JP2004000660A - Heart rate signal correcting method - Google Patents

Heart rate signal correcting method Download PDF

Info

Publication number
JP2004000660A
JP2004000660A JP2003178559A JP2003178559A JP2004000660A JP 2004000660 A JP2004000660 A JP 2004000660A JP 2003178559 A JP2003178559 A JP 2003178559A JP 2003178559 A JP2003178559 A JP 2003178559A JP 2004000660 A JP2004000660 A JP 2004000660A
Authority
JP
Japan
Prior art keywords
reference value
signal
heart rate
intervals
heartbeat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003178559A
Other languages
Japanese (ja)
Other versions
JP3726825B2 (en
Inventor
Kusuo Iwanaga
岩永 九州男
Hiroyuki Ibe
井邊 浩行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003178559A priority Critical patent/JP3726825B2/en
Publication of JP2004000660A publication Critical patent/JP2004000660A/en
Application granted granted Critical
Publication of JP3726825B2 publication Critical patent/JP3726825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heart rate signal correcting method which can properly perform the correction of a heart rate signal using a reference value which is introduced by an appropriate value as a reference value for a heart rate signal examination. <P>SOLUTION: An average value of heart rate signal intervals when heart rate signals of which the variation in the intervals is within a specified % are continuously measured for a specified number of times or more is made the reference value for the heart rate signal examination. By paying attention to the variation of the continuous heart rate intervals, and when the variation does not stay in a specified range, the heart rate signal intervals can be canceled even if they are in a proper range as heart rate intervals for a human being and can be prevented from being reflected upon the reference value. Signals having intervals being not more than the specified % of the reference value from among measured heart rate signals are canceled. Also, for signals having intervals being not less than the specified % of the reference value, signals for an interpolation are inserted between them. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は測定された心拍信号の基準値を用いて行う心拍信号の補正方法に関するものである。
【0002】
【従来の技術】
心拍信号を測定してこの心拍情報を利用するにあたり、電気的ノイズや被験者の動きなどによって不正確な情報しか得られないケースが多々ある。このために測定された心拍信号にノイズがのっていないかどうかを検査しなくてはならないのであるが、従来は人間の心拍間隔として妥当な上限値と下限値とを用いて、測定された心拍信号の妥当性をチェックしているにとどまっている。
【0003】
また、測定された心拍信号にたとえばノイズがのっていたり欠損していることが明らかであるにもかかわらず、連続した心拍信号が必要である場合、測定された心拍信号からノイズを除去する補正を行ったり、心拍信号の欠損部分を補完する補正を行うことが必要となる。この時の補正のための基準値としては、従来、心拍間隔の平均値を用いている。
【0004】
【発明が解決しようとする課題】
しかし、上記上限値と下限値とを用いた妥当性のチェックだけではノイズの多いシステムにおいては正確な検査が行われているとは言い難い。また心拍信号の補正についても、人間の心拍間隔の条件を満たすタイミングでノイズが偶然混入している時には、これに対処することができない。加えるに、基準値の作成に際して不正確な情報が混入している可能性も存在しており、このような基準値に基づいた補正では、補正された後の心拍信号も不正確なものとなってしまう。
【0005】
本発明はこのような点に鑑みなされたものであり、その目的とするところは心拍信号検査用基準値として適切な値で導出した基準値を用いて心拍信号の補正を適切に行うことができる心拍信号補正方法を提供するにある。
【0006】
【課題を解決するための手段】
しかして本発明は、間隔のばらつきが所定%以内である心拍信号が所定回数以上連続して測定された時の心拍信号間隔の平均値を心拍信号検査用の基準値とすることに特徴を有している。連続した心拍間隔のばらつきに注目して、ばらつきが所定の範囲に収まっていなければ人間の心拍間隔として妥当な範囲であってもキャンセルして、基準値に反映されないようにするのである。
【0007】
そして本発明に係る心拍信号補正方法は、測定された心拍信号のうち、この基準値の所定%以下の間隔の信号はキャンセルすることに第1の特徴を有し、測定された心拍信号のうち、上記導出方法で得られた基準値の所定%以上の間隔の信号についてはその間に補完のための信号を挿入することに第2の特徴を有している。
【0008】
上記両補正方法を共に行うことが好ましいのはもちろんであり、この場合、基準値の所定%以下の間隔の信号のキャンセルを行い、次いで基準値の所定%以上の間隔の信号についてはその間に補完のための信号を挿入するものとする。
【0009】
信号の挿入に際しては、信号を挿入することによってできるそれぞれの間隔が基準値に最も近くなるような本数及び位置に配置することが好ましい。
【0010】
【発明の実施の形態】
以下本発明について詳述すると、図2は基準値の導出方法及び心拍信号補正方法を実装するためのシステム構成の一例を示している。被験者1からピックアップ2によって検出された心拍による物理的な変化は検出回路3によって電気信号に変換されて二値化回路4によってデジタル信号に変換された後、マイクロコンピュータ(CPU)5に入力される。上記導出方法及び補正方法はCPU5に適した方法で実装され、具体的な作業はCPU5内で行われる。以下このシステムを想定して導出方法及び補正方法について説明する。なお上記システムでは信号の立ち上がりエッジを心拍と認識するようなシステム及び制御プログラムの構成になっているとする。
【0011】
まず基準値の導出についてであるが、これは図1に示すように、ステップ202で検出されたデータをステップ203にて間隔データとする。次いでステップ204において間隔データの妥当性について検査する。これは人間の心拍間隔として正常であるかということについて調べるものであり、従来例でも述べたように、人間の心拍間隔の上限値(H−limit msec)と下限値(L−limit msec)との間に収まっているかどうかをチェックする。なお、この両値については、システムの用途やシステムの対象者の状態などによって多少変化すると考えられる。
【0012】
ステップ204において異常と判断されれば検出の累積数をキャンセルして次の間隔データを待つ。正常であればステップ206において間隔のばらつきが±R%以内であるかどうかを検査する。同一の人物が同一の状態である場合、心拍間隔のばらつきの範囲は、ステップ204で検査した正常範囲よりもはるかに狭くなくてはならず、ばらつきの大きい連続した信号についてはノイズであると判断することができる。ここでの閾値Rについても対象者やシステムに依存するため一概に決めることはできないが、20〜30%の値を好適に使用することができる。
【0013】
