JP2003328989A - Impeller manufacturing method - Google Patents

Impeller manufacturing method

Info

Publication number
JP2003328989A
JP2003328989A JP2002140914A JP2002140914A JP2003328989A JP 2003328989 A JP2003328989 A JP 2003328989A JP 2002140914 A JP2002140914 A JP 2002140914A JP 2002140914 A JP2002140914 A JP 2002140914A JP 2003328989 A JP2003328989 A JP 2003328989A
Authority
JP
Japan
Prior art keywords
blade
shroud
impeller
manufacturing
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002140914A
Other languages
Japanese (ja)
Inventor
Munetoshi Zen
宗利 善
Toshio Hattori
敏雄 服部
Hiromi Kobayashi
博美 小林
Kenji Yaegashi
賢司 八重樫
Hiroshi Yamazaki
浩志 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2002140914A priority Critical patent/JP2003328989A/en
Publication of JP2003328989A publication Critical patent/JP2003328989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impeller having high reliability as an effective means for relaxing stress concentration wherein man-hours of machining is reduced to a half, and stress concentration is relatively easily relaxed at a low cost in comparison with R-part forming by fillet weld and grinder finish without limitation of plate thickness and tilting of blades. <P>SOLUTION: A plating layer is provided in both of a combination of a unit of a blade and an upper shroud with a lower flat shroud and a combination of a unit of a blade and a lower shroud with a flat upper shroud. The upper shroud or the lower shroud provided with a groove having an R-part in both sides thereof are made to abut on each other, and surface roughness of bonding surfaces is set at 3 μm or less, and bonding and diffusion processing of the bonding surfaces are continuously performed in a vacuum furnace, and thereafter, quenching and tempering are performed to manufacture the impeller. Since the groove having the R-part is provided in both sides of the blade, stress concentration to a blade fitting part is relaxed to improve the fatigue strength, and the impeller restricted in thermal deformation thereof due to the welding structure is manufactured at a low cost. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はポンプ、遠心圧縮機
及び送風機の羽根車、あるいはターボ羽根車の製作に拡
散接合が適用された羽根車の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an impeller of a pump, a centrifugal compressor and a blower, or an impeller to which diffusion bonding is applied for manufacturing a turbo impeller.

【0002】[0002]

【従来の技術】圧縮機用羽根車等の狭間隙の空間を必要
とする構造物を製作する方法として精密鋳造法による一
体製作や、放電加工により狭間隙部分を除去する方法、
固相拡散接合による方法等があるが、表面粗さが粗い、
コストが高い、多大な時間を要するなど問題が多いこと
から、溶接により組立製造する方法が従来行われてい
る。
2. Description of the Related Art As a method of manufacturing a structure requiring a space with a narrow gap such as an impeller for a compressor, integral manufacturing by a precision casting method or a method of removing a narrow gap portion by electric discharge machining,
There are methods such as solid phase diffusion bonding, but the surface roughness is rough.
Since there are many problems such as high cost and a lot of time, a method of assembling and manufacturing by welding has been conventionally used.

【0003】低融点接合材料を介在させた接合部に圧縮
力を付与しながら加熱することにより冶金的に接合する
拡散接合方法は、母材の溶融に伴う従来の溶接方法に比
べて熱変形や化学組識変化が少ないという優れた特徴を
有する。拡散接合には、被接合材の端面を、低融点接合
材料の有無によらず固相状態で突き合わせて接合を行う
固相拡散接合方法と低融点接合材料の利用により被接合
材の間に液相を介在させて接合を行う液相拡散接合方法
の2通りがある。固相拡散接合方法が、高真空中で長時
間を要するに比べて液相拡散接合方法は、接合に要する
時間を飛躍的に短縮できる特徴を有する。このような液
相拡散接合方法の特徴を生かした羽根車の製造方法が、
特開平5−202701号公報、特開平6−27269
6号公報に開示されている。
The diffusion bonding method of metallurgically bonding by heating while applying a compressive force to a bonding portion with a low melting point bonding material interposed therein causes thermal deformation or deformation as compared with a conventional welding method accompanying melting of a base material. It has an excellent feature that there is little change in chemical organization. Diffusion bonding uses a solid phase diffusion bonding method in which the end faces of the materials to be joined are butt-joined in the solid state regardless of the presence or absence of the low melting point bonding material and the low melting point bonding material is used to form a liquid between the materials to be bonded. There are two types of liquid-phase diffusion bonding methods in which bonding is performed with a phase interposed. Compared with the solid-phase diffusion bonding method which requires a long time in a high vacuum, the liquid-phase diffusion bonding method has a feature that the time required for bonding can be dramatically shortened. A method for manufacturing an impeller that makes use of the characteristics of such a liquid phase diffusion bonding method,
JP-A-5-202701, JP-A-6-27269
No. 6 publication.

