JP2004048895A - Private energy generating system - Google Patents

Private energy generating system Download PDF

Info

Publication number
JP2004048895A
JP2004048895A JP2002202427A JP2002202427A JP2004048895A JP 2004048895 A JP2004048895 A JP 2004048895A JP 2002202427 A JP2002202427 A JP 2002202427A JP 2002202427 A JP2002202427 A JP 2002202427A JP 2004048895 A JP2004048895 A JP 2004048895A
Authority
JP
Japan
Prior art keywords
energy
private
power
vehicle
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002202427A
Other languages
Japanese (ja)
Inventor
Hitoshi Hayashi
林 倫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002202427A priority Critical patent/JP2004048895A/en
Publication of JP2004048895A publication Critical patent/JP2004048895A/en
Priority to JP2007175740A priority patent/JP2007312597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/006Supplying electric power to auxiliary equipment of vehicles to power outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a burden applied to a system without wasting excess energy. <P>SOLUTION: This private energy generating system 10 includes a stationary generator 20 for outputting electric power to be supplied to a private load 90; a battery which is a constitutive device of an on-vehicle generator 60 installed on an electric car 50 and can store the power outputted from the stationary generator 20; and a power meter which detects the power consumption of the private load 90. An electronic control unit 40 controls so that the stationary generator 20 may output preset power, therefore the burden on the device 20 can be reduced more than in the case of following the load. When the output power is excessive relative to the power consumption detected by the power meter, the control unit controls so that the excess power may be stored in the battery 70, thus efficiently utilizing the generated power without wasting it. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自家用エネルギ生成システムに関する。
【0002】
【従来の技術】
従来、自家用エネルギ生成システムとしては、改質器で都市ガスを水素に変換し、その水素と空気中の酸素とを燃料電池に供給して両者を反応させることにより電力を発生させ、その電力を自家用負荷に供給する一方、燃料電池を冷却すること等により得られる排熱を水に回収させてお湯として給湯器に供給するシステムが知られている。このような自家用エネルギ生成システムでは、自家用負荷の消費電力が変動するのに応じて燃料電池の発電量を追従させる負荷追従制御を行うことが考えられる。
【0003】
【発明が解決しようとする課題】
しかしながら、負荷追従制御を行うとシステムに与える負担が大きくなるため好ましくない。一方、負荷追従制御を行わないようにすればシステムに与える負担は軽くなるものの、自家用負荷の消費電力は1日の時間帯によって大きく変動するため、時として発電電力が消費電力を上回り電力を無駄にしてしまうことがある。
【0004】
本発明は上述した課題を解決するためになされたものであり、余剰エネルギを無駄にすることなくシステムに与える負担を軽くすることができる自家用エネルギ生成システムを提供することを目的とする。
【0005】
なお、例えば特開2002−83607には、自家用エネルギ生成システムにおける燃料電池の発電電力を略一定の小電力(0.4kW)に設定しておき、賄いきれない電力については大電力(2kW)を発電する電気自動車の燃料電池から供給することが提案されているが、この場合には電気自動車の燃料電池が大型化してしまい車両搭載性に難があるという新たな問題が生じるため好ましくない。
【0006】
【課題を解決するための手段およびその作用・効果】
本発明の第1の自家用エネルギ生成システムは、
自家用負荷に供給するエネルギを生成するエネルギ生成手段と、
前記エネルギ生成手段が予め定められた大きさのエネルギを生成するよう制御するエネルギ生成制御手段と、
前記エネルギ生成手段が生成するエネルギと前記自家用負荷の消費分との差分のエネルギを車両に供給する差分エネルギ供給手段と
を備えたものである。
【0007】
この自家用エネルギ生成システムでは、エネルギ生成手段が予め定められた大きさのエネルギを生成するよう制御するため、自家用負荷に追従するよう制御する場合に比べてエネルギ生成手段の負担を軽くすることができる。また、エネルギ生成手段が生成するエネルギが自家用負荷の消費分に対して過剰なときにはその過剰なエネルギを車両に供給するため、その過剰なエネルギを無駄にすることなく有効に利用することができる。
【0008】
なお、このシステムにおいて、エネルギ生成手段が生成するエネルギが自家用負荷の消費分に対して不足するときには不足するエネルギを車両から受け取るようにしてもよい。こうすれば、エネルギ生成手段が自家用負荷の消費分を賄いきれない場合があったとしても、エネルギ生成手段に負担をかけずに容易に対処することができる。
【0009】
この自家用エネルギ生成システムにおいて、前記車両は、エネルギ蓄積手段を備えており、前記エネルギ供給手段は、前記車両のエネルギ蓄積手段に前記差分のエネルギを供給してもよい。こうすれば、車両は過剰なエネルギを一旦エネルギ蓄積手段に蓄積しておき、必要が生じたときに利用することができる。
【0010】
この自家用エネルギ生成システムにおいて、前記エネルギは、特にどのようなエネルギであってもよいが、熱エネルギ、電気エネルギ、又は熱及び電気エネルギが好ましい。
【0011】
この自家用エネルギ生成システムにおいて、前記車両は、動力源の一つとしてモータを有するものであり、前記エネルギ蓄積手段は、前記モータに電気エネルギを供給するバッテリであってもよい。ここで、「車両」は、例えば、モータのみを動力源として有するものでもよいし、エンジンとモータの両方を動力源として有するものでもよい。
【0012】
この自家用エネルギ生成システムにおいて、前記エネルギ生成手段は、燃料電池、マイクロタービン又は太陽電池であってもよい。これらは自家用負荷にエネルギを供給するのに適しているからである。
【0013】
本発明の第2の自家用エネルギ生成システムは、
所定のエネルギ源を基にして自家用負荷に供給するエネルギを生成するエネルギ生成手段と、
前記エネルギ生成手段が予め定められた大きさのエネルギを生成するよう制御するエネルギ生成制御手段と、
前記エネルギ生成手段が生成するエネルギと前記自家用負荷の消費分との差分のエネルギを生成するのに必要となる前記エネルギ源を車両に供給する差分エネルギ源供給手段と
を備えたものである。
【0014】
この自家用エネルギ生成システムでは、エネルギ生成手段が予め定められた大きさのエネルギを生成するよう制御するため、自家用負荷に追従するよう制御する場合に比べてエネルギ生成手段の負担を軽くすることができる。また、エネルギ生成手段が生成するエネルギが自家用負荷の消費分に対して過剰なときにはその過剰なエネルギを生成するのに必要となるエネルギ源を車両に供給するため、その過剰なエネルギ源を無駄にすることなく有効に利用することができる。
【0015】
なお、このシステムにおいて、エネルギ生成手段が生成するエネルギが自家用負荷の消費分に対して不足するときには不足するエネルギを生成するのに必要となるエネルギ源を車両から受け取るようにしてもよい。こうすれば、自家用負荷の消費分を賄いきれない場合があったとしても、エネルギ生成手段に負担をかけずに容易に対処することができる。
【0016】
この自家用エネルギ生成システムにおいて、前記エネルギ生成手段は、燃料電池、マイクロタービン又は太陽電池であってもよい。これらは自家用負荷にエネルギを供給するのに適しているからである。
【0017】
この自家用エネルギ生成システムにおいて、前記エネルギ生成手段は、炭化水素系燃料を原料として水素を生成する改質器からの水素を基にして自家用負荷に供給するエネルギを生成する定置型燃料電池であり、前記エネルギ生成制御手段は、前記エネルギ生成手段が予め定められた大きさのエネルギを生成するよう前記改質器から前記エネルギ生成手段に供給される水素量を制御し、前記差分エネルギ源供給手段は、前記差分エネルギを生成するのに必要となる水素量を、前記車両に搭載された燃料電池へ水素を供給可能な水素蓄積手段に供給してもよい。こうすれば、負荷追従する場合に比べて改質器の負担を軽くすることができ、また、過剰な水素が生じたとしても車両の水素蓄積手段に供給するため、車両において必要なときに有効に利用することができる。
【0018】
【発明の実施の形態】
次に、本発明の実施の形態を図面に基づいて説明する。図1は本実施形態の自家用エネルギ生成システム10の全体構成の概略を表す説明図、図2は定置型発電装置20の概略構成を表すブロック図、図3は車載発電装置60の概略構成を表すブロック図である。
【0019】
本実施形態の自家用エネルギ生成システム10は、図1に示すように、戸建て住宅の自家用負荷90に電力を供給したり給湯器92にお湯を供給したりする定置型発電装置20と、電気自動車50に搭載され定置型発電装置20との間で電力の授受を行う車載発電装置60とを備えている。なお、電気自動車50は停車した状態で定置型発電装置20に接続されているが、定置型発電装置20との接続を解除すれば走行可能となる。
【0020】
定置型発電装置20は、図2に示すように、ガス配管21から都市ガス(13A)の供給を受けて都市ガスを水素リッチな改質ガスに改質する改質器26と、改質ガス中の一酸化炭素を低減して燃料ガスとするCO選択酸化部27と、燃料ガスと空気との供給を受けて電気化学反応により発電する燃料電池30と、燃料電池30の冷却水と貯湯槽31の低温水との熱交換を行う熱交換器32と、燃料電池30からの直流電力の電圧および電流を調整して所望の直流電力に変換するDC/DCコンバータ35と、変換された直流電力を交流電力に変換して自家用負荷90へ電力を供給するインバータ37と、自家用負荷90で消費する消費電力を検出する電力計38と、システム全体をコントロールする電子制御ユニット40とを備えている。
【0021】
改質器26は、ガス配管21から調節弁22と昇圧ポンプ23と硫黄分を除く脱硫器24とを介して供給される都市ガスと図示しない配管により供給される水蒸気とによる次式(1)および次式(2)の水蒸気改質反応およびシフト反応により水素リッチな改質ガスを生成する。改質器26には、こうした反応に必要な熱を供給する燃焼部28が設けられており、燃焼部28にはガス配管21から調節弁22と昇圧ポンプ25とを介して都市ガスが供給されるようになっている。また、燃焼部28には、燃料電池30のアノード側の排出ガスが供給され、アノードオフガス中の未反応の水素を燃料として用いることができるようになっている。
【0022】
【数1】
CH+HO→CO+3H  (1)
CO+HO→CO+H   (2)
【0023】
CO選択酸化部27は、図示しない配管による空気の供給を受けて水素の存在下で一酸化炭素を選択して酸化する一酸化炭素選択酸化触媒(例えば白金とルテニウムの合金による触媒)により、改質ガス中の一酸化炭素を選択酸化して一酸化炭素濃度が極めて低い(実施例では数ppm程度)水素リッチな燃料ガスとする。
【0024】
燃料電池30は、電解質膜とこの電解質膜を狭持するアノードおよびカソードとこのアノードおよびカソードに燃料ガスと空気とを供給すると共にセル間の隔壁をなすセパレータとからなる単セルを複数積層してなる固体高分子型の燃料電池として構成されており、CO選択酸化部27からの燃料ガス中の水素とブロア29からの空気中の酸素とによる電気化学反応によって発電する。燃料電池30には循環する冷却水の流路が形成されており、冷却水を循環させることによって適温(80〜90℃程度)に保持される。この冷却水の循環流路には、熱交換器32が設けられており、燃料電池30の冷却水との熱交換により貯湯槽31からポンプ34により供給される低温水が加温されて貯湯槽31に貯湯されるようになっている。つまり、貯湯槽31には燃料電池30の排熱を回収した熱交換媒体としてのお湯が貯留される。この貯湯槽31に貯留されたお湯は給湯器92に供給され、適時、戸建て住宅の蛇口から吐出される。
【0025】
燃料電池30の図示しない出力端子は、DC/DCコンバータ35,分配器36,インバータ52を介して自家用負荷90に接続されており、燃料電池30からの直流電力が分配器36を経由したあと交流電力に変換されて自家用負荷90へ供給されたり直流電力のまま車載発電装置60のバッテリ70へ供給されたりするようになっている。ここで、車載発電装置60のバッテリ70はコネクタ39にて定置型発電装置20に着脱自在に接続されている。また、車載発電装置60のバッテリ70からの直流電力が分配器36を経由したあとインバータ52で交流電力に変換されて自家用負荷90へ供給されるようにもなっている。なお、DC/DCコンバータ35やインバータ37は一般的なDC/DCコンバータ回路やインバータ回路として構成され、分配器36も一般的なスイッチング回路として構成されているから、その詳細な説明は省略する。
【0026】
電子制御ユニット40は、CPU41を中心とするマイクロプロセッサとして構成されており、各種制御プログラムを記憶するROM42と、データを一時的に記憶するRAM43と、図示しない入出力ポートおよび通信ポートとを備えている。電子制御ユニット40には、インバータ37内の図示しない電流センサや電圧センサからの出力電流や出力電圧、電力計38からの消費電力Po、改質器26やCO選択酸化部27、燃料電池30に取り付けられた図示しない温度センサからの各温度などが入力ポートを介して入力される。また、電子制御ユニット40からは、調節弁22のアクチュエータや昇圧ポンプ23,25、ブロア29、循環ポンプ33、ポンプ34などへの駆動信号や燃焼部28への点火信号、DC/DCコンバータ35や分配器36への制御信号,インバータ37へのスイッチング制御信号などが出力ポートを介して出力される。
【0027】
電気自動車50は、図3に示すように、車輪Wの駆動源としての走行用モータ51と、この走行用モータ51に電力を供給したりバッテリ70を充電したりする車載発電装置60とを備えている。
【0028】
走行用モータ51は、三相同期モータであり、図3に示すように、燃料電池61やバッテリ70の出力する直流電流が分配器72を経てインバータ52を介して三相交流に変換されたあと供給される。走行用モータ11は、このような電力の供給を受けて回転駆動力を発生する。この回転駆動力は、デファレンシャルギヤ53を介して車輪Wの車軸54に伝えられ電気自動車50を走行させる動力となる。
【0029】
車載発電装置60は、上述した燃料電池30と同様の固体高分子電解質型の燃料電池61と、周知の二次電池を複数個直列に接続したバッテリ70と、電力の分配を行う分配器72と、各種の制御を行うパワーコントロールユニット(PCU)74とを備えている。
【0030】
