JP2004010385A - Press-forming apparatus and press-forming method - Google Patents

Press-forming apparatus and press-forming method Download PDF

Info

Publication number
JP2004010385A
JP2004010385A JP2002163422A JP2002163422A JP2004010385A JP 2004010385 A JP2004010385 A JP 2004010385A JP 2002163422 A JP2002163422 A JP 2002163422A JP 2002163422 A JP2002163422 A JP 2002163422A JP 2004010385 A JP2004010385 A JP 2004010385A
Authority
JP
Japan
Prior art keywords
mold
induction coil
fixed
press
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002163422A
Other languages
Japanese (ja)
Inventor
Kengo Kainuma
貝沼 研吾
Koichi Okamoto
岡本 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002163422A priority Critical patent/JP2004010385A/en
Publication of JP2004010385A publication Critical patent/JP2004010385A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0811Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0811Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction
    • B29C2035/0816Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction using eddy currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • B29C2043/522Heating or cooling selectively heating a part of the mould to achieve partial heating, differential heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5816Measuring, controlling or regulating temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/44Flat, parallel-faced disc or plate products

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Press Drives And Press Lines (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely control the temperature of molds; and to realize inexpensive and highly precise press-forming. <P>SOLUTION: A press-forming apparatus 1 produces a desired formed article by heating or pressurizing a raw material G arranged between an fixed upper mold 11 and a movable lower mold 12. The press-forming apparatus 1 is equipped with an induction coil 20 with a tap 20t, which coil is fixed at the periphery of the upper mold 11 and the lower mold 12, and a high-frequency electric power source 21 for supplying high-frequency current to the induction coil 20. It is possible to change the number of windings of the induction coil 20, effective for forming magnetic field at the periphery of the upper mold 11 and the lower mold 12, and to change the position of the magnetic field formed by the induction coil 20 by switching the tap of the induction coil 20 by operating a tap exchanger 22. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、プレス成形装置およびプレス成形方法に関し、特に、磁気ディスク等に適用されるガラス基板等を成形するのに好適なプレス成形装置およびプレス成形方法に関する。
【0002】
【従来の技術】
従来から、ガラスやプラスチック等の原材料からなる基板を備えた磁気ディスクが幅広く用いられている。このような磁気ディスク用の基板は、極めて平滑な表面を有していることが求められることから、当初、ガラス材等を所定のサイズに切り抜くと共に、その表面を平滑に研磨することにより製造されていた。しかしながら、このようにディスク用の基板を1枚ずつ作製する手法は、多数の工程と手間を要するものであり、基板の製造コストを低減させる上で大きな問題を有していた。このため、近年では、基板の作製に際して、金型内でガラス等の原材料を加熱、加圧等することにより、その原材料に所望の形状を高精度に転写するプレス成形法が採用されるようになってきている。
【0003】
かかるプレス成形法は、一般に次のような手順に従って行われる。まず、上下の型間(固定型と可動型との間)に原材料となるガラス材等を配置し、金型等の周辺を真空または不活性ガス雰囲気とする。更に、所定の熱源により、金型と原材料とを加熱し、金型および原材料が所定温度に達したならば、金型間で原材料を加圧する。そして、加圧完了後、成形品は、冷却され、金型から取り出される。このようなプレス成形法によれば、成形品に対する後処理が不要となり、高品質な基板を安価に大量生産することが可能となる。
【0004】
ここで、ディスク用基板の成形のように高い加工精度が要求される場合には、金型の温度管理が極めて重要となる。このため、金型および原材料の加熱方式として、温度制御性が良好な高周波誘導加熱方式を採用することが多い。高周波誘導加熱方式を採用するプレス成形装置では、高周波電源に接続された誘導コイルが、導電性を有する金型の周囲に配置される。誘導コイルに高周波電流(交番電流)が供給されると、金型周辺に磁場が形成されて金型には渦電流が流れ、その電流損失により金型自体が発熱することになる。このような高周波誘導加熱方式によれば、被加熱体である金型等を被接触で効率よく加熱可能となり、被加熱体の省熱容量化や設備のクリーン化を図ることもできる。
【0005】
【発明が解決しようとする課題】
しかしながら、最終的に外径と板厚との比が大きくなるディスク用の基板をプレス成形する場合、原材料として比較的厚さが大きい球状またはマーブル形状の原材料が用いられることから、型同士の相対移動量をある程度大きくせざるを得ない。このため、高周波誘導加熱方式を採用したとしても、誘導コイルと型(特に可動型)との相対位置関係が変動し、2つの型に対する入熱状態が変化する。各型への入熱状態の変化は、2つの型の間に温度差が生じさせ、それにより、高精度なプレス成形の実行が妨げられてしまう。
【0006】
かかる問題を解消するためには、例えば、誘導コイルを金型の軸方向に移動させることや、コイルの巻きピッチを金型の軸方向において変化させること等が考えられる。しかしながら、これらの手法を採用しても、型の移動に良好に追従するように各型の温度を制御することは困難である。また、特開平6−64932号公報には、固定型および可動型の周囲に2体の誘導コイルを配置すると共に、1体の高周波電源の発振周波数を制御して各誘導コイルへの高周波電流の量を変化させることにより、型同士間の温度差を抑制する手法が開示されている。しかしながら、かかる手法によって各誘導コイルへの高周波電流の量を自在に変化させるのは、極めて複雑かつ高価な制御回路等を用いたとしても容易なことではなく、当該手法により、各型の温度を型締めに良好に追従するように制御することは実質的に不可能に近い。この結果、ディスク用基板等のプレス成形に関しては、基板表面のうねりを抑えて平坦度を向上させたり、同一半径上におけるうねりを抑えると共に基板の内外径の寸法精度を向上させたりすることに依然として課題が残されている。
【0007】
そこで、本発明は、金型の温度を良好に制御し得る低コストかつ高精度なプレス成形の実現を目的とする。
【0008】
【課題を解決するための手段】
本発明の一形態は、固定型と可動型との間の原材料を加熱・加圧することにより所望の成形品をつくり出すプレス成形装置であり、この装置は、固定型および可動型の周囲に固定された誘導コイルと、誘導コイルに高周波電流を供給する高周波電源とを備え、固定型および可動型の周辺に磁場を形成するのに有効な誘導コイルの巻線数を変化させることにより、誘導コイルにより形成される磁場の位置を変動させることを特徴とする。
【0009】
このプレス成形装置は、固定型および可動型の周囲に固定された誘導コイルに高周波電源から高周波電流を供給し、固定型および可動型と原材料とを誘導加熱によって昇温させることが可能なものである。このように、固定型と可動型とを有するプレス成形装置では、原材料を加熱・加圧するために可動型を固定型に対して移動させる際、可動型の移動に伴って、固定型と可動型との間に温度差を生じてしまうことがある。
【0010】
この点に鑑みて、このプレス成形装置は、固定型および可動型の周辺に磁場を形成するのに有効な誘導コイルの巻線数を変化させることにより、誘導コイルにより形成される磁場の位置を変動させることができるように構成されている。これにより、このプレス成形装置では、固定型および可動型のうちの何れか一方に対する誘導コイルによる加熱効率を、固定型と可動型との温度に応じて適宜変化させることが可能となる。従って、固定型および可動型の温度は極めて良好かつ柔軟に制御されることになるので、固定型と可動型との温度差を常時ほぼゼロに維持することが可能となる。この結果、このプレス成形装置によれば、歪みや反りが抑制されており、高い寸法精度、平坦度および平滑度等を有する成形品を低コストで製造することができる。
【0011】
この場合、誘導コイルが少なくとも1つのタップを有しており、プレス成形装置が、誘導コイルのタップを切り換えるタップ切換手段と、固定型と可動型との温度差に応じてタップ切換手段を制御する制御手段とを更に備えると好ましい。このような構成を採用すれば、固定型および可動型の周辺に磁場を形成するのに有効な誘導コイルの巻線数を変化させることができるので、固定型および可動型の温度を所望の値に極めて良好かつ柔軟に設定することが可能となる。
【0012】
本発明の他の形態は、固定型と可動型との間の原材料を加熱・加圧することにより所望の成形品をつくり出すプレス成形方法であり、この方法は、固定型および可動型の周囲に誘導コイルを固定し、誘導コイルに高周波電流を供給すると共に、固定型と可動型との温度差に応じて固定型および可動型の周辺に磁場を形成するのに有効な誘導コイルの巻線数を変化させ、誘導コイルにより形成される磁場の位置を変動させることを特徴とする。
【0013】
この場合、固定型および可動型の周囲に、少なくとも1つのタップを有する誘導コイルを固定し、固定型と可動型との温度差に応じて、誘導コイルのタップを切り換えると好ましい。
【0014】
【発明の実施の形態】
以下、図面と共に本発明によるプレス成形装置およびプレス成形方法の好適な実施形態について詳細に説明する。
【0015】
図1は、本発明によるプレス成形装置の第1実施形態を示す概略構成図である。同図に示されるプレス成形装置1は、ガラスやプラスチック等の原材料Gから磁気ディスク用の基板をつくり出すために用いると好適なものであり、金型および原材料Gを加熱する方式として高周波誘導方式を採用するものである。プレス成形装置1は、ベース3、上ステージ4および下ステージ5を含むフレーム2を有する。上ステージ4は、複数の支柱6によってベース3上に固定されている。また、下ステージ5は、複数の支柱6によって摺動自在に支持されており、ベース3上に設置されたプレスユニット7のロッド7aに接続されている。プレスユニット7を作動させることにより、下ステージ5をベース3と上ステージ4との間で図中上下方向に移動させることができる。
【0016】
上ステージ4には、支持部材8を介して、導電性材料(WC材等)からなる上型(固定型)11が取り付けられる。一方、下ステージ5には、支持部材9を介して、導電性材料(WC材等)からなる下型(可動型)12が取り付けられ、下型12には規制リング14が装着される。また、上型11に対しては、上型温度センサ15が設けられており、下型12に対しては、下型温度センサ16が設けられている。更に、上ステージ4と上型11との間、および、下ステージ5と下型12との間には、冷却ジャケット(冷却手段)17,18が配置されている。各冷却ジャケット17および18には、図1において白抜矢印で示されるように冷却媒体を循環させることができる。各冷却ジャケット17,18は、図示されない移動機構によって、上型11の裏面(転写面と反対側の面)または下型12の裏面(転写面と反対側の面)に対して接近離間され得る。
【0017】
