JP2003308841A - Slurry for forming negative electrode coating film of nonaqueous secondary battery - Google Patents

Slurry for forming negative electrode coating film of nonaqueous secondary battery

Info

Publication number
JP2003308841A
JP2003308841A JP2002112842A JP2002112842A JP2003308841A JP 2003308841 A JP2003308841 A JP 2003308841A JP 2002112842 A JP2002112842 A JP 2002112842A JP 2002112842 A JP2002112842 A JP 2002112842A JP 2003308841 A JP2003308841 A JP 2003308841A
Authority
JP
Japan
Prior art keywords
coating film
water
negative electrode
slurry
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002112842A
Other languages
Japanese (ja)
Inventor
Katsutomo Ozeki
克知 大関
Yoshie Osaki
由恵 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2002112842A priority Critical patent/JP2003308841A/en
Publication of JP2003308841A publication Critical patent/JP2003308841A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water base slurry for forming a negative electrode coating film of a nonaqueous secondary battery, having safe handling, excellent adhesion of a synthetic carbon material such as graphitization-resistant carbon, mesophase-carbon micro beads or the like, or a scaly or scale-like graphite material to a collector, little lowering of discharge capacity, and excellent durability with respect to a charge/discharge cycle. <P>SOLUTION: This slurry for forming the negative electrode coating film of the nonaqueous secondary battery is basically composed of a solid content comprising a carbonaceous active material and a binder and a water medium. The binder is composed of a water-dispersed emulsion resin and a water-soluble high polymer, and the water-dispersed emulsion resin comprises a synthetic resin having a glass transition temperature of 0°C or higher and an average particle diameter of 0.15-0.45 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池に
好適な負極塗膜を形成するための水性スラリーに関する
ものである。
TECHNICAL FIELD The present invention relates to an aqueous slurry for forming a negative electrode coating film suitable for a non-aqueous secondary battery.

【0002】[0002]

【従来の技術】リチウムイオン二次電池の負極活物質と
しては、炭素材料であるメソフェーズカーボンマイクロ
ビーズ(MCMB)や難黒鉛化炭素が主として用いられ
ている。また、結合剤としてはポリフッ化ビニリデン
(PVDF)樹脂に代表されるフッ素系樹脂が主として
用いられ、これらの樹脂をN−メチル−2−ピロリドン
(NMP)などの有機溶剤を溶媒として負極活物質と共
に混練し、スラリー化することによりリチウムイオン二
次電池の負極塗膜形成用スラリーとしている。リチウム
イオン二次電池はノートパソコンや携帯電話などの充電
可能な電源として普及しているが、さらにその適用範囲
を拡げるために電池の高容量化や高電圧化が望まれてい
る。
2. Description of the Related Art As negative electrode active materials for lithium-ion secondary batteries, carbon materials such as mesophase carbon microbeads (MCMB) and non-graphitizable carbon are mainly used. Further, a fluorine-based resin typified by polyvinylidene fluoride (PVDF) resin is mainly used as the binder, and these resins are used as an organic solvent such as N-methyl-2-pyrrolidone (NMP) together with the negative electrode active material. By kneading and forming a slurry, a slurry for forming a negative electrode coating film of a lithium ion secondary battery is obtained. Lithium ion secondary batteries are widely used as rechargeable power sources for notebook computers, mobile phones, etc., but there is a demand for higher capacity and higher voltage batteries in order to further expand their applicable range.

【0003】このような電池の高容量化、高電圧化の要
求を満たすために、負極材料を高容量化すること、およ
び電位安定性を高めることが必須であり、負極活物質に
黒鉛材料を用いる検討が進められている。これは、黒鉛
材料は結晶性が高いために理論的なリチウム黒鉛層間化
合物を形成し、理論的な充放電容量である372mAh
/gに近い値を得ることができ、また、電位の安定性も
高いからである。しかしながら、黒鉛材料の結晶構造は
層方向の結合力が高いため、粉砕によってリン片状また
はリン状の薄片状粒子粉末となる。このため、従来主と
して用いられているPVDFに代表されるフッ素系樹脂
からなる結合剤では成膜性が低く、黒鉛粒子間および集
電体である銅箔との十分な密着性が得られなかった。そ
の結果、負極活物質として結晶構造面で有利な黒鉛粉末
を適用しても、電気抵抗値が高いために充放電容量が低
下したり、大電流時の容量低下が大きくなる。また、繰
り返して充放電を行う充放電サイクルにおける容量低下
が大きいという欠点があった。さらに、フッ素系樹脂は
高温下で分解し、離脱したフッ素とリチウムが激しく反
応することが安全上の難点として指摘されている。
In order to meet the demands for higher capacity and higher voltage of such a battery, it is essential to increase the capacity of the negative electrode material and enhance the potential stability. A graphite material is used as the negative electrode active material. Use of this is under consideration. This is because the graphite material has a high crystallinity and thus forms a theoretical lithium-graphite intercalation compound, which is a theoretical charge / discharge capacity of 372 mAh.
This is because a value close to / g can be obtained and the potential stability is high. However, since the crystal structure of the graphite material has a high cohesive force in the layer direction, it becomes flaky or phosphorous flaky particle powder by pulverization. Therefore, a binder made of a fluorine-based resin typified by PVDF, which has been mainly used in the past, has a low film-forming property, and sufficient adhesion between graphite particles and a copper foil as a current collector cannot be obtained. . As a result, even if graphite powder, which is advantageous in terms of crystal structure, is used as the negative electrode active material, the charge and discharge capacity is reduced due to its high electric resistance value, and the capacity is greatly reduced at large current. Further, there is a drawback that the capacity is greatly reduced in a charge / discharge cycle in which charge / discharge is repeated. Further, it is pointed out that the fluorine-based resin decomposes at a high temperature, and the released fluorine and lithium react violently as a safety problem.

【0004】また、結合剤としてPVDFに代表される
フッ素系樹脂を使用する場合には、スラリー化のための
溶媒としてNMPなどの有機溶剤を使用するが、近年の
環境への配慮や作業者の安全性および価格などの観点か
ら、スラリー化のための溶媒を水性にすることが好まし
い。なお、当然ながら水性スラリーとしても、得られる
塗膜の密着性や充放電時の膨張収縮を緩和するなど、従
来の溶剤系スラリーから得られる塗膜と同等あるいは何
れかの性能が改善された負極塗膜としなければならな
い。
Further, when a fluorine resin represented by PVDF is used as a binder, an organic solvent such as NMP is used as a solvent for slurry formation. From the viewpoint of safety and cost, it is preferable to make the solvent for slurrying aqueous. It should be noted that, as a matter of course, even as an aqueous slurry, a negative electrode having the same or any performance improved as a coating film obtained from a conventional solvent-based slurry, such as reducing the adhesion of the obtained coating film and the expansion and contraction at the time of charging and discharging. Must be a coating.