燃料電池61は、燃料電池30と同様、構成単位である単セルを複数積層したスタック構造を有している。燃料電池61を構成する各単セルでは、図3に示すように、水素タンク62から水素ガス(燃料ガス)がマスフロコントローラ63で圧力・流量が調節されたあと加湿されてアノードに供給され、エアコンプレッサ64から圧力が調節された圧縮空気(酸化ガス)がカソードに供給され、所定の電気化学反応が進行することにより発電し、その発電電力が分配器72に供給される。また、燃料電池61の周囲には、燃料電池61から未反応のまま排出された水素ガスを再び燃料電池61に供給する水素ガス循環ポンプ65や、燃料電池61を冷却するために燃料電池61に冷却水を循環させるウォータポンプ66や、ウォータポンプ66によって循環される冷却水を放熱させる放熱器67などが設けられている。
【0031】
バッテリ70は、PCU74の制御によって、車両の始動時に走行用モータ51を駆動したり、減速回生時に回生電力を回収したり、加速時に走行用モータ51をアシストしたり、負荷に応じて燃料電池61によって充電されたりする。このバッテリ70は、コネクタ39を介して定置型発電装置20の分配器39に着脱自在に接続されている。なお、このバッテリ70は充放電可能な電池であればよく、ニッケル水素二次電池に限らず例えばニッカド二次電池やリチウム水素二次電池や鉛蓄電池などであってもよい。
【0032】
分配器72は、走行用モータ51への電力供給を燃料電池61及びバッテリ70のいずれか一方又は両方で行ったり燃料電池61によるバッテリ70の充電を行ったりするためのスイッチング回路である。
【0033】
PCU74は、走行用モータ51の駆動力を制御するものであり、マイクロコンピュータを中心とした論理回路として構成され、図示しないが周知のCPU、ROM、RAM及び入出力ポートから構成されている。このPCU74は、アクセルペダルセンサのペダル位置やインバータ52の出力電流/出力電圧やバッテリ70の残留容量値や図示しない各種センサの検出値を入力し、入力した各値に基づいて、マスフロコントローラ63及びエアコンプレッサ64に供給ガス量を制御するための制御信号を出力したりインバータ52や分配器72への制御信号を出力したりする。
【0034】
次に、こうして構成された自家用エネルギ生成システム10の動作について説明する。自家用エネルギ生成システム10における定置型発電装置20の電子制御ユニット40は、メイン制御として定常運転制御を実行している。即ち、電子制御ユニット40のCPU41は、このシステムの図示しないメインスイッチがオンされると、ROM42から図4に示す定常運転制御プログラムを読み出してこれを実行する。まず、CPU41は、各種初期設定を実行する(ステップS110)。この各種初期設定の中には、予め定められた1日の消費電力パターンを参照し、その消費電力パターンのピーク値に基づいて燃料電池30の発電電力の目標値(一定値)を設定する処理や、分配器36と車載発電装置60のバッテリ70との電力の授受を遮断する処理などが含まれる。各種初期設定を実行後、定常運転を開始する(ステップS120)。具体的には、燃料電池30からの発電電力が目標値となるように、改質器26から燃料電池30へ供給する水素ガス量を改質器26へ供給する都市ガス量によって制御する。その後、運転停止の指令がなされたか否か、即ちこのシステムの図示しないメインスイッチがオンからオフにされたか否かを判定し(ステップS130)、メインスイッチがオンのままのときには再びステップS120に戻って定常運転を継続する。一方、メインスイッチがオンからオフにされたときには燃料電池30の運転を停止し(ステップS140)、このプログラムを終了する。
【0035】
次に、メイン制御とは別に所定の割込タイミング(例えば数msecごとのタイミング)で開始される割込処理としての余剰電力対応処理について説明する。電子制御ユニット40のCPU41は、この割込処理が開始されると、まず、コネクタ39を介して車載発電装置60が接続されているか否かを判定し(ステップS200)、接続されていないときにはそのままこのプログラムを終了し、接続されているときには電力計38からの現在の消費電力Poを読み込む(ステップS210)。続いて、燃料電池30の発電電力が消費電力Poに対して過剰か不足かを判定し(ステップS220)、燃料電池30の発電電力が消費電力Poに対して過剰なときには、分配器36を制御してその過剰分が分配器36から車載発電装置60のバッテリ70に蓄積されるようにつまりバッテリ70が充電されるようにし(ステップS230)、このプログラムを終了する。また、ステップS220で燃料電池30の発電電力が消費電力Poに対して不足しているときには、分配器36を制御してその不足分が車載発電装置60のバッテリ70から分配器36を介して自家用負荷90へ供給されるようにし(ステップS240)、このプログラムを終了する。なお、電子制御ユニット40はコネクタ39を介してバッテリ70の充電状態をチェックしたり充電を行ったりできるよう電気的に接続されている。更に、ステップS220で過不足が生じないときには、そのままこのプログラムを終了する。
【0036】
上述した余剰電力対応処理において、例えば燃料電池30が500Wの電力を生成するよう制御されている場合、自家用負荷90の消費電力が400Wだったとすると、差分の100Wが車載発電装置60のバッテリ70に蓄積される。逆に、自家用負荷90の消費分が600Wだったとすると、差分の−100Wを車両に供給する、つまり車両から100Wが供給される。
【0037】
ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の定置型発電装置20の燃料電池30が本発明のエネルギ生成手段に相当し、電子制御ユニット40のCPU41がエネルギ生成制御手段及び差分エネルギ供給手段に相当し、車載発電装置60のバッテリ70がエネルギ蓄積手段に相当する。
【0038】
以上説明した本実施形態の自家用エネルギ生成システム10では、定置型発電装置20における燃料電池30が予め定められた目標電力を生成するよう制御するため、自家用負荷に追従するよう制御する場合に比べて定置型発電装置20の負担を軽くすることができる。また、定置型発電装置20が生成する電力が自家用負荷の消費分に対して過剰なときにはその過剰な電力を電気自動車50に搭載されたバッテリ70に供給するため、その過剰な電力を無駄にすることなく有効に利用することができる。逆に、定置型発電装置20が生成する電力が自家用負荷の消費分に対して不足しているときにはその不足分を電気自動車50に搭載されたバッテリ70で補充するため、定置型発電装置20に負担をかけることなく容易に対処することができる。
【0039】
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
【0040】
例えば、上述した実施形態を図6のように変形してもよい。即ち、上述した実施形態において、熱エネルギを電気エネルギに変換して車載発電装置60のバッテリ70へ供給可能な熱変換器46を定置型発電装置20の貯湯槽31に電磁弁45を介して接続し、電子制御ユニット40が貯湯槽31に取り付けたセンサ31aから貯留量及び湯温を検出しその検出結果に応じて電磁弁45の開閉を制御するようにしてもよい。具体的には、電子制御ユニット40は、貯留量及び湯温が共に上限に達したときに給湯器92で利用される湯量に対して貯湯槽31に貯留される湯量が過剰であると判断して、電磁弁45を開いて貯湯槽31内のお湯の熱エネルギを熱変換器46で電気エネルギに変換したあとバッテリ70を充電するように制御してもよい。こうすれば、貯湯槽31に貯留される湯量が過剰なときにはお湯が持つ熱エネルギをバッテリ70に蓄積するため、燃料電池30から回収した熱を無駄にすることなく有効に利用することができる。また、上述した実施形態と同様、定置型発電装置20における燃料電池30が予め定められた目標電力を生成するよう制御するため、自家用負荷に追従するよう制御する場合に比べて定置型発電装置20の負担を軽くすることができる。
【0041】
一方、図6において、貯湯槽31の湯温が下限を下回ったときに給湯器92で利用される湯量に対して貯湯槽31に貯留される湯量が不足していると判断して、電磁弁45を開いて車載発電装置60のバッテリ70からの電気エネルギを熱変換器46で熱エネルギに交換してお湯を生成させ、そのお湯を貯湯槽31に供給してもよい。こうすれば、貯湯槽31に貯留されている油量では給湯器92の利用量を賄いきれない場合があったとしても改質器26や燃料電池30に負担をかけることなく容易に対処することができる。
【0042】
ここで、図6の実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。図6では、例えば燃料電池30が500Wの電力を生成するよう制御されている場合、その500Wの電力に応じて熱交換器32で生成する熱量は一義的に決まるため、熱交換器32で予め定められた熱量が生成するよう制御しているともいえる。したがって、熱交換器32がエネルギ生成手段に相当し、電子制御ユニット40のCPU41がエネルギ生成制御手段及び差分エネルギ供給手段に相当し、車載発電装置60のバッテリ70がエネルギ蓄積手段に相当する。
【0043】
なお、ここでは熱変換器46を設けて熱エネルギを電気エネルギに変換してバッテリ70へ蓄積したが、その他の熱エネルギの利用形態として、電気エネルギに変換せず温水のまま電気自動車50の図示しない保温器に供給したり、逆に電気自動車50から定置型発電装置20に供給したりして、装置始動時の暖機(例えば燃料電池30,61の暖機)や電気自動車50の暖房などに利用してもよい。
【0044】
また、上述した実施形態を図7のように変形してもよい。即ち、上述した実施形態において、コネクタ39を介して定置型発電装置20と車載発電装置60とを接続する代わりに、改質器26で発生した水素リッチな燃料ガスをCO選択酸化部27を介して燃料電池30のアノード側に供給する経路の途中から車載発電装置60の水素タンク62に繋がる分岐路47を設け、その分岐路47の途中に電磁弁48を設け、電子制御ユニット40が図5の割込処理のステップS220で燃料電池30の発電電力が過剰と判断したときには電磁弁48を開いてその過剰分に応じた水素ガスを車載発電装置60の水素タンク62へ蓄積するよう制御してもよい。こうすれば、自家用負荷90の消費電力を出力するのに必要な水素量に対して改質器26が生成する水素量が過剰なときにはその過剰の水素を電気自動車50に搭載された水素タンク62に蓄積するため、生成した水素を無駄にすることなく有効に利用することができる。また、自家用負荷に追従するよう制御する場合に比べて改質器26の負担を軽くすることができる。
【0045】
一方、図7において、自家用負荷90の消費電力を出力するのに必要な水素量に対して改質器26での生成水素量が不足しているときには、車載発電装置60の水素タンク62に蓄積された水素を分岐路47を介して定置型発電装置20の燃料電池30のアノード側に供給してもよい。こうすれば、改質器26に負担をかけることなく容易に対処することができる。
【0046】
ここで、図7の実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の燃料電池30が本発明のエネルギ生成手段に相当し、電子制御ユニット40がエネルギ生成制御手段及び差分エネルギ源供給手段に相当し、電気自動車50に搭載された水素タンク62が水素蓄積手段に相当する。
【0047】
更に、上述した実施形態では、燃料電池30,61として固体高分子型の燃料電池を採用したが、例えばリン酸型などの別の型の燃料電池を採用してもよいし、燃料電池に代えて例えばマイクロガスタービンや太陽電池などの別の発電装置を採用してもよい。
【0048】
更にまた、上述した実施形態では、戸建て住宅の自家用負荷90や給湯器92に利用する自家用エネルギ生成システム10について説明したが、マンションなどの集合住宅の各戸、オフィスビルなどの各テナントあるいは事業所などの各建物に取り付けられた自家用負荷や給湯器に利用するものであってもよい。
【0049】
そしてまた、上述した実施形態では、電気自動車50として走行用モータ51のみを動力源とするものを例示したが、走行用モータ51とエンジンとを動力源とし状況に応じていずれか一方又は両方で走行可能なハイブリッド車であってもよい。あるいは、複数台の電気自動車50を定置型発電装置20と接続できるようにしてもよい。
【0050】
そして更に、上述した実施形態において、電子制御ユニット40のCPU41が車載発電装置60のバッテリ70の残留容量値を読み取り、満充電時になったときにはバッテリ70の充電を停止してもよい。
【0051】
そして更にまた、上述した実施形態では、図4に示した燃料電池運転制御では、燃料電池30の発電電力の目標値を常時一定に設定したが、目標値を時間に応じて切り替わるように設定してもよい。この場合も、負荷追従制御を行う場合に比べて負担は軽くなる。
【図面の簡単な説明】
【図1】本実施形態の自家用エネルギ生成システム10の全体構成の概略を表す説明図である。
【図2】定置型発電装置20の概略構成を表すブロック図である。
【図3】車載発電装置60の概略構成を表すブロック図である。
【図4】定置型発電装置20の電子制御ユニット40が実行する定常運転制御プログラムのフローチャートである。
【図5】定置型発電装置20の電子制御ユニット40が実行する割込処理のフローチャートである。
【図6】別の実施形態の主要な構成の概略を表す説明図である。
【図7】別の実施形態の主要な構成の概略を表す説明図である。
【符号の説明】
10…自家用エネルギ生成システム、11…走行用モータ、20…定置型発電装置、21…ガス配管、22…調節弁、23…昇圧ポンプ、24…脱硫器、25…昇圧ポンプ、26…改質器、27…CO選択酸化部、28…燃焼部、29…ブロア、30…燃料電池、31…貯湯槽、32…熱交換器、33…循環ポンプ、34…ポンプ、35…DC/DCコンバータ、36…分配器、37…インバータ、38…電力計、39…コネクタ、40…電子制御ユニット、41…CPU、42…ROM、43…RAM、44…タイマ、45…電磁弁、46…熱交換器、46…熱変換器、47…分岐路、48…電磁弁、50…電気自動車、51…走行用モータ、52…インバータ、53…デファレンシャルギヤ、54…車軸、58…電力計、60…車載発電装置、60…分配器、61…燃料電池、62…水素タンク、63…マスフロコントローラ、64…エアコンプレッサ、65…水素ガス循環ポンプ、66…ウォータポンプ、67…放熱器、70…バッテリ、72…分配器、90…自家用負荷、92…給湯器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a private energy generation system.
[0002]
[Prior art]
Conventionally, as a private energy generation system, a reformer converts city gas into hydrogen, supplies the hydrogen and oxygen in the air to a fuel cell, and reacts the two to generate electric power. 2. Description of the Related Art There is known a system in which exhaust heat obtained by cooling a fuel cell or the like is supplied to a private load while exhaust heat is recovered in water and supplied to a water heater as hot water. In such a private energy generating system, it is conceivable to perform load following control for following the amount of power generated by the fuel cell as the power consumption of the private load fluctuates.
[0003]
[Problems to be solved by the invention]
However, it is not preferable to perform the load following control because the load on the system increases. On the other hand, if the load following control is not performed, the load on the system is reduced, but the power consumption of the private load varies greatly depending on the time of day, so the generated power sometimes exceeds the power consumption and wastes power. It may be.
[0004]
The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a private energy generation system that can reduce a burden on a system without wasting surplus energy.
[0005]