さて、このプレス成形装置1では、上型11および下型12と原材料Gとを加熱するために高周波誘導加熱方式が採用されていることから、上型11および下型12の周囲に、誘導コイル20が配置されている。誘導コイル20は、上型11および原材料Gが上型11の成形面と接触する位置にある下型12の双方の周囲に位置し得るサイズを有すると共に、その一端20aと他端20bとの間に所定位置にタップ20tを含む。そして、誘導コイル20は、上型11の外周面と、下型12の外周面との双方を囲み得るように、下型12側(図2における下方)に若干シフトされた状態で配置されている。更に、誘導コイル20の中心軸は、上型11および下型12の金型中心と概ね一致している。なお、プレス成形装置1では、上型11、下型12、誘導コイル20等が図示されない収容部材内に収容されており、収容部材の内部は、真空または不活性ガス雰囲気にされ得る。
【0018】
図1に示されるように、誘導コイル20の一端20aは、高周波電源21に直に接続されており、誘導コイル20のタップ20tと他端20bとは、タップ切換器22を介して高周波電源21と接続されている。タップ切換器22は、可動接片23、第1固定接点24および第2固定接点25を有する。可動接片23は、高周波電源21に接続されている。また、第1固定接点24は、誘導コイル20のタップ20tに接続されており、第2固定接点25は、誘導コイル20の他端20bに接続されている。
【0019】
これにより、可動接片23を第2固定接点25に接触させると、誘導コイル20の一端20aと他端20bとの間に高周波電源21から所定周波数の高周波電流が供給されることになる。この場合、誘導コイル20により、可動型である下型12と固定型である上型11との双方に鎖交する磁場が形成される。一方、タップ切換器22の可動接片23を第1固定接点24に接触させると、誘導コイル20の一端20aとタップ20tとの間に高周波電源21から所定周波数の高周波電流(交番電流)が供給される。これにより、誘導コイル20により形成される磁場は、下型12の移動方向(金型の中心軸)に沿って上方に(固定型である上型11側に)移動する。
【0020】
このように、本発明のプレス成形装置1では、タップ切換器22によって誘導コイル20のタップを切り換えることにより、固定型である上型11および可動型である下型12の周辺に磁場を形成するのに有効な誘導コイル20の巻線数を変化させることができる。そして、本実施形態では、タップ切換器22が第2固定接点25側に切り換えられた際、誘導コイル20による加熱効率が上型11よりも下型(可動型)12に対して高まり、タップ切換器22が第1固定接点24側に切り換えられた際、誘導コイル20による加熱効率が下型12よりも上型(固定型)11に対して高まるように、誘導コイル20のサイズ、取付位置、タップ20tの位置が定められている。
【0021】
図1に示されるように、プレス成形装置1には、高周波電源21を制御するために、制御装置27と温度調節器30とを含む。制御装置27には、上述した上型温度センサ15および下型温度センサ16が接続されている。そして、制御装置27は、平均温度算出部28および温度偏差算出部29を含む。制御装置27の平均温度算出部28は、上型温度センサ15から受け取った信号に示される上型11の温度(上型温度)Tと、下型温度センサ16から受け取った信号に示される下型12の温度(下型温度)Tとから、上型11と下型12との平均温度TAVをTAV=(T+T)/2として求める。制御装置27(平均温度算出部28)によって求められた平均温度TAVは、温度調節器30に送られる。温度調節器30は、制御装置27から受け取った信号に示される平均温度TAVと、図示されない設定器によって設定される各成形工程における目標平均温度Tとが一致するように高周波電源21の出力を制御(PID制御)する。
【0022】
また、制御装置27の温度偏差算出部29は、上型温度センサ15から受け取った信号に示される上型温度Tと、下型温度センサ16から受け取った信号に示される下型温度Tとから、上型11と下型12との温度偏差TdtをTdt=|T−T|として求める。そして、プレス成形装置1には、上述のタップ切換器22を切換制御するために、リレー31が含まれており、このリレー31には、制御装置27から、温度偏差算出部29によって求められた上型11と下型12との温度偏差Tdtを示す信号が与えられる。リレー31は、制御装置27から受け取った信号に示される温度偏差Tdtと、予め設定されている温度偏差の閾値δとに基づいて、Tdt>δである場合、タップ切換器22の可動接片23を第2固定接点25に接触させ、Tdt<−δである場合、タップ切換器22の可動接片23を第1固定接点24に接触させる。
【0023】
次に、上述のプレス成形装置1の動作について説明する。まず、図2に示されるように、上型11と下型12とが完全に開かれた状態で、移載ユニット13によって収容部材内の下型12のほぼ中央に原材料Gが配置される。原材料Gが下型12に配置されると、プレスユニット7が作動されてロッド7aが伸長し、図3に示されるように、原材料Gの上部が上型11の成形面に接触するまで下型12が上型11に接近させられる。そして、上型11、下型12、誘導コイル20等が高温下で酸化により劣化することを防止すべく、これらの部材が収容されている収容部材の内部は真空または不活性ガス雰囲気にされる。この段階では、タップ切換器22の可動接片23は、第1および第2固定接点24,25の何れとも接触していない中立位置にある。
【0024】
上型11および下型12の周辺が真空または不活性ガス雰囲気になされると、高周波誘導加熱による上型11および下型12の加熱が開始される(加熱工程)。すなわち、上型11および下型12の周辺が十分に真空または不活性ガス雰囲気になった段階で、制御装置27は、リレー31に対して所定の動作信号を与え、タップ切換器22の可動接片23を第2固定接点25に接触させる。これにより、誘導コイル20の一端20aと他端20bとの間に高周波電源21から所定周波数の高周波電流が供給され、図3に示されるように、誘導コイル20により、可動型である下型12と固定型である上型11との双方に鎖交する磁場m1が形成される。そして、上型11および下型12には渦電流が流れ、その電流損失により各型11,12自体が発熱することになる。
【0025】
このようにして加熱される上型11および下型12の温度は、上型温度センサ15および下型温度センサ16とによって検出され、各温度センサ15,16は、検出値を示す信号を制御装置27に送出する。制御装置27の平均温度算出部28は、上型温度センサ15から受け取った信号に示される上型温度Tと、下型温度センサ16から受け取った信号に示される下型温度Tとから、上型11と下型12との平均温度TAV(=(T+T)/2)を求める。そして制御装置27は、求めた平均温度TAVを示す信号を温度調節器30に与える。温度調節器30は、制御装置27から受け取った信号に示される平均温度TAVと、図示されない設定器によって設定される各成形工程における目標平均温度Tとが一致するように高周波電源21の出力を制御する。
【0026】
加熱工程により、原材料Gは、上型11および下型12を介して所定の軟化温度(プレス温度)まで昇温させられる。原材料Gが軟化温度まで昇温すると、プレスユニット7によって下型12が上型11へと更に接近させられ、これにより、上型11と下型12との間の原材料Gが加圧される(プレス工程)。下型12の上昇動作は、規制リングの上端が上型11に当接した段階で停止され、これにより、厚さが一定に揃えられた成形品を得ることが可能となる。
【0027】
ここで、上述のようなプレス工程の際、可動型である下型12は上型11に対して接近することから、下型12の移動に伴って、誘導コイル20による加熱効率が上型11と下型12とで異なってしまい、上型温度Tと下型温度Tとの間に差が生じてしまうことがある。特に、プレス成形装置1のように、下型12を上昇させる形式のものでは、移動する下型12よりも上型11の昇温速度が遅くなってしまう。
【0028】
この点に鑑みて、プレス成形装置1では、制御装置27の温度偏差算出部29により、上型温度センサ15により検出された上型温度Tと、下型温度センサ16により検出された下型温度Tとの温度偏差Tdtが、Tdt=|T−T|として求められる。そして、タップ切換器22を動作させるリレー31には、制御装置27から、温度偏差算出部29によって求められた上型11と下型12との温度偏差Tdtを示す信号が与えられる。
【0029】
リレー31は、制御装置27から受け取った信号に示される温度偏差Tdtと、予め設定されている温度偏差の閾値δとに基づいて、Tdt>δ(δは正の値)である場合、タップ切換器22の可動接片23を第2固定接点25に接触させる(接触させたままにする)。一方、加熱工程あるいはプレス工程に際して、温度偏差Tdtが、Tdt≦−δとなった場合には、リレー31は、タップ切換器22の可動接片23を第1固定接点24に接触させる。
【0030】
図4に示されるように、可動接片23が第1固定接点24に接触すると、誘導コイル20の一端20aとタップ20tとの間に高周波電源21から所定周波数の高周波電流(交番電流)が供給される。これにより、上型11および下型12の周辺に磁場を形成するのに有効な誘導コイル20の巻線数を変化させられ(減少させられ)、誘導コイル20により形成される磁場m2は、下型12の移動方向(金型の中心軸)に沿って上方に移動する。そして、プレス成形装置1では、タップ切換器22が第1固定接点24側に切り換えられた際、誘導コイル20による加熱効率が下型12よりも上型(固定型)11に対して高まることになる。加熱工程およびプレス工程の間、リレー31は、制御装置27(温度偏差算出部29)からの温度偏差信号に応じて、図5に示されるように、可動接片23を第1固定接点24側または第2固定接点25側へと切り換え、誘導コイル20により形成される磁場の位置を変化させる。
【0031】
上述のように、プレス成形装置1では、固定型である上型11および可動型である下型12の周辺に磁場を形成するのに有効な誘導コイル20の巻線数を変化させることにより、誘導コイル20により形成される磁場の位置が変化させられる。そして、プレス成形装置1では、上型11および下型12の何れか一方に対する誘導コイル20による加熱効率が上型11と下型12との温度偏差Tdtに応じて適宜変化させられる。
【0032】
従って、固定型である上型11および可動型である下型12の温度は、極めて良好かつ柔軟に制御され、上型11と下型12との温度差は常時ほぼゼロに維持されることになる。この結果、プレス成形装置1によれば、歪みや反りが抑制されており、高い寸法精度、平坦度および平滑度等を有する成形品、特に、外径と板厚との比が大きいディスク用の基板を低コストで製造することができる。
【0033】
なお、加圧完了後、タップ切換器22の可動接片23は、第1および第2固定接点24,25の何れとも接触していない中立位置に戻され、これにより、高周波誘導加熱が停止される。その後、上型11の裏面には冷却ジャケット17(図1参照)が、下型12の裏面には冷却ジャケット18(図1参照)がそれぞれ押し当てられ(冷却工程)、型内の成形品が冷却される。そして、冷却完了後、下型12が下降させられて金型が開かれ、成形品が取り出される。
【0034】
【発明の効果】
以上説明されたように、本発明によれば、金型の温度を極めて良好かつ柔軟に制御可能となり、歪みや反りが抑制されて高い寸法精度、平坦度および平滑度等を有する成形品を低コストで製造することができる。
【図面の簡単な説明】
【図1】本発明によるプレス成形装置を示す概略構成図である。
【図2】図1のプレス成形装置の動作を説明するための模式図である。
【図3】図1のプレス成形装置の動作を説明するための模式図である。
【図4】図1のプレス成形装置の動作を説明するための模式図である。
【図5】図1のプレス成形装置の動作を説明するための模式図である。
【符号の説明】
1 プレス成形装置
4 上ステージ
5 下ステージ
7 プレスユニット
11 上型
12 下型
15 上型温度センサ
16 下型温度センサ
20 誘導コイル
20a 一端
20b 他端
20t タップ
21 高周波電源
22 タップ切換器
23 可動接片
24 第1固定接点
25 第2固定接点
27 制御装置
28 平均温度算出部
29 温度偏差算出部
30 温度調節器
31 リレー
G 原材料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a press forming apparatus and a press forming method, and more particularly to a press forming apparatus and a press forming method suitable for forming a glass substrate or the like applied to a magnetic disk or the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, magnetic disks having a substrate made of a raw material such as glass or plastic have been widely used. Since such a magnetic disk substrate is required to have an extremely smooth surface, it is initially manufactured by cutting a glass material or the like into a predetermined size and polishing the surface smoothly. I was However, such a method of manufacturing a disk substrate one by one requires many steps and labor, and has a serious problem in reducing the manufacturing cost of the substrate. For this reason, in recent years, when manufacturing a substrate, a press forming method of transferring a desired shape with high accuracy to a raw material such as glass by heating and pressing the raw material such as glass in a mold has been adopted. It has become to.
[0003]
