JP2003218611A - Variable distributed constant circuit - Google Patents

Variable distributed constant circuit

Info

Publication number
JP2003218611A
JP2003218611A JP2002012511A JP2002012511A JP2003218611A JP 2003218611 A JP2003218611 A JP 2003218611A JP 2002012511 A JP2002012511 A JP 2002012511A JP 2002012511 A JP2002012511 A JP 2002012511A JP 2003218611 A JP2003218611 A JP 2003218611A
Authority
JP
Japan
Prior art keywords
constant circuit
distributed constant
liquid crystal
variable
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002012511A
Other languages
Japanese (ja)
Inventor
Atsushi Omote
篤志 表
Yoshito Nakanishi
淑人 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002012511A priority Critical patent/JP2003218611A/en
Publication of JP2003218611A publication Critical patent/JP2003218611A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized variable distributed constant circuit applied to wireless apparatuses with a short length of line the dielectric constant of which can sufficiently be varied in high frequencies. <P>SOLUTION: The variable distributed constant circuit comprises: a ceramic base 1; a metallic film 4 acting like a ground face; a control power supply 5; a band pass filter 6 being a distributed constant circuit; and a liquid crystal semiconductor layer 7, the dielectric constant of the liquid crystal semiconductor layer 7 is externally and optionally varied by the control power supply 5 to vary the guide wavelength of the band pass filter (distributed constant circuit) 6 so as to optionally vary the characteristics of the distributed constant circuit, the dielectric constant can sufficiently be varied in a high frequency region through the configuration above, resulting in realizing the small-sized variable distributed constant circuit with the short length of line. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は無線装置等に使用さ
れる可変分布定数回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable distributed constant circuit used in a wireless device or the like.

【0002】[0002]

【従来の技術】可変分布定数回路の代表例として、従来
から、マイクロ波帯ミリ波帯における液晶を用いた可変
位相器、可変フィルタが提案されている。たとえば、特
開2000−315902、特開2001−23060
2に記載されたものが知られている。これらの技術は、
D.Dolfi, M.Labeyrie, P.Joffre and P.Huignard, "Liq
uid crystal microwave phase shifter", Electron.Let
t., Vol.29, No.10, pp926-927 (1993)に基本的な構成
および動作原理が示されている。この報告に記載された
可変位相器の構成およびその動作原理を図3を用いて説
明する。
2. Description of the Related Art As a typical example of a variable distributed constant circuit, a variable phase shifter and a variable filter using liquid crystal in a microwave band and a millimeter wave band have been conventionally proposed. For example, Japanese Patent Laid-Open Nos. 2000-315902 and 2001-23060.
Those described in 2 are known. These technologies are
D.Dolfi, M.Labeyrie, P.Joffre and P.Huignard, "Liq
uid crystal microwave phase shifter ", Electron.Let
T., Vol.29, No.10, pp926-927 (1993) shows the basic configuration and operating principle. The configuration and operating principle of the variable phase shifter described in this report will be described with reference to FIG.

【0003】図3に示す液晶可変位相器は2枚のセラミ
ックス基板1とこれらのセラミックス基板にはさまれた
ネマティック液晶層(液晶・樹脂複合体2)とを備えて
いる。セラミックス基板の一方には導体線路3が形成さ
れ、もう一方にはグランド両用の金属膜4が形成されて
いる。導体線路3と金属膜4の間には制御電源5が接続
されている。なお図3では省略されているが、セラミッ
クス基板には液晶層の液晶分子に初期配向を与えるため
のポリイミド配向膜が形成されている。
The liquid crystal variable phase shifter shown in FIG. 3 comprises two ceramic substrates 1 and a nematic liquid crystal layer (liquid crystal / resin composite 2) sandwiched between these ceramic substrates. The conductor line 3 is formed on one side of the ceramics substrate, and the metal film 4 for both grounds is formed on the other side. A control power supply 5 is connected between the conductor line 3 and the metal film 4. Although not shown in FIG. 3, a polyimide alignment film for giving initial alignment to the liquid crystal molecules of the liquid crystal layer is formed on the ceramic substrate.

