JP2002373849A - Aligner - Google Patents

Aligner

Info

Publication number
JP2002373849A
JP2002373849A JP2001182456A JP2001182456A JP2002373849A JP 2002373849 A JP2002373849 A JP 2002373849A JP 2001182456 A JP2001182456 A JP 2001182456A JP 2001182456 A JP2001182456 A JP 2001182456A JP 2002373849 A JP2002373849 A JP 2002373849A
Authority
JP
Japan
Prior art keywords
shielding member
exposure apparatus
exposure
optical system
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001182456A
Other languages
Japanese (ja)
Inventor
Takayasu Hasegawa
敬恭 長谷川
Shigeru Terajima
茂 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001182456A priority Critical patent/JP2002373849A/en
Publication of JP2002373849A publication Critical patent/JP2002373849A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a decrease in strength of an exposure light between a projection optical system and a photosensitive substrate, and to suppress the nonuniformity of impurity concentration therebetween to the minimum. SOLUTION: A shielding member 9 for shielding almost the entire region of an optical path of an exposure light between a projection optical system 6 and the vicinity of a wafer W from an external atmosphere is provided in a space between the system 6 and the wafer W. The member 9 is mounted on the system 6, and is provided with driving mechanisms 8a and 8b capable of driving the system 6 in a horizontal direction of the wafer W and driving mechanisms 9a and 9b capable of driving the system 6 in a vertical direction of the wafer W.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体素
子、撮像素子、液晶表示素子、薄膜磁気ヘッド、その他
のマイクロデバイスを製造するために用いられる露光装
置に関し、詳しくは、短波長の光を用いて露光を行う露
光装置において露光光の強度低下を抑制する露光装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus used for manufacturing, for example, a semiconductor device, an imaging device, a liquid crystal display device, a thin film magnetic head, and other microdevices. The present invention relates to an exposure apparatus that suppresses a decrease in the intensity of exposure light in an exposure apparatus that performs exposure.

【0002】[0002]

【従来の技術】半導体素子などを製造するためのフォト
リソグラフィ工程において、フォトレチクル(レチクル
含む)のパターン像を投影光学系を介して感光性基板上
に露光する露光装置が使用されている。近年、半導体集
積回路は、微細化の方向で開発が進み、フォトリソグラ
フィ工程においては、フォトリソグラフィ光源の短波長
化が進んでいる。
2. Description of the Related Art In a photolithography process for manufacturing a semiconductor device or the like, an exposure apparatus for exposing a pattern image of a photo reticle (including a reticle) onto a photosensitive substrate via a projection optical system is used. In recent years, semiconductor integrated circuits have been developed in the direction of miniaturization, and in photolithography processes, the wavelength of photolithography light sources has been reduced.

【0003】しかしながら、真空紫外線、特に250n
mよりも短い波長の光、たとえばKrFエキシマレーザ
(波長248nm)、ArFエキシマレーザ(波長19
3nm)、F2レーザ(波長157nm)、またはYA
Gレーザなどの高調波などの光を露光光として用いる場
合、酸素による吸収などの影響で、光の強度が低下する
などの課題が生じていた。
However, vacuum ultraviolet rays, especially 250 n
m, for example, a KrF excimer laser (wavelength: 248 nm), an ArF excimer laser (wavelength: 19 nm).
3 nm), F 2 laser (wavelength 157 nm), or YA
When light such as a harmonic of a G laser or the like is used as exposure light, there has been a problem that the intensity of light is reduced due to absorption by oxygen or the like.

【0004】そこで、従来では、F2エキシマレーザの
ような光源を有する露光装置において、光路部分のみを
遮蔽し、たとえば窒素のような酸素を含まない気体に内
部のガスを置換し、光の透過率の低下を回避しようとし
ていた。
Therefore, conventionally, in an exposure apparatus having a light source such as an F 2 excimer laser, only the optical path portion is shielded, and a gas containing no oxygen, such as nitrogen, is replaced with a gas containing no oxygen to transmit light. We were trying to avoid a drop in rates.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、光路部
分のみの遮蔽は、いわゆるステップ・アンド・リピート
(ステップ毎に一括露光を繰り返す)方式の露光装置な
どのようにウエハステージやレチクルステージなどの可
動部が光路中に存在する装置では困難であり、部分的に
露光光が空気に曝されることは避けられなかった。
However, the shielding of only the optical path portion is performed by a movable portion such as a wafer stage or a reticle stage, as in a so-called step-and-repeat (repeated batch exposure for each step) type exposure apparatus. However, it is difficult for a device existing in the optical path, and it was inevitable that exposure light was partially exposed to air.