Such press molding is generally performed according to the following procedure. First, a glass material or the like as a raw material is arranged between upper and lower molds (between a fixed mold and a movable mold), and the periphery of the mold and the like is set to a vacuum or an inert gas atmosphere. Further, the die and the raw material are heated by a predetermined heat source, and when the die and the raw material reach a predetermined temperature, the raw material is pressed between the die. After completion of the pressurization, the molded product is cooled and taken out of the mold. According to such a press molding method, post-processing of a molded article is not required, and high-quality substrates can be mass-produced at low cost.
[0004]
Here, when high processing accuracy is required as in the case of molding a disk substrate, temperature control of a mold is extremely important. For this reason, a high-frequency induction heating method with good temperature controllability is often used as a heating method for the mold and the raw material. In a press forming apparatus employing a high-frequency induction heating method, an induction coil connected to a high-frequency power supply is arranged around a conductive mold. When a high-frequency current (alternating current) is supplied to the induction coil, a magnetic field is formed around the mold, an eddy current flows in the mold, and the mold itself generates heat due to the current loss. According to such a high-frequency induction heating method, it is possible to efficiently heat a mold or the like to be heated in a contacted manner, and it is also possible to reduce the heat capacity of the heated body and to clean the equipment.
[0005]
[Problems to be solved by the invention]
However, when press-forming a substrate for a disk, which eventually has a large ratio between the outer diameter and the plate thickness, a relatively thick spherical or marble-shaped raw material is used as a raw material. The amount of movement must be increased to some extent. For this reason, even if the high-frequency induction heating method is adopted, the relative positional relationship between the induction coil and the mold (particularly, the movable mold) changes, and the heat input state to the two molds changes. The change in the heat input state to each mold causes a temperature difference between the two molds, which hinders the execution of high-precision press molding.
[0006]
In order to solve such a problem, for example, it is conceivable to move the induction coil in the axial direction of the mold, or change the winding pitch of the coil in the axial direction of the mold. However, even if these methods are adopted, it is difficult to control the temperature of each mold so as to favorably follow the movement of the mold. In Japanese Patent Application Laid-Open No. 6-64932, two induction coils are arranged around a fixed type and a movable type, and the oscillating frequency of one high-frequency power source is controlled to supply a high-frequency current to each induction coil. A method is disclosed in which the temperature difference between the molds is suppressed by changing the amount. However, it is not easy to freely change the amount of high-frequency current to each induction coil by such a method, even if an extremely complicated and expensive control circuit is used. It is practically impossible to control to follow the mold clamping well. As a result, with respect to press forming of a disk substrate, etc., it is still necessary to suppress the undulation of the substrate surface to improve the flatness, or to suppress the undulation on the same radius and to improve the dimensional accuracy of the inner and outer diameters of the substrate. Challenges remain.
[0007]
Accordingly, an object of the present invention is to realize low-cost and high-precision press molding capable of favorably controlling the temperature of a mold.
[0008]
[Means for Solving the Problems]
One embodiment of the present invention is a press forming apparatus that creates a desired molded product by heating and pressing a raw material between a fixed mold and a movable mold. The press forming apparatus is fixed around the fixed mold and the movable mold. An induction coil and a high-frequency power supply that supplies a high-frequency current to the induction coil, and by changing the number of turns of the induction coil effective to form a magnetic field around the fixed and movable types, It is characterized in that the position of the formed magnetic field is varied.
[0009]
This press forming apparatus is capable of supplying a high-frequency current from a high-frequency power supply to an induction coil fixed around a fixed mold and a movable mold, and raising the temperature of the fixed mold and the movable mold and the raw material by induction heating. is there. As described above, in the press forming apparatus having the fixed mold and the movable mold, when the movable mold is moved relative to the fixed mold to heat and pressurize the raw material, the fixed mold and the movable mold are moved with the movement of the movable mold. May cause a temperature difference.
[0010]
In view of this point, this press forming apparatus changes the position of the magnetic field formed by the induction coil by changing the number of turns of the induction coil effective for forming the magnetic field around the fixed mold and the movable mold. It is configured to be able to vary. Thus, in this press molding apparatus, the heating efficiency of the induction coil for one of the fixed mold and the movable mold can be appropriately changed according to the temperature of the fixed mold and the movable mold. Therefore, the temperatures of the fixed mold and the movable mold are controlled very favorably and flexibly, so that the temperature difference between the fixed mold and the movable mold can be constantly maintained at almost zero. As a result, according to this press molding apparatus, distortion and warpage are suppressed, and a molded product having high dimensional accuracy, flatness, smoothness, and the like can be manufactured at low cost.
[0011]
In this case, the induction coil has at least one tap, and the press forming device controls the tap switching means for switching the tap of the induction coil and the tap switching means according to the temperature difference between the fixed mold and the movable mold. It is preferable to further comprise control means. By adopting such a configuration, the number of turns of the induction coil effective for forming a magnetic field around the fixed type and the movable type can be changed, so that the temperature of the fixed type and the movable type is set to a desired value. It is possible to make very good and flexible settings.