【0005】水性エマルジョン樹脂と増粘剤としての水
性結合剤と炭素材活物質を基本構成とした非水系二次電
池の負極塗膜形成用スラリーまたは負極塗膜として、例
えば、特開平4−342966号公報にはカルボキシメ
チルセルロース(CMC)とスチレンブタジエンゴム
(SBR)の比率を特定したスラリーが開示されてい
る。また、特開平8−250122号公報にはブタジエ
ン含量を特定したスチレンブタジエンラテックスと炭素
材活物質からなる負極が開示されている。
As a negative electrode coating film-forming slurry or a negative electrode coating film for a non-aqueous secondary battery having an aqueous emulsion resin, an aqueous binder as a thickening agent, and a carbonaceous material as a basic constituent, for example, Japanese Patent Application Laid-Open No. 4-342966. The publication discloses a slurry in which the ratio of carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR) is specified. Further, JP-A-8-250122 discloses a negative electrode composed of a styrene-butadiene latex having a specified butadiene content and a carbon material active material.

【0006】[0006]

【発明が解決しようとする課題】この発明は上記の課
題、すなわち、取り扱い上の安全性に優れた水系スラリ
ーにすると共に、難黒鉛化炭素やMCMBなどの合成炭
素材料はもとより、リン状またはリン片状の黒鉛材料と
集電体との密着性に優れ、放電容量の低下が少なく、放
電負荷に優れ、充放電サイクルの耐久性に優れる非水系
二次電池の負極塗膜形成用スラリーを提供するものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, that is, to make an aqueous slurry excellent in handling safety, and not only synthetic carbon materials such as non-graphitizable carbon and MCMB but also phosphorus or phosphorus. Provides a slurry for forming a negative electrode coating film of a non-aqueous secondary battery, which has excellent adhesion between a flake graphite material and a current collector, has a small decrease in discharge capacity, has an excellent discharge load, and has excellent charge / discharge cycle durability. To do.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、この発明のスラリーは、固形分が炭素材活物質およ
び結合剤であり、媒体が水であることを基本構成とする
非水系二次電池の負極塗膜形成用スラリーにおいて、該
結合剤は水分散エマルジョン樹脂と水溶性高分子から構
成され、該水分散エマルジョン樹脂は、ガラス転移温度
が0℃以上で、かつ平均粒子径が0.15〜0.45μm
の合成樹脂からなることが特徴である。加えて、前記水
分散エマルジョン樹脂のガラス転移温度は0〜40℃で
ある、スチレン・ブタジエンゴムラテックス、ブタジエ
ンゴムラテックス、アクリロニトリル・ブタジエン共重
合体ゴムラテックス、メチルメタクリレート・ブタジエ
ン共重合体ゴムラテックス、スチレンブタジエン・スチ
レン共重合体ラテックスおよびアクリルエステル樹脂エ
マルジョンから選ばれる1種以上であることが特徴であ
る。
In order to solve the above-mentioned problems, the slurry of the present invention is a non-aqueous two-component slurry whose solids are a carbonaceous material active material and a binder and whose medium is water. In a slurry for forming a negative electrode coating film of a secondary battery, the binder is composed of a water-dispersed emulsion resin and a water-soluble polymer, and the water-dispersed emulsion resin has a glass transition temperature of 0 ° C. or higher and an average particle size of 0. 0.15 to 0.45 μm
It is characterized by being made of synthetic resin of. In addition, the glass transition temperature of the water-dispersed emulsion resin is 0 to 40 ° C., styrene / butadiene rubber latex, butadiene rubber latex, acrylonitrile / butadiene copolymer rubber latex, methyl methacrylate / butadiene copolymer rubber latex, styrene. It is characterized in that it is at least one selected from butadiene / styrene copolymer latex and acrylic ester resin emulsion.

【0008】さらに、前記水溶性高分子は、1質量%水
溶液の25℃における粘度が200〜2,500mPa・
sのアルギン酸ナトリウム、アルギン酸カリウム、アル
ギン酸アンモニウム、アルギン酸プロピレングリコール
エステル、カルボキシメチルセルロースおよびそのナト
リウム塩またはアンモニウム塩、ヒドロキシエチルセル
ロース、ポリエチレンオキシド、ポリビニルアルコー
ル、カゼイン、ポリアクリル酸ナトリウムから選ばれる
1種以上である。
Further, the water-soluble polymer has a viscosity of a 1% by mass aqueous solution at 25 ° C. of 200 to 2,500 mPa · s.
s is one or more selected from sodium alginate, potassium alginate, ammonium alginate, propylene glycol alginate, carboxymethyl cellulose and its sodium salt or ammonium salt, hydroxyethyl cellulose, polyethylene oxide, polyvinyl alcohol, casein, and sodium polyacrylate.

【0009】また、前記炭素材活物質として、リン状ま
たはリン片状の天然黒鉛粒子から構成される塊状黒鉛粒
子群を50質量%以上含有し、かつ、該塊状黒鉛粒子群
は、レーザー光回折法における累積50%径(D50
径)が10〜25μm、窒素ガス吸着法における比表面
積が2.5〜5m/g、静置法における見掛け密度が
0.45g/cm以上、タップ法における見掛け密度
が0.70g/cm以上であることが特徴である。
Further, as the carbon active material, 50 mass% or more of agglomerated graphite particles composed of phosphorus-like or flake-like natural graphite particles is contained, and the agglomerated graphite particles are subjected to laser light diffraction. Cumulative 50% diameter (D50
(Diameter) 10 to 25 μm, specific surface area in nitrogen gas adsorption method is 2.5 to 5 m 2 / g, apparent density in static method is 0.45 g / cm 3 or more, apparent density in tap method is 0.70 g / cm. The feature is that it is 3 or more.

【0010】[0010]

【発明の実施の形態】上記課題を解決するために、この
発明のスラリーは、固形分が炭素材活物質および結合剤
であり、媒体が水であることを基本構成とし、前記結合
剤は、水分散エマルジョン樹脂と水溶性高分子から構成
され、該水分散エマルジョン樹脂は、ガラス転移温度が
0℃以上で、かつ平均粒子径が0.15〜0.45μmの
合成樹脂からなることが特徴である。高分子物質におけ
るガラス転移温度(T)は、ガラス状の固い状態から
ゴム状に変化する温度であり、その温度以下では分子の
ミクロブラウン運動が凍結しているが、ガラス転移温度
以上の温度になるとミクロブラウン運動が始まるため体
積、比熱、圧縮率などの熱力学的性質および熱伝導率、
屈折率、誘電率、弾性率などの物理的性質が急激に変化
することが知られている。本検討において、負極塗膜に
用いる水分散エマルジョン樹脂のガラス転移温度
(T)は0℃以上、好ましくは0〜40℃、より好ま
しくは10〜25℃であることを見出した。水分散エマ
ルジョン樹脂のガラス転移温度が40℃を越えると得ら
れる塗膜の柔軟性が低下し(塗膜が固くなり)、電極の
捲回時にクラックを生じる懸念がある。一方、ガラス転
移温度が0℃未満の水分散エマルジョン樹脂を使用した
場合は得られる塗膜の密着性が悪く、電池製造過程時に
下地の銅箔から剥離したり、充放電サイクル時の特性劣
化が起こり易くなる。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the above problems, the slurry of the present invention has a basic composition in which the solid content is a carbonaceous material active material and a binder, and the medium is water, and the binder is It is composed of a water-dispersed emulsion resin and a water-soluble polymer, and the water-dispersed emulsion resin is characterized by being made of a synthetic resin having a glass transition temperature of 0 ° C. or higher and an average particle diameter of 0.15 to 0.45 μm. is there. The glass transition temperature (T g ) of a polymer substance is the temperature at which a glassy solid state changes to a rubbery state. Below that temperature, the micro-Brownian motion of the molecule freezes, but at a temperature above the glass transition temperature. , The micro-Brownian motion starts, and thermodynamic properties such as volume, specific heat and compressibility, and thermal conductivity,
It is known that physical properties such as refractive index, dielectric constant and elastic modulus change rapidly. In this study, the glass transition temperature of the water dispersible emulsion resin used in Fukyokunuri film (T g) is 0 ℃ or higher, preferably have found that 0 to 40 ° C., more preferably from 10 to 25 ° C.. If the glass transition temperature of the water-dispersed emulsion resin exceeds 40 ° C., the flexibility of the obtained coating film may be reduced (the coating film may become hard), and cracks may occur during winding of the electrode. On the other hand, when a water-dispersed emulsion resin having a glass transition temperature of less than 0 ° C. is used, the adhesion of the resulting coating film is poor, and peeling from the underlying copper foil during the battery manufacturing process or deterioration of characteristics during charge / discharge cycles occurs. It is easy to happen.

【0011】また、エマルジョン樹脂の粒子径は、電池
の充放電特性のうち、特に負荷特性に影響を及ぼすこと
が分かり、その平均粒子径は0.15μm以上、より好
ましくは0.25μm以上であることが分かった。平均
粒子径が0.15μmより小さいと負荷特性が悪くな
り、大電流の充放電時に容量が低下する。なお、水分散
エマルジョン樹脂の粒子径が負荷特性に及ぼす影響とし
ては、粒子径が大きいほど望ましい結果が得られてい
る。しかしながら工業的に得られる水分散エマルジョン
樹脂の粒子径は現状0.45μmが上限であると思われ
るため、本発明においてはこの平均粒子径の上限値を
0.45μmに設定した。この点では今後、技術の進展
を期待するところである。
Further, it has been found that the particle size of the emulsion resin has an influence particularly on the load property among the charge and discharge characteristics of the battery, and the average particle size is 0.15 μm or more, more preferably 0.25 μm or more. I found out. If the average particle size is smaller than 0.15 μm, the load characteristics will deteriorate, and the capacity will decrease when charging and discharging a large current. As for the influence of the particle size of the water-dispersed emulsion resin on the load characteristics, the larger the particle size, the more desirable the result is obtained. However, the upper limit value of the average particle size is set to 0.45 μm in the present invention because the upper limit of the particle size of the industrially obtained water-dispersed emulsion resin is currently 0.45 μm. In this respect, we are expecting technological progress in the future.

【0012】本件発明の結合剤を構成する水分散エマル
ジョン樹脂としては、スチレン・ブタジエンゴム(SB
R)ラテックス、ブタジエンゴム(BR)ラテックス、
アクリロニトリル・ブタジエン共重合体ゴム(NBR)
ラテックス、メチルメタクリレート・ブタジエン共重合
体ゴム(MBR)ラテックス、スチレンブタジエン・ス
チレン共重合体(SBS)ラテックスおよびアクリルエ
ステル樹脂エマルジョンから選ばれる1種以上であり、
これらのエマルジョン樹脂の単体または混合物を用いる
ことができる。
The water-dispersed emulsion resin constituting the binder of the present invention includes styrene-butadiene rubber (SB
R) latex, butadiene rubber (BR) latex,
Acrylonitrile-butadiene copolymer rubber (NBR)
One or more selected from latex, methyl methacrylate / butadiene copolymer rubber (MBR) latex, styrene butadiene / styrene copolymer (SBS) latex and acrylic ester resin emulsion,
A single substance or a mixture of these emulsion resins can be used.

【0013】また、水溶性高分子としては、1質量%水
溶液の25℃における粘度が200〜2,500mPa・
sのアルギン酸ナトリウム、アルギン酸カリウム、アル
ギン酸アンモニウム、アルギン酸プロピレングリコール
エステル、カルボキシメチルセルロースおよびそのナト
リウム塩またはアンモニウム塩、ヒドロキシエチルセル
ロース、ポリエチレンオキシド、ポリビニルアルコー
ル、カゼイン、ポリアクリル酸ナトリウムから選ばれる
1種以上であり、これら水溶性高分子の単体または混合
物を用いることが可能である。なお、1質量%水溶液の
25℃における粘度が500〜1,500mPa・sの水
溶性高分子を用いることが好ましい。1質量%水溶液の
25℃における粘度は、水溶性高分子の分子量や高分子
の結合形態などに依存するものであり、概ね粘度数値が
低いものほど低分子量または低重合度のものである。上
記水溶液の粘度が2,500mPa・sを超えると水溶性
高分子としては高重合度のものであるから、スラリーの
粘度が増加する。その結果、固形分が低くなると共に、
取り扱い難いスラリーとなる。一方、水溶液粘度が20
0mPa・s未満ではスラリー粘度も低下し、粒子が沈
降する懸念がある。
As the water-soluble polymer, the viscosity of a 1% by mass aqueous solution at 25 ° C. is 200 to 2,500 mPa · s.
s is one or more selected from sodium alginate, potassium alginate, ammonium alginate, propylene glycol alginate, carboxymethyl cellulose and its sodium salt or ammonium salt, hydroxyethyl cellulose, polyethylene oxide, polyvinyl alcohol, casein, sodium polyacrylate, It is possible to use a single substance or a mixture of these water-soluble polymers. In addition, it is preferable to use a water-soluble polymer having a viscosity of a 1 mass% aqueous solution at 25 ° C. of 500 to 1,500 mPa · s. The viscosity of a 1% by mass aqueous solution at 25 ° C. depends on the molecular weight of the water-soluble polymer and the bonding form of the polymer. Generally, the lower the viscosity value, the lower the molecular weight or the degree of polymerization. When the viscosity of the aqueous solution exceeds 2,500 mPa · s, the viscosity of the slurry increases because the water-soluble polymer has a high degree of polymerization. As a result, the solid content becomes low,
The slurry becomes difficult to handle. On the other hand, the viscosity of the aqueous solution is 20
If it is less than 0 mPa · s, the viscosity of the slurry may be reduced, and the particles may be settled.

【0014】なお、スラリーの好ましい粘度範囲は、塗
布手段により変わるものであるから一概には特定できな
いが、概ね300〜1,500mPa・sの範囲である。
また、スラリー中の固形分に占める結合剤配合量は1〜
5質量%の範囲であり、より好ましくは1.5〜3.0質
量%の範囲である。また、結合剤中の水溶性高分子の含
有量は30〜65質量%、好ましくは45〜55質量%
の範囲である。結合剤中の水溶性高分子の含有量が30
質量%未満では、黒鉛粒子の分散性が悪く、均一な塗膜
が得られ難いと共に、充放電容量の低下を引起す懸念が
ある。逆に、水溶性高分子の含有量が65質量%を越え
ると、塗膜の可撓性が悪くなり、捲回時に塗膜にクラッ
クを生じる可能性があると共に、充放電容量、特に大電
流時の容量低下を引起す懸念がある。このことから、結
合剤中の水溶性高分子はスラリー中の有機成分として含
有する粒子を分散させることに寄与するだけでなく、形
成する負極塗膜の造膜性にも影響を及ぼして放電容量に
寄与する材料である。また、水分散エマルジョン樹脂は
得られる塗膜が基材に付着することに寄与する材料であ
る。なお、スラリー中の固形分、すなわち炭素材活物質
と結合剤の実質固形分との総和量に占める結合剤配合量
が1質量%未満では、得られる負極塗膜が基材から簡単
に剥離してしまい、配合量としては少ない。逆に結合剤
配合量が5質量%を越えると、結合剤はリチウムイオン
を吸蔵する材料ではないから、充放電容量が急激に低下
する。
The preferred viscosity range of the slurry cannot be unconditionally specified because it varies depending on the coating means, but it is generally in the range of 300 to 1,500 mPa · s.
Further, the amount of the binder compounded in the solid content in the slurry is 1 to
It is in the range of 5% by mass, and more preferably in the range of 1.5 to 3.0% by mass. The content of the water-soluble polymer in the binder is 30 to 65% by mass, preferably 45 to 55% by mass.
Is the range. The content of water-soluble polymer in the binder is 30
If it is less than mass%, the dispersibility of the graphite particles is poor and it is difficult to obtain a uniform coating film, and there is a concern that the charge and discharge capacity may be reduced. On the other hand, if the content of the water-soluble polymer exceeds 65% by mass, the flexibility of the coating film may be deteriorated, and the coating film may be cracked during winding, and the charge / discharge capacity, especially large current There is a concern that it will cause a decrease in capacity. From this, the water-soluble polymer in the binder not only contributes to disperse the particles contained as an organic component in the slurry, but also affects the film-forming property of the formed negative electrode coating film and affects the discharge capacity. Is a material that contributes to. The water-dispersed emulsion resin is a material that contributes to the obtained coating film adhering to the substrate. If the solid content in the slurry, that is, the amount of the binder compounded in the total amount of the carbon material active material and the substantial solid content of the binder is less than 1% by mass, the obtained negative electrode coating film easily peels from the substrate. Therefore, the compounding amount is small. On the contrary, when the amount of the binder compounded exceeds 5% by mass, the charge / discharge capacity sharply decreases because the binder is not a material that absorbs lithium ions.

【0015】さらに、この発明のスラリーに適用する炭
素材活物質は、リン状またはリン片状の天然黒鉛粒子か
ら構成される塊状黒鉛粒子群が50質量%以上含有さ
れ、かつ、この塊状黒鉛粒子群は、レーザー光回折法に
おける累積50%径(D50径)が10〜25μm、窒
素ガス吸着法における比表面積が2.5〜5m/g、
静置法における見掛け密度が0.45g/cm以上、
タップ法における見掛け密度が0.70g/cm以上
である。D50径(平均粒子径)の値が10μm未満で
は、塊状黒鉛粒子群の粒子径としては小さすぎ、得られ
る負極塗膜においては黒鉛粒子間の接触抵抗が増加して
形成した塗膜の導電性が劣化する傾向がある。したがっ
て、電池特性としては充放電容量や充放電負荷特性が低
下すると共に、電解液の分解に伴う充放電効率が低下す
る。逆に、D50径の値が25μmを超えると、黒鉛粒
子群の粒子径としては大きすぎ、負極塗膜においては充
放電時のリチウムイオンの黒鉛内部および外部への拡散
に時間を要し、充放電負荷特性が低下すると共に、形成
した塗膜の平滑性が悪くなり、充電時に局部的にリチウ
ムが析出する恐れがある。
Further, the carbonaceous material active material applied to the slurry of the present invention contains 50 mass% or more of agglomerated graphite particles composed of phosphorus-shaped or flaky natural graphite particles, and the agglomerated graphite particles are contained. The group has a cumulative 50% diameter (D50 diameter) in the laser light diffraction method of 10 to 25 μm and a specific surface area in the nitrogen gas adsorption method of 2.5 to 5 m 2 / g.
The apparent density in the static method is 0.45 g / cm 3 or more,
The apparent density in the tap method is 0.70 g / cm 3 or more. If the value of D50 diameter (average particle diameter) is less than 10 μm, the particle diameter of the aggregated graphite particle group is too small, and in the obtained negative electrode coating film, the contact resistance between the graphite particles increases and the conductivity of the formed coating film increases. Tend to deteriorate. Therefore, as the battery characteristics, the charge / discharge capacity and the charge / discharge load characteristics are deteriorated, and the charge / discharge efficiency accompanying the decomposition of the electrolytic solution is decreased. On the other hand, if the value of D50 diameter exceeds 25 μm, the particle diameter of the graphite particle group is too large, and it takes time for the lithium ion during the charge and discharge to diffuse into the graphite inside and outside the graphite. The discharge load characteristics deteriorate, the smoothness of the formed coating film deteriorates, and lithium may be locally deposited during charging.

【0016】また、このD50径(平均粒子径)の値と
相関性があるが、窒素ガス吸着法による比表面積が2.
5m/g未満では、黒鉛粒子群としては比表面積の値
が低く、粗大な粒子群となる。したがって、負極塗膜と
しては充放電時のリチウムイオンの黒鉛内部および外部
への拡散に時間を要し、充放電負荷特性が低下すると共
に、形成した塗膜の平滑性が悪くなり、充電時に局部的
にリチウムが析出する恐れがある。逆に、窒素ガス吸着
法による比表面積が5m/gを超えると、黒鉛粒子は
微細な粒子群となり、負極塗膜としては黒鉛粒子間の接
触抵抗が増加して形成した塗膜の導電性が劣化し、充放
電容量や充放電負荷特性が低下すると共に、電解液の分
解に伴う充放電効率が低下し、凝集が進んで嵩密度の低
い粒子群になる傾向もあり、比表面積がこの値より大き
いと好ましくない。
Further, although there is a correlation with the value of this D50 diameter (average particle diameter), the specific surface area by the nitrogen gas adsorption method is 2.
If it is less than 5 m 2 / g, the graphite particle group has a low specific surface area and becomes a coarse particle group. Therefore, as a negative electrode coating film, it takes time for the diffusion of lithium ions into and out of graphite during charging / discharging, the charging / discharging load characteristics are deteriorated, and the smoothness of the coating film formed is deteriorated. Lithium may be deposited. On the contrary, when the specific surface area by the nitrogen gas adsorption method exceeds 5 m 2 / g, the graphite particles become a fine particle group, and the contact resistance between the graphite particles increases as the negative electrode coating film, and the conductivity of the coating film formed is increased. Deteriorates, charge and discharge capacity and charge and discharge load characteristics decrease, charge and discharge efficiency decreases with the decomposition of the electrolytic solution, aggregation tends to proceed to a particle group with a low bulk density, and the specific surface area is It is not preferable if it is larger than the value.

【0017】さらに、この発明における塊状黒鉛粒子群
の静置法による見掛け密度は0.45g/cm以上で
あり、タップ法による見掛け密度は0.70g/cm
以上である。静置法による見掛け密度およびタップ法に
よる見掛け密度の測定方法は、顔料試験方法(JIS
K5101)に記載されている。この発明における静置
法およびタップ法による見掛け密度は、ホソカワミクロ
ン製パウダーテスターPT−R型を用いて測定したもの
である。静置法による見掛け密度の測定方法は、篩網を
通して受器に試料を入れて、容積が100cmになっ
たときの質量を測定することにより評価する。これに対
して、タップ法による見掛け密度の測定方法は、試料を
受器に投入しながら受器を180回タッピングした後の
容積100cm当たりの質量を測定することにより評
価する。静置法による見掛け密度の0.45g/cm
およびタップ法による見掛け密度の0.70g/cm
の値は、この発明に適用される黒鉛粒子群の下限値であ
る。リチウムイオン二次電池の高エネルギー密度化の要
求に対しては、活物質の充填密度を高めること、言い換
えれば塗膜の高密度化が必須であり、そのためには、で
きるだけ厚い塗膜を形成することが必要である。本発明
者らが検討した結果、塗膜を形成するためのスラリー固
形分が45質量%以上であれば良好な塗膜を形成できる
ことを見出した。その固形分含量を達成するためには、
静置法による見掛け密度が0.45g/cm以上、タ
ップ法による見掛け密度が0.70g/cm以上の値
が好ましいことが分かった。また、これらの見掛け密度
の値未満では、塗工時の膜厚の変動が大きくなり、十分
な密着強度を得るために必要な結合剤の配合量も多くな
り、実効容量の低下を引き起こす懸念がある。
Further, the apparent density of the aggregated graphite particles in the present invention by the static method is 0.45 g / cm 3 or more, and the apparent density by the tap method is 0.70 g / cm 3.
That is all. The apparent density by the static method and the apparent density by the tap method are measured by the pigment test method (JIS
K5101). The apparent densities according to the stationary method and the tap method in the present invention are measured using a powder tester PT-R type manufactured by Hosokawa Micron. The method for measuring the apparent density by the static method is evaluated by putting a sample in a receiver through a sieve mesh and measuring the mass when the volume becomes 100 cm 3 . On the other hand, the apparent density measurement method by the tap method is evaluated by measuring the mass per 100 cm 3 of volume after tapping the receiver 180 times while introducing the sample into the receiver. Apparent density 0.45 g / cm 3 by static method
And an apparent density of 0.70 g / cm 3 by the tap method
The value of is the lower limit value of the graphite particle group applied to the present invention. To meet the demand for higher energy density of lithium-ion secondary batteries, it is essential to increase the packing density of the active material, in other words, to increase the density of the coating film. It is necessary. As a result of studies by the present inventors, it was found that a good coating film can be formed when the solid content of the slurry for forming the coating film is 45% by mass or more. To achieve that solids content,
Standing method apparent density of 0.45 g / cm 3 or more according to the apparent density by tapping method was found to be 0.70 g / cm 3 or more values are preferred. If the apparent density is less than these values, the variation in the film thickness during coating will be large, and the amount of the binder required to obtain sufficient adhesion strength will be large, which may cause a decrease in the effective capacity. is there.

【0018】[0018]

【実施例】以下に、この発明を、実施例によりさらに詳
細に説明するが、この発明は本実施例により限定される
ものではない。 <実施例1〜5> (スラリーの調製)比表面積4.2m/g、D50粒
子径19.3μm、静置法による見掛け密度0.51g/
cm、タップ法による見掛け密度0.85g/cm
のリン片状天然黒鉛から構成される塊状黒鉛粒子(炭素
材活物質)に、表1に示す水分散エマルジョンと水溶性
高分子からなる結合剤を混合して試料番号01〜05の
スラリーを調製した。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to the examples. <Examples 1 to 5> (Preparation of slurry) Specific surface area 4.2 m 2 / g, D50 particle size 19.3 μm, apparent density 0.55 g / by static method
cm 3 , apparent density by tap method 0.85 g / cm 3
The water-dispersed emulsion shown in Table 1 and a binder made of a water-soluble polymer are mixed with the lumpy graphite particles (carbon material active material) composed of the flaky natural graphite of No. 1 to prepare slurries of sample numbers 01 to 05. did.

【0019】[0019]

【表1】 [Table 1]

【0020】(塗工)25℃の環境下において、これら
のスラリーを集電体となる圧延銅箔の上に、ギャップ2
00μmのドクターブレードを用いて塗布し、120℃
で10分間乾燥し、ロールプレスで1.5g/cm
負極塗膜を形成した。
(Coating) Under a 25 ° C. environment, these slurries were placed on a rolled copper foil serving as a current collector to form a gap 2
Apply using a doctor blade of 00μm, 120 ℃
After drying for 10 minutes, a negative electrode coating film of 1.5 g / cm 3 was formed by roll pressing.

【0021】(密着性)負極塗膜上に幅18mmのセロ
ファンテープを貼って2kgの荷重で圧着した後、セロ
ファンテープを引き剥がすために必要な荷重をプッシュ
プルゲージで測定した。また、負極塗膜の剥離(破壊)
状態を観察した。また、負極塗膜をφ5mmの芯に巻き
付け、塗膜にクラッが発生するか否かを目視観察した。
(Adhesion) A cellophane tape having a width of 18 mm was stuck on the negative electrode coating film and pressure-bonded with a load of 2 kg, and then the load necessary for peeling off the cellophane tape was measured with a push-pull gauge. Also, peeling (destruction) of the negative electrode coating film
The condition was observed. Further, the negative electrode coating film was wound around a core of φ5 mm, and it was visually observed whether or not the coating film was cracked.

【0022】(電極特性)負極塗膜を銅箔と共にポンチ
で打ち抜いて電極を作製した。対極として金属リチウム
を用い、電解液として1M−LiPF6/EC(エチレ
ンカーボネート)+DMC(ジメチルカーボネート)を
用いたコイン形モデルセルを作製し、0.5mA/cm
の電流密度で0.01V(vs.Li/Li)まで
定電流でリチウムを負極内に吸蔵(充電)させ充電容量
を求めた。また、初回の放電容量は0.5mA/cm
の定電流で1.1V(vs.Li/Li)まで放電さ
せて求めた。さらに、0.5mA/cmで充電を行っ
た後、6mA/cmの電流密度で1.1V(vs.L
i/Li)まで放電させたときの放電容量を求め、
0.5mA/cmで放電したときの容量との比率を求
め、放電負荷特性(放電レート)を評価した。試料番号
01から05の各黒鉛試料における、上記の各種評価の
結果を実施例1〜5として表2に示す。なお、表中に記
した本発明の範囲となる実施例の各試料では、塗工性、
得られた塗膜の強度、電極特性はいずれも良好であっ
た。
(Electrode characteristics) An electrode was prepared by punching the negative electrode coating film together with a copper foil with a punch. A coin-shaped model cell using 1 M-LiPF 6 / EC (ethylene carbonate) + DMC (dimethyl carbonate) as an electrolyte solution was prepared using metallic lithium as a counter electrode, and was 0.5 mA / cm 2.
At a current density of 2 , lithium was occluded (charged) in the negative electrode at a constant current up to 0.01 V (vs. Li / Li + ) to obtain a charge capacity. The initial discharge capacity is 0.5 mA / cm 2.
It was determined by discharging to 1.1 V (vs. Li / Li + ) at a constant current of. Further, after charging at 0.5 mA / cm 2, 1.1V at a current density of 6mA / cm 2 (vs.L
i / Li + ) to obtain the discharge capacity when discharged to
The discharge load characteristic (discharge rate) was evaluated by obtaining the ratio with the capacity when discharged at 0.5 mA / cm 2 . Table 2 shows the results of the above-described various evaluations for each graphite sample of sample numbers 01 to 05 as Examples 1 to 5. Incidentally, in each of the samples of the examples within the scope of the present invention described in the table, the coating property,
The strength and electrode characteristics of the obtained coating film were good.

【0023】[0023]

【表2】 [Table 2]

【0024】<比較例1〜5>表3に示す比較試料11
〜15を比較例1〜5として実施例と同様の測定方法で
評価を行った。なお、評価の結果を表4に示す。
<Comparative Examples 1 to 5> Comparative sample 11 shown in Table 3
Comparative Examples 1 to 5 were evaluated by the same measurement method as in the Examples. The evaluation results are shown in Table 4.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】試料11(比較例1)は、エマルジョン樹
脂のガラス転移温度が−5℃で、塗膜の密着強度が低
く、充放電においても銅箔との接触に起因すると思われ
る放電容量の低下、不可逆容量の増加および放電負荷の
低下が認められた。一方、試料12(比較例2)は、エ
マルジョン樹脂のガラス転移温度が45℃であり、塗膜
を芯に巻き付けた際にクラックが発生した。また、試料
13(比較例3)は、エマルジョン樹脂の平均粒子径が
0.13μmと小さく、放電負荷が劣化した。試料14
(比較例4)および15(比較例5)は、水溶性高分子
の1質量%(25℃)の粘度が本発明の請求項4の範囲
外であり、塗工時にカスレやにじみが発生した。
In Sample 11 (Comparative Example 1), the glass transition temperature of the emulsion resin was -5 ° C, the adhesion strength of the coating film was low, and the discharge capacity was thought to decrease due to contact with the copper foil during charge and discharge. However, an increase in irreversible capacity and a decrease in discharge load were observed. On the other hand, in Sample 12 (Comparative Example 2), the glass transition temperature of the emulsion resin was 45 ° C., and cracking occurred when the coating film was wound around the core. Further, in Sample 13 (Comparative Example 3), the average particle diameter of the emulsion resin was as small as 0.13 μm, and the discharge load was deteriorated. Sample 14
In (Comparative Example 4) and 15 (Comparative Example 5), the viscosity of the water-soluble polymer at 1% by mass (25 ° C.) was outside the scope of claim 4 of the present invention, and scratches and bleeding occurred during coating. .

【0028】[0028]

【発明の効果】本発明によれば、電池の塗膜強度および
塗膜密度が良好となり、かつ各種電極特性に優れた非水
系二次電池の負極用スラリーを得ることができる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to obtain a slurry for a negative electrode of a non-aqueous secondary battery, in which the coating film strength and coating density of the battery are good and the various electrode characteristics are excellent.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固形分が炭素材活物質および結合剤であ
り、媒体が水であることを基本構成とする非水系二次電
池の負極塗膜形成用スラリーにおいて、 該結合剤は水分散エマルジョン樹脂と水溶性高分子から
構成され、該水分散エマルジョン樹脂は、ガラス転移温
度が0℃以上で、かつ平均粒子径が0.15〜0.45μ
mの合成樹脂からなることを特徴とする非水系二次電池
の負極塗膜形成用スラリー。
1. A slurry for forming a negative electrode coating film of a non-aqueous secondary battery, the solid content of which is a carbon material active material and a binder and the medium of which is water, wherein the binder is an aqueous dispersion emulsion. The resin is composed of a resin and a water-soluble polymer, and the water-dispersed emulsion resin has a glass transition temperature of 0 ° C. or higher and an average particle size of 0.15 to 0.45 μm.
A slurry for forming a negative electrode coating film of a non-aqueous secondary battery, which comprises a synthetic resin of m.
【請求項2】 前記水分散エマルジョン樹脂のガラス転
移温度が0〜40℃であることを特徴とする請求項1に
記載の非水系二次電池の負極塗膜形成用スラリー。
2. The slurry for forming a negative electrode coating film of a non-aqueous secondary battery according to claim 1, wherein the glass transition temperature of the water-dispersed emulsion resin is 0 to 40 ° C.
【請求項3】 前記水分散エマルジョン樹脂が、スチレ
ン・ブタジエンゴムラテックス、ブタジエンゴムラテッ
クス、アクリロニトリル・ブタジエン共重合体ゴムラテ
ックス、メチルメタクリレート・ブタジエン共重合体ゴ
ムラテックス、スチレンブタジエン・スチレン共重合体
ラテックスおよびアクリルエステル樹脂エマルジョンか
ら選ばれる1種以上であることを特徴とする請求項1ま
たは2に記載の非水系二次電池の負極塗膜形成用スラリ
ー。
3. The water-dispersed emulsion resin comprises styrene / butadiene rubber latex, butadiene rubber latex, acrylonitrile / butadiene copolymer rubber latex, methyl methacrylate / butadiene copolymer rubber latex, styrene butadiene / styrene copolymer latex, and It is 1 or more types chosen from an acrylic ester resin emulsion, The slurry for negative electrode coating film formation of the nonaqueous secondary battery of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 前記水溶性高分子は、1質量%水溶液の
25℃における粘度が200〜2,500mPa・sのア
ルギン酸ナトリウム、アルギン酸カリウム、アルギン酸
アンモニウム、アルギン酸プロピレングリコールエステ
ル、カルボキシメチルセルロースおよびそのナトリウム
塩またはアンモニウム塩、ヒドロキシエチルセルロー
ス、ポリエチレンオキシド、ポリビニルアルコール、カ
ゼイン、ポリアクリル酸ナトリウムから選ばれる1種以
上である請求項1から3のいずれかに記載の非水系二次
電池の負極塗膜形成用スラリー。
4. The water-soluble polymer is sodium alginate, potassium alginate, ammonium alginate, propylene glycol alginate, carboxymethyl cellulose and its sodium salt, which has a viscosity of 200 to 2,500 mPa · s in a 1% by mass aqueous solution at 25 ° C. Or at least one selected from ammonium salts, hydroxyethyl cellulose, polyethylene oxide, polyvinyl alcohol, casein, sodium polyacrylate, and the slurry for forming a negative electrode coating film of the non-aqueous secondary battery according to claim 1. .
【請求項5】 前記炭素材活物質として、リン状または
リン片状の天然黒鉛粒子から構成される塊状黒鉛粒子群
を50質量%以上含有し、かつ、 該塊状黒鉛粒子群は、レーザー光回折法における累積5
0%径(D50径)が10〜25μm、窒素ガス吸着法
における比表面積が2.5〜5m/g、静置法におけ
る見掛け密度が0.45g/cm以上、タップ法にお
ける見掛け密度が0.70g/cm以上である請求項
1から4のいずれかに記載の非水系二次電池の負極塗膜
形成用スラリー。
5. The carbonaceous material comprises, as the carbonaceous material, 50% by mass or more of a lumpy graphite particle group composed of phosphorus-shaped or flake-shaped natural graphite particles, and the lumped graphite particle group has a laser light diffraction pattern. Cumulative 5 in law
0% diameter (D50 diameter) is 10 to 25 μm, specific surface area in nitrogen gas adsorption method is 2.5 to 5 m 2 / g, apparent density in stationary method is 0.45 g / cm 3 or more, apparent density in tap method is The slurry for forming a negative electrode coating film of a non-aqueous secondary battery according to claim 1, which has a content of 0.70 g / cm 3 or more.
JP2002112842A 2002-04-16 2002-04-16 Slurry for forming negative electrode coating film of nonaqueous secondary battery Pending JP2003308841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112842A JP2003308841A (en) 2002-04-16 2002-04-16 Slurry for forming negative electrode coating film of nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112842A JP2003308841A (en) 2002-04-16 2002-04-16 Slurry for forming negative electrode coating film of nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2003308841A true JP2003308841A (en) 2003-10-31

Family

ID=29395192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112842A Pending JP2003308841A (en) 2002-04-16 2002-04-16 Slurry for forming negative electrode coating film of nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2003308841A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011808A (en) * 2003-06-20 2005-01-13 Samsung Sdi Co Ltd Negative electrode composite for lithium battery, and negative electrode and lithium battery using the composite
JP2008135262A (en) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd Manufacturing method of non-aqueous electrolyte secondary battery negative electrode
JP2010033803A (en) * 2008-07-28 2010-02-12 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
US20110003202A1 (en) * 2008-02-29 2011-01-06 Yasuhiro Wakizaka Binder composition for nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte secondary battery
JP2011034962A (en) * 2009-07-07 2011-02-17 Nippon Zeon Co Ltd Method for manufacturing electrode of lithium ion secondary battery,and lithium ion secondary battery
CN102280642A (en) * 2011-07-07 2011-12-14 苏州大学 Application of alginate serving as adhesive in preparing electrode sheet
WO2012115096A1 (en) 2011-02-23 2012-08-30 日本ゼオン株式会社 Secondary cell negative electrode, secondary cell, slurry composition for negative electrode, and method of producing secondary cell negative electrode
JP2012172055A (en) * 2011-02-21 2012-09-10 Chiba Univ Method for producing hydrogel matrix and formation method of cell cluster
JP2013008667A (en) * 2011-05-24 2013-01-10 Nippon Zeon Co Ltd Negative electrode for secondary battery, secondary battery, slurry composition for negative electrode, and method of manufacturing negative electrode for secondary battery
KR20130111387A (en) * 2012-03-30 2013-10-10 니폰 에이 엔 엘 가부시키가이샤 Binder for battery electrode, and composition and electrode containing said binder
US20140004418A1 (en) * 2011-03-18 2014-01-02 Zeon Corporation Slurry composition for negative electrode of lithium ion secondary cell, negative electrode of lithium ion secondary cell, and lithium ion secondary cell
WO2014021401A1 (en) * 2012-07-31 2014-02-06 日本ゼオン株式会社 Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20140106614A (en) 2011-11-29 2014-09-03 제온 코포레이션 Electrode for lithium ion secondary battery, lithium ion secondary battery, slurry composition, and method for producing electrode for lithium ion secondary battery
KR20150044839A (en) 2012-08-09 2015-04-27 제온 코포레이션 Negative electrode for secondary cell, secondary cell, slurry composition, and manufacturing method
US9203091B2 (en) 2011-02-14 2015-12-01 Zeon Corporation Slurry for secondary battery negative electrodes, secondary battery negative electrode and manufacturing method thereof, and secondary battery
WO2017056984A1 (en) * 2015-09-28 2017-04-06 Necエナジーデバイス株式会社 Method for producing negative electrode for lithium ion secondary batteries
JP2017188451A (en) * 2016-03-31 2017-10-12 三洋化成工業株式会社 Coated negative electrode active material for lithium ion battery
US20180375145A1 (en) * 2017-06-23 2018-12-27 Fdk Corporation Electrode plate and battery
US10224549B2 (en) 2011-08-30 2019-03-05 Zeon Corporation Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195310A (en) * 1996-11-18 1998-07-28 Nippon Zeon Co Ltd Latex, its preparation and its use
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JPH11339810A (en) * 1998-05-28 1999-12-10 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000348726A (en) * 1999-03-31 2000-12-15 Hitachi Powdered Metals Co Ltd Graphite particle for negative electrode of nonaqueous secondary battery
WO2001029917A1 (en) * 1999-10-18 2001-04-26 Zeon Corporation Binder composition for electrodes of lithium ion secondary batteries and use thereof
JP2001319651A (en) * 2000-05-10 2001-11-16 Hitachi Powdered Metals Co Ltd Graphite material for negative electrode of non-aqueous secondary battery
JP2003123766A (en) * 2001-10-19 2003-04-25 Sanyo Chem Ind Ltd Electrode binder for electrochemical element and electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195310A (en) * 1996-11-18 1998-07-28 Nippon Zeon Co Ltd Latex, its preparation and its use
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JPH11339810A (en) * 1998-05-28 1999-12-10 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000348726A (en) * 1999-03-31 2000-12-15 Hitachi Powdered Metals Co Ltd Graphite particle for negative electrode of nonaqueous secondary battery
WO2001029917A1 (en) * 1999-10-18 2001-04-26 Zeon Corporation Binder composition for electrodes of lithium ion secondary batteries and use thereof
JP2001319651A (en) * 2000-05-10 2001-11-16 Hitachi Powdered Metals Co Ltd Graphite material for negative electrode of non-aqueous secondary battery
JP2003123766A (en) * 2001-10-19 2003-04-25 Sanyo Chem Ind Ltd Electrode binder for electrochemical element and electrode

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011808A (en) * 2003-06-20 2005-01-13 Samsung Sdi Co Ltd Negative electrode composite for lithium battery, and negative electrode and lithium battery using the composite
JP2008135262A (en) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd Manufacturing method of non-aqueous electrolyte secondary battery negative electrode
US8426062B2 (en) * 2008-02-29 2013-04-23 Zeon Corporation Binder composition for nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte secondary battery
US20110003202A1 (en) * 2008-02-29 2011-01-06 Yasuhiro Wakizaka Binder composition for nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte secondary battery
JP2010033803A (en) * 2008-07-28 2010-02-12 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
JP2011034962A (en) * 2009-07-07 2011-02-17 Nippon Zeon Co Ltd Method for manufacturing electrode of lithium ion secondary battery,and lithium ion secondary battery
US9203091B2 (en) 2011-02-14 2015-12-01 Zeon Corporation Slurry for secondary battery negative electrodes, secondary battery negative electrode and manufacturing method thereof, and secondary battery
JP2012172055A (en) * 2011-02-21 2012-09-10 Chiba Univ Method for producing hydrogel matrix and formation method of cell cluster
WO2012115096A1 (en) 2011-02-23 2012-08-30 日本ゼオン株式会社 Secondary cell negative electrode, secondary cell, slurry composition for negative electrode, and method of producing secondary cell negative electrode
JP5861845B2 (en) * 2011-03-18 2016-02-16 日本ゼオン株式会社 Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
KR20180126613A (en) * 2011-03-18 2018-11-27 제온 코포레이션 Slurry composition for negative electrode of lithium ion secondary cell, negative electrode of lithium ion secondary cell, and lithium ion secondary cell
KR101978463B1 (en) 2011-03-18 2019-05-14 제온 코포레이션 Slurry composition for negative electrode of lithium ion secondary cell, negative electrode of lithium ion secondary cell, and lithium ion secondary cell
US20140004418A1 (en) * 2011-03-18 2014-01-02 Zeon Corporation Slurry composition for negative electrode of lithium ion secondary cell, negative electrode of lithium ion secondary cell, and lithium ion secondary cell
KR101921169B1 (en) * 2011-03-18 2018-11-22 제온 코포레이션 Slurry composition for negative electrode of lithium ion secondary cell, negative electrode of lithium ion secondary cell, and lithium ion secondary cell
JPWO2012128182A1 (en) * 2011-03-18 2014-07-24 日本ゼオン株式会社 Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP2013008667A (en) * 2011-05-24 2013-01-10 Nippon Zeon Co Ltd Negative electrode for secondary battery, secondary battery, slurry composition for negative electrode, and method of manufacturing negative electrode for secondary battery
CN102280642A (en) * 2011-07-07 2011-12-14 苏州大学 Application of alginate serving as adhesive in preparing electrode sheet
US10224549B2 (en) 2011-08-30 2019-03-05 Zeon Corporation Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
KR20140106614A (en) 2011-11-29 2014-09-03 제온 코포레이션 Electrode for lithium ion secondary battery, lithium ion secondary battery, slurry composition, and method for producing electrode for lithium ion secondary battery
US9461308B2 (en) 2011-11-29 2016-10-04 Zeon Corporation Electrode for lithium ion secondary battery, lithium ion secondary battery, slurry composition, and method for producing electrode for lithium ion secondary battery
KR20130111387A (en) * 2012-03-30 2013-10-10 니폰 에이 엔 엘 가부시키가이샤 Binder for battery electrode, and composition and electrode containing said binder
KR102055452B1 (en) * 2012-03-30 2020-01-22 니폰 에이 엔 엘 가부시키가이샤 Binder for battery electrode, and composition and electrode containing said binder
JPWO2014021401A1 (en) * 2012-07-31 2016-07-21 日本ゼオン株式会社 Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20150040250A (en) 2012-07-31 2015-04-14 제온 코포레이션 Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2014021401A1 (en) * 2012-07-31 2014-02-06 日本ゼオン株式会社 Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20150044839A (en) 2012-08-09 2015-04-27 제온 코포레이션 Negative electrode for secondary cell, secondary cell, slurry composition, and manufacturing method
WO2017056984A1 (en) * 2015-09-28 2017-04-06 Necエナジーデバイス株式会社 Method for producing negative electrode for lithium ion secondary batteries
JPWO2017056984A1 (en) * 2015-09-28 2018-07-12 Necエナジーデバイス株式会社 Method for producing negative electrode for lithium ion secondary battery
JP2017188451A (en) * 2016-03-31 2017-10-12 三洋化成工業株式会社 Coated negative electrode active material for lithium ion battery
US20180375145A1 (en) * 2017-06-23 2018-12-27 Fdk Corporation Electrode plate and battery
JP2019008961A (en) * 2017-06-23 2019-01-17 Fdk株式会社 Electrode plate and battery

Similar Documents

Publication Publication Date Title
EP2790252B1 (en) Anode comprising spherical natural graphite and lithium secondary battery including same
TWI416780B (en) Non-aqueous battery separator, method for manufacturing the same, and nonaqueous electrolyte battery
JP2003308841A (en) Slurry for forming negative electrode coating film of nonaqueous secondary battery
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
JP5256660B2 (en) Non-aqueous secondary battery separator, method for producing the same, and non-aqueous electrolyte secondary battery
JP2005011808A (en) Negative electrode composite for lithium battery, and negative electrode and lithium battery using the composite
WO2011080884A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR101249349B1 (en) Negative active material for lithium secondary battery and lithium secondary battery using same
JP3867030B2 (en) Negative electrode for lithium secondary battery, positive electrode and lithium secondary battery
KR20150110482A (en) Method for manufacturing conductive adhesive composition for electrochemical element electrode
JP2000294230A (en) Slurry for forming negative electrode coating film for lithium ion secondary battery and lithium ion secondary battery
JP2003272619A (en) Slurry for forming negative electrode coating for nonaqueous secondary battery and adjustment method of slurry
JP3615472B2 (en) Non-aqueous electrolyte battery
JP4529288B2 (en) Nonaqueous electrolyte secondary battery electrode
CN107925090B (en) Electrode active material slurry and lithium secondary battery comprising the same
JP2003168432A (en) Graphite particle for negative electrode of nonaqueous secondary battery
JP2000348726A (en) Graphite particle for negative electrode of nonaqueous secondary battery
KR20190047196A (en) Silicon-carbon composite, and lithium secondary battery comprising the same
JP2003217573A (en) Slurry for forming negative electrode film of non- aqueous secondary battery and control method of slurry
JP7053256B2 (en) Negative electrode mixture for secondary batteries, negative electrode for secondary batteries and secondary batteries
JP2023533509A (en) Lithium-ion cells with silicon-based active materials and negative electrodes using water-based binders with good adhesion and cohesion
JP2002237304A (en) Graphite particles for negative electrode and negative electrode coating film of non-aqueous secondary battery
JP2003168433A (en) Graphite particle for negative electrode of nonaqueous secondary battery
JP5232353B2 (en) Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
KR20180028797A (en) Anode with improved swelling phenomenon and Lithium secondary battery comprising the anode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407