【0006】また、感光性基板のステージを容器で包囲
することなく、投影光学系から感光性基板への露光光の
出射部分に配設された光学部材と感光性基板との間の空
間に不活性ガスを供給することによって形成された所要
の不活性ガス雰囲気中で露光することのできる露光装置
においても、露光領域周辺から不活性ガスを供給するた
めに、露光中心と周辺で不活性ガスの濃度分布が不均一
になり、露光領域の雰囲気の透過率が不均一になること
で均一な露光が困難であった。また、上記投影光学系の
光学部材と感光性基板との間に不活性ガスを供給する供
給部を取り付けることは、光学部材から感応性基板まで
の空間における保守作業を困難にしていた。
In addition, without enclosing the stage of the photosensitive substrate with a container, there is no space between the optical member provided at the portion where the exposure light is emitted from the projection optical system to the photosensitive substrate and the photosensitive substrate. Even in an exposure apparatus that can perform exposure in a required inert gas atmosphere formed by supplying an active gas, in order to supply the inert gas from the periphery of the exposure region, the inert gas is supplied around the exposure center and the periphery. Uniform exposure was difficult because the density distribution became uneven and the transmittance of the atmosphere in the exposure area became uneven. In addition, the installation of a supply unit for supplying an inert gas between the optical member of the projection optical system and the photosensitive substrate makes maintenance work in the space from the optical member to the sensitive substrate difficult.

【0007】本発明は、上記課題に鑑みてなされ、その
目的は、短波長の光を用いて露光する露光装置におい
て、露光光の光路に配設された光学部材周辺における露
光光の強度低下を抑制し、且つ、その濃度分布の不均一
性を最低限に抑えることができ、且つ光学部材と感光性
基板又はマスクの空間の保守作業を容易にできる露光装
置を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and an object of the present invention is to provide an exposure apparatus that performs exposure using light having a short wavelength, by reducing the intensity of the exposure light around an optical member disposed in an optical path of the exposure light. It is an object of the present invention to provide an exposure apparatus capable of suppressing the non-uniformity of the density distribution and minimizing the non-uniformity of the density distribution and facilitating maintenance work of the space between the optical member and the photosensitive substrate or the mask.

【0008】[0008]

【課題を解決するための手段】上述の課題を解決し、目
的を達成するために、本発明の露光装置は、マスクパタ
ーンの投影像を露光光により感光性基板に転写する露光
装置であって、前記露光光の光路に配設された光学部材
周辺を取り囲み、当該光学部材周辺の雰囲気を高濃度の
気体に置換し所定濃度に保持する遮蔽部材を有する露光
装置において、前記光学部材に対して水平方向及び垂直
方向の少なくともどちらかに移動可能な駆動機構を前記
遮蔽部材に設けた。
In order to solve the above-mentioned problems and achieve the object, an exposure apparatus of the present invention is an exposure apparatus for transferring a projected image of a mask pattern onto a photosensitive substrate by exposure light. An exposure apparatus having a shielding member that surrounds an optical member provided in an optical path of the exposure light and replaces an atmosphere around the optical member with a high-concentration gas and maintains a predetermined concentration. A drive mechanism movable in at least one of the horizontal direction and the vertical direction is provided on the shielding member.

【0009】[0009]

【発明の実施の形態】以下に、本発明に係る実施の形態
について、添付図面を参照して詳細に説明する。 [第1実施形態]図1は、本発明に係る第1実施形態の
露光装置の全体構成図であり、図2は、図1に示す投影
光学系、遮蔽部材、感光性基板の周辺を示す断面図であ
る。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. [First Embodiment] FIG. 1 is an overall configuration diagram of an exposure apparatus according to a first embodiment of the present invention, and FIG. 2 shows the periphery of a projection optical system, a shielding member, and a photosensitive substrate shown in FIG. It is sectional drawing.

【0010】図1に示す露光装置は、例えばF2エキシ
マレーザのような短波長レーザ光を射出する光源1を備
える。
The exposure apparatus shown in FIG. 1 includes a light source 1 for emitting short-wavelength laser light such as an F 2 excimer laser.