[0012]
Another embodiment of the present invention is a press molding method for producing a desired molded article by heating and pressing a raw material between a fixed mold and a movable mold, and the method includes guiding the material around the fixed mold and the movable mold. Fixing the coil, supplying high-frequency current to the induction coil, and increasing the number of turns of the induction coil effective to form a magnetic field around the fixed type and the movable type according to the temperature difference between the fixed type and the movable type And changing the position of the magnetic field formed by the induction coil.
[0013]
In this case, it is preferable that an induction coil having at least one tap is fixed around the fixed type and the movable type, and the taps of the induction coil are switched according to a temperature difference between the fixed type and the movable type.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a press forming apparatus and a press forming method according to the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a schematic configuration diagram showing a first embodiment of a press forming apparatus according to the present invention. The press forming apparatus 1 shown in FIG. 1 is suitable for use in producing a substrate for a magnetic disk from a raw material G such as glass or plastic, and a high frequency induction method is used as a method for heating a mold and the raw material G. To adopt. The press forming apparatus 1 has a frame 2 including a base 3, an upper stage 4 and a lower stage 5. The upper stage 4 is fixed on the base 3 by a plurality of columns 6. The lower stage 5 is slidably supported by a plurality of columns 6, and is connected to a rod 7a of a press unit 7 installed on the base 3. By operating the press unit 7, the lower stage 5 can be moved vertically between the base 3 and the upper stage 4 in the figure.
[0016]
An upper mold (fixed mold) 11 made of a conductive material (such as a WC material) is attached to the upper stage 4 via a support member 8. On the other hand, a lower mold (movable mold) 12 made of a conductive material (such as a WC material) is attached to the lower stage 5 via a support member 9, and a regulating ring 14 is attached to the lower mold 12. Further, an upper mold temperature sensor 15 is provided for the upper mold 11, and a lower mold temperature sensor 16 is provided for the lower mold 12. Further, cooling jackets (cooling means) 17 and 18 are arranged between the upper stage 4 and the upper mold 11 and between the lower stage 5 and the lower mold 12. A cooling medium can be circulated in each of the cooling jackets 17 and 18 as shown by a white arrow in FIG. Each of the cooling jackets 17 and 18 can be approached or separated from the back surface of the upper mold 11 (the surface opposite to the transfer surface) or the back surface of the lower mold 12 (the surface opposite to the transfer surface) by a moving mechanism (not shown). .
[0017]
Now, in the press forming apparatus 1, since the high-frequency induction heating method is adopted to heat the upper mold 11 and the lower mold 12 and the raw material G, the induction coil is provided around the upper mold 11 and the lower mold 12. 20 are arranged. The induction coil 20 has a size that can be positioned around both the upper mold 11 and the lower mold 12 at a position where the raw material G comes into contact with the molding surface of the upper mold 11, and between the one end 20a and the other end 20b. Includes a tap 20t at a predetermined position. The induction coil 20 is arranged in a state of being slightly shifted to the lower mold 12 side (downward in FIG. 2) so as to surround both the outer peripheral face of the upper mold 11 and the outer peripheral face of the lower mold 12. I have. Further, the center axis of the induction coil 20 substantially coincides with the center of the mold of the upper mold 11 and the lower mold 12. In the press molding apparatus 1, the upper mold 11, the lower mold 12, the induction coil 20, and the like are housed in a housing member (not shown), and the inside of the housing member can be set to a vacuum or an inert gas atmosphere.
[0018]
As shown in FIG. 1, one end 20 a of the induction coil 20 is directly connected to a high-frequency power supply 21, and the tap 20 t and the other end 20 b of the induction coil 20 are connected to the high-frequency power supply 21 via a tap switch 22. Is connected to The tap changer 22 has a movable contact piece 23, a first fixed contact 24, and a second fixed contact 25. The movable contact piece 23 is connected to the high frequency power supply 21. The first fixed contact 24 is connected to the tap 20 t of the induction coil 20, and the second fixed contact 25 is connected to the other end 20 b of the induction coil 20.
[0019]
Thus, when the movable contact piece 23 is brought into contact with the second fixed contact 25, a high-frequency current of a predetermined frequency is supplied from the high-frequency power supply 21 between the one end 20a and the other end 20b of the induction coil 20. In this case, the induction coil 20 forms a magnetic field that links both the movable lower mold 12 and the fixed upper mold 11. On the other hand, when the movable contact piece 23 of the tap changer 22 is brought into contact with the first fixed contact 24, a high frequency current (alternating current) of a predetermined frequency is supplied from the high frequency power supply 21 between the one end 20 a of the induction coil 20 and the tap 20 t. Is done. As a result, the magnetic field formed by the induction coil 20 moves upward (toward the upper mold 11 which is a fixed mold) along the moving direction of the lower mold 12 (the center axis of the mold).
[0020]