【0004】上記構成により可変位相器は、液晶層を誘
電体基板とみなしたマイクロストリップ線路となる。導
体線路3とグランドとなる金属膜4の間に制御電圧を加
えることにより液晶の配向が変化する。液晶分子の誘電
率には異方性があるため制御電圧を加えると、誘電体基
板である液晶層の誘電率が変化する。この誘電率の変化
によりマイクロストリップ線路を伝播する電磁波が影響
を受け電磁波の伝播速度が変化する。この結果、制御電
圧による液晶可変位相器を構成することができる。
With the above structure, the variable phase shifter becomes a microstrip line in which the liquid crystal layer is regarded as a dielectric substrate. The orientation of the liquid crystal is changed by applying a control voltage between the conductor line 3 and the metal film 4 serving as the ground. Since the dielectric constant of liquid crystal molecules has anisotropy, when a control voltage is applied, the dielectric constant of the liquid crystal layer, which is the dielectric substrate, changes. The change in the dielectric constant affects the electromagnetic wave propagating through the microstrip line, and the propagation speed of the electromagnetic wave changes. As a result, a liquid crystal variable phase shifter based on the control voltage can be constructed.

【0005】この原理を用いた液晶可変位相器は、特開
2000−315902や、九鬼ほか,99年信学会エ
レクトロニクスソサエティ大会,C-2-63,p92、あるい
はJpn.J.Appl.Phys.Vol.36(1997)pp.4409-4413にも報
告されている。
A liquid crystal variable phase shifter using this principle is disclosed in Japanese Patent Laid-Open No. 2000-315902, Kuki et al., 1999 IEICE Electronics Society Conference, C-2-63, p92, or Jpn.J.Appl.Phys.Vol. .36 (1997) pp.4409-4413.

【0006】しかし、従来報告されていた液晶材料は、
ディスプレイ用として開発された材料であり、誘電率の
周波数依存性については詳細な報告が少ない。特にミリ
波マイクロ波領域の誘電率異方性についての報告はごく
まれである。上記可変位相器の文献では、シアノビフェ
ニール系の液晶材料BDH−E7,BDH−E44が使
用されている。これらのミリ波帯域での誘電率異方性は
その差が約20%と非常に小さいことが上記報告に示さ
れている。例えば、BDH−E7で(ε⊥,ε‖)=
(2.55, 3.20)BDH−E44で(ε⊥,ε‖)=(2.5
0,3.26)である。
However, the previously reported liquid crystal materials are
It is a material developed for displays, and there are few detailed reports on the frequency dependence of the dielectric constant. In particular, there are very few reports on the dielectric anisotropy in the millimeter wave microwave region. Cyanobiphenyl liquid crystal materials BDH-E7 and BDH-E44 are used in the literature of the above-mentioned variable phase shifter. It has been shown in the above report that the difference in dielectric anisotropy in these millimeter wave bands is as small as about 20%. For example, in BDH-E7, (ε⊥, ε‖) =
(2.55, 3.20) BDH-E44 (ε⊥, ε‖) = (2.5
0, 3.26).

【0007】一方これら液晶材料の低周波領域(ディス
プレイで使用される程度)での誘電率異方性は、製造メ
ーカによれば、BDH−E7で(ε⊥,ε‖)=(5.2,
19.0)BDH−E44で(ε⊥,ε‖)=(5.2, 22.0)
と非常に大きい。これらの誘電率異方性の周波数依存性
から、ミリ波などの高周波領域で可変デバイス用として
不適な材料であることがわかる。
On the other hand, according to the manufacturer, the dielectric anisotropy of these liquid crystal materials in the low frequency region (to the extent that they are used in displays) is (ε⊥, ε‖) = (5.2,
19.0) With BDH-E44 (ε⊥, ε‖) = (5.2, 22.0)
And very big. From the frequency dependence of the dielectric anisotropy, it is found that the material is not suitable for a variable device in a high frequency region such as a millimeter wave.