In addition, for example, in Japanese Patent Application Laid-Open No. 2002-83607, the power generated by the fuel cell in the private energy generation system is set to a substantially constant low power (0.4 kW), and large power (2 kW) is used for power that cannot be covered. It has been proposed to supply power from a fuel cell of an electric vehicle that generates electric power. However, in this case, the fuel cell of the electric vehicle is increased in size, which causes a new problem that it is difficult to mount the vehicle, which is not preferable.
[0006]
[Means for Solving the Problems and Their Functions and Effects]
The first private energy generation system of the present invention comprises:
Energy generating means for generating energy to be supplied to the private load;
Energy generation control means for controlling the energy generation means to generate energy of a predetermined magnitude;
Differential energy supply means for supplying to the vehicle energy of a difference between the energy generated by the energy generation means and the consumption of the private load;
It is provided with.
[0007]
In this private energy generating system, since the energy generating means controls to generate energy of a predetermined magnitude, the load on the energy generating means can be reduced as compared with the case of controlling to follow the private load. . Further, when the energy generated by the energy generating means is excessive with respect to the consumption of the private load, the excess energy is supplied to the vehicle, so that the excess energy can be effectively used without wasting.
[0008]
In this system, when the energy generated by the energy generating means is insufficient for the consumption of the private load, the insufficient energy may be received from the vehicle. In this way, even if the energy generating means cannot cover the consumption of the private load, it can be easily dealt with without imposing a load on the energy generating means.
[0009]
In this private energy generation system, the vehicle may include an energy storage unit, and the energy supply unit may supply the energy difference to the energy storage unit of the vehicle. In this way, the vehicle can temporarily store excess energy in the energy storage means and use it when needed.
[0010]
In this private energy generation system, the energy may be any energy, but is preferably thermal energy, electric energy, or heat and electric energy.
[0011]
In this private energy generation system, the vehicle may include a motor as one of the power sources, and the energy storage unit may be a battery that supplies electric energy to the motor. Here, the "vehicle" may have, for example, only a motor as a power source, or may have both an engine and a motor as power sources.
[0012]
In this private energy generating system, the energy generating means may be a fuel cell, a micro turbine, or a solar cell. These are suitable for supplying energy to a private load.
[0013]
The second private energy generating system of the present invention comprises:
Energy generating means for generating energy to be supplied to the private load based on a predetermined energy source;
Energy generation control means for controlling the energy generation means to generate energy of a predetermined magnitude;
A differential energy source supply unit that supplies the vehicle with the energy source required to generate the difference energy between the energy generated by the energy generation unit and the consumption of the private load;
It is provided with.
[0014]
In this private energy generating system, since the energy generating means controls to generate energy of a predetermined magnitude, the load on the energy generating means can be reduced as compared with the case of controlling to follow the private load. . Further, when the energy generated by the energy generating means is excessive with respect to the consumption of the private load, the energy source necessary to generate the excessive energy is supplied to the vehicle, so that the excessive energy source is wasted. It can be used effectively without doing.
[0015]
In this system, when the energy generated by the energy generating means is insufficient for the consumption of the private load, an energy source required to generate the insufficient energy may be received from the vehicle. In this way, even if there is a case where the consumption of the private load cannot be covered, it is possible to easily cope with it without imposing a load on the energy generating means.
[0016]
In this private energy generating system, the energy generating means may be a fuel cell, a micro turbine, or a solar cell. These are suitable for supplying energy to a private load.
[0017]
In the private energy generating system, the energy generating means is a stationary fuel cell that generates energy to be supplied to a private load based on hydrogen from a reformer that generates hydrogen using a hydrocarbon-based fuel as a raw material, The energy generation control means controls an amount of hydrogen supplied from the reformer to the energy generation means so that the energy generation means generates energy of a predetermined magnitude, and the difference energy source supply means The amount of hydrogen required to generate the differential energy may be supplied to a hydrogen storage unit that can supply hydrogen to a fuel cell mounted on the vehicle. In this way, the burden on the reformer can be reduced as compared with the case of following the load, and even if excessive hydrogen is generated, it is supplied to the hydrogen storage means of the vehicle, so that it is effective when necessary in the vehicle. Can be used for
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an outline of the overall configuration of a private energy generation system 10 of the present embodiment, FIG. 2 is a block diagram showing a schematic configuration of a stationary power generation device 20, and FIG. It is a block diagram.
[0019]
As shown in FIG. 1, a private energy generating system 10 according to the present embodiment includes a stationary power generation device 20 that supplies power to a private load 90 of a detached house or supplies hot water to a water heater 92, and an electric vehicle 50. And an in-vehicle power generator 60 that transmits and receives electric power to and from the stationary power generator 20 mounted on the vehicle. Although the electric vehicle 50 is connected to the stationary power generation device 20 in a stopped state, the vehicle can run if the connection with the stationary power generation device 20 is released.
[0020]
As shown in FIG. 2, the stationary power generation device 20 includes a reformer 26 that receives a supply of city gas (13A) from the gas pipe 21 and reforms the city gas into a hydrogen-rich reformed gas. A CO selective oxidizing unit 27 for reducing carbon monoxide therein to produce a fuel gas, a fuel cell 30 that receives supply of the fuel gas and air to generate power by an electrochemical reaction, a cooling water and a hot water tank for the fuel cell 30 A heat exchanger 32 for exchanging heat with low-temperature water 31; a DC / DC converter 35 for adjusting the voltage and current of DC power from the fuel cell 30 to convert the DC power into desired DC power; Is converted into AC power to supply power to the private load 90, a power meter 38 for detecting power consumption consumed by the private load 90, and an electronic control unit 40 for controlling the entire system.
[0021]