As described above, in the press forming apparatus 1 of the present invention, a magnetic field is formed around the fixed upper mold 11 and the movable lower mold 12 by switching the taps of the induction coil 20 by the tap changer 22. The number of turns of the induction coil 20 which is effective for the above can be changed. In the present embodiment, when the tap changer 22 is switched to the second fixed contact 25 side, the heating efficiency of the induction coil 20 is higher than that of the upper mold 11 relative to the lower mold (movable mold) 12, and the tap switching is performed. When the heater 22 is switched to the first fixed contact 24 side, the size and the mounting position of the induction coil 20 are set such that the heating efficiency of the induction coil 20 is higher for the upper die (fixed die) 11 than for the lower die 12. The position of the tap 20t is determined.
[0021]
As shown in FIG. 1, the press forming apparatus 1 includes a control device 27 and a temperature controller 30 for controlling the high frequency power supply 21. The above-described upper mold temperature sensor 15 and lower mold temperature sensor 16 are connected to the control device 27. The control device 27 includes an average temperature calculation unit 28 and a temperature deviation calculation unit 29. The average temperature calculation section 28 of the control device 27, under the indicated temperature (upper die temperature) T U of the upper mold 11 shown in the signal received from the upper temperature sensor 15, the signal received from the lower temperature sensor 16 and a temperature (lower mold temperature) T L type 12, determining the average temperature T AV of the upper mold 11 and the lower mold 12 as T AV = (T U + T L) / 2. The average temperature T AV obtained by the control device 27 (average temperature calculation unit 28) is sent to the temperature controller 30. The temperature controller 30 controls the output of the high-frequency power supply 21 so that the average temperature T AV indicated in the signal received from the control device 27 matches the target average temperature T 0 in each molding step set by a setting unit (not shown). (PID control).
[0022]
The temperature deviation calculating section 29 of the control device 27, and the upper mold temperature T U shown in the signal received from the upper temperature sensor 15, and the lower mold temperature T L as shown in the signal received from the lower temperature sensor 16 from the temperature difference T dt of the upper mold 11 and the lower mold 12 T dt = | calculated as | T U -T L. The press forming apparatus 1 includes a relay 31 for switching control of the tap changer 22 described above. The relay 31 is obtained from the control device 27 by the temperature deviation calculator 29. A signal indicating a temperature deviation Tdt between the upper mold 11 and the lower mold 12 is provided. When T dt > δ based on the temperature deviation T dt indicated by the signal received from the control device 27 and the preset threshold value δ of the temperature deviation, the relay 31 The piece 23 is brought into contact with the second fixed contact 25, and when T dt <−δ, the movable contact piece 23 of the tap changer 22 is brought into contact with the first fixed contact 24.
[0023]
Next, the operation of the above-described press forming apparatus 1 will be described. First, as shown in FIG. 2, in a state where the upper mold 11 and the lower mold 12 are completely opened, the raw material G is arranged by the transfer unit 13 at substantially the center of the lower mold 12 in the housing member. When the raw material G is placed on the lower mold 12, the press unit 7 is operated to extend the rod 7 a, and as shown in FIG. 3, the lower mold is moved until the upper portion of the raw material G contacts the molding surface of the upper mold 11. 12 is made to approach the upper mold 11. Then, in order to prevent the upper mold 11, the lower mold 12, the induction coil 20 and the like from being deteriorated by oxidation at a high temperature, the inside of the housing member housing these members is set to a vacuum or an inert gas atmosphere. . At this stage, the movable contact piece 23 of the tap changer 22 is in the neutral position where it is not in contact with any of the first and second fixed contacts 24 and 25.
[0024]
When the surroundings of the upper mold 11 and the lower mold 12 are made to have a vacuum or an inert gas atmosphere, heating of the upper mold 11 and the lower mold 12 by high-frequency induction heating is started (heating step). That is, when the surroundings of the upper mold 11 and the lower mold 12 become sufficiently vacuum or an inert gas atmosphere, the control device 27 gives a predetermined operation signal to the relay 31 and The piece 23 is brought into contact with the second fixed contact 25. As a result, a high-frequency current of a predetermined frequency is supplied from the high-frequency power supply 21 between one end 20a and the other end 20b of the induction coil 20, and as shown in FIG. A magnetic field m1 interlinking with both the upper mold 11 and the fixed mold 11 is formed. Then, an eddy current flows through the upper die 11 and the lower die 12, and the respective dies 11 and 12 generate heat due to the current loss.
[0025]
The temperatures of the upper mold 11 and the lower mold 12 heated in this way are detected by the upper mold temperature sensor 15 and the lower mold temperature sensor 16, and each of the temperature sensors 15, 16 outputs a signal indicating the detected value to the control device. 27. The average temperature calculation section 28 of the control device 27 from the upper mold temperature T U shown in the signal received from the upper temperature sensor 15, a lower mold temperature T L as shown in the signal received from the lower temperature sensor 16, An average temperature T AV (= (T U + T L ) / 2) of the upper mold 11 and the lower mold 12 is obtained. Then, the control device 27 gives a signal indicating the calculated average temperature T AV to the temperature controller 30. The temperature controller 30 controls the output of the high-frequency power supply 21 so that the average temperature T AV indicated in the signal received from the control device 27 matches the target average temperature T 0 in each molding step set by a setting unit (not shown). Control.
[0026]
In the heating step, the raw material G is heated to a predetermined softening temperature (press temperature) via the upper mold 11 and the lower mold 12. When the temperature of the raw material G rises to the softening temperature, the lower die 12 is further brought closer to the upper die 11 by the press unit 7, whereby the raw material G between the upper die 11 and the lower die 12 is pressurized ( Press process). The raising operation of the lower mold 12 is stopped at the stage where the upper end of the restriction ring abuts on the upper mold 11, so that a molded product having a uniform thickness can be obtained.