【0004】特開平5−202701号公報には、接合
面の周囲を囲んで連続した突起を羽根に設けて羽根と平
板との互いの接合面を当接し先ず上記突起に対して真空
拡散溶接を行い次に高温静水圧中において残余の凹部に
対して拡散接合を行う接合方法において、さらに真空中
で上記接合面のコーナ部にろう付けによりフィレットを
形成することを特徴とする接合方法が記載されている。
特開平6−272696号公報には、羽根車の羽根接合
面及びその周辺にメッキ厚さ3μmの無電解Ni−Pメ
ッキ(Pの濃度:9〜10%)による部分メッキ層を施
し、両部材の羽根接合面同士を突き合わせることが記載
されている。
In Japanese Unexamined Patent Publication (Kokai) No. 5-202701, continuous protrusions are provided on the blade so as to surround the joint surface, and the joint surfaces of the blade and the flat plate are brought into contact with each other. Then, a joining method in which diffusion joining is performed on the remaining recesses under high temperature and hydrostatic pressure, and a joining method characterized by further forming a fillet by brazing at the corner portion of the joining surface in a vacuum is described. ing.
In Japanese Unexamined Patent Publication No. 6-272696, a partial plating layer by electroless Ni-P plating (P concentration: 9 to 10%) with a plating thickness of 3 μm is applied to the blade joining surface of the impeller and its periphery, and both members are provided. It is described that the blade joining surfaces of the above are abutted with each other.

【0005】[0005]

【発明が解決しようとする課題】羽根の中央部で接合し
た場合を除きこれらの方法で接合を行った場合、応力集
中部である羽根付け根部には滑らかなR形状がなく、疲
労強度の低下を生じる。羽根付け根部のR形状は、特開
平5−202701号公報に記載するようなろう材によ
る方法ではほとんど効果のないことを実験的に経験して
いる。
When the joining is carried out by these methods except when the joining is made at the central portion of the blade, the blade root portion which is the stress concentration portion does not have a smooth R shape and the fatigue strength is lowered. Cause It has been experimentally experienced that the R shape of the blade root has almost no effect by the method using a brazing material as described in JP-A-5-202701.

【0006】本発明の課題は、図8のように従来の拡散
接合による羽根車の製造方法によれば、上シュラウド部
2と羽根部3が一体となった部材と下シュラウド部4と
羽根部3が一体となった部材とを接合する方法では、機
械加工の増加による高コストのために有効ではない。ま
た、拡散接合の加圧力は、14.7〜29.4MPaと
液相拡散接合に比べて2〜5倍の加圧力を必要とするた
め、羽根の板厚、傾斜等に制約が多い。また、現行の羽
根と上シュラウドとの結合個所部をMIGまたはTIG
溶接を用いてすみ肉溶接を行った場合も止端部のみのグ
ラインダ仕上げは必要である。羽根をシュラウドなどの
主板に直接的に液相拡散接合する方法にあっては、接合
面において応力集中するという問題がある。
According to the conventional method for manufacturing an impeller by diffusion bonding, as shown in FIG. 8, a member in which the upper shroud portion 2 and the blade portion 3 are integrated, the lower shroud portion 4, and the blade portion are provided. The method of joining the member in which 3 is integrated is not effective because of high cost due to increased machining. Further, the pressure applied in the diffusion bonding is 14.7 to 29.4 MPa, which is 2 to 5 times the pressure applied in the liquid phase diffusion bonding, so that there are many restrictions on the blade thickness, inclination, and the like. In addition, the connection part between the existing blade and the upper shroud is MIG or TIG.
Even when fillet welding is performed using welding, it is necessary to finish the grinder only at the toe. In the method of directly liquid phase diffusion bonding the blade to the main plate such as the shroud, there is a problem that stress concentrates on the bonding surface.

【0007】本発明は、応力集中を緩和する有効な手段
であり、機械加工の半減、すみ肉溶接とグラインダ仕上
げと比較して簡易に低コストで応力集中を緩和できる高
信頼性の羽根車の製作方法を提供することを目的とす
る。
The present invention is an effective means for alleviating stress concentration, and is a highly reliable impeller that can reduce stress concentration easily and at low cost as compared with machining by half and fillet welding and grinder finishing. The purpose is to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】本発明は、上述した目的
を解決するため、羽根と上シュラウドの一体化したもの
と平面な下シュラウドの組合せ、あるいは羽根と下シュ
ラウドの一体化したものと平面な上シュラウドの組合せ
で形成される接合面の両者にメッキ層を設ける。このた
めに、R部を有する溝を両側に設けて空出部を形成して
メッキ層を形成する。上シュラウドあるいは下シュラウ
ドの接合面の面粗さを3μm以下(0.5〜3.0μ
m)とし、接合と接合面の拡散処理を前記真空炉中で一
貫して行い、その後、焼入れ処理、焼戻し処理すること
を特徴とする羽根車の製造方法を提供する。R部を有す
る溝を羽根の両側に設けたことにより、羽根付け根部の
応力集中が緩和され(応用集中緩和溝の形成)、疲労強
度が向上し、溶接構造による熱変形の少ない低コストの
羽根車の製造が可能となる。
In order to solve the above-mentioned object, the present invention provides a combination of a blade and an upper shroud integrated with a flat lower shroud, or a combination of the blade and the lower shroud with a flat surface. A plating layer is provided on both of the joint surfaces formed by combining the upper shrouds. For this purpose, a groove having an R portion is provided on both sides to form a void portion to form a plating layer. The surface roughness of the joint surface of the upper shroud or the lower shroud is 3 μm or less (0.5 to 3.0 μm).
m), a method for manufacturing an impeller is provided, wherein the joining and the diffusion process of the joining surface are consistently performed in the vacuum furnace, and then the quenching process and the tempering process are performed. By providing grooves with R portions on both sides of the blade, stress concentration at the blade root is relaxed (formation of concentrated concentration relaxation groove), fatigue strength is improved, and low-cost blade with less thermal deformation due to the welded structure. Cars can be manufactured.