【0008】そもそも誘電率は、双極子分極、イオン分
極、電子分極の和で表されるが、有機材料の場合、イオ
ン分極の寄与は一般に小さく双極子分極+電子分極で表
される。さらに液晶材料の誘電率異方性は、⊥、‖の分
子鎖の物理的な長さの違いから双極子分極に大部分起因
するといってよい。
In the first place, the dielectric constant is represented by the sum of dipole polarization, ionic polarization and electronic polarization. In the case of organic materials, the contribution of ionic polarization is generally small and is represented by dipole polarization + electron polarization. Furthermore, it can be said that the dielectric anisotropy of liquid crystal materials is largely due to dipole polarization due to the difference in the physical lengths of the molecular chains of ⊥ and ‖.

【0009】従来使用されているネマティック液晶の代
表例を次式(化3)及び(化4)に示す。
Typical examples of conventionally used nematic liquid crystals are shown in the following formulas (Formula 3) and (Formula 4).

【0010】[0010]

【化3】 [Chemical 3]

【0011】[0011]

【化4】 [Chemical 4]

【0012】(化3)はフェニル基が2個つながってお
り一見電子分極が大きいようであるが、実際の液晶分子
は安定構造をとるためにフェニル基―フェニル基の間で
ねじれが生じる。このため、ベンザン環のπ電子は分子
全体に広がっておらず、電子分極の異方性はさほど大き
くない。
In (Chemical Formula 3), two phenyl groups are connected and the electronic polarization seems to be large at first glance, but since an actual liquid crystal molecule has a stable structure, twist occurs between the phenyl group and the phenyl group. Therefore, the π-electrons of the benzan ring do not spread throughout the molecule, and the anisotropy of electronic polarization is not so large.

【0013】(化4)も同様に−COO-でねじれが生じて
おり、(化3)と同様電子分極の異方性は大きくならな
い。
Similarly in (Chemical formula 4), twisting occurs in -COO-, and the anisotropy of electronic polarization does not become large as in (Chemical formula 3).

【0014】[0014]

【発明が解決しようとする課題】上記文献に報告されて
いる液晶可変位相器で使用されている液晶は、従来から
ディスプレイ用途に開発されたネマティック液晶であ
り、ミリ波やマイクロ波の高周波領域では、誘電率の変
化が低周波領域に比較して非常に小さい。そのため十分
な位相の変化を得ようとすると、マイクロストリップ線
路長で一定程度の長さを必要としていた。
The liquid crystal used in the liquid crystal variable phase shifter reported in the above document is a nematic liquid crystal that has been conventionally developed for display applications, and is used in the high frequency region of millimeter waves and microwaves. , The change in permittivity is very small compared to the low frequency region. Therefore, in order to obtain a sufficient change in phase, a certain length of microstrip line was required.

【0015】本発明は、高周波領域において十分な誘電
率の変化が得られ、線路長が短い小型の可変分布定数回
路を得ることを目的とする。
It is an object of the present invention to obtain a small variable distributed constant circuit in which a sufficient change in permittivity can be obtained in a high frequency region and a line length is short.

【0016】すなわち本発明では、液晶性半導体材料を
用いることで、高周波領域において十分な誘電率の変化
が得られ、従来より線路長が短く、結果として小型の液
晶可変分布定数回路を得ることが可能となる。また、誘
電体基板上の線路パターンをフィルタパターンとするこ
とで、容易に可変フィルタを得ることが可能となる。
That is, in the present invention, by using the liquid crystalline semiconductor material, a sufficient change in the dielectric constant can be obtained in the high frequency region, the line length is shorter than before, and as a result, a small liquid crystal variable distributed constant circuit can be obtained. It will be possible. Further, by using the line pattern on the dielectric substrate as the filter pattern, it becomes possible to easily obtain the variable filter.

