補姿勢角のヒストグラムを示す図である。It is a figure which shows the histogram of the candidate attitude | position angle in this Embodiment. 本発明の効果を示す図である。It is a figure which shows the effect of this invention. 本実施の形態における光源から照射される光の一例を示す図である。It is a figure which shows an example of the light irradiated from the light source in this Embodiment.

符号の説明Explanation of symbols

10 距離計測装置
14 制御装置
18 光源
20 受光装置
24 光源制御部
26 距離演算部
28 姿勢検出部
30 設置条件記憶部
32 理論距離演算部
DESCRIPTION OF SYMBOLS 10 Distance measuring device 14 Control device 18 Light source 20 Light receiving device 24 Light source control unit 26 Distance calculation unit 28 Attitude detection unit 30 Installation condition storage unit 32 Theoretical distance calculation unit

Claims (4)

床面上に変調光を照射する光源、及び前記光源から照射された光の反射光を受光する複数の受光素子が配列された受光手段を備え、前記床面から所定の高さの位置に前記床面に対して所定の姿勢角になるように設けられた計測手段と、
前記受光手段で受光された反射光に基づいて、前記床面上の任意の点までの距離を演算する距離演算手段と、
前記姿勢角を検出する姿勢角検出手段と、
前記姿勢角検出手段で検出された姿勢角と、前記距離演算手段により演算された任意の点までの距離とに基づいて、前記任意の点の照射強度が前記任意の点までの距離の関数により得られた照射強度となるように、前記光源から照射される光の強度を制御する光源制御手段と、
を含む距離計測装置。
A light source that emits modulated light on the floor surface, and a light receiving unit in which a plurality of light receiving elements that receive reflected light of the light emitted from the light source are arranged, and the light source is arranged at a predetermined height from the floor surface. A measuring means provided to have a predetermined posture angle with respect to the floor surface;
Based on the reflected light received by the light receiving means, distance calculating means for calculating a distance to an arbitrary point on the floor surface;
Posture angle detection means for detecting the posture angle;
Based on the posture angle detected by the posture angle detecting means and the distance to the arbitrary point calculated by the distance calculating means, the irradiation intensity at the arbitrary point is a function of the distance to the arbitrary point. A light source control means for controlling the intensity of light emitted from the light source so as to obtain the obtained irradiation intensity;
Distance measuring device including
前記光源制御手段は、更に、前記姿勢角検出手段で検出された姿勢角と、前記距離演算手段により演算された任意の点までの距離とに基づいて、前記任意の点の照射強度が前記任意の点までの距離の関数により得られた照射強度となるように、前記光源から照射される光の強度を制御する前に、前記所定の姿勢角における前記床面までの任意の点までの距離に基づいて、前記任意の点の照射強度が前記任意の点までの距離の関数により得られた照射強度となるように、前記光源から照射される光の強度を制御する請求項1記載の距離計測装置。   The light source control means further has the irradiation intensity at the arbitrary point based on the attitude angle detected by the attitude angle detection means and the distance to the arbitrary point calculated by the distance calculation means. Before controlling the intensity of light emitted from the light source so as to obtain an irradiation intensity obtained by a function of the distance to the point, the distance to an arbitrary point to the floor surface at the predetermined posture angle 2. The distance according to claim 1, wherein the intensity of light emitted from the light source is controlled so that the irradiation intensity at the arbitrary point becomes an irradiation intensity obtained by a function of the distance to the arbitrary point. Measuring device. 前記姿勢角検出手段は、前記受光手段の各受光素子の出力から演算された各々の距離と、複数の候補姿勢角の各々の場合における前記計測手段から前記床面までの理論上の各々の距離とに基づいて、前記姿勢角を検出する請求項1または請求項2記載の距離計測装置。   The posture angle detection means includes a distance calculated from each light receiving element of the light receiving means and a theoretical distance from the measurement means to the floor in each case of a plurality of candidate posture angles. The distance measuring device according to claim 1, wherein the posture angle is detected based on 床面上に変調光を照射する光源、及び前記光源から照射された光の反射光を受光する複数の受光素子が配列された受光手段を備え、前記床面から所定の高さの位置に前記床面に対して所定の姿勢角になるように設けられた計測手段の受光手段が前記反射光を受光し、
前記受光手段で受光された反射光に基づいて、前記床面上の任意の点までの距離を演算し、
前記姿勢角を検出し、
検出された姿勢角と、演算された任意の点までの距離とに基づいて、前記任意の点の照射強度が前記任意の点までの距離の関数により得られた照射強度となるように、前記光源から照射される光の強度を制御する
距離計測方法。
A light source that emits modulated light on the floor surface, and a light receiving unit in which a plurality of light receiving elements that receive reflected light of the light emitted from the light source are arranged, and the light source is arranged at a predetermined height from the floor surface. The light receiving means of the measuring means provided to have a predetermined posture angle with respect to the floor surface receives the reflected light,
Based on the reflected light received by the light receiving means, calculate the distance to an arbitrary point on the floor surface,
Detecting the posture angle;
Based on the detected attitude angle and the calculated distance to an arbitrary point, the irradiation intensity at the arbitrary point becomes an irradiation intensity obtained by a function of the distance to the arbitrary point, A distance measurement method that controls the intensity of light emitted from a light source.
JP2007148271A 2007-06-04 2007-06-04 Distance measuring apparatus and distance measuring method Pending JP2008298741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007148271A JP2008298741A (en) 2007-06-04 2007-06-04 Distance measuring apparatus and distance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007148271A JP2008298741A (en) 2007-06-04 2007-06-04 Distance measuring apparatus and distance measuring method

Publications (1)