【0009】接合面の両面に1.5μm(0.5〜1.
5μm厚)のメッキ層を設け、接合面の面粗さを3μm
以下(0.5〜3.0μm)にするとともに接合と拡散
処理を真空中で行うことにより、未溶着欠陥のない健全
な接合構造が得られる。
1.5 μm (0.5 to 1.
5 μm thick) plating layer and the surface roughness of the joint surface is 3 μm
By setting the thickness to the following (0.5 to 3.0 μm) and performing the bonding and the diffusion treatment in a vacuum, a sound bonding structure without unwelded defects can be obtained.

【0010】メッキ層は、羽根車の材料である市販の析
出硬化型ステンレス鋼であるSUS630あるいはSC
M430の真空熱処理温度と同等の温度材料として、N
i−P系のメッキ材を使用することにより、接合と拡散
処理によって接合面はメッキ層を介して一体化される。
The plating layer is a commercially available precipitation hardening stainless steel, SUS630 or SC, which is a material for the impeller.
As a temperature material equivalent to the vacuum heat treatment temperature of M430, N
By using the iP plating material, the bonding surface is integrated through the plating layer by bonding and diffusion treatment.

【0011】[0011]

【発明の実施の形態】以下、本発明の羽根車の製造方法
を詳細に説明する。図1の、図1(a)、図1(b)に
示すように、羽根車1は、中心部に開口部を有する円形
状の下シュラウド4および、一定の曲線を描きつつ前記
下シュラウド4の中心部から外周部へ放射状に複数枚取
付けられた羽根3、中心部に開口部を有する円形状の上
シュラウド2からなる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for manufacturing an impeller of the present invention will be described in detail below. As shown in FIGS. 1 (a) and 1 (b) of FIG. 1, an impeller 1 includes a circular lower shroud 4 having an opening at its center and the lower shroud 4 while drawing a constant curve. A plurality of blades 3 are attached radially from the central portion to the outer peripheral portion, and a circular upper shroud 2 having an opening in the central portion.

【0012】図2の、図2(a)、図2(b)に示すよ
うに、羽根車1の製造方法は、市販の析出硬化型ステン
レス鋼であるSUS630あるいはSCM430の材料
を使用し、中心部に開口部を有する円形状の下シュラウ
ド4は複数枚の羽根3を有しており、図5に示すR部を
有する溝10、10Aを羽根3の両側に設けた下シュラ
ウド4の羽根3のメッキ層5と上シュラウド部2に後述
のように形成したメッキ層50とを突き合わせ、真空中
で加圧する。
As shown in FIGS. 2 (a) and 2 (b), the manufacturing method of the impeller 1 uses a material of commercially available precipitation hardening stainless steel SUS630 or SCM430, and A circular lower shroud 4 having an opening in a portion has a plurality of blades 3, and the blades 3 of the lower shroud 4 in which grooves 10 and 10A having an R portion shown in FIG. The plating layer 5 and the plating layer 50 formed on the upper shroud portion 2 as described below are butted against each other and pressed in vacuum.

【0013】上下シュラウド2、4と羽根3の接合方法
は、図2に示すように、(a)上シュラウド2と、羽根
3と下シュラウド4を一体成形した部材とを両側に施し
たメッキ層5、50を介して液相拡散接合するもの、
(b)下シュラウド4と、羽根3と下シュラウド4を一
体成形した部材とを両側に施したメッキ層5、50を介
して液相拡散接合するものがある。
As shown in FIG. 2, the method of joining the upper and lower shrouds 2 and 4 to the blade 3 is as follows. Liquid-phase diffusion bonding through 5, 50,
(B) There is one in which the lower shroud 4 and a member formed by integrally forming the blade 3 and the lower shroud 4 are liquid-phase diffusion bonded via the plated layers 5 and 50 provided on both sides.