The reformer 26 is formed by the following equation (1) based on city gas supplied from the gas pipe 21 through the control valve 22, the pressure pump 23, and the desulfurizer 24 for removing sulfur, and water vapor supplied from a pipe (not shown). And a hydrogen-rich reformed gas is generated by the steam reforming reaction and the shift reaction of the following formula (2). The reformer 26 is provided with a combustion section 28 for supplying heat required for such a reaction, and city gas is supplied to the combustion section 28 from the gas pipe 21 via the control valve 22 and the booster pump 25. It has become so. Further, the exhaust gas on the anode side of the fuel cell 30 is supplied to the combustion unit 28, so that unreacted hydrogen in the anode off-gas can be used as fuel.
[0022]
(Equation 1)
CH 4 + H 2 O → CO + 3H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)
[0023]
The CO selective oxidizing unit 27 receives a supply of air through a pipe (not shown) and selectively converts and oxidizes carbon monoxide in the presence of hydrogen. The carbon monoxide in the raw gas is selectively oxidized to obtain a hydrogen-rich fuel gas having an extremely low carbon monoxide concentration (about several ppm in the embodiment).
[0024]
The fuel cell 30 is formed by stacking a plurality of single cells each including an electrolyte membrane, an anode and a cathode sandwiching the electrolyte membrane, and a separator serving as a partition between cells while supplying fuel gas and air to the anode and the cathode. The fuel cell is constructed as a solid polymer fuel cell, and generates power by an electrochemical reaction between hydrogen in the fuel gas from the CO selective oxidizing unit 27 and oxygen in the air from the blower 29. The fuel cell 30 is provided with a circulating cooling water channel, and is maintained at an appropriate temperature (about 80 to 90 ° C.) by circulating the cooling water. A heat exchanger 32 is provided in the circulation path of the cooling water, and the low-temperature water supplied from the hot water storage tank 31 by the pump 34 is heated by heat exchange with the cooling water of the fuel cell 30 to heat the hot water storage tank. The hot water is stored at 31. That is, the hot water storage tank 31 stores hot water as a heat exchange medium that has recovered the exhaust heat of the fuel cell 30. The hot water stored in the hot water storage tank 31 is supplied to a water heater 92 and discharged from a faucet of a detached house at an appropriate time.
[0025]
An output terminal (not shown) of the fuel cell 30 is connected to a private load 90 via a DC / DC converter 35, a distributor 36, and an inverter 52. The electric power is converted into electric power and supplied to the private load 90, or supplied as DC power to the battery 70 of the vehicle-mounted power generator 60. Here, the battery 70 of the on-vehicle power generator 60 is detachably connected to the stationary power generator 20 by a connector 39. Further, the DC power from the battery 70 of the vehicle-mounted power generator 60 is converted into AC power by the inverter 52 after passing through the distributor 36 and supplied to the private load 90. Since the DC / DC converter 35 and the inverter 37 are configured as general DC / DC converter circuits and inverter circuits, and the distributor 36 is also configured as a general switching circuit, detailed description thereof is omitted.
[0026]
The electronic control unit 40 is configured as a microprocessor mainly including a CPU 41, and includes a ROM 42 for storing various control programs, a RAM 43 for temporarily storing data, and an input / output port and a communication port (not shown). I have. The electronic control unit 40 includes an output current and an output voltage from a current sensor and a voltage sensor (not shown) in the inverter 37, power consumption Po from a wattmeter 38, a reformer 26, a CO selective oxidizing unit 27, and a fuel cell 30. Each temperature from an attached temperature sensor (not shown) is input via an input port. Also, from the electronic control unit 40, drive signals to the actuators of the control valve 22, the booster pumps 23 and 25, the blower 29, the circulation pump 33 and the pump 34, the ignition signals to the combustion unit 28, the DC / DC converter 35, A control signal to the distributor 36, a switching control signal to the inverter 37, and the like are output via the output port.
[0027]
As shown in FIG. 3, the electric vehicle 50 includes a traveling motor 51 as a driving source of the wheels W, and an on-vehicle power generation device 60 that supplies power to the traveling motor 51 and charges the battery 70. ing.
[0028]
The traveling motor 51 is a three-phase synchronous motor. As shown in FIG. 3, after a DC current output from the fuel cell 61 or the battery 70 is converted into a three-phase AC through the distributor 72 and the inverter 52. Supplied. The traveling motor 11 receives the supply of the electric power and generates a rotational driving force. This rotational driving force is transmitted to the axle 54 of the wheel W via the differential gear 53 and serves as power for driving the electric vehicle 50.
[0029]
The on-vehicle power generator 60 includes a solid polymer electrolyte type fuel cell 61 similar to the fuel cell 30 described above, a battery 70 in which a plurality of known secondary batteries are connected in series, and a distributor 72 for distributing power. And a power control unit (PCU) 74 for performing various controls.
[0030]
Like the fuel cell 30, the fuel cell 61 has a stack structure in which a plurality of unit cells serving as constituent units are stacked. As shown in FIG. 3, in each single cell constituting the fuel cell 61, a hydrogen gas (fuel gas) is supplied from the hydrogen tank 62 to the anode after the pressure and the flow rate are adjusted by the mass flow controller 63 and then humidified. Compressed air (oxidizing gas) whose pressure is adjusted is supplied from the air compressor 64 to the cathode, and a predetermined electrochemical reaction proceeds to generate power. The generated power is supplied to the distributor 72. Around the fuel cell 61, a hydrogen gas circulation pump 65 for supplying the hydrogen gas discharged unreacted from the fuel cell 61 to the fuel cell 61 again and a fuel cell 61 for cooling the fuel cell 61 are provided. A water pump 66 for circulating the cooling water, a radiator 67 for radiating the cooling water circulated by the water pump 66, and the like are provided.
[0031]
Under the control of the PCU 74, the battery 70 drives the traveling motor 51 when the vehicle starts, recovers regenerative power during deceleration regeneration, assists the traveling motor 51 during acceleration, and controls the fuel cell 61 according to the load. Or be charged by. The battery 70 is detachably connected to the distributor 39 of the stationary power generation device 20 via the connector 39. The battery 70 may be any battery that can be charged and discharged, and is not limited to a nickel hydride secondary battery, and may be, for example, a nickel cadmium secondary battery, a lithium hydrogen secondary battery, a lead storage battery, or the like.
[0032]
The distributor 72 is a switching circuit for supplying electric power to the traveling motor 51 with one or both of the fuel cell 61 and the battery 70 and charging the battery 70 with the fuel cell 61.
[0033]
The PCU 74 controls the driving force of the traveling motor 51, and is configured as a logic circuit centered on a microcomputer, and includes a well-known CPU (not shown), a ROM, a RAM, and input / output ports. The PCU 74 inputs the pedal position of the accelerator pedal sensor, the output current / output voltage of the inverter 52, the remaining capacity value of the battery 70, and the detection values of various sensors (not shown), and based on the input values, the mass flow controller 63 And a control signal for controlling the supply gas amount to the air compressor 64 and a control signal to the inverter 52 and the distributor 72.