Publication Number Publication Date
JP2008298741A true JP2008298741A (en) 2008-12-11

Family

ID=40172375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007148271A Pending JP2008298741A (en) 2007-06-04 2007-06-04 Distance measuring apparatus and distance measuring method

Country Status (1)

Country Link
JP (1) JP2008298741A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168750A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Floor surface detection system, mobile robot, and floor surface detection method
JP2013019790A (en) * 2011-07-12 2013-01-31 Ihi Corp Laser radar device
JPWO2017110417A1 (en) * 2015-12-21 2018-10-04 株式会社小糸製作所 Vehicular image acquisition device, control device, vehicle image acquisition device or vehicle equipped with control device, and vehicle image acquisition method
US11187805B2 (en) 2015-12-21 2021-11-30 Koito Manufacturing Co., Ltd. Image acquiring apparatus for vehicle, control device, vehicle having image acquiring apparatus for vehicle or control device, and image acquiring method for vehicle
US11204425B2 (en) 2015-12-21 2021-12-21 Koito Manufacturing Co., Ltd. Image acquisition device for vehicles and vehicle provided with same
US11249172B2 (en) 2015-12-21 2022-02-15 Koito Manufacturing Co., Ltd. Image acquiring apparatus for vehicle, control device, vehicle having image acquiring apparatus for vehicle or control device, and image acquiring method for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131016A (en) * 2000-10-27 2002-05-09 Honda Motor Co Ltd Apparatus and method of distance measurement
JP2004038531A (en) * 2002-07-03 2004-02-05 Matsushita Electric Ind Co Ltd Method and device for detecting position of object
JP2004184331A (en) * 2002-12-05 2004-07-02 Denso Corp Object recognition apparatus for motor vehicle
JP2006146372A (en) * 2004-11-16 2006-06-08 Denso Corp Object recognition device for vehicle
JP2006262009A (en) * 2005-03-16 2006-09-28 Matsushita Electric Works Ltd Obstacle detector for mobile object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131016A (en) * 2000-10-27 2002-05-09 Honda Motor Co Ltd Apparatus and method of distance measurement
JP2004038531A (en) * 2002-07-03 2004-02-05 Matsushita Electric Ind Co Ltd Method and device for detecting position of object
JP2004184331A (en) * 2002-12-05 2004-07-02 Denso Corp Object recognition apparatus for motor vehicle
JP2006146372A (en) * 2004-11-16 2006-06-08 Denso Corp Object recognition device for vehicle
JP2006262009A (en) * 2005-03-16 2006-09-28 Matsushita Electric Works Ltd Obstacle detector for mobile object

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168750A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Floor surface detection system, mobile robot, and floor surface detection method
JP2013019790A (en) * 2011-07-12 2013-01-31 Ihi Corp Laser radar device
JPWO2017110417A1 (en) * 2015-12-21 2018-10-04 株式会社小糸製作所 Vehicular image acquisition device, control device, vehicle image acquisition device or vehicle equipped with control device, and vehicle image acquisition method
US11187805B2 (en) 2015-12-21 2021-11-30 Koito Manufacturing Co., Ltd. Image acquiring apparatus for vehicle, control device, vehicle having image acquiring apparatus for vehicle or control device, and image acquiring method for vehicle
US11194023B2 (en) 2015-12-21 2021-12-07 Koito Manufacturing Co., Ltd. Image acquiring apparatus for vehicle, control device, vehicle having image acquiring apparatus for vehicle or control device, and image acquiring method for vehicle
US11204425B2 (en) 2015-12-21 2021-12-21 Koito Manufacturing Co., Ltd. Image acquisition device for vehicles and vehicle provided with same
US11249172B2 (en) 2015-12-21 2022-02-15 Koito Manufacturing Co., Ltd. Image acquiring apparatus for vehicle, control device, vehicle having image acquiring apparatus for vehicle or control device, and image acquiring method for vehicle

Similar Documents

Publication Publication Date Title
JP2008298741A (en) Distance measuring apparatus and distance measuring method
JP2015155878A (en) Obstacle detection device for vehicle
RU2013135115A (en) MANUAL LASER RANGE
JP2017015409A (en) Road surface detection device, mobile body, road surface detection method, and road surface detection program
JP2017015601A (en) Road surface detection device, mobile body, road surface detection method, and road surface detection program
JP6464410B2 (en) Obstacle determination device and obstacle determination method
KR101213987B1 (en) Apparatus for measurementing distance and method for controlling the same
KR20130040026A (en) Method and apparatus for measuring distance of object
US10410070B2 (en) Step detection device and step detection method
JP2018022270A (en) Road shoulder detection method and road shoulder detection device
JP2009168751A (en) Obstacle detection system and obstacle detection method
CN113721259A (en) Method and system for determining position of laser point on two-dimensional plane
JP2008298742A (en) Posture angle detection device, posture angle detecting method, and surface of floor detection device
JP2014202709A (en) Object detection device for vehicle
JP2018165657A (en) Object edge detection method using laser type range-finding device
JP2009168750A (en) Floor surface detection system, mobile robot, and floor surface detection method
US9360303B2 (en) Height measuring apparatus and method thereof
JP2014091619A (en) Device and method of measuring position of hanger
JP2012103567A5 (en)
JP6079664B2 (en) Apparatus for measuring surface of object to be measured and method for measuring surface thereof
JP2001034886A (en) Method and device for detecting vehicle length
KR101967315B1 (en) Apparatus for detecting forward object of vehicle and method thereof
JP2006079346A (en) Vehicle surrounding object detection device
EP3385752A1 (en) Improved resolution for a lidar sensor system for a motor vehicle
JPS60142208A (en) Front road surface state detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313