そしてステップ206において異常と判断された時には、上記ステップ204の場合と同様に処理され、正常であればデータの検出数に1を加える(ステップ207)。以上の処理を繰り返すことによって、連続するX個の正常な間隔データが検出されたならば、それらの平均値を求めて基準値とする。このときのXについては、少なすぎると値の信頼性が低くなり、多すぎると基準値を得るのに時間がかかりすぎてしまうことから、3〜10ぐらい、好ましくは5程度が適当である。
【0014】
次に測定された心拍信号を上記基準値を用いて補正する補正方法について説明する。まず本来の心拍信号の間にノイズが入った場合のような誤報については、図3に示すように、測定した心拍信号の間隔データが基準値のA%より小さい場合には異常と判定して、今回得られた立ち上がりエッジをキャンセルして検出されなかったものとする。また前回の立ち上がりエッジに関しても間隔データとして正常であると判定はされているが、微妙な前後へのシフトの可能性があるのでキャンセルし前々回の立ち上がりエッジを信頼できる最後のエッジと設定し次の処理を行う。
【0015】
次に本来の心拍信号が欠損している場合のような失報については、図4に示すように、測定した心拍信号の間隔データが基準値のB%より大きい場合、今回と前回の立ち上がりのエッジの間に検出されるべき信号が検出されなかったとして、次に述べる信号の補完を行う。
【0016】
図5に補完ルーチンを示す。ステップ502において、その間に複数の検出されてない信号を含むと考えられる間隔データを基準値で除す。得られた答についてはステップ503及びステップ504において四捨五入などの適切な方法で整数化したのち1を引く。こうして得られた値を補完すべき信号の数とし、その本数の補完エッジ(心拍信号)を間隔データ内に配置するのであるが、この配置にあたってはこれらが等間隔となるようにする。
【0017】
上記補正にあたっての閾値A,Bの値としては、A=80%〜60%、B=125%〜150%の値を好適に用いることができるが、これらの値にしても、この補正方法が実装されるシステムに依存するので一概に決めることはできない。例えばだんだん心拍間隔が広くなることが予測されるシステム(例えば眠りを誘うようなシステム)においてはBの値を大きめに、Aの値を小さめに設定するべきであり、またこのようにシステムの特性を加味することによってより精度の高い補正を行うことができる。
【0018】
上記誤報と失報とに対する補正は、組み合わせて実行することが好ましいのはもちろんであり、この場合のフローを図6に示す。誤報に対する補正の後に、失報に対する補正を行う。基準値と比較して短すぎる間隔データをキャンセルして間隔の広すぎる間隔データとして扱って補完を行うということができて、アルゴリズムの単純化及び高速化を期待することができる。
【0019】
以上のシステムは説明の一例としてリアルタイム処理系を示したが、それに限定するものではなくバッチ処理系にも応用することができる。
【0020】
【発明の効果】
以上のように心拍信号検査用基準値の導出は、ばらつき範囲を設定しているために、短時間でより正確な基準値を導出することができる。そして本発明の心拍信号補正方法においては、基準値の所定%以下の間隔の信号はキャンセルし、基準値の所定%以上の間隔の信号についてはその間に基準値から導いた補完のための信号を挿入するにあたり、正確な基準値を用いるために、より正確な補正を行うことができるものである。特に基準値と比較して短すぎる間隔データは修正するのではなくキャンセルして間隔の広すぎる間隔データとして扱って補完を行うことにより、アルゴリズムの単純化及び高速化を期待することができる。
【0021】
また、信号の挿入による補完に際し、信号を挿入することによってできるそれぞれの間隔が基準値に最も近くなるような本数及び位置に配置することで、実際の心拍信号により近い信号の補完を行うことができる。
【図面の簡単な説明】
【図1】本発明における基準値導出に関するフローチャートである。
【図2】同上のシステム構成図である。
【図3】誤報に対する補正に関するフローチャートである。
【図4】失報に対する補正に関するフローチャートである。
【図5】補完補正についてのフローチャートである。
【図6】補正に関するフローチャートである。
【符号の説明】
1 被験者
2 ピックアップ
3 検出回路
4 二値化回路
5 CPU
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for correcting a heartbeat signal using a reference value of a measured heartbeat signal.
[0002]
[Prior art]
When measuring a heartbeat signal and using the heartbeat information, there are many cases where only inaccurate information can be obtained due to electrical noise, movement of the subject, or the like. For this reason, it is necessary to check whether noise is included in the measured heartbeat signal, but conventionally, it was measured using upper and lower limits that are reasonable as human heartbeat intervals. He is only checking the validity of the heart rate signal.
[0003]
Also, if a continuous heartbeat signal is required, even though the measured heartbeat signal is apparently noisy or missing, for example, a correction to remove noise from the measured heartbeat signal It is necessary to perform correction for compensating for the missing part of the heartbeat signal. As a reference value for the correction at this time, an average value of the heartbeat intervals has been conventionally used.
[0004]
[Problems to be solved by the invention]
However, it is difficult to say that an accurate inspection is performed in a system with a lot of noise only by checking the validity using the upper limit value and the lower limit value. Also, the correction of the heartbeat signal cannot cope with the case where noise is accidentally mixed in at a timing satisfying the condition of the human heartbeat interval. In addition, there is a possibility that inaccurate information may be mixed in the creation of the reference value, and correction based on such a reference value will result in an inaccurate heartbeat signal after correction. Would.
[0005]
The present invention has been made in view of such a point, and a purpose thereof is to appropriately correct a heartbeat signal using a reference value derived as an appropriate value as a reference value for a heartbeat signal test. The present invention provides a heartbeat signal correction method.
[0006]
[Means for Solving the Problems]
Therefore, the present invention is characterized in that the average value of the heartbeat signal intervals when the heartbeat signals whose intervals vary within a predetermined percentage or less are continuously measured a predetermined number of times or more is used as a reference value for a heartbeat signal test. are doing. By paying attention to the variation of the continuous heartbeat interval, if the variation does not fall within a predetermined range, even if the variation is within a range appropriate for the human heartbeat interval, the cancellation is performed so that the variation is not reflected in the reference value.