[0034]
Next, the operation of the private energy generating system 10 thus configured will be described. The electronic control unit 40 of the stationary power generation device 20 in the private energy generation system 10 executes a steady operation control as a main control. That is, when the main switch (not shown) of the system is turned on, the CPU 41 of the electronic control unit 40 reads out the steady operation control program shown in FIG. First, the CPU 41 executes various initial settings (step S110). In the various initial settings, a process of referring to a predetermined power consumption pattern of the day and setting a target value (constant value) of the power generated by the fuel cell 30 based on the peak value of the power consumption pattern. And a process of interrupting the transfer of power between the distributor 36 and the battery 70 of the on-vehicle power generator 60. After performing the various initial settings, the steady operation is started (step S120). Specifically, the amount of hydrogen gas supplied from the reformer 26 to the fuel cell 30 is controlled by the amount of city gas supplied to the reformer 26 such that the power generated from the fuel cell 30 becomes the target value. Thereafter, it is determined whether or not a command to stop operation has been issued, that is, whether or not a main switch (not shown) of the system has been turned off from on (step S130). If the main switch remains on, the process returns to step S120 again. To continue steady operation. On the other hand, when the main switch is turned off from on, the operation of the fuel cell 30 is stopped (step S140), and this program ends.
[0035]
Next, a surplus power handling process as an interrupt process started at a predetermined interrupt timing (for example, a timing every several msec) separately from the main control will be described. When the interrupt process is started, the CPU 41 of the electronic control unit 40 first determines whether or not the vehicle-mounted power generator 60 is connected via the connector 39 (step S200). This program is terminated, and when connected, the current power consumption Po from the wattmeter 38 is read (step S210). Subsequently, it is determined whether the power generated by the fuel cell 30 is excessive or insufficient with respect to the power consumption Po (step S220). If the power generated by the fuel cell 30 is excessive with respect to the power consumption Po, the distributor 36 is controlled. Then, the excess is stored in the battery 70 of the on-vehicle power generating device 60 from the distributor 36, that is, the battery 70 is charged (step S230), and the program ends. When the power generated by the fuel cell 30 is insufficient with respect to the power consumption Po in step S220, the distributor 36 is controlled, and the shortage is transferred from the battery 70 of the on-vehicle power generator 60 to the private power generator via the distributor 36. The program is supplied to the load 90 (step S240), and the program ends. Note that the electronic control unit 40 is electrically connected via the connector 39 so that the state of charge of the battery 70 can be checked or charged. If no excess or shortage does not occur in step S220, this program is terminated.
[0036]
In the surplus power handling process described above, for example, if the fuel cell 30 is controlled to generate 500 W of power, and the power consumption of the private load 90 is 400 W, a difference of 100 W is stored in the battery 70 of the on-vehicle power generator 60. Stored. Conversely, if the consumption of the private load 90 is 600 W, the difference of -100 W is supplied to the vehicle, that is, 100 W is supplied from the vehicle.
[0037]
Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The fuel cell 30 of the stationary power generation device 20 of this embodiment corresponds to the energy generation means of the present invention, the CPU 41 of the electronic control unit 40 corresponds to the energy generation control means and the differential energy supply means, 70 corresponds to energy storage means.
[0038]
In the private energy generation system 10 of the present embodiment described above, the fuel cell 30 in the stationary power generation device 20 controls to generate a predetermined target power, so that the fuel cell 30 in the stationary power generation device 20 controls to follow a private load. The burden on the stationary power generation device 20 can be reduced. When the electric power generated by the stationary power generation device 20 is excessive with respect to the consumption of the private load, the excessive electric power is supplied to the battery 70 mounted on the electric vehicle 50, so that the excessive electric power is wasted. It can be used effectively without. Conversely, when the power generated by the stationary power generation device 20 is insufficient for the consumption of the private load, the shortage is supplemented by the battery 70 mounted on the electric vehicle 50. It can be dealt with easily without burden.
[0039]
It should be noted that the present invention is not limited to the above-described embodiment at all, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
[0040]
For example, the above embodiment may be modified as shown in FIG. That is, in the above-described embodiment, the heat converter 46 capable of converting heat energy into electric energy and supplying the electric energy to the battery 70 of the vehicle-mounted power generator 60 is connected to the hot water tank 31 of the stationary power generator 20 via the electromagnetic valve 45. Then, the electronic control unit 40 may detect the storage amount and the hot water temperature from the sensor 31a attached to the hot water storage tank 31, and control the opening and closing of the solenoid valve 45 according to the detection result. Specifically, electronic control unit 40 determines that the amount of hot water stored in hot water storage tank 31 is excessive with respect to the amount of hot water used in hot water supply device 92 when both the amount of storage and the temperature of hot water have reached the upper limits. Then, control may be performed such that the electromagnetic valve 45 is opened and the thermal energy of the hot water in the hot water storage tank 31 is converted into electric energy by the heat converter 46, and then the battery 70 is charged. In this way, when the amount of hot water stored in hot water storage tank 31 is excessive, the thermal energy of the hot water is accumulated in battery 70, so that the heat recovered from fuel cell 30 can be used effectively without waste. Further, as in the above-described embodiment, the control is performed so that the fuel cell 30 in the stationary power generation device 20 generates a predetermined target power. Can be lightened.
[0041]
On the other hand, in FIG. 6, when the temperature of hot water in the hot water storage tank 31 falls below the lower limit, it is determined that the amount of hot water stored in the hot water storage tank 31 is insufficient with respect to the amount of hot water used in the water heater 92, and the electromagnetic valve By opening 45, electric energy from the battery 70 of the on-vehicle power generator 60 may be exchanged for heat energy by the heat converter 46 to generate hot water, and the hot water may be supplied to the hot water storage tank 31. In this way, even if the amount of oil stored in the hot water tank 31 may not be able to cover the usage of the water heater 92, it is possible to easily deal with the problem without imposing a load on the reformer 26 or the fuel cell 30. Can be.