【0011】光源1から発した光ビームの一部は、ビー
ムスプリッタM1を透過し、露光量検出器14で光量が
測定される。光源制御系2は、露光量検出器14の測定
結果に基づいて光源1の光量制御を行う。ビームスプリ
ッタM1で反射された光ビームはミラーM2、M3で反
射され、適当な光学部材15を介してレチクルRを均一
に照明する。光源1からレチクルRに至る光路は照明光
学系4を構成している。レチクルRを透過した光は、投
影光学系6を構成する種々の光学部材10,16を介し
てウエハステージWSTに載置されたウエハWの表面上
に到達し、レチクルR上のパターンを結像する。
A part of the light beam emitted from the light source 1 passes through the beam splitter M1, and the light amount is measured by the exposure amount detector 14. The light source control system 2 controls the light amount of the light source 1 based on the measurement result of the exposure detector 14. The light beam reflected by the beam splitter M1 is reflected by mirrors M2 and M3, and uniformly illuminates the reticle R via an appropriate optical member 15. An optical path from the light source 1 to the reticle R forms an illumination optical system 4. The light transmitted through reticle R reaches the surface of wafer W placed on wafer stage WST via various optical members 10 and 16 constituting projection optical system 6, and forms a pattern on reticle R. I do.

【0012】ウエハWは、3次元方向(XYZ方向)に
移動可能なウエハステージWST上に載置され、ステッ
ピング移動される。そして、ウエハWは、ステッピング
移動と露光とが繰り返し行われて、所謂ステップ・アン
ド・リピート方式で、ウエハW上にレチクルRのパター
ンが逐次投影露光される。
The wafer W is placed on a wafer stage WST which can move in a three-dimensional direction (XYZ directions), and is moved by stepping. Then, the wafer W is repeatedly subjected to stepping movement and exposure, and the pattern of the reticle R is sequentially projected and exposed on the wafer W by a so-called step-and-repeat method.

【0013】主制御系は光源1、ウエハステージWST
のXY方向の移動、レチクルステージRSTの移動等を
統括的に制御する。
The main control system is a light source 1 and a wafer stage WST.
, The movement of the reticle stage RST, and the like.

【0014】光源1から投影光学系6の露光光をウエハ
Wに出射する光学部材10までの露光光の光路は遮蔽部
材5によって遮蔽され、照明光学系4、遮蔽部材5、投
影光学系6はバルブVn1,Vn2,Vn3を介して温
度調節された不活性ガス、例えば、窒素ガスが供給さ
れ、バルブVo1,Vo2,Vo3により排気される。
The optical path of the exposure light from the light source 1 to the optical member 10 for emitting the exposure light of the projection optical system 6 to the wafer W is shielded by a shielding member 5, and the illumination optical system 4, the shielding member 5, and the projection optical system 6 An inert gas, for example, a nitrogen gas whose temperature has been adjusted via the valves Vn1, Vn2 and Vn3 is supplied, and exhausted by the valves Vo1, Vo2 and Vo3.

【0015】投影光学系6とウエハWとの間の空間に
は、投影光学系6からウエハWの近傍までの露光光の光
路のほぼ全域を外部雰囲気から遮蔽する遮蔽部材9が設
けられている。
In a space between the projection optical system 6 and the wafer W, there is provided a shielding member 9 for shielding almost the entire optical path of the exposure light from the projection optical system 6 to the vicinity of the wafer W from the outside atmosphere. .

【0016】図2に投影光学系を拡大して示すように、
遮蔽部材9は投影光学系6に取り付けられ、ウエハWの
水平方向に駆動することが可能な駆動機構8a,8bお
よび垂直方向に駆動することが可能な駆動機構7が設け
られている。また、遮蔽部材9と投影光学系6の接合部
分は蛇腹状の部品で接合されその位置関係が変化して
も、遮蔽部材9と投影光学系6が密着した状態を維持で
きる構造とする。
FIG. 2 shows an enlarged view of the projection optical system.
The shielding member 9 is attached to the projection optical system 6, and includes driving mechanisms 8a and 8b capable of driving the wafer W in the horizontal direction and a driving mechanism 7 capable of driving the wafer W in the vertical direction. In addition, the joint between the shielding member 9 and the projection optical system 6 is joined by a bellows-shaped component, so that the state in which the shielding member 9 and the projection optical system 6 are in close contact with each other is maintained even if the positional relationship changes.

【0017】遮蔽部材9は露光光を通過させるための硝
子50を有している。また、遮蔽部材9により取り囲ま
れた空間にはバルブVn4を介して温度調節された窒素
ガスが供給される。遮蔽された空間の圧力は圧力計PG
4−2で測定される。Vn4を介して供給された窒素ガ
スは、遮蔽部材9内部を満たし、バルブVo4を介して
排気される。
The shielding member 9 has a glass 50 for passing exposure light. Further, a nitrogen gas whose temperature has been adjusted is supplied to a space surrounded by the shielding member 9 via a valve Vn4. The pressure in the shielded space is measured with a pressure gauge PG
Measured at 4-2. The nitrogen gas supplied through Vn4 fills the inside of the shielding member 9 and is exhausted through the valve Vo4.