[0007]
The heartbeat signal correcting method according to the present invention has a first feature in that, of the measured heartbeat signals, signals at intervals of less than or equal to a predetermined% of the reference value are canceled. The second feature is that a signal for complementation is inserted between signals at intervals equal to or greater than a predetermined value of the reference value obtained by the above derivation method.
[0008]
Of course, it is preferable to perform both of the above-described correction methods together. In this case, signals at intervals of less than a predetermined% of the reference value are canceled, and signals at intervals of more than a predetermined% of the reference value are complemented between them. Signal is inserted.
[0009]
At the time of signal insertion, it is preferable to arrange the signals in such a number and position that the respective intervals formed by inserting the signals are closest to the reference value.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. FIG. 2 shows an example of a system configuration for implementing a reference value derivation method and a heartbeat signal correction method. A physical change due to a heartbeat detected by the pickup 2 from the subject 1 is converted into an electric signal by the detection circuit 3, converted into a digital signal by the binarization circuit 4, and then input to the microcomputer (CPU) 5. . The derivation method and the correction method are implemented by a method suitable for the CPU 5, and specific operations are performed in the CPU 5. Hereinafter, the derivation method and the correction method will be described assuming this system. It is assumed that the above system has a configuration of a system and a control program that recognizes a rising edge of a signal as a heartbeat.
[0011]
First, as to the derivation of the reference value, as shown in FIG. 1, the data detected in step 202 is used as interval data in step 203. Next, at step 204, the validity of the interval data is checked. This is to check whether the human heartbeat interval is normal, and as described in the conventional example, the upper limit value (H-limit msec) and the lower limit value (L-limit msec) of the human heartbeat interval. Check if it fits between. It is considered that these two values slightly change depending on the use of the system, the state of the subject of the system, and the like.
[0012]
If it is determined in step 204 that there is an abnormality, the accumulated number of detections is canceled and the next interval data is waited. If it is normal, it is checked in step 206 whether the variation of the interval is within ± R%. If the same person is in the same state, the range of variation of the heartbeat interval must be much narrower than the normal range inspected in step 204, and a continuous signal having large variation is determined to be noise. can do. The threshold value R here also depends on the subject and the system and cannot be unconditionally determined, but a value of 20 to 30% can be suitably used.
[0013]
When it is determined in step 206 that there is an abnormality, the processing is performed in the same manner as in step 204 described above, and if it is normal, 1 is added to the number of detected data (step 207). By repeating the above process, when X consecutive normal interval data are detected, an average value thereof is obtained and set as a reference value. Regarding X at this time, if it is too small, the reliability of the value will be low, and if it is too large, it will take too much time to obtain the reference value. Therefore, about 3 to 10, preferably about 5 is appropriate.
[0014]