[0042]
Here, the correspondence between the components of the embodiment of FIG. 6 and the components of the present invention will be clarified. In FIG. 6, for example, when the fuel cell 30 is controlled to generate 500 W of power, the amount of heat generated by the heat exchanger 32 is uniquely determined according to the 500 W of power. It can also be said that control is performed so that a predetermined amount of heat is generated. Therefore, the heat exchanger 32 corresponds to an energy generation unit, the CPU 41 of the electronic control unit 40 corresponds to an energy generation control unit and a differential energy supply unit, and the battery 70 of the vehicle-mounted power generator 60 corresponds to an energy storage unit.
[0043]
Here, the heat converter 46 is provided to convert the heat energy into electric energy and store it in the battery 70. However, as another utilization form of the heat energy, the electric vehicle 50 is not converted into electric energy but is kept in hot water. For example, warming the electric vehicle 50 (for example, warming up the fuel cells 30 and 61), heating the electric vehicle 50, and the like, by supplying the electric power to the insulated warmer, or conversely, from the electric vehicle 50 to the stationary power generation device 20. It may be used for.
[0044]
Further, the above-described embodiment may be modified as shown in FIG. That is, in the above-described embodiment, instead of connecting the stationary power generation device 20 and the on-vehicle power generation device 60 via the connector 39, the hydrogen-rich fuel gas generated in the reformer 26 is supplied via the CO selective oxidation unit 27. A branch 47 connecting to the hydrogen tank 62 of the on-vehicle power generator 60 is provided in the middle of a path to be supplied to the anode side of the fuel cell 30, and an electromagnetic valve 48 is provided in the middle of the branch 47. When it is determined in step S220 of the interruption process that the power generated by the fuel cell 30 is excessive, the solenoid valve 48 is opened to control the hydrogen gas corresponding to the excess to be stored in the hydrogen tank 62 of the vehicle-mounted power generator 60. Is also good. In this way, when the amount of hydrogen generated by the reformer 26 is excessive with respect to the amount of hydrogen necessary to output the power consumption of the private load 90, the excess hydrogen is supplied to the hydrogen tank 62 mounted on the electric vehicle 50. Therefore, the generated hydrogen can be effectively used without wasting. Further, the burden on the reformer 26 can be reduced as compared with the case where control is performed so as to follow the private load.
[0045]
On the other hand, in FIG. 7, when the amount of hydrogen generated in the reformer 26 is insufficient for the amount of hydrogen required to output the power consumption of the private load 90, the amount of hydrogen stored in the hydrogen tank 62 of the on-vehicle power generator 60 is reduced. The supplied hydrogen may be supplied to the anode side of the fuel cell 30 of the stationary power generation device 20 via the branch path 47. In this case, it is possible to easily cope without imposing a burden on the reformer 26.
[0046]
Here, the correspondence between the components of the embodiment of FIG. 7 and the components of the present invention will be clarified. The fuel cell 30 of the present embodiment corresponds to the energy generation means of the present invention, the electronic control unit 40 corresponds to the energy generation control means and the differential energy source supply means, and the hydrogen tank 62 mounted on the electric vehicle 50 stores hydrogen. It corresponds to a means.
[0047]
Further, in the above-described embodiment, a polymer electrolyte fuel cell is employed as the fuel cells 30 and 61. However, another type of fuel cell such as a phosphoric acid type may be employed, or a fuel cell may be used instead. For example, another power generation device such as a micro gas turbine or a solar cell may be employed.
[0048]
Furthermore, in the above-described embodiment, the private energy generation system 10 used for the private load 90 and the water heater 92 of the detached house has been described. However, each house of an apartment house such as a condominium, each tenant such as an office building or an office, etc. It may be used for a private load or a water heater attached to each building.
[0049]
Further, in the above-described embodiment, an example in which the electric vehicle 50 uses only the driving motor 51 as a power source has been described. The vehicle may be a hybrid vehicle that can travel. Alternatively, a plurality of electric vehicles 50 may be connected to the stationary power generation device 20.
[0050]
Further, in the above-described embodiment, the CPU 41 of the electronic control unit 40 may read the remaining capacity value of the battery 70 of the on-vehicle power generating device 60 and stop charging the battery 70 when the battery 70 is fully charged.
[0051]
Furthermore, in the above-described embodiment, in the fuel cell operation control shown in FIG. 4, the target value of the power generated by the fuel cell 30 is always set to a constant value, but the target value is set so as to change over time. You may. Also in this case, the burden is reduced as compared with the case where the load following control is performed.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating an outline of an overall configuration of a private energy generating system 10 according to an embodiment.
FIG. 2 is a block diagram illustrating a schematic configuration of a stationary power generation device 20.
FIG. 3 is a block diagram illustrating a schematic configuration of a vehicle-mounted power generator 60.
FIG. 4 is a flowchart of a steady operation control program executed by the electronic control unit 40 of the stationary power generation device 20.
FIG. 5 is a flowchart of an interruption process executed by the electronic control unit 40 of the stationary power generation device 20.
FIG. 6 is an explanatory diagram illustrating an outline of a main configuration of another embodiment.
FIG. 7 is an explanatory diagram illustrating an outline of a main configuration of another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Private energy generation system, 11 ... Running motor, 20 ... Stationary power generator, 21 ... Gas piping, 22 ... Regulator valve, 23 ... Boost pump, 24 ... Desulfurizer, 25 ... Booster pump, 26 ... Reformer , 27: CO selective oxidation unit, 28: combustion unit, 29: blower, 30: fuel cell, 31: hot water tank, 32: heat exchanger, 33: circulation pump, 34: pump, 35: DC / DC converter, 36 ... Distributor, 37 ... Inverter, 38 ... Power meter, 39 ... Connector, 40 ... Electronic control unit, 41 ... CPU, 42 ... ROM, 43 ... RAM, 44 ... Timer, 45 ... Solenoid valve, 46 ... Heat exchanger, 46: heat converter, 47: branch road, 48: solenoid valve, 50: electric vehicle, 51: running motor, 52: inverter, 53: differential gear, 54: axle, 58: power meter, 60: onboard power generation 60, distributor, 61, fuel cell, 62, hydrogen tank, 63, mass flow controller, 64, air compressor, 65, hydrogen gas circulation pump, 66, water pump, 67, radiator, 70, battery, 72 ... a distributor, 90 ... a private load, 92 ... a water heater.