[0027]
Here, at the time of the above-described pressing process, the lower die 12 which is a movable die approaches the upper die 11, so that the heating efficiency of the induction coil 20 increases with the movement of the lower die 12. It becomes different between the lower die 12 and, there is a difference between the upper mold temperature T U and the lower mold temperature T L occurs. In particular, in the case of the type in which the lower mold 12 is raised as in the press molding apparatus 1, the temperature rising speed of the upper mold 11 is slower than that of the moving lower mold 12.
[0028]
In view of this, the press forming apparatus 1, the temperature deviation calculating section 29 of the control device 27, and the upper mold temperature T U, which is detected by the upper mold temperature sensor 15, the lower mold, which is detected by the lower temperature sensor 16 temperature deviation T dt of the temperature T L is, T dt = | is obtained as | T U -T L. Then, a signal indicating the temperature deviation T dt between the upper die 11 and the lower die 12 obtained by the temperature deviation calculator 29 is given from the control device 27 to the relay 31 that operates the tap changer 22.
[0029]
The relay 31 determines, based on the temperature deviation T dt indicated in the signal received from the control device 27 and the preset temperature deviation threshold δ, that T dt > δ (δ is a positive value) The movable contact piece 23 of the tap changer 22 is brought into contact with the second fixed contact 25 (or kept in contact). On the other hand, when the temperature deviation T dt satisfies T dt ≦ −δ during the heating step or the pressing step, the relay 31 brings the movable contact piece 23 of the tap changer 22 into contact with the first fixed contact 24.
[0030]
As shown in FIG. 4, when the movable contact piece 23 comes into contact with the first fixed contact 24, a high-frequency current (alternating current) having a predetermined frequency is supplied from the high-frequency power supply 21 between the one end 20a of the induction coil 20 and the tap 20t. Is done. Thereby, the number of turns of the induction coil 20 effective for forming a magnetic field around the upper mold 11 and the lower mold 12 is changed (decreased), and the magnetic field m2 formed by the induction coil 20 is reduced. The mold 12 moves upward along the moving direction (center axis of the mold). In the press forming apparatus 1, when the tap changer 22 is switched to the first fixed contact 24 side, the heating efficiency of the induction coil 20 is higher for the upper mold (fixed mold) 11 than for the lower mold 12. Become. During the heating step and the pressing step, the relay 31 moves the movable contact piece 23 to the first fixed contact 24 side according to the temperature deviation signal from the control device 27 (the temperature deviation calculation unit 29), as shown in FIG. Alternatively, the position of the magnetic field formed by the induction coil 20 is changed by switching to the second fixed contact 25 side.
[0031]
As described above, in the press forming apparatus 1, by changing the number of turns of the induction coil 20 effective for forming a magnetic field around the upper die 11 as a fixed die and the lower die 12 as a movable die, The position of the magnetic field formed by the induction coil 20 is changed. Then, in the press forming apparatus 1, the heating efficiency of the induction coil 20 for one of the upper mold 11 and the lower mold 12 is appropriately changed in accordance with the temperature deviation Tdt between the upper mold 11 and the lower mold 12.
[0032]
Therefore, the temperatures of the upper mold 11 as the fixed mold and the lower mold 12 as the movable mold are controlled very well and flexibly, and the temperature difference between the upper mold 11 and the lower mold 12 is always kept almost zero. Become. As a result, according to the press molding apparatus 1, distortion and warpage are suppressed, and molded articles having high dimensional accuracy, flatness, smoothness, and the like, particularly for disks having a large ratio between the outer diameter and the plate thickness. The substrate can be manufactured at low cost.
[0033]
After the pressurization is completed, the movable contact piece 23 of the tap changer 22 is returned to the neutral position where it is not in contact with any of the first and second fixed contacts 24 and 25, whereby the high-frequency induction heating is stopped. You. Thereafter, a cooling jacket 17 (see FIG. 1) is pressed against the back surface of the upper mold 11 and a cooling jacket 18 (see FIG. 1) is pressed against the back surface of the lower mold 12 (cooling step), and the molded product in the mold is pressed. Cooled. After the cooling is completed, the lower mold 12 is lowered, the mold is opened, and the molded product is taken out.
[0034]
【The invention's effect】
As described above, according to the present invention, it is possible to control the temperature of a mold extremely and flexibly, and to suppress a distortion and a warp to reduce a molded product having high dimensional accuracy, flatness and smoothness. Can be manufactured at cost.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a press molding apparatus according to the present invention.
FIG. 2 is a schematic diagram for explaining the operation of the press forming apparatus of FIG.
FIG. 3 is a schematic view for explaining the operation of the press forming apparatus of FIG. 1;
FIG. 4 is a schematic view for explaining the operation of the press forming apparatus of FIG.
FIG. 5 is a schematic diagram for explaining the operation of the press forming apparatus of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Press molding apparatus 4 Upper stage 5 Lower stage 7 Press unit 11 Upper die 12 Lower die 15 Upper die temperature sensor 16 Lower die temperature sensor 20 Induction coil 20a One end 20b Other end 20t Tap 21 High frequency power supply 22 Tap changer 23 Moving piece 24 First fixed contact 25 Second fixed contact 27 Controller 28 Average temperature calculator 29 Temperature deviation calculator 30 Temperature controller 31 Relay G Raw material