Next, a correction method for correcting the measured heartbeat signal using the reference value will be described. First, as for a false alarm such as a case where noise enters the original heartbeat signal, as shown in FIG. 3, if the measured interval data of the heartbeat signal is smaller than A% of the reference value, it is determined to be abnormal. It is assumed that the rising edge obtained this time is canceled and is not detected. It is also determined that the previous rising edge is normal as the interval data, but there is a possibility of a slight shift back and forth, so cancel and set the rising edge two times before as the last reliable edge and set the next edge. Perform processing.
[0015]
Next, as shown in FIG. 4, when a measured heartbeat signal interval data is greater than B% of the reference value, a false alarm such as a case where the original heartbeat signal is lost is obtained. Assuming that a signal to be detected during the edge has not been detected, the following signal is complemented.
[0016]
FIG. 5 shows a supplementary routine. In step 502, interval data that is considered to include a plurality of undetected signals in between is divided by a reference value. The obtained answer is converted into an integer by an appropriate method such as rounding in steps 503 and 504, and then 1 is subtracted. The value thus obtained is used as the number of signals to be complemented, and the number of complementary edges (heartbeat signals) is arranged in the interval data. In this arrangement, these are arranged at regular intervals.
[0017]
As the values of the threshold values A and B for the above correction, values of A = 80% to 60% and B = 125% to 150% can be suitably used. Since it depends on the system to be implemented, it cannot be decided unconditionally. For example, in a system in which the heartbeat interval is expected to gradually widen (for example, a system that induces sleep), the value of B should be set to be large and the value of A should be set to be small. Is added, more accurate correction can be performed.
[0018]
It is, of course, preferable that the correction for the false report and the unreport is preferably performed in combination, and the flow in this case is shown in FIG. After the correction for the false report, the correction for the unreport is performed. It is possible to cancel interval data that is too short compared to the reference value and treat the data as interval data having an interval that is too wide to perform complementation, and it is possible to expect simplification and speeding up of the algorithm.
[0019]
Although the above system has been described as a real-time processing system as an example of the description, the present invention is not limited to the real-time processing system but can be applied to a batch processing system.
[0020]
【The invention's effect】
As described above, in deriving the reference value for the heartbeat signal inspection, since a variation range is set, a more accurate reference value can be derived in a short time. In the heartbeat signal correction method of the present invention, signals at intervals of less than a predetermined percentage of the reference value are canceled, and signals for intervals of at least a predetermined percentage of the reference value are replaced with signals for interpolation derived from the reference value. In the insertion, more accurate correction can be performed in order to use an accurate reference value. In particular, simplification and speeding-up of the algorithm can be expected by canceling the interval data that is too short compared with the reference value, and performing interpolation by treating the data as interval data having an interval that is too wide instead of correcting it.
[0021]
In addition, at the time of complementation by inserting a signal, by arranging the number and position such that each interval created by inserting the signal is closest to the reference value, it is possible to complement a signal closer to the actual heartbeat signal. it can.
[Brief description of the drawings]
FIG. 1 is a flowchart relating to derivation of a reference value in the present invention.
FIG. 2 is a system configuration diagram of the above system.
FIG. 3 is a flowchart relating to correction for a false report.
FIG. 4 is a flowchart relating to correction for unreported information.
FIG. 5 is a flowchart for complementary correction.
FIG. 6 is a flowchart relating to correction.
[Explanation of symbols]
1 subject 2 pickup 3 detection circuit 4 binarization circuit 5 CPU