Claims (7)

自家用負荷に供給するエネルギを生成するエネルギ生成手段と、
前記エネルギ生成手段が予め定められた大きさのエネルギを生成するよう制御するエネルギ生成制御手段と、
前記エネルギ生成手段が生成するエネルギと前記自家用負荷の消費分との差分のエネルギを車両に供給する差分エネルギ供給手段と
を備えた自家用エネルギ生成システム。
Energy generating means for generating energy to be supplied to the private load;
Energy generation control means for controlling the energy generation means to generate energy of a predetermined magnitude;
A private energy generation system comprising: a difference energy supply unit configured to supply a vehicle with a difference in energy between the energy generated by the energy generation unit and the consumption of the private load.
前記車両は、エネルギ蓄積手段を備えており、
前記エネルギ供給手段は、前記車両のエネルギ蓄積手段に前記差分のエネルギを供給する
請求項1に記載の自家用エネルギ生成システム。
The vehicle includes energy storage means,
The private energy generation system according to claim 1, wherein the energy supply unit supplies the difference energy to an energy storage unit of the vehicle.
前記エネルギは、熱エネルギ、電気エネルギ、又は熱及び電気エネルギである
請求項1又は2に記載の自家用エネルギ生成システム。
The private energy generation system according to claim 1, wherein the energy is heat energy, electric energy, or heat and electric energy.
前記車両は、動力源の一つとしてモータを有するものであり、前記エネルギ蓄積手段は、前記モータに電気エネルギを供給するバッテリである
請求項1〜3のいずれかに記載の自家用エネルギ生成システム。
The private energy generating system according to claim 1, wherein the vehicle has a motor as one of power sources, and the energy storage unit is a battery that supplies electric energy to the motor.
所定のエネルギ源を基にして自家用負荷に供給するエネルギを生成するエネルギ生成手段と、
前記エネルギ生成手段が予め定められた大きさのエネルギを生成するよう制御するエネルギ生成制御手段と、
前記エネルギ生成手段が生成するエネルギと前記自家用負荷の消費分との差分のエネルギを生成するのに必要となる前記エネルギ源を車両に供給する差分エネルギ源供給手段と
を備えた自家用エネルギ生成システム。
Energy generating means for generating energy to be supplied to the private load based on a predetermined energy source;
Energy generation control means for controlling the energy generation means to generate energy of a predetermined magnitude;
A private energy generation system comprising: a difference energy source supply unit that supplies a vehicle with the energy source required to generate energy of a difference between the energy generated by the energy generation unit and the consumption of the private load.
前記エネルギ生成手段は、燃料電池、マイクロタービン又は太陽電池である
請求項1〜5のいずれかに記載の自家用エネルギ生成システム。
The private energy generation system according to claim 1, wherein the energy generation unit is a fuel cell, a micro turbine, or a solar cell.
前記エネルギ生成手段は、炭化水素系燃料を原料として水素を生成する改質器からの水素を基にして自家用負荷に供給するエネルギを生成する定置型燃料電池であり、
前記エネルギ生成制御手段は、前記エネルギ生成手段が予め定められた大きさのエネルギを生成するよう前記改質器から前記定置型燃料電池に供給される水素量を制御し、
前記差分エネルギ源供給手段は、前記差分エネルギを生成するのに必要となる水素量を、前記車両に搭載された燃料電池へ水素を供給可能な水素蓄積手段に供給する
請求項5に記載の自家用エネルギ生成システム。
The energy generating means is a stationary fuel cell that generates energy to be supplied to a private load based on hydrogen from a reformer that generates hydrogen using a hydrocarbon-based fuel as a raw material,
The energy generation control means controls the amount of hydrogen supplied from the reformer to the stationary fuel cell so that the energy generation means generates energy of a predetermined magnitude,
6. The private use according to claim 5, wherein the differential energy source supply means supplies the amount of hydrogen necessary to generate the differential energy to a hydrogen storage means capable of supplying hydrogen to a fuel cell mounted on the vehicle. Energy generation system.
JP2002202427A 2002-07-11 2002-07-11 Private energy generating system Pending JP2004048895A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002202427A JP2004048895A (en) 2002-07-11 2002-07-11 Private energy generating system
JP2007175740A JP2007312597A (en) 2002-07-11 2007-07-04 Energy generating system for home consumption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202427A JP2004048895A (en) 2002-07-11 2002-07-11 Private energy generating system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007175740A Division JP2007312597A (en) 2002-07-11 2007-07-04 Energy generating system for home consumption