Claims (4)

固定型と可動型との間の原材料を加熱・加圧することにより所望の成形品をつくり出すプレス成形装置において、
前記固定型および前記可動型の周囲に固定された誘導コイルと、
前記誘導コイルに高周波電流を供給する高周波電源とを備え、
前記固定型および前記可動型の周辺に磁場を形成するのに有効な前記誘導コイルの巻線数を変化させることにより、前記誘導コイルにより形成される磁場の位置を変動させることを特徴とするプレス成形装置。
In a press molding apparatus that creates a desired molded product by heating and pressing the raw material between a fixed mold and a movable mold,
An induction coil fixed around the fixed type and the movable type,
A high-frequency power supply that supplies a high-frequency current to the induction coil,
A press, wherein the position of the magnetic field formed by the induction coil is changed by changing the number of turns of the induction coil effective for forming a magnetic field around the fixed type and the movable type. Molding equipment.
前記誘導コイルは、少なくとも1つのタップを有しており、前記誘導コイルのタップを切り換えるタップ切換手段と、前記固定型と前記可動型との温度差に応じて前記タップ切換手段を制御する制御手段とを更に備えることを特徴とする請求項1に記載のプレス成形装置。The induction coil has at least one tap, a tap switching unit that switches the tap of the induction coil, and a control unit that controls the tap switching unit according to a temperature difference between the fixed type and the movable type. The press forming apparatus according to claim 1, further comprising: 固定型と可動型との間の原材料を加熱・加圧することにより所望の成形品をつくり出すプレス成形方法において、
前記固定型および前記可動型の周囲に誘導コイルを固定し、前記誘導コイルに高周波電流を供給すると共に、前記固定型と前記可動型との温度差に応じて、前記固定型および前記可動型の周辺に磁場を形成するのに有効な前記誘導コイルの巻線数を変化させ、前記誘導コイルにより形成される磁場の位置を変動させることを特徴とするプレス成形方法。
In a press molding method of creating a desired molded product by heating and pressing the raw material between the fixed mold and the movable mold,
An induction coil is fixed around the fixed type and the movable type, and a high-frequency current is supplied to the induction coil, and the fixed type and the movable type are changed according to a temperature difference between the fixed type and the movable type. A press forming method characterized by changing the number of turns of the induction coil effective for forming a magnetic field in the periphery and changing the position of a magnetic field formed by the induction coil.
前記固定型および前記可動型の周囲に、少なくとも1つのタップを有する誘導コイルを固定し、前記固定型と前記可動型との温度差に応じて、前記誘導コイルのタップを切り換えることを特徴とする請求項3に記載のプレス成形方法。An induction coil having at least one tap is fixed around the fixed type and the movable type, and the taps of the induction coil are switched according to a temperature difference between the fixed type and the movable type. The press molding method according to claim 3.
JP2002163422A 2002-06-04 2002-06-04 Press-forming apparatus and press-forming method Pending JP2004010385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163422A JP2004010385A (en) 2002-06-04 2002-06-04 Press-forming apparatus and press-forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163422A JP2004010385A (en) 2002-06-04 2002-06-04 Press-forming apparatus and press-forming method