【0014】図3は、液相拡散接合による羽根車1の接
合状況を示している。図2(a)の場合、羽根車1の液
相拡散接合は、真空加熱加圧装置6の中で下シュラウド
4と羽根3が一体化したものとメッキ層5を介し、R部
を有する溝10を羽根3の両側に設けた上シュラウド2
を重ね合せ、加圧装置8により、9.8MPa以下の低
圧力で加圧するとともに炉内は規定の真空雰囲気に保た
れながら接合される。図2(b)の場合も同様である。
図2(b)に示す場合は、図5に示すステップで接合さ
れるが、その方法は図4に示す場合と同じであり、説明
は繰り返さないが、当然に2つの溝10、10Aは上シ
ュラウドに形成される。
FIG. 3 shows how the impeller 1 is joined by liquid phase diffusion joining. In the case of FIG. 2 (a), the liquid phase diffusion bonding of the impeller 1 is a groove having an R portion with the lower shroud 4 and the blade 3 integrated in the vacuum heating / pressurizing device 6 and the plating layer 5. Upper shroud 2 provided with 10 on both sides of blade 3
Are superposed on each other and pressurized by a pressure device 8 at a low pressure of 9.8 MPa or less, and the inside of the furnace is bonded while being kept in a prescribed vacuum atmosphere. The same applies to the case of FIG.
In the case shown in FIG. 2B, the joining is performed in the steps shown in FIG. 5, but the method is the same as the case shown in FIG. 4, and the description will not be repeated. Formed in a shroud.

【0015】図4は、羽根3と上シュラウド2の一体化
した羽根3に施したメッキ層5と、下シュラウド4にR
部を有する円弧状の2つの溝10、10Aによって形成
された羽根上の突起部21に施したメッキ層50とを重
ね合せ、真空中で9.8MPa以下の低圧力で加圧する
ことを特徴とした羽根車の製造方法を示している。図示
のように突起部21は上シュラウドの羽根側の側板側部
に離間した2つの円弧状の2つの溝10、10Aによっ
て形成される。羽根3の付け根部はR部11とされる。
図4(a)、(b)のステップを経て、図4(c)に示
すように液相拡散接合させ、拡散部51が形成される。
羽根車1は、回転体であり、回転数が高くなるに従い、
遠心応力と振動応力の重畳された大きな応力を受けるた
め、応力集中部である羽根付け根部には、溶接止端形状
を滑らかなR形状に形成することが不可欠である。
In FIG. 4, the plating layer 5 applied to the blade 3 in which the blade 3 and the upper shroud 2 are integrated, and the lower shroud 4 are R-shaped.
Characterized in that it is superposed with the plating layer 50 formed on the projection 21 on the blade formed by the two arc-shaped grooves 10 and 10A having a portion, and is pressed at a low pressure of 9.8 MPa or less in vacuum. It shows a method of manufacturing the impeller. As shown in the figure, the projection 21 is formed by two arcuate grooves 10 and 10A spaced apart from each other on the side plate side of the upper shroud on the blade side. The root portion of the blade 3 is an R portion 11.
Through the steps of FIGS. 4A and 4B, liquid phase diffusion bonding is performed as shown in FIG. 4C to form the diffusion portion 51.
The impeller 1 is a rotating body, and as the rotation speed increases,
Since a large combined stress of centrifugal stress and vibration stress is received, it is indispensable to form the weld toe shape into a smooth R shape at the blade root portion, which is a stress concentration portion.

【0016】図8に示す従来特許の拡散接合の場合、拡
散層51を形成するに当って、上シュラウド2と羽根部
3Aが一体となった部材と、下シュラウド4と羽根部3
Bが一体となった部材とを加工するには、すべて機械加
工で切削するため、材料費の無駄、加工費の増加による
コストアップがネックとなっていた。
In the case of the diffusion bonding of the conventional patent shown in FIG. 8, in forming the diffusion layer 51, a member in which the upper shroud 2 and the blade portion 3A are integrated, the lower shroud 4, and the blade portion 3 are formed.
In order to process the member in which B is integrated, all of the cutting is performed by machining, so that the material cost is wasted and the cost increase due to an increase in the processing cost is a bottleneck.

【0017】本発明は、この点に鑑み、上シュラウド2
と羽根3とがR部11をもつ一体形状の上シュラウド2
のメッキ層5とし、下シュラウド4のR部を有する溝1
0、10Aによって形成した突起部21に施したメッキ
50とを重ね合せ、9.8MPa以下の低圧力で加圧、
接合するものである。下シュラウド4の両側に設けられ
た応力集中を緩和する溝10、10AのR径、深さは、
下シュラウド4の板厚によって決定される。応力緩和の
ために、溝10、10Aの深さは、下シュラウド4の板
厚の1/3から1/4程度に設定することができる。
In view of this point, the present invention is directed to the upper shroud 2
Upper shroud 2 in which the blade and the blade 3 have an R portion 11
Groove 1 having the R part of the lower shroud 4 as the plating layer 5 of
0 and 10A, and the plating 50 applied to the protrusions 21 are overlapped and pressed at a low pressure of 9.8 MPa or less,
It is to join. The R diameter and depth of the grooves 10, 10A provided on both sides of the lower shroud 4 for relaxing stress concentration are
It is determined by the thickness of the lower shroud 4. In order to relax the stress, the depth of the grooves 10 and 10A can be set to about 1/3 to 1/4 of the plate thickness of the lower shroud 4.

【0018】羽根車1は、上下シュラウド2、4の間に
羽根3が放射状に複数枚設置されている剛性体であるた
め、板厚の1/3から1/4程度応力緩和のために溝1
0、10Aを設けても強度が低下することはない。溝1
0、10Aを下シュラウド4の両側に設けた場合、ちな
みに、下シュラウドの板厚が10mmの時、両側に設け
られた溝10、10AはR3程度で十分であり、その加
工による材料費、加工費のコスト低減は、図8に示す、
従来の拡散接合の上下シュラウド全面を機械加工により
切削することと比較した場合低コスト化は歴然である。
Since the impeller 1 is a rigid body in which a plurality of blades 3 are radially installed between the upper and lower shrouds 2 and 4, a groove is provided for stress relaxation about 1/3 to 1/4 of the plate thickness. 1
Even if 0 and 10 A are provided, the strength does not decrease. Groove 1
When 0 and 10A are provided on both sides of the lower shroud 4, by the way, when the thickness of the lower shroud is 10 mm, it is sufficient that the grooves 10, 10A provided on both sides are about R3. Cost reduction is shown in Fig. 8.
The cost reduction is obvious when compared with the conventional method of cutting the entire surface of the upper and lower shrouds of diffusion bonding by machining.

【0019】図6は、傾斜12を持つ羽根3と上シュラ
ウド2の一体化して施したメッキ層5と、R部を有する
溝10、10Aを両側に設けた下シュラウド4とを図4
に示すと同様にして重ね合せ、9.8MPa以下の低圧
力で加圧、接合されるものである。拡散接合と比較し
て、低圧力のため傾斜12による羽根の倒れ等の変形は
ない。図2(b)に相当する場合は、前述と同様に、突
起部21は上シュラウド2に形成されることになる。
FIG. 6 shows a blade layer 3 having an inclination 12 and an upper shroud 2 which are integrally formed, and a lower shroud 4 having grooves 10 and 10A having R portions on both sides.
In the same manner as shown in (1), they are superposed and pressed and joined at a low pressure of 9.8 MPa or less. Compared to diffusion bonding, there is no deformation such as blade tilt due to the inclination 12 due to the low pressure. In the case corresponding to FIG. 2B, the protrusion 21 is formed on the upper shroud 2 as described above.

【0020】図7は、R部を有する溝10、10Aの設
置例を示す。溝10、10Aは、たとえば、下シュラウ
ド4と羽根3が拡散層51を介して接合されている場
合、その位置は、羽根3と下シュラウド4の接点でなけ
ればならない。つまり、溝10、10Aは羽根3から離
れた位置では応力緩和の効果はないからである。また、
溝10、10Aの形状は、半円形状であり、凹形状は応
力集中が発生するため効果はない。ここでは、円弧状と
称するが、これは応力緩和溝形状であることを指す。
FIG. 7 shows an installation example of the grooves 10 and 10A having an R portion. For example, when the lower shroud 4 and the blade 3 are joined via the diffusion layer 51, the positions of the grooves 10 and 10A must be the contact points between the blade 3 and the lower shroud 4. That is, the grooves 10 and 10A have no stress relaxation effect at a position apart from the blade 3. Also,
The shapes of the grooves 10 and 10A are semicircular, and the concave shape is not effective because stress concentration occurs. Here, it is referred to as an arc shape, but this means that it is a stress relaxation groove shape.

【0021】溝10、10Aの設置は、図7(a)羽根
形状が、円周上に直線あるいは傾斜を持つ2次元羽根形
状の場合、羽根3の両側に沿って板厚の1/3から1/
4程度の深さの半円形状で設置される。図7(b)羽根
形状が、円周上に円弧を持つ3次元羽根形状の場合、羽
根3の両側に沿って板厚の1/3から1/4程度の深さ
の半円形状で設置される。応力緩和するための溝10、
10Aは、(a)羽根を上シュラウドと接合する場合、
(b)及び羽根を下シュラウドと接合する場合は不可欠
である。
The grooves 10, 10A are installed along the both sides of the blade 3 from 1/3 of the plate thickness when the blade shape in FIG. 7 (a) is a two-dimensional blade shape having a straight line or an inclination on the circumference. 1 /
It is installed in a semicircular shape with a depth of about 4. 7 (b) When the blade shape is a three-dimensional blade shape having an arc on the circumference, it is installed along both sides of the blade 3 in a semicircular shape with a depth of about 1/3 to 1/4 of the plate thickness. To be done. Groove 10 for stress relaxation,
10A is (a) when joining the blade to the upper shroud,
It is essential when joining (b) and the vane with the lower shroud.