Claims (4)

間隔のばらつきが所定%以内である心拍信号が所定回数以上連続して測定された時の心拍信号間隔の平均値を心拍信号検査用の基準値とし、測定された心拍信号のうち、この基準値の所定%以下の間隔の信号はキャンセルすることを特徴とする心拍信号補正方法。The average value of the heartbeat signal intervals when the heartbeat signals whose variation in the interval is within a predetermined percentage is continuously measured a predetermined number of times or more is set as a reference value for a heartbeat signal test. A signal at an interval equal to or less than a predetermined% of the signal is canceled. 間隔のばらつきが所定%以内である心拍信号が所定回数以上連続して測定された時の心拍信号間隔の平均値を心拍信号検査用の基準値とし、測定された心拍信号のうち、基準値の所定%以上の間隔の信号についてはその間に補完のための信号を挿入することを特徴とする心拍信号補正方法。The average value of the heartbeat signal intervals when the heartbeat signal whose variation in the interval is within a predetermined percentage is continuously measured a predetermined number of times or more is set as a reference value for a heartbeat signal test. A method for correcting a heartbeat signal, wherein a signal for complementation is inserted between signals at a predetermined interval or more. 間隔のばらつきが所定%以内である心拍信号が所定回数以上連続して測定された時の心拍信号間隔の平均値を心拍信号検査用の基準値とし、測定された心拍信号のうち、基準値の所定%以下の間隔の信号はキャンセルし、次いで基準値の所定%以上の間隔の信号についてはその間に補完のための信号を挿入することを特徴とする心拍信号補正方法。The average value of the heartbeat signal intervals when the heartbeat signal whose variation in the interval is within a predetermined percentage is continuously measured a predetermined number of times or more is set as a reference value for a heartbeat signal test. A heartbeat signal correction method comprising: canceling a signal having an interval equal to or less than a predetermined%, and inserting a signal for complementation between signals having an interval equal to or more than a predetermined% of the reference value. 信号の挿入にあたり、信号を挿入することによってできるそれぞれの間隔が基準値に最も近くなるような本数及び位置に配置することを特徴とする請求項2または3記載の心拍信号補正方法。4. The heartbeat signal correcting method according to claim 2, wherein the signal is inserted at a number and at a position such that each interval formed by inserting the signal is closest to the reference value.
JP2003178559A 2003-06-23 2003-06-23 Heart rate signal correction method Expired - Fee Related JP3726825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178559A JP3726825B2 (en) 2003-06-23 2003-06-23 Heart rate signal correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178559A JP3726825B2 (en) 2003-06-23 2003-06-23 Heart rate signal correction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33724695A Division JP3460419B2 (en) 1995-12-25 1995-12-25 Derivation of reference value for heart rate signal test