Publications (1)

Publication Number Publication Date
JP2004048895A true JP2004048895A (en) 2004-02-12

Family

ID=31708613

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002202427A Pending JP2004048895A (en) 2002-07-11 2002-07-11 Private energy generating system
JP2007175740A Pending JP2007312597A (en) 2002-07-11 2007-07-04 Energy generating system for home consumption

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007175740A Pending JP2007312597A (en) 2002-07-11 2007-07-04 Energy generating system for home consumption

Country Status (1)

Country Link
JP (2) JP2004048895A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187385A (en) * 2002-12-02 2004-07-02 Sumitomo Electric Ind Ltd Distributed power supply system
JP2005293959A (en) * 2004-03-31 2005-10-20 Honda Motor Co Ltd Hydrogen gas manufacturing power generation system and its operation method
JP2005347209A (en) * 2004-06-07 2005-12-15 Osaka Gas Co Ltd Water utilization system, stationary fuel cell equipment, and fuel cell-mounted vehicle
JP2006158148A (en) * 2004-12-01 2006-06-15 Osaka Gas Co Ltd Power consumption installation and cogeneration system
JP2007330083A (en) * 2006-06-09 2007-12-20 Chugoku Electric Power Co Inc:The Electric power supply system
JP2008098098A (en) * 2006-10-16 2008-04-24 Toyota Motor Corp Power supply device and vehicle
JP2008154344A (en) * 2006-12-15 2008-07-03 Fuji Xerox Co Ltd Power feeding system, terminal device, and program
JP2009045959A (en) * 2007-08-13 2009-03-05 Toyota Motor Corp Vehicle and heat exchange system
JP2009068475A (en) * 2007-09-18 2009-04-02 Calsonic Kansei Corp Warming-up system of on-vehicle power train
US7839020B2 (en) 2005-04-22 2010-11-23 Toyota Jidosha Kabushiki Kaisha Electric power supply system
JP2010268576A (en) * 2009-05-13 2010-11-25 Toyota Motor Corp Power supply distribution control apparatus
JP2010539866A (en) * 2007-09-05 2010-12-16 コンソリデイティッド エジソン カンパニー オブ ニューヨーク インコーポレイテッド Hybrid vehicle recharging system and operation method
JP2011517261A (en) * 2008-02-19 2011-05-26 ブルーム エナジー コーポレーション Fuel cell system for charging electric vehicles
JP2011171010A (en) * 2010-02-16 2011-09-01 Toyota Motor Corp Fuel battery system and method for controlling fuel battery
JP2012253976A (en) * 2011-06-06 2012-12-20 Shimizu Corp Charge/discharge controller, and charge/discharge control method and program
WO2013175772A1 (en) 2012-05-25 2013-11-28 パナソニック株式会社 In-vehicle power supply device and photovoltaic power generation device
WO2015001777A1 (en) * 2013-07-03 2015-01-08 パナソニックIpマネジメント株式会社 Fuel cell system
JP2015122226A (en) * 2013-12-24 2015-07-02 株式会社ノーリツ Fuel cell power generation system
JP5796189B2 (en) * 2010-03-24 2015-10-21 パナソニックIpマネジメント株式会社 Power supply system
JP2016086477A (en) * 2014-10-23 2016-05-19 本田技研工業株式会社 Power supply system
JP2017118786A (en) * 2015-12-25 2017-06-29 トヨタホーム株式会社 Power supply system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5149753B2 (en) * 2008-09-24 2013-02-20 パナソニック株式会社 Mobile power billing system
JP5430994B2 (en) * 2009-03-27 2014-03-05 株式会社日本総合研究所 Charge / discharge control device and charge / discharge control method
EP2487769B1 (en) 2009-10-05 2015-11-25 Toyota Jidosha Kabushiki Kaisha Specification selection device of power storage system and specification selection method of power storage system
CN102666161B (en) * 2009-12-25 2015-01-14 三菱化学株式会社 Air-conditioning control device for truck vehicle and truck vehicle
EP2521238B1 (en) 2009-12-28 2014-11-12 Toyota Jidosha Kabushiki Kaisha Household electricity storage system
WO2011080813A1 (en) 2009-12-28 2011-07-07 トヨタ自動車株式会社 Household electricity storage system
EP2557746B1 (en) 2010-04-09 2020-05-06 Toyota Jidosha Kabushiki Kaisha Communication device, communication system, and vehicle
US8768533B2 (en) * 2010-04-09 2014-07-01 Toyota Jidosha Kabushiki Kaisha Vehicle, communication system, and communication device
TWI563771B (en) 2010-11-15 2016-12-21 Bloom Energy Corp Fuel cell system, method of providing electrical power to a load and method of charging electric vehicles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183943A (en) * 1984-03-01 1985-09-19 三洋電機株式会社 Battery power supplying device
JPS6121516A (en) * 1984-07-09 1986-01-30 Hitachi Ltd Fuel battery power generating system
JPS6380730A (en) * 1986-09-25 1988-04-11 富士電機株式会社 Load feeding system with fuel cell
JPH0272559A (en) * 1988-09-07 1990-03-12 Hitachi Ltd Distributed power source system
JPH11178234A (en) * 1997-12-10 1999-07-02 Nissan Motor Co Ltd Household power supply system using electric vehicle
JP2000224770A (en) * 1999-02-03 2000-08-11 Misawa Homes Co Ltd Building
JP2001231176A (en) * 2000-02-18 2001-08-24 Toshiba Corp Fuel cell power supply
JP2002095167A (en) * 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd Surplus power storing supplying apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302401A (en) * 1999-04-13 2000-10-31 Honda Motor Co Ltd System for feeding hydrogen to equipment using hydrogen as fuel
JP4229525B2 (en) * 1999-06-11 2009-02-25 日本重化学工業株式会社 Hydrogen supply system for equipment using hydrogen as fuel
JP2002008673A (en) * 2000-06-21 2002-01-11 Nippon Telegr & Teleph Corp <Ntt> Power generating system using fuel cell electric vehicle, and its controlling method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183943A (en) * 1984-03-01 1985-09-19 三洋電機株式会社 Battery power supplying device
JPS6121516A (en) * 1984-07-09 1986-01-30 Hitachi Ltd Fuel battery power generating system
JPS6380730A (en) * 1986-09-25 1988-04-11 富士電機株式会社 Load feeding system with fuel cell
JPH0272559A (en) * 1988-09-07 1990-03-12 Hitachi Ltd Distributed power source system
JPH11178234A (en) * 1997-12-10 1999-07-02 Nissan Motor Co Ltd Household power supply system using electric vehicle
JP2000224770A (en) * 1999-02-03 2000-08-11 Misawa Homes Co Ltd Building
JP2001231176A (en) * 2000-02-18 2001-08-24 Toshiba Corp Fuel cell power supply
JP2002095167A (en) * 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd Surplus power storing supplying apparatus

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187385A (en) * 2002-12-02 2004-07-02 Sumitomo Electric Ind Ltd Distributed power supply system
JP4523313B2 (en) * 2004-03-31 2010-08-11 本田技研工業株式会社 Hydrogen gas production power generation system and operation method thereof
JP2005293959A (en) * 2004-03-31 2005-10-20 Honda Motor Co Ltd Hydrogen gas manufacturing power generation system and its operation method
JP2005347209A (en) * 2004-06-07 2005-12-15 Osaka Gas Co Ltd Water utilization system, stationary fuel cell equipment, and fuel cell-mounted vehicle
JP2006158148A (en) * 2004-12-01 2006-06-15 Osaka Gas Co Ltd Power consumption installation and cogeneration system
JP4628074B2 (en) * 2004-12-01 2011-02-09 大阪瓦斯株式会社 Electricity consumption equipment and cogeneration system
US7839020B2 (en) 2005-04-22 2010-11-23 Toyota Jidosha Kabushiki Kaisha Electric power supply system
JP2007330083A (en) * 2006-06-09 2007-12-20 Chugoku Electric Power Co Inc:The Electric power supply system
JP2008098098A (en) * 2006-10-16 2008-04-24 Toyota Motor Corp Power supply device and vehicle
WO2008047615A1 (en) * 2006-10-16 2008-04-24 Toyota Jidosha Kabushiki Kaisha Power supply device and vehicle
JP2008154344A (en) * 2006-12-15 2008-07-03 Fuji Xerox Co Ltd Power feeding system, terminal device, and program
US8041966B2 (en) 2006-12-15 2011-10-18 Fuji Xerox Co., Ltd. Electric power supply system, terminal, electric power supply method and computer readable medium
JP2009045959A (en) * 2007-08-13 2009-03-05 Toyota Motor Corp Vehicle and heat exchange system
JP2010539866A (en) * 2007-09-05 2010-12-16 コンソリデイティッド エジソン カンパニー オブ ニューヨーク インコーポレイテッド Hybrid vehicle recharging system and operation method
JP2009068475A (en) * 2007-09-18 2009-04-02 Calsonic Kansei Corp Warming-up system of on-vehicle power train
US8624549B2 (en) 2008-02-19 2014-01-07 Bloom Energy Corporation Fuel cell system for charging an electric vehicle
JP2011517261A (en) * 2008-02-19 2011-05-26 ブルーム エナジー コーポレーション Fuel cell system for charging electric vehicles
US9597966B2 (en) 2008-02-19 2017-03-21 Bloom Energy Corporation Fuel cell system for charging an electric vehicle
JP2010268576A (en) * 2009-05-13 2010-11-25 Toyota Motor Corp Power supply distribution control apparatus
JP2011171010A (en) * 2010-02-16 2011-09-01 Toyota Motor Corp Fuel battery system and method for controlling fuel battery
JP5796189B2 (en) * 2010-03-24 2015-10-21 パナソニックIpマネジメント株式会社 Power supply system
JP2012253976A (en) * 2011-06-06 2012-12-20 Shimizu Corp Charge/discharge controller, and charge/discharge control method and program
WO2013175772A1 (en) 2012-05-25 2013-11-28 パナソニック株式会社 In-vehicle power supply device and photovoltaic power generation device
US9834102B2 (en) 2012-05-25 2017-12-05 Panasonic Intellectual Property Management Co., Ltd. In-vehicle power supply device
WO2015001777A1 (en) * 2013-07-03 2015-01-08 パナソニックIpマネジメント株式会社 Fuel cell system
JP2015122226A (en) * 2013-12-24 2015-07-02 株式会社ノーリツ Fuel cell power generation system
JP2016086477A (en) * 2014-10-23 2016-05-19 本田技研工業株式会社 Power supply system
JP2017118786A (en) * 2015-12-25 2017-06-29 トヨタホーム株式会社 Power supply system

Also Published As

Publication number Publication date
JP2007312597A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP2004048895A (en) Private energy generating system
US6920948B2 (en) DC power supply using fuel cell
US7583050B2 (en) DC power source with fuel cell and electric power storage device
US6158537A (en) Power supply system, electric vehicle with power supply system mounted thereon, and method of charging storage battery included in power supply system
JP3928154B2 (en) Fuel cell power supply
JP4386314B2 (en) Electric vehicle power control method
KR20090095082A (en) Hybrid Fuel Cell Vehicle with multi-power source and multi-drive system
CN105609836A (en) Fuel cell system and operation control method of the same
CN111933973B (en) Mixed energy management system of proton exchange membrane fuel cell
JP2001307758A (en) Fuel cell system and electric vehicle
CN101326666B (en) Fuel battery system and mobile object
JP2018133147A (en) Fuel cell system
Corbo et al. PEFC stacks as power sources for hybrid propulsion systems
JP5558909B2 (en) Power supply system
CN102460800B (en) Fuel cell system
JP2008034309A (en) Fuel battery system
JP4114525B2 (en) FUEL CELL SYSTEM, VEHICLE HAVING THE SAME, AND METHOD FOR CONTROLLING FUEL CELL SYSTEM
JP4882724B2 (en) Moving body
JP2001085040A (en) Fuel cell power supply system and its operating method
JP2009059610A (en) Fuel cell system, and electric vehicle
JP4438231B2 (en) FUEL CELL DEVICE AND CONTROL METHOD FOR FUEL CELL DEVICE
JP2009026563A (en) Control device and control method
JP2009151998A (en) Fuel cell system
JP4267759B2 (en) Method for treating surplus hydrogen in reformed fuel cell power supply system
JP4596657B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070718

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070907