【0018】温度調節された窒素ガスは、バルブVn5
を介して遮蔽部材9とウエハW面との間に供給される。
供給された窒素ガスはバルブVo5を介して排気され
る。この時、バルブVo5で供給される窒素ガスの圧力
は圧力系PG4−1で測定され、露光装置を格納する容
器30内の圧力は圧力計PG5で測定される。通常PG
4−1の値がPG5以上になるように調整されている。
The temperature-controlled nitrogen gas is supplied to a valve Vn5.
Is supplied between the shielding member 9 and the surface of the wafer W.
The supplied nitrogen gas is exhausted through the valve Vo5. At this time, the pressure of the nitrogen gas supplied by the valve Vo5 is measured by the pressure system PG4-1, and the pressure in the container 30 storing the exposure apparatus is measured by the pressure gauge PG5. Normal PG
The value of 4-1 is adjusted so as to be PG5 or more.

【0019】遮蔽部材9に取り付けた駆動機構7,8
a,8bにより水平方向及び垂直方向に駆動される。ウ
エハ交換や保守メンテナンス時には遮蔽部材9をZ軸プ
ラス方向に駆動することでウエハWから離間させ、ウエ
ハ交換や保守メンテナンス作業を容易にする。そして、
ウエハ交換後など露光開始時には、まず、遮蔽部材をZ
軸プラス方向に移動させた状態、すなわち、遮蔽部材9
と投影光学系6で囲まれた空間をできるだけ狭くした状
態で、バルブVn4を介して温度調節された窒素ガスの
供給を開始する。これにより、遮蔽部材9と投影光学系
6で囲まれた空間の不活性ガス濃度を短時間で高濃度に
することが可能である。次に、所定の圧力を維持しつ
つ、遮蔽部材9をウエハWから所定の高さの位置までZ
軸マイナス方向に駆動し、ウエハW、レチクルRのアラ
イメントを行いつつ露光を行う。この場合、遮蔽部材9
とウエハWの間の距離を例えば1mmに配置すること
で、投影光学系6の周辺からの雰囲気が侵入することに
よる露光領域の不活性ガス濃度の低下を抑え、均一な濃
度分布を得ることが可能である。また、ウエハステージ
WSTとレチクルステージRSTに同期して、遮蔽部材
9とウエハW間の距離を測定し、その間の距離を一定に
保ちつつ露光を行うことで、より均一な濃度分布を得る
ことが可能である。 [第2実施形態]図3乃至図5は本発明に係る第2実施
形態の露光装置における投影光学系の拡大図である。
Driving mechanisms 7 and 8 attached to shielding member 9
Driven in the horizontal and vertical directions by a and 8b. At the time of wafer replacement or maintenance, the shield member 9 is moved away from the wafer W by driving the shield member 9 in the positive Z-axis direction, thereby facilitating wafer replacement and maintenance work. And
At the start of exposure, such as after replacing a wafer, first, the shielding member is
The state in which it is moved in the axis plus direction, that is, the shielding member 9
Then, in a state where the space surrounded by the projection optical system 6 is made as small as possible, the supply of the nitrogen gas whose temperature has been adjusted via the valve Vn4 is started. Thereby, the concentration of the inert gas in the space surrounded by the shielding member 9 and the projection optical system 6 can be increased in a short time. Next, while maintaining a predetermined pressure, the shielding member 9 is moved from the wafer W to a position at a predetermined height in the Z direction.
The exposure is performed while the wafer W and the reticle R are aligned while being driven in the axis minus direction. In this case, the shielding member 9
By arranging the distance between the wafer and the wafer W to be, for example, 1 mm, it is possible to suppress a decrease in the concentration of the inert gas in the exposure region due to the intrusion of the atmosphere from the periphery of the projection optical system 6 and obtain a uniform concentration distribution. It is possible. Further, by synchronizing with the wafer stage WST and the reticle stage RST, the distance between the shielding member 9 and the wafer W is measured, and exposure is performed while keeping the distance therebetween constant, so that a more uniform density distribution can be obtained. It is possible. Second Embodiment FIGS. 3 to 5 are enlarged views of a projection optical system in an exposure apparatus according to a second embodiment of the present invention.

【0020】第1実施形態では遮蔽部材9に露光光を透
過する硝子50を使用し、ウエハWと硝子50の間の空
間に温度調節された窒素ガスを供給することで、露光領
域の窒素ガス濃度の低下を抑え、均一な濃度分布を得る
ことができた。
In the first embodiment, a glass 50 that transmits exposure light is used for the shielding member 9, and a temperature-controlled nitrogen gas is supplied to a space between the wafer W and the glass 50, so that the nitrogen gas in the exposure region is provided. A decrease in the concentration was suppressed, and a uniform concentration distribution was obtained.

【0021】この第1実施形態に対して、第2実施形態
では、図3乃至図5に示すように、投影光学系6に取り
付けられた遮蔽部材9のウエハWに対向する部位に開口
20を設け、開口20から露光光を通過させると共に、
その開口20からウエハWに温度調節された窒素ガスを
供給することで、露光領域の窒素ガス濃度の低下を抑
え、均一な濃度分布を得るものである。
In contrast to the first embodiment, in the second embodiment, as shown in FIGS. 3 to 5, an opening 20 is formed at a portion of the shielding member 9 attached to the projection optical system 6 facing the wafer W. To allow the exposure light to pass through the opening 20,
By supplying a nitrogen gas whose temperature has been adjusted to the wafer W through the opening 20, a decrease in the nitrogen gas concentration in the exposure region is suppressed, and a uniform concentration distribution is obtained.

【0022】第1実施形態と同様に、遮蔽部材9に取り
付けた駆動機構7a,7b,8a,8bにより水平方向
及び垂直方向に駆動される。ウエハ交換や保守メンテナ
ンス時には遮蔽部材9をZ軸プラス方向に駆動すること
でウエハWから離間させ、ウエハ交換や保守メンテナン
ス作業を容易にする。そして、ウエハ交換後など露光開
始時には、まず、遮蔽部材9をZ軸プラス方向に移動さ
せた状態、すなわち、遮蔽部材9と投影光学系6で囲ま
れた空間をできるだけ狭くした状態で、バルブVn4を
介して温度調節された窒素ガスの供給を開始する。これ
により、遮蔽部材9と投影光学系6で囲まれた空間の不
活性ガス濃度を短時間で高濃度にすることが可能であ
る。次に、所定の圧力を維持しつつ、遮蔽部材9をウエ
ハWから所定の高さの位置までZ軸マイナス方向に駆動
し、ウエハW、レチクルRのアライメントを行いつつ、
ウエハステージとレチクルステージに同期して、遮蔽部
材9とウエハW間の距離を測定し、その間の距離を一定
に保ちつつ露光を行うことで、より均一な濃度分布を得
ることが可能である。
As in the case of the first embodiment, driving is performed in the horizontal and vertical directions by driving mechanisms 7a, 7b, 8a, 8b attached to the shielding member 9. At the time of wafer replacement or maintenance, the shield member 9 is moved away from the wafer W by driving the shield member 9 in the positive Z-axis direction, thereby facilitating wafer replacement and maintenance work. At the start of exposure, such as after wafer replacement, first, the valve Vn4 is moved in a state where the shielding member 9 is moved in the positive Z-axis direction, that is, in a state where the space surrounded by the shielding member 9 and the projection optical system 6 is made as small as possible. The supply of temperature-regulated nitrogen gas is started via. Thereby, the concentration of the inert gas in the space surrounded by the shielding member 9 and the projection optical system 6 can be increased in a short time. Next, while maintaining a predetermined pressure, the shielding member 9 is driven in the negative Z-axis direction from the wafer W to a position at a predetermined height to perform alignment of the wafer W and the reticle R.
By measuring the distance between the shielding member 9 and the wafer W in synchronization with the wafer stage and the reticle stage and performing exposure while keeping the distance therebetween constant, a more uniform density distribution can be obtained.

【0023】また、図5に示すように遮蔽部材9を遮蔽
部材9の外側に排気口40を設けることで開口20から
ウエハWと遮蔽部材9の間に供給した窒素ガスを効率良
く回収しても良い。この時、排気口40の圧力をPG4
−3で測定し、遮蔽部材9で囲まれた空間の圧力PG4
−2よりも、PG4−3の圧力が低くなるように排気量
を制御することでも、遮蔽部材9から開口20を通過し
てウエハ面上に窒素ガスを供給することが可能である。 [第3実施形態]図6は走査型露光装置において感光性
基板の周辺を露光する際の開口と照明域を示す図であ
る。
Further, as shown in FIG. 5, by providing the shielding member 9 with an exhaust port 40 outside the shielding member 9, nitrogen gas supplied between the wafer W and the shielding member 9 from the opening 20 can be efficiently recovered. Is also good. At this time, the pressure of the exhaust port 40 is set to PG4
The pressure PG4 of the space surrounded by the shielding member 9 was measured at -3.
By controlling the exhaust amount so that the pressure of PG4-3 is lower than -2, it is also possible to supply nitrogen gas from the shielding member 9 through the opening 20 onto the wafer surface. [Third Embodiment] FIG. 6 is a diagram showing an aperture and an illumination area when exposing the periphery of a photosensitive substrate in a scanning exposure apparatus.

【0024】以下に、本発明の露光装置を第3実施形態
として走査型露光装置に適用し、ウエハWの周辺を露光
する場合の遮蔽部材9の駆動方法について説明する。
Hereinafter, a method of driving the shielding member 9 when exposing the periphery of the wafer W by applying the exposure apparatus of the present invention to a scanning exposure apparatus as a third embodiment will be described.

【0025】図6(a)に示すように、ウエハWの周辺
を露光する場合、〜の領域を順次露光することにな
る。この場合、照明光が照射される照明域と遮蔽部材9
に設けた開口20の位置はそれぞれの中心が一致するよ
うに配置されているために、開口20の一部がウエハW
の外側に出ることになる。この場合、ウエハWと周辺の
段差から周辺の雰囲気の拡散とステージの駆動時の巻き
込みにより、露光領域であり且つウエハ面上に存在する
領域の窒素ガス濃度を低下させることになる。窒素ガス
濃度が低下した部分に関しては透過率が低下するため
に、露光光量不足になり、露光ムラを生じる。そこで、
開口20を図6(b)に示すように、ウエハ周辺に沿っ
て遮蔽部材9をy方向にウエハステージ及びレチクルス
テージに同期させつつ駆動する。このように駆動させる
ことで、開口20をウエハWの内側に配置することがで
き、ウエハWとその周辺の段差から周辺の雰囲気の侵入
を抑え、均一な濃度分布をより広い空間で達成すること
が可能である。
As shown in FIG. 6A, when exposing the periphery of the wafer W, the areas (1) to (4) are sequentially exposed. In this case, the illumination area irradiated with the illumination light and the shielding member 9
Are arranged such that their centers coincide with each other.
Will come out of the In this case, the nitrogen gas concentration in the exposure region and the region existing on the wafer surface is reduced due to the diffusion of the surrounding atmosphere from the step between the wafer W and the surroundings and the entanglement during driving of the stage. Since the transmittance decreases in the portion where the nitrogen gas concentration has decreased, the amount of exposure light is insufficient, and exposure unevenness occurs. Therefore,
As shown in FIG. 6B, the opening 20 is driven along the periphery of the wafer in the y direction while synchronizing with the wafer stage and the reticle stage. By driving in this manner, the opening 20 can be arranged inside the wafer W, and the intrusion of the surrounding atmosphere from the wafer W and the surrounding steps can be suppressed, and a uniform concentration distribution can be achieved in a wider space. Is possible.

【0026】上記と同様なことがステップ・アンド・リ
ピート方式の露光装置においても適用可能である。ま
た、開口の大きさを変える機構を追加することで、ウエ
ハWの周辺を露光する際には開口の大きさを小さくする
ことになり、遮蔽部材内部に供給する窒素の消費量が同
じ場合には開口が小さい場合のほうが開口から噴出する
窒素の流速が大きくなるので、より開口部の窒素濃度の
劣化を抑えることが可能となる。 [第4実施形態]図7は本発明に係る第4実施形態の露
光装置における投影光学系の拡大図である。
The same can be applied to a step-and-repeat type exposure apparatus. In addition, by adding a mechanism for changing the size of the opening, the size of the opening is reduced when exposing the periphery of the wafer W, and when the consumption of nitrogen supplied to the inside of the shielding member is the same, Since the flow rate of nitrogen ejected from the opening becomes larger when the opening is smaller, it is possible to further suppress the deterioration of the nitrogen concentration in the opening. [Fourth Embodiment] FIG. 7 is an enlarged view of a projection optical system in an exposure apparatus according to a fourth embodiment of the present invention.

【0027】上記各実施形態では、レチクルR周辺を密
閉空間にしていたが、この第4実施形態ではレチクル側
にも遮蔽部材72,73を使用し、露光光が通過する部
分に開口を設け、各開口から温度調節された窒素ガスを
レチクルRに向かって吹き付ける。
In the above embodiments, the periphery of the reticle R is a closed space. However, in the fourth embodiment, shielding members 72 and 73 are also used on the reticle side, and an opening is provided in a portion through which exposure light passes. Nitrogen gas whose temperature has been adjusted is blown toward the reticle R from each opening.

【0028】遮蔽部材72は、照明光学系7の照明光を
照明する光学部材77を覆うように照明光学系71に取
り付けられ、接合部分は蛇腹状の部品で接合されその位
置関係が変化しても、遮蔽部材72と照明光学系71と
が密着した状態を維持できる構造とする。同じく、遮蔽
部材73は照明光学系71の照明光を入射する光学部材
16を覆うように投影光学系6に取り付けられ、接合部
分は蛇腹状の部品で接合されその位置関係が変化して
も、遮蔽部材73と投影光学系6が密着した状態を維持
できる構造とする。
The shielding member 72 is attached to the illumination optical system 71 so as to cover the optical member 77 for illuminating the illumination light of the illumination optical system 7, and the joint portion is joined by a bellows-shaped component, and the positional relationship changes. This also has a structure capable of maintaining a state in which the shielding member 72 and the illumination optical system 71 are in close contact with each other. Similarly, the shielding member 73 is attached to the projection optical system 6 so as to cover the optical member 16 to which the illumination light of the illumination optical system 71 is incident, and the joint portion is joined by a bellows-shaped component and the positional relationship changes. The structure is such that the shielding member 73 and the projection optical system 6 can be kept in close contact with each other.

【0029】前記遮蔽部材72,73はレチクルRに対
して水平方向及び垂直方向に駆動される駆動機構7c,
7d,8c,8dを有し、レチクル交換や保守メンテナ
ンス時には遮蔽部材72,73をレチクルRから離間さ
せる方向へ駆動することで、レチクル交換や保守メンテ
ナンス作業を容易にする。そして、レチクル交換後など
露光開始時には、まず、遮蔽部材72,73をレチクル
Rから離れるようZ軸プラス或いはマイナス方向に移動
させた状態、すなわち、遮蔽部材72と照明光学系71
で囲まれた空間をできるだけ狭くした状態で、温度調節
された窒素ガスの供給を開始する。これにより、遮蔽部
材73と照明光学系71で囲まれた空間の不活性ガス濃
度を短時間で高濃度にすることが可能である。同様に、
遮蔽部材73と投影光学系6で囲まれた空間をできるだ
け狭くした状態で、温度調節された窒素ガスの供給を開
始する。これにより、遮蔽部材73と投影光学系6で囲
まれた空間の不活性ガス濃度を短時間で高濃度にするこ
とが可能である。次に、所定の圧力を維持しつつ、遮蔽
部材72,73をレチクルRから所定の高さの位置まで
に駆動し、ウエハW、レチクルRのアライメントを行い
つつ、ウエハステージとレチクルステージに同期して、
遮蔽部材72,73とレチクルR間の距離を測定し、そ
の間の距離を一定に保ちつつ露光を行うことで、より均
一な濃度分布を得ることが可能である。
The shielding members 72 and 73 are driven in a horizontal direction and a vertical direction with respect to the reticle R by a driving mechanism 7c,
7d, 8c, and 8d, the reticle replacement and maintenance work are facilitated by driving the shielding members 72 and 73 in a direction to separate from the reticle R during reticle replacement and maintenance. Then, at the start of exposure such as after reticle exchange, first, the shielding members 72 and 73 are moved in the plus or minus direction of the Z axis so as to separate from the reticle R, that is, the shielding member 72 and the illumination optical system 71.
The supply of temperature-controlled nitrogen gas is started in a state where the space surrounded by is as small as possible. Thus, the concentration of the inert gas in the space surrounded by the shielding member 73 and the illumination optical system 71 can be increased in a short time. Similarly,
In a state where the space surrounded by the shielding member 73 and the projection optical system 6 is made as small as possible, supply of the temperature-controlled nitrogen gas is started. Thus, the concentration of the inert gas in the space surrounded by the shielding member 73 and the projection optical system 6 can be increased in a short time. Next, while maintaining a predetermined pressure, the shielding members 72 and 73 are driven from the reticle R to a position at a predetermined height to synchronize with the wafer stage and the reticle stage while aligning the wafer W and the reticle R. hand,
By measuring the distance between the shielding members 72 and 73 and the reticle R and performing exposure while keeping the distance therebetween, a more uniform density distribution can be obtained.