【0017】[0017]

【課題を解決するための手段】この課題を解決するため
に本発明は、分布定数回路を構成する線路導体と、接地
導体と、液晶性有機半導体からなる液晶層を用いた誘電
体とで伝送線路を構成し、前記誘電体の誘電率を外部か
ら任意に変化させ、分布定数回路の管内波長を変化させ
ることで、前記分布定数回路の特性を任意に変化させる
ことが可能であることを特徴とする可変分布定数回路で
あり、特に、液晶性有機半導体が、次の(化5)または
(化6)で示されることを特徴とする可変分布定数回路
である。
In order to solve this problem, the present invention uses a line conductor that constitutes a distributed constant circuit, a ground conductor, and a dielectric using a liquid crystal layer made of a liquid crystalline organic semiconductor. It is possible to arbitrarily change the characteristics of the distributed constant circuit by configuring a line, arbitrarily changing the dielectric constant of the dielectric material from the outside, and changing the guide wavelength of the distributed constant circuit. And a liquid crystal organic semiconductor is represented by the following (Chemical formula 5) or (Chemical formula 6).

【0018】[0018]

【化5】 [Chemical 5]

【0019】[0019]

【化6】 [Chemical 6]

【0020】この、(化5)または(化6)に示される
液晶半導体は、主骨格にねじれがなく、フェニル基のπ
電子が大きく広がっていて、高周波領域でもっとも効果
がある電子分極の異方性が大きいという特性を有する。
The liquid crystal semiconductor represented by (Chemical Formula 5) or (Chemical Formula 6) has no twist in the main skeleton and has a π group of a phenyl group.
It has a characteristic that electrons are widely spread and the anisotropy of electronic polarization is large, which is most effective in a high frequency region.

【0021】すなわち液晶性有機半導体は、液晶の主骨
格をなす構造がπ電子がつながった有機半導体からなる
ため、ディスプレイ用途に開発されたネマティック液晶
と比較して電子分極が大きい。このため、ミリ波などの
高周波領域でもε⊥,ε‖の誘電率異方性が大きく、こ
れを外部から制御することで、従来にない可変分布定数
回路を得ることが可能となる。
That is, the liquid crystal organic semiconductor has a larger electronic polarization than a nematic liquid crystal developed for display applications, because the structure forming the main skeleton of the liquid crystal is an organic semiconductor in which π electrons are connected. For this reason, the dielectric constant anisotropy of ε⊥ and ε‖ is large even in a high frequency region such as a millimeter wave, and by controlling this from the outside, it is possible to obtain a variable distributed constant circuit which has never existed before.

【0022】[0022]

【発明の実施の形態】本発明の請求項1に記載の発明
は、分布定数回路を構成する線路導体と、接地導体と、
液晶性有機半導体からなる液晶層を用いた誘電体とで伝
送線路を構成し、前記誘電体の誘電率を外部から任意に
変化させ、分布定数回路の管内波長を変化させること
で、前記分布定数回路の特性を任意に変化させることが
可能であることを特徴とする可変分布定数回路であり、
この構成により、誘電体の誘電率変化が大きくなり、十
分な特性を有する可変分布定数回路を提供できる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention comprises a line conductor constituting a distributed constant circuit, a ground conductor, and
A transmission line is composed of a dielectric using a liquid crystal layer made of a liquid crystalline organic semiconductor, and the dielectric constant of the dielectric is arbitrarily changed from the outside to change the guide wavelength of the distributed constant circuit to obtain the distribution constant. A variable distributed constant circuit characterized in that the characteristics of the circuit can be changed arbitrarily,
With this configuration, the change in the dielectric constant of the dielectric becomes large, and it is possible to provide a variable distributed constant circuit having sufficient characteristics.

【0023】請求項2に記載の発明は、液晶性有機半導
体が(化5)で示されることを特徴とする請求項1記載
の可変分布定数回路であり、この液晶半導体材料を用い
ることにより、誘電体の誘電率変化が大きくなり、十分
な特性を有する可変分布定数回路を提供できる。
The invention according to claim 2 is the variable distributed constant circuit according to claim 1, characterized in that the liquid crystalline organic semiconductor is represented by (Chemical Formula 5). By using this liquid crystal semiconductor material, It is possible to provide a variable distributed constant circuit having a sufficient change in the dielectric constant of the dielectric and having sufficient characteristics.