Publications (2)

Publication Number Publication Date
JP2004000660A true JP2004000660A (en) 2004-01-08
JP3726825B2 JP3726825B2 (en) 2005-12-14

Family

ID=30438370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178559A Expired - Fee Related JP3726825B2 (en) 2003-06-23 2003-06-23 Heart rate signal correction method

Country Status (1)

Country Link
JP (1) JP3726825B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119585A (en) * 2008-11-19 2010-06-03 Fujitsu Ltd Program, apparatus and method for calculating pulse rate and mobile terminal device
JP2015212698A (en) * 2012-01-04 2015-11-26 ナイキ イノベイト セー. フェー. Athletic watch
US9785121B2 (en) 2009-04-26 2017-10-10 Nike, Inc. Athletic watch
US10429204B2 (en) 2009-04-26 2019-10-01 Nike, Inc. GPS features and functionality in an athletic watch system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119585A (en) * 2008-11-19 2010-06-03 Fujitsu Ltd Program, apparatus and method for calculating pulse rate and mobile terminal device
US9785121B2 (en) 2009-04-26 2017-10-10 Nike, Inc. Athletic watch
US9864342B2 (en) 2009-04-26 2018-01-09 Nike, Inc. Athletic watch
US9891596B2 (en) 2009-04-26 2018-02-13 Nike, Inc. Athletic watch
US9977405B2 (en) 2009-04-26 2018-05-22 Nike, Inc. Athletic watch
US10429204B2 (en) 2009-04-26 2019-10-01 Nike, Inc. GPS features and functionality in an athletic watch system
US10564002B2 (en) 2009-04-26 2020-02-18 Nike, Inc. GPS features and functionality in an athletic watch system
US10824118B2 (en) 2009-04-26 2020-11-03 Nike, Inc. Athletic watch
US11092459B2 (en) 2009-04-26 2021-08-17 Nike, Inc. GPS features and functionality in an athletic watch system
JP2015212698A (en) * 2012-01-04 2015-11-26 ナイキ イノベイト セー. フェー. Athletic watch

Also Published As

Publication number Publication date
JP3726825B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
US8897864B2 (en) Heart rate meter and method for removing noise of heart beat waveform
EP3576093A1 (en) Method and system for clinical effectiveness evaluation of artificial intelligence based medical device
CN114491383B (en) Abnormal data processing method and system for bridge monitoring
JP3726825B2 (en) Heart rate signal correction method
JP3460419B2 (en) Derivation of reference value for heart rate signal test
TW200930049A (en) Horizontal synchronization detection device
CN107510462B (en) Blood oxygen measuring method and device
JP2002214185A (en) Detecting method and detecting device for sensor abnormality
CN111724386B (en) Data preprocessing method and system for multi-frequency imaging and multi-frequency imaging system
US9826937B2 (en) Method and apparatus for reducing motion artifacts in ECG signals
JP7079433B2 (en) Detection of chromosomal abnormalities
CN110403593B (en) Heart rate detection method
CN111407275B (en) Method and device for monitoring skin condition in cupping device
WO2024018697A1 (en) Heart rate detection system, heart rate detection method, and program
CN117213532B (en) Multifunctional microfluidic flexible sensor
US11402832B2 (en) Determining device, determining method, and recording medium having determining program recorded thereon
JPH06154342A (en) Pace maker pulse detecting circuit
CN113768499B (en) Blood oxygen saturation detection device, system and storage medium
JP4797831B2 (en) Signal processing apparatus and signal processing method
JP3861848B2 (en) Abnormal sound inspection method
JP2020056583A (en) Vehicle speed sensor failure detection device
JP2003234639A (en) Data processing method and data processor
JP2023167964A (en) Signal processing device and signal processing method
JP2001349940A (en) Pulse sound detecting system
JPH1091355A (en) Input signal read-in device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees