JP2003217573A - Slurry for forming negative electrode film of non- aqueous secondary battery and control method of slurry - Google Patents

Slurry for forming negative electrode film of non- aqueous secondary battery and control method of slurry

Info

Publication number
JP2003217573A
JP2003217573A JP2002012353A JP2002012353A JP2003217573A JP 2003217573 A JP2003217573 A JP 2003217573A JP 2002012353 A JP2002012353 A JP 2002012353A JP 2002012353 A JP2002012353 A JP 2002012353A JP 2003217573 A JP2003217573 A JP 2003217573A
Authority
JP
Japan
Prior art keywords
slurry
negative electrode
coating film
water
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002012353A
Other languages
Japanese (ja)
Inventor
Katsutomo Ozeki
克知 大関
Yoshie Osaki
由恵 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2002012353A priority Critical patent/JP2003217573A/en
Publication of JP2003217573A publication Critical patent/JP2003217573A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aqueous slurry for a negative electrode film of a non- aqueous secondary battery that is superior in handling safety and superior in adhesion between the current collector and the crystalline or flake graphite material as well as the synthetic carbon material such as refractory graphic carbon and mesophase carbon microbeads, and that has little degradation of the discharge capacity, and is superior in durability for charge and discharge cycle, and a control method of the slurry. <P>SOLUTION: This is a slurry of a basic structure in which the solid portion is a carbon material active substance and a binder and the medium is water, and the viscosity property of the slurry is γ=10<SP>κ</SP>×τ<SP>n</SP>in the relationship of the shear rate (γ s<SP>-1</SP>) and the shearing stress (τ Pa), wherein, κ is in the range -1.0--9.0 and n is 1.1-4.5. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池に
好適な負極塗膜を形成するための水性スラリーおよびそ
のスラリーの粘性特性を調整する方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to an aqueous slurry for forming a negative electrode coating film suitable for a non-aqueous secondary battery and a method for adjusting the viscosity characteristics of the slurry.

【0002】[0002]

【従来の技術】リチウムイオン二次電池の負極活物質と
しては、炭素材料であるメソフェーズカーボンマイクロ
ビーズ(MCMB)や難黒鉛化炭素が主として用いられ
ている。また、結合剤としてはポリフッ化ビニリデン
(PVDF)樹脂に代表されるフッ素系樹脂が主として
用いられ、これらの樹脂をN−メチル−2−ピロリドン
(NMP)などの有機溶剤を溶媒として負極活物質と共
に混練し、スラリー化することによりリチウムイオン二
次電池の負極塗膜形成用スラリーとしている。リチウム
イオン二次電池はノートパソコンや携帯電話などの充電
可能な電源として普及しているが、さらにその利用範囲
を拡げるために電池の高容量化や高電圧化が望まれてい
る。このような電池の高容量化、高電圧化の要求を満た
すために、負極材料を高容量化することおよび、電位安
定性を高めることが必須であり、負極活物質に黒鉛材料
を用いる検討が進められている。これは、黒鉛材料は結
晶性が高いために理論的なリチウム黒鉛層間化合物を形
成し、理論的な充放電容量である372mAh/gに近
い値を得ることができ、また、電位の安定性も高いから
である。
2. Description of the Related Art As negative electrode active materials for lithium-ion secondary batteries, carbon materials such as mesophase carbon microbeads (MCMB) and non-graphitizable carbon are mainly used. Further, a fluorine-based resin typified by polyvinylidene fluoride (PVDF) resin is mainly used as the binder, and these resins are used as an organic solvent such as N-methyl-2-pyrrolidone (NMP) together with the negative electrode active material. By kneading and forming a slurry, a slurry for forming a negative electrode coating film of a lithium ion secondary battery is obtained. Lithium ion secondary batteries are widely used as rechargeable power sources for notebook computers, mobile phones, etc., but there is a demand for higher capacity and higher voltage batteries to further expand the range of use. In order to meet the demands for high capacity and high voltage of such a battery, it is essential to increase the capacity of the negative electrode material and enhance the potential stability, and it is necessary to consider using a graphite material as the negative electrode active material. It is being advanced. This is because the graphite material forms a theoretical lithium-graphite intercalation compound because the crystallinity is high, and a value close to the theoretical charge / discharge capacity of 372 mAh / g can be obtained, and the potential stability is also high. Because it is expensive.

【0003】しかしながら、黒鉛材料の結晶構造は層方
向の結合力が高いため、粉砕によってリン片状またはリ
ン状の薄片状粒子粉末となる。このため、従来主として
用いられているPVDFに代表されるフッ素系樹脂から
なる結合剤では成膜性が低く、黒鉛粒子間および集電体
である銅箔との十分な密着性が得られなかった。その結
果、負極活物質として結晶構造面で有利な黒鉛粉末を適
用しても、電気抵抗値が高いために充放電容量が低下し
たり、大電流時の容量低下が大きくなる。また、繰り返
して充放電を行う充放電サイクルにおける容量低下が大
きいという欠点があった。さらに、フッ素系樹脂は高温
下で分解し、離脱したフッ素とリチウムが激しく反応す
ることが安全上の難点として指摘されている。また、結
合剤としてPVDFに代表されるフッ素系樹脂を使用す
る場合には、スラリー化のための溶媒としてNMPなど
の有機溶剤を使用するが、近年の環境への配慮や作業者
の安全性および価格などの観点から、スラリー化のため
の溶媒を水性にすることが好ましい。なお、当然ながら
水性スラリーとしても、得られる塗膜の密着性や充放電
時の膨張収縮を緩和するなど、従来の溶剤系スラリーか
ら得られる塗膜と同等あるいは何らかの性能が改善され
た負極塗膜としなければならない。水系エマルジョン樹
脂と増粘剤としての水系結合剤と炭素質活物質を基本構
成とした非水系二次電池の負極塗膜形成用スラリーまた
は負極塗膜として、例えば、特開平4−342966号
公報にはカルボキシメチルセルロース(CMC)とスチ
レンブタジエンゴム(SBR)の比率を特定したスラリ
ーが開示されている。また、特開平8−250122号
公報にはブタジエン含量を特定したスチレンブタジエン
ラテックスと炭素質活物質からなる負極が開示されてい
る。
However, since the crystal structure of the graphite material has a high cohesive force in the layer direction, pulverization produces a flaky or phosphorus-like flaky particle powder. Therefore, a binder made of a fluorine-based resin typified by PVDF, which has been mainly used in the past, has a low film-forming property, and sufficient adhesion between graphite particles and a copper foil as a current collector cannot be obtained. . As a result, even if graphite powder, which is advantageous in terms of crystal structure, is used as the negative electrode active material, the charge and discharge capacity is reduced due to its high electric resistance value, and the capacity is greatly reduced at large current. Further, there is a drawback that the capacity is greatly reduced in a charge / discharge cycle in which charge / discharge is repeated. Further, it is pointed out that the fluorine-based resin decomposes at a high temperature, and the released fluorine and lithium react violently as a safety problem. Further, when using a fluorine-based resin represented by PVDF as a binder, an organic solvent such as NMP is used as a solvent for slurrying, but in recent years consideration for the environment and safety of workers and From the viewpoint of price and the like, it is preferable to make the solvent for slurrying aqueous. Of course, even as an aqueous slurry, a negative electrode coating film having the same or some performance as that of a coating film obtained from a conventional solvent-based slurry, such as relaxing the adhesion of the obtained coating film and swelling / shrinkage during charging / discharging. And have to. As a slurry or a negative electrode coating film for forming a negative electrode coating film of a non-aqueous secondary battery having a water-based emulsion resin, a water-based binder as a thickening agent, and a carbonaceous active material as a basic structure, for example, JP-A-4-342966. Discloses a slurry having a specified ratio of carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR). Further, JP-A-8-250122 discloses a negative electrode composed of a styrene-butadiene latex having a specified butadiene content and a carbonaceous active material.

【0004】[0004]

【発明が解決しようとする課題】この発明は上記の課
題、すなわち、取扱い上の安全性に優れた水系スラリー
にすると共に、難黒鉛化炭素やMCMBなどの合成炭素
材料はもとより、リン状またはリン片状の黒鉛材料と集
電体との密着性に優れ、放電容量の低下が少なく、充放
電サイクルに対する耐久性に優れた非水系二次電池の負
極塗膜形成用スラリー並びにこのスラリーの調整方法を
提供するものである。
SUMMARY OF THE INVENTION The present invention provides the above-mentioned object, namely, to provide an aqueous slurry excellent in handling safety, and to obtain a synthetic carbon material such as non-graphitizable carbon or MCMB, or a phosphorus-like or phosphorus-containing material. Slurry for forming a negative electrode coating film of a non-aqueous secondary battery, which has excellent adhesion between a flake graphite material and a current collector, has little decrease in discharge capacity, and has excellent durability against charge / discharge cycles, and a method for adjusting this slurry Is provided.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、この発明のスラリーは、固形分が炭素材活物質およ
び結合剤であり、媒体が水であることを基本構成とする
非水系二次電池の負極塗膜形成用スラリーにおいて、こ
のスラリーの粘性特性が、ずり速度(γ s )と剪
断応力(τ Pa)との関係においてγ=10κ×τ
であり、かつ、κが−1.0〜−9.0の範囲にあり、n
が1.1〜4.5の範囲にあることを特徴とする非水系二
次電池の負極塗膜形成用スラリーを提供することにあ
る。なお、このスラリーに用いる結合剤は、水分散エマ
ルジョン樹脂と水溶性高分子から構成され、結合剤中の
水溶性高分子含有量が30〜65質量%の範囲にあり、
かつ、スラリー中の固形分に占める結合剤配合量が1〜
5質量%の範囲であり、この水分散エマルジョン樹脂
は、最低造膜温度が10℃以下の天然ゴム(NR)ラテ
ックス、スチレン・ブタジエンゴム(SBR)ラテック
ス、ブタジエンゴム(BR)ラテックス、アクリロニト
リル・ブタジエン共重合体ゴム(NBR)ラテックス、
メチルメタクリレート・ブタジエン共重合体ゴム(MB
R)ラテックス、スチレンブタジエン・スチレン共重合
体(SBS)ラテックスおよびアクリルエステル樹脂エ
マルジョンから選ばれる1種以上であると共に、この水
溶性高分子は、1質量%水溶液の25℃における粘度が
200〜2,500mPa・sのアルギン酸ナトリウ
ム、アルギン酸カリウム、アルギン酸アンモニウム、ア
ルギン酸プロピレングリコールエステル、カルボキシメ
チルセルロースおよびそのナトリウム塩またはアンモニ
ウム塩、ヒドロキシエチルセルロース、ポリエチレンオ
キシド、ポリビニルアルコール、カゼイン、ポリアクリ
ル酸ナトリウムから選ばれる1種以上とする。加えて、
このスラリーに用いる炭素材活物質は、リン状またはリ
ン片状の天然黒鉛粒子から構成される塊状黒鉛粒子群を
50質量%以上含有し、かつ、この塊状黒鉛粒子群は、
レーザー光回折法における累積50%径(D50径)が
10〜25μm、窒素ガス吸着法における比表面積が
2.5〜5m/g、静置法における見掛け密度が0.4
5g/cm以上、タップ法における見掛け密度が0.
70g/cm以上とする。また、本願のもう一つの発
明は、主たる構成物質が炭素材活物質、結合剤および水
媒体とする非水系二次電池の負極塗膜形成用スラリーの
粘性特性をずり速度(γ s−1)と剪断応力(τ P
a)との関係においてγ=10κ×τとし、κを−
1.0〜−9.0、nを1.1〜4.5の範囲とする非水系
二次電池の負極塗膜形成用スラリーの調整方法を提供す
るものである。
In order to solve the above-mentioned problems, the slurry of the present invention is a non-aqueous two-component slurry whose solids are a carbonaceous material active material and a binder and whose medium is water. in negative Gokunuri film forming slurry of the following cell, the viscosity characteristics of the slurry, the shear rate (γ s - 1) and in relation to the shear stress (τ Pa) γ = 10 κ × τ n
And κ is in the range of -1.0 to -9.0, and n
Is in the range of 1.1 to 4.5, to provide a slurry for forming a negative electrode coating film of a non-aqueous secondary battery. The binder used in this slurry is composed of a water-dispersed emulsion resin and a water-soluble polymer, and the content of the water-soluble polymer in the binder is in the range of 30 to 65% by mass.
Moreover, the amount of the binder compounded in the solid content of the slurry is 1 to
This water-dispersed emulsion resin has a minimum film-forming temperature of 10 ° C. or less, a natural rubber (NR) latex, a styrene-butadiene rubber (SBR) latex, a butadiene rubber (BR) latex, and an acrylonitrile-butadiene resin. Copolymer rubber (NBR) latex,
Methyl methacrylate / butadiene copolymer rubber (MB
R) is at least one selected from latex, styrene-butadiene-styrene copolymer (SBS) latex and acrylic ester resin emulsion, and the water-soluble polymer has a viscosity of a 1% by mass aqueous solution at 25 ° C. of 200 to 2 , 500 mPa · s, one or more selected from sodium alginate, potassium alginate, ammonium alginate, propylene glycol alginate, carboxymethyl cellulose and its sodium salt or ammonium salt, hydroxyethyl cellulose, polyethylene oxide, polyvinyl alcohol, casein, sodium polyacrylate. And in addition,
The carbon material active material used for this slurry contains 50 mass% or more of the massive graphite particle group composed of phosphorus-like or flake-like natural graphite particles, and the massive graphite particle group is
The cumulative 50% diameter (D50 diameter) in the laser light diffraction method is 10 to 25 μm, the specific surface area in the nitrogen gas adsorption method is 2.5 to 5 m 2 / g, and the apparent density in the stationary method is 0.4.
5 g / cm 3 or more, apparent density in tap method is 0.
70 g / cm 3 or more. Another invention of the present application is that the viscosity characteristics of a slurry for forming a negative electrode coating film of a non-aqueous secondary battery in which a main constituent material is a carbon material active material, a binder and an aqueous medium are shear rates (γ s −1 ). And shear stress (τ P
In the relationship with a), γ = 10 κ × τ n, and κ is −
It is intended to provide a method for adjusting a slurry for forming a negative electrode coating film of a non-aqueous secondary battery in which the range of 1.0 to -9.0 and n is 1.1 to 4.5.

【0006】[0006]

【発明の実施の形態】この発明の第一の特徴は、固形分
が炭素材活物質および結合剤であり、媒体が水であるこ
とを基本構成とする非水系二次電池の負極塗膜形成用ス
ラリーにおいて、スラリーの粘性特性が、ずり速度(γ
−1)と剪断応力(τ Pa)との関係としてγ=1
κ×τであり、κが−1.0〜−9.0の範囲にあ
り、かつ、nが1.1〜4.5の範囲とした非水系二次電
池の負極塗膜形成用スラリーである。
BEST MODE FOR CARRYING OUT THE INVENTION The first feature of the present invention is the formation of a negative electrode coating film for a non-aqueous secondary battery whose solid content is a carbonaceous material active material and a binder and whose medium is water. In the case of the slurry for slurry, the viscosity characteristic of the slurry is
s −1 ) and the shear stress (τ Pa) as a relation γ = 1
0 κ × τ n , κ in the range of -1.0 to -9.0, and n in the range of 1.1 to 4.5 for forming a negative electrode coating film of a non-aqueous secondary battery. It is a slurry.

【0007】高分子塗料やコロイド系塗料の多くは通
常、チキソトロピック(擬塑性)流動を示すチキソトロ
ピック流体、すなわち、流動させると粘度が低下する
が、流動をやめると再び硬化する(粘度が上昇して、概
ね元の粘度に戻る)性質を有する。なお、チキソトロピ
ック流体の他には、流動させても粘度が変化しないニュ
ートン流体や流動させると硬化(粘度が上昇)するダイ
ラタント流体がある。ニュートン流体は、ガスや一般的
な液体で見られる粘性挙動で基本流体とも呼ばれる。こ
れに対して、チキソトロピック流体やダイラタント流体
は総称して非ニュートン流体と呼ばれてニュートン流体
と区別されているが、これら3種の流体を示す流動関係
式として次式が知られている。
Most of polymer coatings and colloidal coatings are usually thixotropic fluids exhibiting thixotropic (pseudoplastic) flow, that is, viscosity decreases when fluidized, but cures again when fluidization stops (viscosity increases). And returns to the original viscosity). In addition to the thixotropic fluid, there are Newtonian fluids whose viscosity does not change even when they are made to flow, and dilatant fluids that harden (the viscosity increases) when they are made to flow. Newtonian fluids are also called basic fluids due to the viscous behavior found in gases and general liquids. On the other hand, thixotropic fluids and dilatant fluids are generically called non-Newtonian fluids and are distinguished from Newtonian fluids, and the following equations are known as flow relation equations showing these three types of fluids.

【数1】γ=kτ ここで、γはずり速度(s−1)、τは剪断応力(P
a)であり、実験式であるが、kやnによって流体の流
動現象を特徴づける式として一般的に知られている。す
なわち、指数nはニュートン流体では1であり、ダイラ
タント流体ではnは1以下、チキソトロピック流体では
nが1以上となる。また、nが1から離れるほどダイラ
タントまたはチキソトロピックな流体と言える。また定
数kは、塗料の静置粘度を示す指標であり、この値が大
きいほど静置粘度値が高い、小さいと低い塗料となり、
kやnが特定されると、その塗料の流動特性が決定づけ
られる。なお、定数kは粘度指標であり、Pa・sやP
(ポイズ)で表示される粘度、m/sやSt(ストー
クス)で表示される動粘度とは異なるものである。
## EQU1 ## γ = kτn Where γ offset speed (s-1), Τ is the shear stress (P
a) is an empirical formula, but the flow of the fluid depends on k and n.
It is generally known as an equation that characterizes dynamic phenomena. You
That is, the index n is 1 in Newtonian fluid and
N is 1 or less for Tannt fluid, and for thixotropic fluid
n becomes 1 or more. In addition, as n goes away from 1,
It can be called a tanto or thixotropic fluid. Also fixed
The number k is an index showing the static viscosity of the paint, and this value is large.
The higher the static viscosity value is, the lower the paint is,
When k or n is specified, the flow characteristics of the paint are determined
To be The constant k is a viscosity index, and Pa · s or P
Viscosity displayed in (poise), mTwo/ S and St (Stowe
It is different from the kinematic viscosity displayed in the box.

【0008】したがって、本発明の非水系二次電池の負
極塗膜形成用スラリーの粘性特性はγ=10κ×τ
おいてnが1.1〜4.5の範囲であるから、特定範囲の
チキソトロピック流体である。nが1.1未満ではチキ
ソトロピック性を有する塗料ではあるがチキソトロピッ
ク性が足りない塗料(スラリー)であり、ダイコーター
やブレードコーターなどの塗膜形成過程の塗布機で扱い
にくいスラリーとなる。一方、nが4.5を越えるとチ
キソトロピック性が顕著な、すなわち大きなずり速度を
与えられた場合に粘度の低下(粘度変化)が著しいスラ
リーであり、扱いにくくなる。なお、前記の実験式にお
ける定数nとkには扱いやすい塗料の観点で相関があ
る。すなわち、定数nが1から離れて大きくなるとチキ
ソトロピック性が顕著となるので定数kの意味する静置
粘度値は高い(定数kが大きい)ものでも、塗布機によ
りスラリーに寄与するずり速度が大きければスラリーが
塗布される際の粘度値は低下している状態となるので使
用上問題は起こらないこととなる。また、逆も言える。
すなわちこの見解を、本発明の関係式に当てはめると、
nが大きい場合にκは−9.0のように小さくても許容
されることとなり、逆にκが−1.0と大きくてもnが
小さければ許容されることとなる。なお、κおよびnの
適正値は塗布機の種類で当然に異なるものであるが、κ
とnは逆比例的な関係にあることはどの塗布機でも共通
である。
Therefore, the viscosity characteristic of the slurry for forming a negative electrode coating film of the non-aqueous secondary battery of the present invention is such that n is in the range of 1.1 to 4.5 when γ = 10 κ × τ n It is a thixotropic fluid. When n is less than 1.1, it is a coating having a thixotropic property but a liquid having a insufficient thixotropic property (slurry), which is a slurry which is difficult to handle by a coating machine such as a die coater or a blade coater in a coating forming process. On the other hand, when n exceeds 4.5, the thixotropic property is remarkable, that is, when the shear rate is large, the viscosity of the slurry is remarkably lowered (change in viscosity), which makes it difficult to handle. The constants n and k in the above empirical formula have a correlation from the viewpoint of easy-to-use paint. That is, when the constant n increases away from 1, the thixotropic property becomes remarkable, so even if the static viscosity value that the constant k means is high (the constant k is large), the shear rate that contributes to the slurry by the coating machine is high. For example, since the viscosity value when the slurry is applied is lowered, no problem will occur in use. The opposite is also true.
That is, when this view is applied to the relational expression of the present invention,
When n is large, .kappa. is allowed to be as small as -9.0, and conversely, if .kappa. is large as -1.0, it is allowed if n is small. The proper values of κ and n naturally vary depending on the type of coating machine.
It is common to all coating machines that there is an inverse proportional relationship between and.

【0009】なお、本件発明のγ(s−1)とτ(P
a)の関係式γ=10κ×τで、κが−1.0〜−9.
0およびnが1.1〜4.5の範囲とするための望ましい
態様としては、非水系二次電池の負極塗膜形成用スラリ
ーに用いる結合剤を、水分散エマルジョン樹脂と水溶性
高分子から構成し、結合剤中の水溶性高分子含有量を3
0〜65質量%の範囲とし、かつ、スラリー中の固形分
に占める結合剤配合量を1〜5質量%の範囲とする。結
合剤中の水溶性高分子含有量が30質量%未満では、黒
鉛粒子の分散性が悪く均一な塗膜が得られ難いと共に、
充放電容量の低下を引き起こす。一方、水溶性高分子含
有量が65質量%を越えると、塗膜の可撓性が低く、捲
回時に塗膜にクラックを生じる可能性があると共に同様
に充放電容量、特に大電流時の容量低下を引き起こす。
したがって、結合剤中の水溶性高分子はスラリー中の有
機成分として分散に寄与するだけでなく、形成する負極
塗膜の造膜性に影響を及ぼして放電容量に寄与する材料
であり、水分散エマルジョン樹脂は得られる塗膜が基材
に付着することに寄与する材料であるということができ
る。なお、スラリー中の固形分、すなわち炭素材活物質
と結合剤の実質固形分との総和量に占める結合剤配合量
が1質量%未満では得られる負極塗膜が基材から簡単に
剥離してしまうこととなり、配合量としては少ない。逆
に結合剤配合量が5質量%を越えると、結合剤はリチウ
ムイオンを吸蔵する材料ではないので充放電容量が急激
に低下する。
It should be noted that γ (s -1 ) and τ (P
In the relational expression γ = 10 κ × τ n in a), κ is -1.0 to -9.
As a desirable mode for controlling 0 and n to be in the range of 1.1 to 4.5, the binder used in the slurry for forming a negative electrode coating film of a non-aqueous secondary battery is composed of an aqueous dispersion emulsion resin and a water-soluble polymer. The content of water-soluble polymer in the binder is 3
The amount of the binder is 0 to 65% by mass, and the amount of the binder compounded in the solid content of the slurry is 1 to 5% by mass. When the content of the water-soluble polymer in the binder is less than 30% by mass, the dispersibility of graphite particles is poor and it is difficult to obtain a uniform coating film.
It causes a decrease in charge and discharge capacity. On the other hand, when the content of the water-soluble polymer exceeds 65% by mass, the flexibility of the coating film is low, cracks may occur in the coating film when wound, and the charge / discharge capacity, especially at large current Causes capacity loss.
Therefore, the water-soluble polymer in the binder not only contributes to the dispersion as an organic component in the slurry, but also affects the film-forming property of the formed negative electrode coating film and contributes to the discharge capacity. It can be said that the emulsion resin is a material that contributes to the obtained coating film adhering to the substrate. The solid content of the slurry, that is, when the amount of the binder compounded in the total amount of the carbon material active material and the substantial solid content of the binder is less than 1% by mass, the obtained negative electrode coating film is easily peeled off from the substrate. As a result, the compounding amount is small. On the other hand, if the amount of the binder compounded exceeds 5% by mass, the charge / discharge capacity sharply decreases because the binder is not a material that absorbs lithium ions.

【0010】本件発明の結合剤を構成する水分散エマル
ジョン樹脂としては、最低造膜温度が10℃以下の天然
ゴム(NR)ラテックス、スチレン・ブタジエンゴム
(SBR)ラテックス、ブタジエンゴム(BR)ラテッ
クス、アクリロニトリル・ブタジエン共重合体ゴム(N
BR)ラテックス、メチルメタクリレート・ブタジエン
共重合体ゴム(MBR)ラテックス、スチレンブタジエ
ン・スチレン共重合体(SBS)ラテックスおよびアク
リルエステル樹脂エマルジョンから選ばれる1種以上で
あり、これらエマルジョン樹脂の単体または混合物を用
いることが可能である。また水溶性高分子としては、1
質量%水溶液の25℃における粘度が200〜2,50
0mPa・sのアルギン酸ナトリウム、アルギン酸カリ
ウム、アルギン酸アンモニウム、アルギン酸プロピレン
グリコールエステル、カルボキシメチルセルロースおよ
びそのナトリウム塩またはアンモニウム塩、ヒドロキシ
エチルセルロース、ポリエチレンオキシド、ポリビニル
アルコール、カゼイン、ポリアクリル酸ナトリウムから
選ばれる1種以上である。前記の水分散エマルジョン樹
脂と同様、ここであげた水溶性高分子の単体または混合
物を用いることが可能である。
As the water-dispersed emulsion resin constituting the binder of the present invention, natural rubber (NR) latex having a minimum film forming temperature of 10 ° C. or lower, styrene-butadiene rubber (SBR) latex, butadiene rubber (BR) latex, Acrylonitrile-butadiene copolymer rubber (N
BR), methyl methacrylate / butadiene copolymer rubber (MBR) latex, styrene butadiene / styrene copolymer (SBS) latex, and acrylic ester resin emulsion, and one or more of these emulsion resins may be used. It can be used. As the water-soluble polymer, 1
The viscosity of a mass% aqueous solution at 25 ° C. is 200 to 2,500.
One or more selected from 0 mPa · s of sodium alginate, potassium alginate, ammonium alginate, propylene glycol alginate, carboxymethyl cellulose and its sodium salt or ammonium salt, hydroxyethyl cellulose, polyethylene oxide, polyvinyl alcohol, casein, sodium polyacrylate. is there. Similar to the above water-dispersed emulsion resin, it is possible to use a single substance or a mixture of the water-soluble polymers listed here.

【0011】水分散エマルジョン樹脂成分による塗膜化
は、エマルジョン樹脂を構成するエマルジョン粒子を集
合化することであり、この粒子集合化のための臨界温度
を最低造膜温度と言う。この温度はエマルジョン含有塗
料を取扱う上で重要な因子となり、この臨界温度より低
い温度でスラリーを塗布、乾燥して、塗膜化を行った場
合には、エマルジョン粒子は部分的に集合化するのみ
で、不連続な塗膜となったり、単に粉末状になるだけで
塗膜化できない場合もある。このためエマルジョンを含
有する塗料によって塗膜を形成するためには、最低造膜
温度以上で扱う必要がある。この発明に用いる水分散エ
マルジョン樹脂の最低造膜温度の上限は常温(25℃)
より低い10℃以下である。したがって、スラリーを塗
布して塗膜化する際に特別な加温または定温化などの付
帯設備を必要としない塗料である。
Forming a coating film with a water-dispersed emulsion resin component is to aggregate emulsion particles constituting the emulsion resin, and the critical temperature for the aggregation of the particles is called the minimum film-forming temperature. This temperature is an important factor in handling emulsion-containing paint, and when the slurry is applied and dried at a temperature lower than this critical temperature to form a coating film, the emulsion particles only partially aggregate. In some cases, the coating film may be discontinuous, or it may simply become powder and cannot be formed into a coating film. Therefore, in order to form a coating film with a coating material containing an emulsion, it is necessary to handle at a minimum film forming temperature or higher. The upper limit of the minimum film-forming temperature of the water-dispersed emulsion resin used in the present invention is room temperature (25 ° C)
It is lower than 10 ° C. Therefore, when the slurry is applied to form a coating film, the coating material does not require any additional equipment such as special heating or constant temperature.

【0012】なお、水溶性高分子の1質量%水溶液の2
5℃における粘度は、水溶性高分子の分子量や高分子の
結合形態などに依存するものであり、概ね粘度数値が低
いものほど低分子量または低重合度である。前記水溶液
の粘度が2,500mPa・sを超えると水溶性高分子と
しては高重合度なものとなり、スラリーの粘度が増加
し、固形分が低い、取り扱いにくいスラリーとなる。一
方、水溶液の粘度が200mPa・s未満ではスラリー
粘度も低下し、粒子の沈降が著しくなる。なお、好まし
い粘度範囲は300〜1,500mPa・sである。
It should be noted that 2% of a 1 mass% aqueous solution of a water-soluble polymer.
The viscosity at 5 ° C. depends on the molecular weight of the water-soluble polymer, the bonding form of the polymer, and the like. Generally, the lower the viscosity value, the lower the molecular weight or the degree of polymerization. When the viscosity of the aqueous solution exceeds 2,500 mPa · s, the water-soluble polymer has a high degree of polymerization, the viscosity of the slurry increases, and the slurry has a low solid content and is difficult to handle. On the other hand, when the viscosity of the aqueous solution is less than 200 mPa · s, the viscosity of the slurry also decreases and the sedimentation of the particles becomes remarkable. The preferred viscosity range is 300 to 1,500 mPa · s.

【0013】さらに加えて、この発明のスラリーに適用
する炭素材活物質は、リン状またはリン片状の天然黒鉛
粒子から構成される塊状黒鉛粒子群が50質量%以上含
有され、かつ、この塊状黒鉛粒子群は、レーザー光回折
法における累積50%径(D50径)が10〜25μ
m、窒素ガス吸着法における比表面積が2.5〜5m
/g、静置法における見掛け密度が0.45g/cm
以上、タップ法における見掛け密度が0.70g/cm
以上である。
In addition, the carbonaceous material applied to the slurry of the present invention contains 50 mass% or more of agglomerated graphite particles composed of phosphorus-like or flake-like natural graphite particles, and The graphite particle group has a cumulative 50% diameter (D50 diameter) of 10 to 25 μm in the laser light diffraction method.
m, the specific surface area in the nitrogen gas adsorption method is 2.5 to 5 m 2
/ G, apparent density in static method is 0.45 g / cm 3
As described above, the apparent density in the tap method is 0.70 g / cm
It is 3 or more.

【0014】D50径(平均粒子径)の値が10μm未
満では、塊状黒鉛粒子群の粒子径としては小さすぎ、得
られる負極塗膜においては黒鉛粒子間の接触抵抗が増加
して形成した塗膜の導電性が劣化する傾向がある。した
がって、電池特性としては充放電容量や充放電負荷特性
が低下すると共に、電解液の分解に伴う充放電効率が低
下する。逆に、D50径の値が25μmを超えると、黒
鉛粒子群の粒子径としては大きすぎ、負極塗膜において
は充放電時のリチウムイオンの黒鉛内部および外部への
拡散に時間を要し、充放電負荷特性が低下すると共に、
形成した塗膜の平滑性が悪くなり、充電時に局部的にリ
チウムが析出する恐れがある。
When the value of D50 diameter (average particle diameter) is less than 10 μm, the particle diameter of the agglomerated graphite particles is too small, and in the obtained negative electrode coating film, the contact resistance between graphite particles is increased to form a coating film. The conductivity of the product tends to deteriorate. Therefore, as the battery characteristics, the charge / discharge capacity and the charge / discharge load characteristics are deteriorated, and the charge / discharge efficiency accompanying the decomposition of the electrolytic solution is decreased. On the other hand, when the value of D50 diameter exceeds 25 μm, the particle diameter of the graphite particle group is too large, and it takes time for the lithium ion in the negative electrode coating film to diffuse inside and outside the graphite during charging / discharging. As the discharge load characteristics deteriorate,
The formed coating film may have poor smoothness, and lithium may be locally deposited during charging.

【0015】また、このD50径(平均粒子径)の値と
相関性があるが、窒素ガス吸着法による比表面積が2.
5m2/g未満では、黒鉛粒子群としては比表面積の値
が低く、粗大な粒子群となる。したがって、負極塗膜と
しては充放電時のリチウムイオンの黒鉛内部および外部
への拡散に時間を要し、充放電負荷特性が低下すると共
に、形成した塗膜の平滑性が悪くなり、充電時に局部的
にリチウムが析出する恐れがある。逆に、窒素ガス吸着
法による比表面積が5m2/gを超えると、黒鉛粒子は
微細な粒子群となり、負極塗膜としては黒鉛粒子間の接
触抵抗が増加して形成した塗膜の導電性が劣化し、充放
電容量や充放電負荷特性が低下すると共に、電解液の分
解に伴う充放電効率が低下し、凝集が進んで嵩密度の低
い粒子群になる傾向もあり、比表面積がこの値より大き
いと好ましくない。
Further, although there is a correlation with the value of this D50 diameter (average particle diameter), the specific surface area by the nitrogen gas adsorption method is 2.
When it is less than 5 m 2 / g, the value of the specific surface area of the graphite particle group is low, and the particle group becomes coarse. Therefore, as a negative electrode coating film, it takes time for the diffusion of lithium ions into and out of graphite during charging / discharging, the charging / discharging load characteristics are deteriorated, and the smoothness of the coating film formed is deteriorated. Lithium may be deposited. On the other hand, when the specific surface area by the nitrogen gas adsorption method exceeds 5 m 2 / g, the graphite particles become a fine particle group, and the contact resistance between the graphite particles increases as a negative electrode coating film, and the conductivity of the coating film formed is increased. Deteriorates, charge and discharge capacity and charge and discharge load characteristics decrease, charge and discharge efficiency decreases with the decomposition of the electrolytic solution, aggregation tends to proceed to a particle group with a low bulk density, and the specific surface area is It is not preferable if it is larger than the value.

【0016】さらに、この発明における塊状黒鉛粒子群
の静置法による見掛け密度は0.45g/cm以上、
タップ法による見掛け密度が0.70g/cm以上で
ある。静置法による見掛け密度およびタップ法による見
掛け密度の測定方法は、顔料試験方法(JIS K 51
01)に記載されている。この発明における静置法およ
びタップ法による見掛け密度は、ホソカワミクロン製パ
ウダーテスター PT−R型を用いて測定したものであ
る。静置法による見掛け密度の測定方法は、篩網を通し
て受器に試料を入れて、容積が100cmになったと
きの質量を測定することにより評価する。これに対し
て、タップ法による見掛け密度の測定方法は、試料を受
器に投入しながら受器を180回タッピングした後の容
積100cm当たりの質量を測定することにより評価
する。静置法による見掛け密度の0.45g/cm
よびタップ法による見掛け密度の0.70g/cm
値は、この発明に適用される黒鉛粒子群の下限値であ
る。リチウムイオン電池の高エネルギー密度化の要求に
対しては、活物質の充填密度を高めること、言い換えれ
ば塗膜の高密度化が必須である。そのためには、できる
だけ厚い塗膜を形成することが必要である。本発明者ら
が検討した結果、塗膜を形成するためのスラリー固形分
が45質量%以上であれば良好な塗膜を形成できること
を見出した。その固形分含量を達成するためには、静置
法による見掛け密度が0.45g/cm以上、タップ
法による見掛け密度が0.70g/cm 以上の値が好
ましいことが分かった。また、これらの見掛け密度未満
では、塗工時の膜厚の変動が大きくなり、十分な密着強
度を得るために必要な結合剤の配合量も多くなり、実効
容量の低下を引き起こす懸念がある。
Further, the aggregated graphite particle group in the present invention
Apparent density by static method of 0.45g / cmThreethat's all,
Apparent density by tap method is 0.70g / cmThreeAbove
is there. Apparent density by static method and appearance by tap method
The coating density is measured by the pigment test method (JIS K 51
01). The static method and the
The apparent density by tapping and tapping is the Hosokawa Micron
It was measured using the Udertester PT-R type.
It The apparent density is measured by the static method by passing it through a sieve mesh.
Put the sample in the receiver and the volume is 100 cmThreeBecame
It is evaluated by measuring the mass of mushrooms. On the other hand
The apparent density measurement method using the tap method
After tapping the receiver 180 times while putting it in the container,
Product 100cmThreeEvaluation by measuring the mass per hit
To do. Apparent density 0.45g / cm by static methodThreeOh
And apparent density of 0.70 g / cm by tap methodThreeof
The value is the lower limit value of the graphite particle group applied to the present invention.
It To meet the demand for higher energy density of lithium-ion batteries
On the other hand, increasing the packing density of the active material, in other words
For example, high density coating is essential. For that, you can
It is necessary to form only thick coatings. The inventors
As a result of the investigation, the solid content of the slurry for forming the coating film
A good coating film can be formed when the content is 45% by mass or more.
Found. To achieve its solids content, stand still
Apparent density by the method is 0.45g / cmThreeTap
Apparent density by method is 0.70g / cm ThreeGreater than or equal to
I found it to be better. Also, less than these apparent densities
, The fluctuation of the film thickness during coating becomes large, resulting in sufficient adhesion strength.
The amount of binder needed to obtain high
There is a concern that this will cause a decrease in capacity.

【0017】[0017]

【実施例】以下、この発明を実施例を用いてさらに詳細
に説明していくこととするが、この発明が本実施例で限
定されるものでは無い。 <実施例1〜5> (スラリーの調製)比表面積4.2m/g、D50粒
子径19.3μm、静置法による見掛け密度0.45g/
cm、タップ法による見掛け密度0.85g/cm
のリン片状天然黒鉛から構成される塊状黒鉛粒子に表1
に示す水分散エマルジョンと水溶性樹脂からなる結合剤
を混合してスラリーを調製した。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to the examples. <Examples 1 to 5> (Preparation of slurry) Specific surface area 4.2 m 2 / g, D50 particle size 19.3 μm, apparent density 0.44 g / by static method
cm 3 , apparent density by tap method 0.85 g / cm 3
The lumpy graphite particles composed of the scaly natural graphite of Table 1
A slurry was prepared by mixing the water-dispersed emulsion shown in 1) with a binder composed of a water-soluble resin.

【0018】[0018]

【表1】 [Table 1]

【0019】(流動性)これらのペーストをレオメータ
(HAAKE−PK100)の平板上に置き、コーン型
回転子(PK:2−1°、直径2cm、錐角1°)を用
い、25℃において、せん断速度3,000s−1まで
180秒で上昇させ、各せん断速度におけるせん断応力
を測定して流動性を評価した。 (塗工)25℃の環境下において、これらのスラリーを
集電体となる圧延銅箔の上に、ギャップ200μmのド
クターブレードを用いて塗布し、120℃で10分間乾
燥し、ロールプレスで1.5g/cmの負極塗膜とし
た。 (密着性)負極塗膜上に幅18mmのセロファンテープ
を貼って2kgの荷重で圧着した後、セロファンテープ
を引き剥がすために必要な荷重をプッシュプルゲージで
測定した。また、負極塗膜の剥離(破壊)状態を観察し
た。 (電極特性)負極塗膜を銅箔と共にポンチで打ち抜いて
電極を作製した。対極として金属リチウムを用い、電解
液として1M−LiPF6/EC(エチレンカーボネー
ト)+DMC(ジメチルカーボネート)を用いたコイン
形モデルセルを作製し、0.5mA/cm2の電流密度で
0.01V(vs.Li/Li)まで定電流でリチウ
ムを負極内に吸蔵(充電)させ充電容量を求めた。ま
た、初回の放電容量は、0.5mA/cm2の定電流で
1.1V(vs.Li/Li)まで放電させて求め
た。さらに、0.5mA/cm2で充電を行った後、6m
A/cm2の電流密度で1.1V(vs.Li/Li
まで放電させたときの放電容量を求め、0.5mA/c
2で放電したときの容量との比率を求め、放電負荷特
性(放電レート)を評価した。各黒鉛試料における、上
記の各種評価の結果を表2に示す。
(Flowability) These pastes were placed on a flat plate of a rheometer (HAAKE-PK100), and a cone type rotor (PK: 2-1 °, diameter 2 cm, cone angle 1 °) was used at 25 ° C. The shear rate was increased to 3,000 s −1 in 180 seconds, and the shear stress at each shear rate was measured to evaluate the fluidity. (Coating) In a 25 ° C. environment, these slurries were applied onto a rolled copper foil serving as a current collector by using a doctor blade with a gap of 200 μm, dried at 120 ° C. for 10 minutes, and then rolled with a roll press. The negative electrode coating film was 0.5 g / cm 3 . (Adhesiveness) A cellophane tape having a width of 18 mm was attached on the negative electrode coating film and pressure-bonded with a load of 2 kg, and then the load required to peel off the cellophane tape was measured with a push-pull gauge. Further, the peeled (destructed) state of the negative electrode coating film was observed. (Electrode characteristics) A negative electrode coating film was punched together with a copper foil with a punch to prepare an electrode. A coin-shaped model cell was prepared using metallic lithium as a counter electrode and 1M-LiPF 6 / EC (ethylene carbonate) + DMC (dimethyl carbonate) as an electrolyte, and 0.01 V (at a current density of 0.5 mA / cm 2 ). vs. Li / Li + ) lithium was occluded (charged) in the negative electrode at a constant current to obtain the charge capacity. The initial discharge capacity was determined by discharging to 1.1 V (vs. Li / Li + ) at a constant current of 0.5 mA / cm 2 . Furthermore, after charging at 0.5 mA / cm 2 , 6 m
1.1 V (vs. Li / Li + ) at a current density of A / cm 2.
Discharge capacity up to 0.5mA / c
The ratio with the capacity when discharged at m 2 was obtained, and the discharge load characteristic (discharge rate) was evaluated. Table 2 shows the results of the above-described various evaluations for each graphite sample.

【0020】[0020]

【表2】 なお、表中に記した本発明の範囲となる実施例の各試料
では、塗工性、得られた塗膜の強度および電極特性はい
ずれも良好であった。
[Table 2] It should be noted that in each of the samples of the examples within the scope of the present invention described in the table, the coatability, the strength of the obtained coating film and the electrode characteristics were all good.

【0021】<比較例1〜7>表3、表5に記した材料
を比較試料として実施例と同様の測定方法で評価を行っ
た。なお、評価の結果を表4に比較例1〜4、表6に比
較例5〜7として示す。
<Comparative Examples 1 to 7> The materials shown in Tables 3 and 5 were used as comparative samples and evaluated by the same measuring method as in the examples. The evaluation results are shown in Table 4 as Comparative Examples 1 to 4 and Table 6 as Comparative Examples 5 to 7.

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】試料11(比較例1)は、水溶性高分子の
1質量%水溶液の粘度が範囲外であり、κが−9.8と
小さいために粒子の沈降が著しく、粘性が低いために塗
膜にかすれが発生した。試料12(比較例2)は、水溶
性高分子の1質量%水溶液の粘度が範囲外であり、κお
よびn値は本発明の範囲内であるが、スラリーの固形分
が低く、塗工時ににじみが発生した。試料13(比較例
3)、14(比較例4)は、結合剤に占める水溶性高分
子の含有量が範囲外で試料13では塗膜にかすれが発生
し、試料14は水溶性高分子が多いために放電負荷特性
が劣化した。
In Sample 11 (Comparative Example 1), the viscosity of a 1% by weight aqueous solution of a water-soluble polymer was out of the range, and since κ was as small as -9.8, sedimentation of particles was remarkable and the viscosity was low. The coating film was scratched. In Sample 12 (Comparative Example 2), the viscosity of the 1% by mass aqueous solution of the water-soluble polymer was out of the range, and the κ and n values were within the ranges of the present invention, but the solid content of the slurry was low and the slurry was not coated. Bleeding occurred. In Samples 13 (Comparative Example 3) and 14 (Comparative Example 4), the content of the water-soluble polymer in the binder was out of the range, and in Sample 13, the coating film was scratched. The discharge load characteristics deteriorated due to the large number.

【0024】[0024]

【表5】 [Table 5]

【0025】[0025]

【表6】 [Table 6]

【0026】試料21(比較例5)はスラリー固形分に
占める結合剤配合量が少なく、塗膜にかすれが生じると
共に密着強度が低い。試料22(比較例6)は結合剤が
多く放電負荷特性が劣化している。試料23(比較例
7)はエマルジョンの最低造膜温度が高いために、十分
な成膜が得られずに塗膜の密着が弱く、放電容量や放電
負荷の劣化を引き起こした。
Sample 21 (Comparative Example 5) has a small amount of binder compounded in the solid content of the slurry, so that the coating film is scratched and the adhesion strength is low. In Sample 22 (Comparative Example 6), the amount of the binder was large and the discharge load characteristics were deteriorated. In Sample 23 (Comparative Example 7), since the minimum film forming temperature of the emulsion was high, sufficient film formation could not be obtained and the adhesion of the coating film was weak, causing deterioration of discharge capacity and discharge load.

【0027】[0027]

【発明の効果】この発明のスラリーを用いることによ
り、電池電極の塗膜強度および塗膜密度が良好となり、
かつ各種電極特性に優れた非水系二次電池の負極を得る
ことができる。
By using the slurry of the present invention, the coating strength and coating density of the battery electrode are improved,
In addition, it is possible to obtain a negative electrode of a non-aqueous secondary battery having excellent various electrode characteristics.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固形分が炭素材活物質および結合剤であ
り、媒体が水であることを基本構成とする非水系二次電
池の負極塗膜形成用スラリーにおいて、 該スラリーの粘性特性が、ずり速度(γ s−1)と剪
断応力(τ Pa)との関係においてγ=10κ×τ
であり、κが−1.0〜−9.0の範囲にあり、かつ、n
が1.1〜4.5の範囲にあることを特徴とする非水系二
次電池の負極塗膜形成用スラリー。
1. A slurry for forming a negative electrode coating film of a non-aqueous secondary battery, the solid content of which is a carbon material active material and a binder, and the medium of which is water. In the relationship between the shear rate (γ s -1 ) and the shear stress (τ Pa), γ = 10 κ × τ n
And κ is in the range of -1.0 to -9.0, and n
Is in the range of 1.1 to 4.5, the slurry for forming a negative electrode coating film of a non-aqueous secondary battery.
【請求項2】 前記結合剤が、水分散エマルジョン樹脂
と水溶性高分子から構成され、結合剤中の水溶性高分子
含有量が30〜65質量%の範囲にあり、かつ、スラリ
ー中の固形分に占める結合剤配合量が1〜5質量%の範
囲であり、 該水分散エマルジョン樹脂は、最低造膜温度が10℃以
下の天然ゴムラテックス、スチレン・ブタジエンゴムラ
テックス、ブタジエンゴムラテックス、アクリロニトリ
ル・ブタジエン共重合体ゴムラテックス、メチルメタク
リレート・ブタジエン共重合体ゴムラテックス、スチレ
ンブタジエン・スチレン共重合体ラテックスおよびアク
リルエステル樹脂エマルジョンから選ばれる1種以上
で、 該水溶性高分子は、1質量%水溶液の25℃における粘
度が200〜2,500mPa・sのアルギン酸ナトリ
ウム、アルギン酸カリウム、アルギン酸アンモニウム、
アルギン酸プロピレングリコールエステル、カルボキシ
メチルセルロースおよびそのナトリウム塩またはアンモ
ニウム塩、ヒドロキシエチルセルロース、ポリエチレン
オキシド、ポリビニルアルコール、カゼイン、ポリアク
リル酸ナトリウムから選ばれる1種以上である請求項1
に記載の非水系二次電池の負極塗膜形成用スラリー。
2. The binder is composed of a water-dispersed emulsion resin and a water-soluble polymer, the content of the water-soluble polymer in the binder is in the range of 30 to 65% by mass, and the solid content of the slurry. The content of the binder in the content is in the range of 1 to 5% by mass, and the water-dispersed emulsion resin is a natural rubber latex having a minimum film forming temperature of 10 ° C. or less, styrene-butadiene rubber latex, butadiene rubber latex, acrylonitrile One or more selected from butadiene copolymer rubber latex, methyl methacrylate / butadiene copolymer rubber latex, styrene butadiene / styrene copolymer latex and acrylic ester resin emulsion, wherein the water-soluble polymer is a 1% by mass aqueous solution. Sodium alginate having a viscosity at 25 ° C. of 200 to 2,500 mPa · s, Potassium alginate, ammonium alginate,
1. One or more selected from propylene glycol alginate, carboxymethyl cellulose and its sodium or ammonium salts, hydroxyethyl cellulose, polyethylene oxide, polyvinyl alcohol, casein, and sodium polyacrylate.
The slurry for forming a negative electrode coating film of the non-aqueous secondary battery as described in 1.
【請求項3】 前記炭素材活物質は、リン状またはリン
片状の天然黒鉛粒子から構成される塊状黒鉛粒子群を5
0質量%以上含有し、かつ、 該塊状黒鉛粒子群は、レーザー光回折法における累積5
0%径(D50径)が10〜25μm、窒素ガス吸着法
における比表面積が2.5〜5m/g、静置法におけ
る見掛け密度が0.45g/cm以上、タップ法にお
ける見掛け密度が0.70g/cm以上である請求項
1に記載の非水系二次電池の負極塗膜形成用スラリー。
3. The carbon material active material comprises a group of massive graphite particles composed of phosphorus-like or flake-like natural graphite particles.
0 mass% or more, and the agglomerated graphite particle group is accumulated 5 times in the laser light diffraction method.
0% diameter (D50 diameter) is 10 to 25 μm, specific surface area in nitrogen gas adsorption method is 2.5 to 5 m 2 / g, apparent density in stationary method is 0.45 g / cm 3 or more, apparent density in tap method is The slurry for forming a negative electrode coating film of a non-aqueous secondary battery according to claim 1, which has a content of 0.70 g / cm 3 or more.
【請求項4】 主たる構成物質が炭素材活物質、結合剤
および水媒体とする非水系二次電池の負極塗膜形成用ス
ラリーの粘性特性が、ずり速度(γ s−1)と剪断応
力(τ Pa)との関係においてγ=10κ×τ
し、κを−1.0〜−9.0、nを1.1〜4.5の範囲に
することを特徴とする非水系二次電池の負極塗膜形成用
スラリーの調整方法。
4. The viscous properties of the slurry for forming a negative electrode coating film of a non-aqueous secondary battery in which a main constituent material is a carbon material active material, a binder and an aqueous medium are shear rate (γ s -1 ) and shear stress ( τ Pa) in relation to γ = 10 κ × τ n , κ is in the range of -1.0 to -9.0, and n is in the range of 1.1 to 4.5. A method for preparing a slurry for forming a negative electrode coating film of a battery.
JP2002012353A 2002-01-22 2002-01-22 Slurry for forming negative electrode film of non- aqueous secondary battery and control method of slurry Pending JP2003217573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002012353A JP2003217573A (en) 2002-01-22 2002-01-22 Slurry for forming negative electrode film of non- aqueous secondary battery and control method of slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002012353A JP2003217573A (en) 2002-01-22 2002-01-22 Slurry for forming negative electrode film of non- aqueous secondary battery and control method of slurry

Publications (1)

Publication Number Publication Date
JP2003217573A true JP2003217573A (en) 2003-07-31

Family

ID=27649582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002012353A Pending JP2003217573A (en) 2002-01-22 2002-01-22 Slurry for forming negative electrode film of non- aqueous secondary battery and control method of slurry

Country Status (1)

Country Link
JP (1) JP2003217573A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171816A (en) * 2007-01-05 2008-07-24 Samsung Sdi Co Ltd Anode for lithium battery, and lithium battery using it
JP2009080971A (en) * 2007-09-25 2009-04-16 Tokyo Univ Of Science Anode for lithium ion battery
CN102237527A (en) * 2010-04-29 2011-11-09 上海比亚迪有限公司 Lithium ion battery and lithium ion battery electrode as well as electrode material and paste for lithium ion battery
WO2012115096A1 (en) 2011-02-23 2012-08-30 日本ゼオン株式会社 Secondary cell negative electrode, secondary cell, slurry composition for negative electrode, and method of producing secondary cell negative electrode
CN103227341A (en) * 2012-01-31 2013-07-31 丰田自动车株式会社 Method of manufacturing secondary battery
JP2013222584A (en) * 2012-04-16 2013-10-28 Sharp Corp Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery manufactured using the same
WO2014021401A1 (en) * 2012-07-31 2014-02-06 日本ゼオン株式会社 Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20140106614A (en) 2011-11-29 2014-09-03 제온 코포레이션 Electrode for lithium ion secondary battery, lithium ion secondary battery, slurry composition, and method for producing electrode for lithium ion secondary battery
KR20150044839A (en) 2012-08-09 2015-04-27 제온 코포레이션 Negative electrode for secondary cell, secondary cell, slurry composition, and manufacturing method
JP2017069063A (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, nonaqueous secondary battery electrode, and nonaqueous secondary battery
JPWO2015162885A1 (en) * 2014-04-25 2017-04-13 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US10224549B2 (en) 2011-08-30 2019-03-05 Zeon Corporation Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
WO2023121284A1 (en) * 2021-12-21 2023-06-29 주식회사 엘지에너지솔루션 Negative electrode active material, and negative electrode and secondary battery comprising same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171816A (en) * 2007-01-05 2008-07-24 Samsung Sdi Co Ltd Anode for lithium battery, and lithium battery using it
JP2009080971A (en) * 2007-09-25 2009-04-16 Tokyo Univ Of Science Anode for lithium ion battery
CN102237527A (en) * 2010-04-29 2011-11-09 上海比亚迪有限公司 Lithium ion battery and lithium ion battery electrode as well as electrode material and paste for lithium ion battery
WO2012115096A1 (en) 2011-02-23 2012-08-30 日本ゼオン株式会社 Secondary cell negative electrode, secondary cell, slurry composition for negative electrode, and method of producing secondary cell negative electrode
US10224549B2 (en) 2011-08-30 2019-03-05 Zeon Corporation Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
US9461308B2 (en) 2011-11-29 2016-10-04 Zeon Corporation Electrode for lithium ion secondary battery, lithium ion secondary battery, slurry composition, and method for producing electrode for lithium ion secondary battery
KR20140106614A (en) 2011-11-29 2014-09-03 제온 코포레이션 Electrode for lithium ion secondary battery, lithium ion secondary battery, slurry composition, and method for producing electrode for lithium ion secondary battery
CN103227341A (en) * 2012-01-31 2013-07-31 丰田自动车株式会社 Method of manufacturing secondary battery
JP2013222584A (en) * 2012-04-16 2013-10-28 Sharp Corp Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery manufactured using the same
KR20150040250A (en) 2012-07-31 2015-04-14 제온 코포레이션 Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2014021401A1 (en) * 2012-07-31 2016-07-21 日本ゼオン株式会社 Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014021401A1 (en) * 2012-07-31 2014-02-06 日本ゼオン株式会社 Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20150044839A (en) 2012-08-09 2015-04-27 제온 코포레이션 Negative electrode for secondary cell, secondary cell, slurry composition, and manufacturing method
JPWO2015162885A1 (en) * 2014-04-25 2017-04-13 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2017069063A (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, nonaqueous secondary battery electrode, and nonaqueous secondary battery
WO2023121284A1 (en) * 2021-12-21 2023-06-29 주식회사 엘지에너지솔루션 Negative electrode active material, and negative electrode and secondary battery comprising same

Similar Documents

Publication Publication Date Title
EP2790252B1 (en) Anode comprising spherical natural graphite and lithium secondary battery including same
JP5158396B2 (en) Electrode binder composition
JP5931916B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2003308841A (en) Slurry for forming negative electrode coating film of nonaqueous secondary battery
WO2014051043A1 (en) Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrode for electrochemical element
JP2003217573A (en) Slurry for forming negative electrode film of non- aqueous secondary battery and control method of slurry
WO2006038652A1 (en) Electrode composition, electrode and battery
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
JP2003272619A (en) Slurry for forming negative electrode coating for nonaqueous secondary battery and adjustment method of slurry
TW201731147A (en) Aqueous binder composition for secondary battery electrode, slurry for secondary battery electrode, binder, secondary battery electrode, and secondary battery
EP4318628A1 (en) Electrochemical device and electronic device
KR20150110482A (en) Method for manufacturing conductive adhesive composition for electrochemical element electrode
JP6115786B2 (en) Method for producing negative electrode for secondary battery
JP2000294230A (en) Slurry for forming negative electrode coating film for lithium ion secondary battery and lithium ion secondary battery
CN107925090B (en) Electrode active material slurry and lithium secondary battery comprising the same
WO2017056984A1 (en) Method for producing negative electrode for lithium ion secondary batteries
JPWO2019107187A1 (en) Method for manufacturing slurry for non-aqueous battery electrodes
JP2014026962A (en) Electrode for electric power storage device, slurry for electrode, binder composition for electrode, and electric power storage device
WO2024051291A1 (en) Electrode sheet and battery
JP2007234418A (en) Negative electrode mixture paste for nonaqueous secondary battery, negative electrode and nonaqueous secondary battery using it as well as manufacturing method of negative electrode mixture paste
JP7327942B2 (en) Composition for forming porous insulating layer, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing electrode for non-aqueous electrolyte secondary battery
WO2012043763A1 (en) Electrode mixture for electricity-storage device, method for manufacturing said electrode mixture, and electricity-storage-device electrode and lithium-ion secondary battery using said electrode mixture
CA3131677A1 (en) Printed lithium foil and film
WO2023164915A1 (en) Electrochemical device and electronic device
WO2022216460A1 (en) Dry process for forming an electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617