【0024】請求項3に記載の発明は、液晶性有機半導
体が(化6)で表されることを特徴とする請求項1記載
の可変分布定数回路であり、この液晶半導体材料を用い
ることにより、誘電体の誘電率変化が大きくなり、十分
な特性を有する可変分布定数回路を提供できる。
The invention according to claim 3 is the variable distributed constant circuit according to claim 1, characterized in that the liquid crystalline organic semiconductor is represented by the chemical formula (6). By using this liquid crystal semiconductor material, Thus, the change in the dielectric constant of the dielectric becomes large, and a variable distributed constant circuit having sufficient characteristics can be provided.

【0025】請求項4に記載の発明は、請求項1から3
のいずれか記載の可変分布定数回路を用いた無線モジュ
ールであり、この構成により、周波数帯域を任意に変化
させることが可能な無線モジュールを提供することが出
来る。
The invention described in claim 4 is the invention according to claims 1 to 3.
It is a wireless module using the variable distributed constant circuit described in any one of 1. above, and with this configuration, it is possible to provide a wireless module capable of arbitrarily changing the frequency band.

【0026】請求項5に記載の発明は、請求項1から3
のいずれか記載の可変分布定数回路を用いた無線装置で
あり、この構成により、周波数帯域を任意に変化させる
ことが可能な無線装置を提供することが出来る。
The invention described in claim 5 is the invention according to claims 1 to 3.
A wireless device using the variable distributed constant circuit described in any one of 1. above, and with this configuration, it is possible to provide a wireless device capable of arbitrarily changing the frequency band.

【0027】請求項6に記載の発明は、請求項1から3
のいずれか記載の可変分布定数回路を用いた無線システ
ムであり、この構成により、周波数帯域を任意に変化さ
せることが可能な無線システムを提供することが出来
る。
The invention according to claim 6 is the same as claims 1 to 3.
It is a radio system using the variable distributed constant circuit described in any one of 1. above, and with this configuration, it is possible to provide a radio system capable of arbitrarily changing the frequency band.

【0028】以下、本発明の実施の形態について、図1
と図2を用いて説明する。
FIG. 1 shows an embodiment of the present invention.
Will be described with reference to FIG.

【0029】(実施の形態)図1は、本実施の形態によ
る可変分布定数回路の断面図である。可変分布定数回路
は、分布定数回路を構成する線路導体と、接地導体と、
液晶性有機半導体からなる液晶層を用いた誘電体とで構
成され、図1はその一例としてバンドパスフィルタを示
し、セラミック基板1、グランド面である金属膜4、制
御電源5、分布定数回路によるバンドパスフィルター
(パターン)6、液晶性有機半導体層7により構成され
る。
(Embodiment) FIG. 1 is a sectional view of a variable distributed constant circuit according to this embodiment. The variable distributed constant circuit includes a line conductor that constitutes the distributed constant circuit, a ground conductor, and
1 is a bandpass filter as an example of the bandpass filter, which includes a ceramic substrate 1, a metal film 4 serving as a ground plane, a control power supply 5, and a distributed constant circuit. The bandpass filter (pattern) 6 and the liquid crystal organic semiconductor layer 7 are used.

【0030】液晶性誘電体からなる誘電体の誘電率を制
御電源5により外部から任意に変化させ、分布定数回路
の管内波長を変化させることで、分布定数回路の特性を
任意に変化させることが可能である。
The characteristics of the distributed constant circuit can be arbitrarily changed by externally changing the dielectric constant of the dielectric composed of the liquid crystal dielectric by the control power source 5 and changing the guide wavelength of the distributed constant circuit. It is possible.

【0031】図2は、図1の可変分布定数回路の上面図
であり、分布定数回路の一例としてバンドパスフィルタ
ーを示している。
FIG. 2 is a top view of the variable distributed constant circuit of FIG. 1, showing a bandpass filter as an example of the distributed constant circuit.