【0022】メッキ層5、50は、液相拡散接合には不
可欠なもので、上下シュラウド2、4のどちらかに前述
のように応力緩和溝を設けて、メッキ層5、50を介し
て液相拡散接合で接合することにより、収縮率がちいさ
くなり、多機種の羽根車に適応できる製造方法となる。
ちなみに、固相拡散接合は、メッキ層を必要としない
が、収縮率が大きいため羽根厚が大なるもの等、適用機
種は少ない。
The plating layers 5 and 50 are indispensable for liquid phase diffusion bonding, and the stress relaxation groove is provided in either of the upper and lower shrouds 2 and 4 as described above, and the plating layers 5 and 50 are used for the liquid diffusion. By using phase diffusion welding, the shrinkage rate is reduced and the manufacturing method can be applied to many types of impellers.
By the way, solid-phase diffusion bonding does not require a plating layer, but it has a small shrinkage ratio, so the blade thickness is large, and so there are few applicable models.

【0023】図9は、本発明の羽根車の製作方法をフロ
ーチャートで示す。図2に示す羽根車の製作方法の
(b)例では、最初に、羽根と上シュラウド2を一体成
形加工(精度0.5〜3.0μm)、同様に下シュラウド
4を加工(精度0.5〜3.0μm)、次に加工品のメッ
キ加工(0.5〜1.5μm)、続いて液相拡散接合を
行い、焼入れ、焼戻しの熱処理を施して完成となる。
FIG. 9 is a flow chart showing the manufacturing method of the impeller of the present invention. In the example (b) of the manufacturing method of the impeller shown in FIG. 2, first, the blade and the upper shroud 2 are integrally formed (accuracy 0.5 to 3.0 μm), and the lower shroud 4 is similarly processed (accuracy 0. 5 to 3.0 μm), followed by plating of the processed product (0.5 to 1.5 μm), liquid phase diffusion bonding, and heat treatment such as quenching and tempering to complete the process.

【0024】図10は、固相拡散接合と液相拡散接合の
比較図である。図より、液相拡散接合は、加圧力と収縮
率が小さく、羽根車の適応機種の多いことが分かる。図
11は、液相拡散接合に使用されるメッキ材料の化学成
分を示す。本発明で使用されるNi−Pメッキがろう接
温度が低く有利であることが分かる。
FIG. 10 is a comparison diagram of solid phase diffusion bonding and liquid phase diffusion bonding. From the figure, it can be seen that the liquid phase diffusion bonding has a small pressing force and a small shrinkage ratio, and that many impeller models are applicable. FIG. 11 shows the chemical composition of the plating material used for liquid phase diffusion bonding. It can be seen that the Ni-P plating used in the present invention has a low brazing temperature and is advantageous.

【0025】[0025]

【発明の効果】本発明の羽根車の製造方法により、低圧
力による羽根部の倒れ、収縮の変形がなくなり、R部を
有する溝10、10Aの効果による応力集中の緩和によ
る疲労強度の向上により、高信頼性の羽根車を提供でき
る。
According to the method for manufacturing an impeller of the present invention, tilting of the blade portion due to low pressure and deformation of contraction are eliminated, and fatigue strength is improved by relaxing stress concentration due to the effect of the grooves 10, 10A having the R portion. Can provide a highly reliable impeller.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した羽根車の製造方法の概略図。FIG. 1 is a schematic diagram of a method for manufacturing an impeller to which the present invention is applied.

【図2】本発明を適用した液相拡散接合羽根車の製造方
法の概略図。
FIG. 2 is a schematic view of a method for manufacturing a liquid phase diffusion bonding impeller to which the present invention is applied.

【図3】本発明を適用した液相拡散接合真空加熱加圧製
造装置の概略図。
FIG. 3 is a schematic view of a liquid phase diffusion bonding vacuum heating / pressurizing manufacturing apparatus to which the present invention is applied.

【図4】本発明を適用した羽根車の製造方法の概略図。FIG. 4 is a schematic diagram of a method for manufacturing an impeller to which the present invention is applied.

【図5】本発明を適用した羽根車の他の製造方法の概略
図。
FIG. 5 is a schematic view of another manufacturing method of the impeller to which the present invention is applied.

【図6】本発明を適用した羽根車の製造方法の概略図。FIG. 6 is a schematic diagram of a method for manufacturing an impeller to which the present invention is applied.

【図7】本発明を適用した羽根車の製造方法の概略図。FIG. 7 is a schematic diagram of a method for manufacturing an impeller to which the present invention is applied.

【図8】従来技術の羽根車の製造方法説明図。FIG. 8 is an explanatory view of a manufacturing method of a conventional impeller.