Publications (1)

Publication Number Publication Date
JP2004010385A true JP2004010385A (en) 2004-01-15

Family

ID=30431914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163422A Pending JP2004010385A (en) 2002-06-04 2002-06-04 Press-forming apparatus and press-forming method

Country Status (1)

Country Link
JP (1) JP2004010385A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535786A (en) * 2004-03-18 2007-12-06 ロックツール Method for heating a material to produce an object and device implementing said method
JP2011230788A (en) * 2010-04-27 2011-11-17 Rakupri Co Ltd Heat press device and sublimation transfer device using the same
KR101204778B1 (en) 2010-09-16 2012-11-27 금강철강(주) Hot forming apparatus and method
JP2016511793A (en) * 2013-02-04 2016-04-21 ザ・ボーイング・カンパニーThe Boeing Company Compaction / molding method for near net shape components made of powder
CN108279177A (en) * 2018-03-13 2018-07-13 大连理工大学 A kind of hot press-formed go-no-go test equipment of high temperature and high speed sheet metal and test method
CN114702231A (en) * 2022-04-08 2022-07-05 四川瑞天光学有限责任公司 Heating device and method for hot-press forming die of optical glass

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535786A (en) * 2004-03-18 2007-12-06 ロックツール Method for heating a material to produce an object and device implementing said method
JP4786639B2 (en) * 2004-03-18 2011-10-05 ロックツール Method for heating a material to produce an object and device implementing said method
KR101197703B1 (en) 2004-03-18 2012-11-05 록툴 Method of heating materials in order to produce objects and device for implementing said method
JP2011230788A (en) * 2010-04-27 2011-11-17 Rakupri Co Ltd Heat press device and sublimation transfer device using the same
KR101204778B1 (en) 2010-09-16 2012-11-27 금강철강(주) Hot forming apparatus and method
JP2016511793A (en) * 2013-02-04 2016-04-21 ザ・ボーイング・カンパニーThe Boeing Company Compaction / molding method for near net shape components made of powder
CN108279177A (en) * 2018-03-13 2018-07-13 大连理工大学 A kind of hot press-formed go-no-go test equipment of high temperature and high speed sheet metal and test method
CN108279177B (en) * 2018-03-13 2024-04-05 大连理工大学 High-temperature high-speed sheet metal hot stamping forming limit testing device and testing method
CN114702231A (en) * 2022-04-08 2022-07-05 四川瑞天光学有限责任公司 Heating device and method for hot-press forming die of optical glass

Similar Documents

Publication Publication Date Title
JP4827640B2 (en) Press forming apparatus and method
US20070158871A1 (en) Press-molding apparatus, mold, and press-molding method
JP2004196651A (en) Method and apparatus for manufacturing glass substrate for storage medium, and glass substrate for storage medium, and storage medium
JP2004010385A (en) Press-forming apparatus and press-forming method
JP3932985B2 (en) Press molding apparatus and press molding method
JP2006255900A (en) Heat press molding method and hot press molding apparatus
TWI331987B (en) Press-molding apparatus, press-molding method and method of producing an optical element
US20040212110A1 (en) Press-molding apparatus and method of producing an optical element
JP4825494B2 (en) Glass forming equipment
JP3112555B2 (en) High frequency induction heating device
JP3255864B2 (en) Press forming heating apparatus and press forming heating method
JP4266115B2 (en) Mold press molding apparatus and glass optical element manufacturing method
JP3738713B2 (en) Sheet forming method and apparatus therefor
JP4261331B2 (en) Induction heating molding equipment
JP2005179084A (en) Induction heating molding apparatus
JP4255294B2 (en) Glass optical element manufacturing method and molding apparatus
JP4141983B2 (en) Mold press molding method and optical element manufacturing method
JP2011184248A (en) Optical element molding device
JP4791324B2 (en) Optical element molding method
JP2008056502A (en) Apparatus for molding optical element
JP2004331471A (en) Method and apparatus for molding optical device
JP2006150749A (en) Lens molding method and mold
JP2005001917A (en) Mold press-forming apparatus and method of manufacturing optical device
JP4358406B2 (en) Optical element molding apparatus and molding method
JPH04240122A (en) Press forming device for optical glass parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050517

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070814