【0032】このように図1及び図2の構成により、誘
電体の誘電率変化が大きくなり、十分な特性を有する可
変分布定数回路を得ることができる。そして結果とし
て、従来より線路長が短い、小型の可変分布定数回路を
得ることができる。
As described above, with the configuration shown in FIGS. 1 and 2, a change in the dielectric constant of the dielectric material is increased, and a variable distributed constant circuit having sufficient characteristics can be obtained. As a result, it is possible to obtain a small variable distributed constant circuit having a shorter line length than the conventional one.

【0033】そして、(化5)または(化6)に示され
る液晶性有機半導体を用いれば、この液晶半導体は、主
骨格にねじれがなく、フェニル基のπ電子が大きく広が
っていて、高周波領域でもっとも効果がある電子分極の
異方性が大きいため、ミリ波などの高周波領域でもε
⊥,ε‖の誘電率異方性が大きく、これを外部から制御
することで、従来にない可変分布定数回路を得ることが
可能となる。
If the liquid crystalline organic semiconductor shown in (Chemical Formula 5) or (Chemical Formula 6) is used, the liquid crystal semiconductor has no twist in the main skeleton, the π electrons of the phenyl group are widely spread, and the high frequency region is high. Since the most effective electron polarization anisotropy is large, ε can be used even in high-frequency regions such as millimeter waves.
Dielectric anisotropy of ⊥ and ε‖ is large, and by controlling this from the outside, it is possible to obtain a variable distributed constant circuit that has never existed before.

【0034】なお、本発明を用いた分布定数回路はバン
ドパスフィルタに限らず、図3の可変位相器や、複数個
のフィルタを有するフィルタアレイなどでも同様の効果
がある。
The distributed constant circuit using the present invention is not limited to the bandpass filter, and the variable phase shifter of FIG. 3 or a filter array having a plurality of filters has the same effect.

【0035】[0035]

【発明の効果】以上のように本発明によれば、高周波領
域において十分な誘電率の変化が得られ、従来より線路
長が短く、結果として小型の可変分布定数回路を得るこ
とが可能となるという有利な効果が得られる。
As described above, according to the present invention, a sufficient change in the dielectric constant can be obtained in the high frequency region, the line length is shorter than in the prior art, and as a result, a small variable distributed constant circuit can be obtained. That is an advantageous effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態による可変分布定数回路
を示す断面図
FIG. 1 is a sectional view showing a variable distributed constant circuit according to an embodiment of the present invention.

【図2】本発明の一実施の形態による可変分布定数回路
を示す上面図
FIG. 2 is a top view showing a variable distributed constant circuit according to an embodiment of the present invention.

【図3】従来の液晶可変位相器を示す概略図FIG. 3 is a schematic view showing a conventional liquid crystal variable phase shifter.

【符号の説明】[Explanation of symbols]

1 セラミックス基板 2 液晶・樹脂複合体 3 導体線路 4 金属膜(グランド面) 5 制御電源 6 バンドパスフィルター(分布定数回路) 7 液晶性有機半導体層 1 Ceramics substrate 2 Liquid crystal / resin composite 3 conductor lines 4 Metal film (ground surface) 5 control power supply 6 band pass filter (distributed constant circuit) 7 Liquid crystalline organic semiconductor layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 分布定数回路を構成する線路導体と、接
地導体と、液晶性有機半導体からなる液晶層を用いた誘
電体とで伝送線路を構成し、前記誘電体の誘電率を外部
から任意に変化させ、分布定数回路の管内波長を変化さ
せることで、前記分布定数回路の特性を任意に変化させ
ることが可能であることを特徴とする可変分布定数回
路。
1. A transmission line is constituted by a line conductor forming a distributed constant circuit, a ground conductor, and a dielectric material using a liquid crystal layer made of a liquid crystalline organic semiconductor, and the dielectric constant of the dielectric material can be arbitrarily set from the outside. The variable distributed constant circuit is characterized in that it is possible to arbitrarily change the characteristics of the distributed constant circuit by changing the in-tube wavelength of the distributed constant circuit.
【請求項2】 液晶性有機半導体が次式(化1)で示さ
れることを特徴とする請求項1記載の可変分布定数回
路。 【化1】
2. The variable distributed constant circuit according to claim 1, wherein the liquid crystalline organic semiconductor is represented by the following formula (Formula 1). [Chemical 1]
【請求項3】 液晶性有機半導体が次式(化2)で表さ
れることを特徴とする請求項1記載の可変分布定数回
路。 【化2】
3. The variable distributed constant circuit according to claim 1, wherein the liquid crystalline organic semiconductor is represented by the following formula (Formula 2). [Chemical 2]
【請求項4】 請求項1から3のいずれか記載の可変分
布定数回路を用いた無線モジュール。
4. A wireless module using the variable distributed constant circuit according to claim 1. Description:
【請求項5】 請求項1から3のいずれか記載の可変分
布定数回路を用いた無線装置。
5. A wireless device using the variable distributed constant circuit according to claim 1. Description:
【請求項6】 請求項1から3のいずれか記載の可変分
布定数回路を用いた無線システム。
6. A wireless system using the variable distributed constant circuit according to claim 1. Description:
JP2002012511A 2002-01-22 2002-01-22 Variable distributed constant circuit Pending JP2003218611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002012511A JP2003218611A (en) 2002-01-22 2002-01-22 Variable distributed constant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002012511A JP2003218611A (en) 2002-01-22 2002-01-22 Variable distributed constant circuit

Publications (1)

Publication Number Publication Date
JP2003218611A true JP2003218611A (en) 2003-07-31

Family

ID=27649704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002012511A Pending JP2003218611A (en) 2002-01-22 2002-01-22 Variable distributed constant circuit

Country Status (1)

Country Link
JP (1) JP2003218611A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114391A1 (en) * 2006-03-31 2007-10-11 Kyocera Corporation Dielectric waveguide device; phase shifter, high frequency switch, and attenuator provided with dielectric waveguide device; and method of manufacturing high frequency transmitter, high frequency receiver, high frequency transmitter/receiver and radar device, array antenna, and dielectric waveguide device
JP2008172305A (en) * 2007-01-09 2008-07-24 Fujitsu Ltd Superconductive filter device and adjusting method thereof
WO2009001119A1 (en) * 2007-06-28 2008-12-31 Bae Systems Plc Microwave circuit assembly
JP2009521150A (en) * 2005-12-22 2009-05-28 トムソン ライセンシング Module with function to adjust frequency
CN107453013A (en) * 2017-09-04 2017-12-08 电子科技大学 A kind of phase shifter based on liquid crystal material
WO2018143536A1 (en) 2017-01-31 2018-08-09 Samsung Electronics Co., Ltd. Liquid crystal-based high-frequency device and high-frequency switch
CN108732802A (en) * 2017-04-14 2018-11-02 三星电子株式会社 Display device
EP3577712A4 (en) * 2017-01-31 2020-03-11 Samsung Electronics Co., Ltd. Liquid crystal-based high-frequency device and high-frequency switch
CN115332743A (en) * 2022-07-28 2022-11-11 西安空间无线电技术研究所 Terahertz reconfigurable filter with planar mask structure and preparation method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521150A (en) * 2005-12-22 2009-05-28 トムソン ライセンシング Module with function to adjust frequency
JP4828611B2 (en) * 2005-12-22 2011-11-30 トムソン ライセンシング Module with function to adjust frequency
WO2007114391A1 (en) * 2006-03-31 2007-10-11 Kyocera Corporation Dielectric waveguide device; phase shifter, high frequency switch, and attenuator provided with dielectric waveguide device; and method of manufacturing high frequency transmitter, high frequency receiver, high frequency transmitter/receiver and radar device, array antenna, and dielectric waveguide device
US8013694B2 (en) 2006-03-31 2011-09-06 Kyocera Corporation Dielectric waveguide device, phase shifter, high frequency switch, and attenuator provided with dielectric waveguide device, high frequency transmitter, high frequency receiver, high frequency transceiver, radar device, array antenna, and method of manufacturing dielectric waveguide device
JP2008172305A (en) * 2007-01-09 2008-07-24 Fujitsu Ltd Superconductive filter device and adjusting method thereof
JP4644686B2 (en) * 2007-01-09 2011-03-02 富士通株式会社 Superconducting filter device and adjustment method thereof
WO2009001119A1 (en) * 2007-06-28 2008-12-31 Bae Systems Plc Microwave circuit assembly
US7999638B2 (en) 2007-06-28 2011-08-16 Bae Systems Plc Microwave circuit assembly comprising a microwave component suspended in a gas or vacuum region
EP3577712A4 (en) * 2017-01-31 2020-03-11 Samsung Electronics Co., Ltd. Liquid crystal-based high-frequency device and high-frequency switch
WO2018143536A1 (en) 2017-01-31 2018-08-09 Samsung Electronics Co., Ltd. Liquid crystal-based high-frequency device and high-frequency switch
US10921654B2 (en) 2017-01-31 2021-02-16 Samsung Electronics Co., Ltd. Liquid crystal-based high-frequency device and high-frequency switch
CN108732802A (en) * 2017-04-14 2018-11-02 三星电子株式会社 Display device
CN108732802B (en) * 2017-04-14 2022-05-31 三星电子株式会社 Display device
CN107453013B (en) * 2017-09-04 2020-01-14 电子科技大学 Phase shifter based on liquid crystal material
CN107453013A (en) * 2017-09-04 2017-12-08 电子科技大学 A kind of phase shifter based on liquid crystal material
CN115332743A (en) * 2022-07-28 2022-11-11 西安空间无线电技术研究所 Terahertz reconfigurable filter with planar mask structure and preparation method
CN115332743B (en) * 2022-07-28 2023-11-10 西安空间无线电技术研究所 Terahertz reconfigurable filter with planar mask structure and preparation method

Similar Documents

Publication Publication Date Title
US11894618B2 (en) Antenna device and phased array antenna device
Kuki et al. Microwave variable delay line using dual-frequency switching-mode liquid crystal
Zhao et al. Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires
Ustinov et al. Multifunctional nonlinear magnonic devices for microwave signal processing
Semenov et al. Ferrite-ferroelectric layered structures for electrically and magnetically tunable microwave resonators
Ustinov et al. Ferrite-ferroelectric hybrid wave phase shifters
Cai et al. High figure-of-merit compact phase shifters based on liquid crystal material for 1–10 GHz applications
Urruchi et al. Note: Tunable notch filter based on liquid crystal technology for microwave applications
JP2000341027A (en) Patch antenna system
JP2003218611A (en) Variable distributed constant circuit
Yu et al. Reflective frequency selective surface based on low-permittivity dielectric metamaterials
Yaghmaee et al. Tunable electric-LC resonators using liquid crystal
Zhu et al. A magnetically-and electrically-tunable microwave phase shifter using yttrium iron garnet/gadolinium gallium garnet thin film
CN108847517A (en) A kind of co-planar waveguide series capacitance resonator of adjustable frequency
Martin et al. Improvement of an inverted microstrip line-based microwave tunable phase-shifter using liquid crystal
Peng et al. Engineered smart substrate with embedded patterned permalloy thin film for radio frequency applications
Lu et al. Planar millimeter wave band-stop filters based on the excitation of confined magnetostatic waves in barium hexagonal ferrite thin film strips
JP2002330006A (en) Variable-characteristic high-frequency transmission line
Ustinov et al. High-Q active ring microwave resonators based on ferrite-ferroelectric layered structures
He et al. A microstrip tunable negative refractive index metamaterial and phase shifter
TW202116981A (en) Liquid crystal composition, liquid crystal element, sensor, liquid crystal lens, optical communication device, and antenna
Yazdanpanahi et al. Liquid-crystal-based mm-wave tunable resonator
RU2257648C1 (en) Controlled phase shifter
Tanaka et al. Electrically controlled millimeter-wave transmission properties of stack-layered liquid crystal cells with metal substrates
Obeidat et al. 60 GHz beam-steering antenna array using liquid crystal phase shifter