【図9】羽根車製造のフローチャートの説明図。FIG. 9 is an explanatory diagram of a flow chart for manufacturing an impeller.

【図10】固相拡散接合と液相拡散接合の条件の比較
図。
FIG. 10 is a comparison diagram of conditions of solid phase diffusion bonding and liquid phase diffusion bonding.

【図11】液相拡散接合に使用する材料の成分とろう接
温度。
FIG. 11: Components of materials used for liquid phase diffusion bonding and brazing temperature.

【符号の説明】[Explanation of symbols]

1…羽根車、2…上シュラウド(第1シュラウド)、3
…羽根、3a…直線あるいは傾斜の2次元羽根形状、3
b…円弧を持つ3次元羽根形状、4…下シュラウド(第
2シュラウド)、5、50…メッキ層、51…拡散層、
6…真空加圧加熱製造装置、7…真空ポンプ、8…加圧
装置、9…加熱装置、10、10A…応力緩和するため
溝、11…R部、12…傾斜。
1 ... Impeller, 2 ... Upper shroud (first shroud), 3
... blades, 3a ... straight or inclined two-dimensional blade shape, 3
b ... Three-dimensional blade shape having an arc, 4 ... Lower shroud (second shroud), 5, 50 ... Plating layer, 51 ... Diffusion layer,
6 ... Vacuum pressurizing and heating manufacturing device, 7 ... Vacuum pump, 8 ... Pressurizing device, 9 ... Heating device, 10 and 10A ... Grooves for stress relaxation, 11 ... R part, 12 ... Inclination.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 博美 東京都足立区中川四丁目13番17号 株式会 社日立インダストリイズ内 (72)発明者 八重樫 賢司 東京都足立区中川四丁目13番17号 株式会 社日立インダストリイズ内 (72)発明者 山崎 浩志 東京都足立区中川四丁目13番17号 株式会 社日立インダストリイズ内 Fターム(参考) 3H033 AA01 BB01 BB06 CC01 DD19 DD25 EE11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiromi Kobayashi             4-13 Nakagawa Adachi-ku, Tokyo Stock Exchange             Inside Hitachi Industries (72) Inventor Kenji Yaegashi             4-13 Nakagawa Adachi-ku, Tokyo Stock Exchange             Inside Hitachi Industries (72) Inventor Hiroshi Yamazaki             4-13 Nakagawa Adachi-ku, Tokyo Stock Exchange             Inside Hitachi Industries F-term (reference) 3H033 AA01 BB01 BB06 CC01 DD19                       DD25 EE11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】上シュラウドと下シュラウドとの間に複数
の羽根を有する羽根車の製作方法において、 上シュラウドの羽根側の側板側部に離間した2つの円弧
状の溝を形成することによって溝間に形成された羽根状
の突起部と、下シュラウドに一体成形した羽根との接合
面に、それぞれあらかじめメッキ層を形成し、核メッキ
層を突き合わせて両接合面について液相拡散接合を行う
ことを特徴とする羽根車の製作方法。
1. A method for manufacturing an impeller having a plurality of blades between an upper shroud and a lower shroud, by forming two arcuate grooves separated from each other on a side plate side portion on the blade side of the upper shroud. Form a plating layer in advance on the joint surface between the blade-shaped protrusion formed between the blade and the blade integrally molded on the lower shroud, and abut the nuclear plating layers to perform liquid phase diffusion bonding on both joint surfaces. A method for manufacturing an impeller characterized by.
【請求項2】上シュラウドと下シュラウドとの間に複数
の羽根を有する羽根車の製作方法において、 下シュラウドの羽根側の側板側部に離間した2つの円弧
状の溝を形成することによって溝間に形成された羽根状
の突起部と、上シュラウドに一体成形した羽根との接合
面に、それぞれあらかじめメッキ層を形成し、核メッキ
層を突き合わせて両接合面について液相拡散接合を行う
ことを特徴とする羽根車の製作方法。
2. A method of manufacturing an impeller having a plurality of blades between an upper shroud and a lower shroud, by forming two arcuate grooves spaced apart from each other on a side plate side of the lower shroud on the blade side. Form a plating layer in advance on the joint surface between the blade-shaped protrusions formed between the blades and the blade integrally molded on the upper shroud, and abut the nuclear plating layers to perform liquid phase diffusion bonding on both joint surfaces. A method for manufacturing an impeller characterized by.
【請求項3】請求項1または2において、接合面を面粗
さ3μm以下(0.5〜3.0μm)に形成し、核接合
面に、あらかじめメッキ層を形成したことを特徴とする
羽根車の製作方法。
3. A blade according to claim 1, wherein the joint surface is formed to have a surface roughness of 3 μm or less (0.5 to 3.0 μm), and a plating layer is previously formed on the nuclear joint surface. How to make a car.
【請求項4】請求項1から3のいずれかにおいて、前記
羽根部は、傾斜していることを特徴とする羽根車の製作
方法。
4. The method for manufacturing an impeller according to claim 1, wherein the blade portion is inclined.
JP2002140914A 2002-05-16 2002-05-16 Impeller manufacturing method Pending JP2003328989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140914A JP2003328989A (en) 2002-05-16 2002-05-16 Impeller manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140914A JP2003328989A (en) 2002-05-16 2002-05-16 Impeller manufacturing method

Publications (1)

Publication Number Publication Date
JP2003328989A true JP2003328989A (en) 2003-11-19

Family

ID=29701641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140914A Pending JP2003328989A (en) 2002-05-16 2002-05-16 Impeller manufacturing method

Country Status (1)

Country Link
JP (1) JP2003328989A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2213881A2 (en) 2009-02-03 2010-08-04 Mitsubishi Heavy Industries, Ltd. Method of manufacturing impeller, impeller, and compressor having impeller
EP2216119A1 (en) 2009-01-27 2010-08-11 Mitsubishi Heavy Industries Manufacturing method of impeller
WO2011145237A1 (en) * 2010-05-17 2011-11-24 三菱重工業株式会社 Process for producing impeller
JP2017129072A (en) * 2016-01-21 2017-07-27 愛三工業株式会社 Fuel supply device
EP4134553A4 (en) * 2020-05-08 2024-05-01 Daikin Ind Ltd Closed impeller and method for producing closed impeller

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2216119A1 (en) 2009-01-27 2010-08-11 Mitsubishi Heavy Industries Manufacturing method of impeller
US8435005B2 (en) 2009-01-27 2013-05-07 Mitsubishi Heavy Industries, Ltd. Manufacturing method of impeller
EP2213881A2 (en) 2009-02-03 2010-08-04 Mitsubishi Heavy Industries, Ltd. Method of manufacturing impeller, impeller, and compressor having impeller
JP2010180721A (en) * 2009-02-03 2010-08-19 Mitsubishi Heavy Ind Ltd Method of manufacturing impeller, and compressor
WO2011145237A1 (en) * 2010-05-17 2011-11-24 三菱重工業株式会社 Process for producing impeller
JP2011241704A (en) * 2010-05-17 2011-12-01 Mitsubishi Heavy Ind Ltd Process for producing impeller
JP2017129072A (en) * 2016-01-21 2017-07-27 愛三工業株式会社 Fuel supply device
WO2017126316A1 (en) * 2016-01-21 2017-07-27 愛三工業株式会社 Fuel supply device
US10544762B2 (en) 2016-01-21 2020-01-28 Aisan Kogyo Kabushiki Kaisha Fuel supply device
CN112145327A (en) * 2016-01-21 2020-12-29 爱三工业株式会社 Fuel supply device
CN112145327B (en) * 2016-01-21 2022-01-14 爱三工业株式会社 Fuel supply device
EP4134553A4 (en) * 2020-05-08 2024-05-01 Daikin Ind Ltd Closed impeller and method for producing closed impeller

Similar Documents

Publication Publication Date Title
JP5780700B2 (en) Welding method of single crystal alloy
JP4126966B2 (en) Bonding structure of main body and lid
US6160237A (en) Friction welding process for mounting blades of a rotor for a flow machine
JP2004308647A (en) Method for manufacturing impeller, and impeller
JP2000301364A (en) Rotation friction agitation joining method of dissimiliar metal material
JPH09206979A (en) Groove for welding joint
KR20160005553A (en) A rotation part of rotary machine and method for manufacturing rotation part of rotary machine
JPH106042A (en) Friction-pressure-welding method for titanium aluminide-made turbine rotor
US9114480B2 (en) Methods for joining a monocrystalline part to a polycrystalline part by means of an adapter piece made of polycrystalline material
US5390413A (en) Bladed disc assembly method by hip diffusion bonding
JP2003328989A (en) Impeller manufacturing method
WO2012063375A1 (en) Method for manufacturing impeller
JP2012057577A (en) Rotor with shaft
JPH0747231B2 (en) Clad pipe joining method
JP2010253534A (en) Member with built-in cooling path and method of manufacturing the same
JP2009275513A (en) Impeller, compressor using impeller and method for manufacturing impeller
CN112317947A (en) Continuous driving friction welding method for aluminum bar and steel bar with outer conical end face
JP2002364588A (en) Impeller and its manufacturing method
JP2004138209A (en) Pulley for continuously variable transmission
JP2005344527A (en) Steam turbine rotor and method for manufacturing the same
JP2008138274A (en) Method for manufacturing sputtering target provided with backing plate
JP2002096182A (en) Bonding method, revolving tool and joining body by friction heating
JP4646737B2 (en) Static pressure gas bearing spindle device
JPH1177338A (en) Friction joining method
US20200009682A1 (en) Method for joining metal sheets and joined structure of metal sheets