【0030】本実施形態では、窒素ガスの供給圧力はP
G71,PG72で測定し、所定の圧力を維持できるよ
う窒素ガスを供給する。また、遮蔽部材に給気口圧力を
測定する測定部を設けているが、給気口に流量計を有
し、流量計の値を一定にするよう給気口から窒素ガスを
供給することで開口からレチクル面上に窒素ガスを供給
しても良い。供給された窒素ガスは排気口74,75か
ら回収される。また、排気口を第2実施形態に示すよう
に遮蔽部材を囲うように取り付けることで、供給した窒
素ガスを効率良く回収しても良い。
In this embodiment, the supply pressure of the nitrogen gas is P
Measurement is performed at G71 and PG72, and a nitrogen gas is supplied so as to maintain a predetermined pressure. In addition, the shielding member is provided with a measurement unit for measuring the pressure of the air supply port, but has a flow meter at the air supply port, and supplies nitrogen gas from the air supply port so that the value of the flow meter is constant. Nitrogen gas may be supplied from the opening onto the reticle surface. The supplied nitrogen gas is recovered from the exhaust ports 74 and 75. Further, by supplying the exhaust port so as to surround the shielding member as shown in the second embodiment, the supplied nitrogen gas may be efficiently recovered.

【0031】尚、以上説明した実施の形態は、本発明の
実現手段としての一例であり、本発明は、その趣旨を逸
脱しない範囲で上記実施形態を修正又は変形したものに
も適用可能である。
The embodiment described above is an example as a means for realizing the present invention, and the present invention can be applied to a modification or a modification of the above embodiment without departing from the gist of the present invention. .

【0032】また、本実施形態の露光装置は、投影光学
系の遮蔽部材9と照明光学系の遮蔽部材72,73との
少なくとも一方を設けて構成してもよい。 [製造プロセス]次に、上記の露光装置を利用した半導
体デバイスの製造プロセスを説明する。
The exposure apparatus of the present embodiment may be provided with at least one of the shielding member 9 of the projection optical system and the shielding members 72 and 73 of the illumination optical system. [Manufacturing Process] Next, a manufacturing process of a semiconductor device using the above exposure apparatus will be described.

【0033】図8は半導体デバイスの全体的な製造プロ
セスのフローを示す。ステップ1(回路設計)では半導
体デバイスの回路設計を行なう。ステップ2(マスク作
製)では設計した回路パターンに基づいてマスクを作製
する。一方、ステップ3(ウエハ製造)ではシリコン等
の材料を用いてウエハを製造する。ステップ4(ウエハ
プロセス)は前工程と呼ばれ、上記のマスクとウエハを
用いて、リソグラフィ技術によってウエハ上に実際の回
路を形成する。次のステップ5(組み立て)は後工程と
呼ばれ、ステップ4によって作製されたウエハを用いて
半導体チップ化する工程であり、アッセンブリ工程(ダ
イシング、ボンディング)、パッケージング工程(チッ
プ封入)等の組み立て工程を含む。ステップ6(検査)
ではステップ5で作製された半導体デバイスの動作確認
テスト、耐久性テスト等の検査を行なう。こうした工程
を経て半導体デバイスが完成し、これを出荷(ステップ
7)する。
FIG. 8 shows the flow of the whole semiconductor device manufacturing process. In step 1 (circuit design), the circuit of the semiconductor device is designed. In step 2 (mask fabrication), a mask is fabricated based on the designed circuit pattern. On the other hand, in step 3 (wafer manufacturing), a wafer is manufactured using a material such as silicon. Step 4 (wafer process) is referred to as a preprocess, and an actual circuit is formed on the wafer by lithography using the above-described mask and wafer. The next step 5 (assembly) is called a post-process, and is a process of forming a semiconductor chip using the wafer produced in step 4, and assembly such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation). Process. Step 6 (inspection)
Then, inspections such as an operation confirmation test and a durability test of the semiconductor device manufactured in step 5 are performed. Through these steps, the semiconductor device is completed and shipped.
7) Yes.

【0034】図9は上記ウエハプロセスの詳細なフロー
を示す。ステップ11(酸化)ではウエハの表面を酸化さ
せる。ステップ12(CVD)ではウエハ表面に絶縁膜を
成膜する。ステップ13(電極形成)ではウエハ上に電極
を蒸着によって形成する。ステップ14(イオン打込み)
ではウエハにイオンを打ち込む。ステップ15(レジスト
処理)ではウエハに感光剤を塗布する。ステップ16(露
光)では上記の露光装置によって回路パターンをウエハ
に転写する。ステップ17(現像)では露光したウエハを
現像する。ステップ18(エッチング)では現像したレジ
スト像以外の部分を削り取る。ステップ19(レジスト剥
離)ではエッチングが済んで不要となったレジストを取
り除く。これらのステップを繰り返し行なうことによっ
て、ウエハ上に多重に回路パターンを形成する。
FIG. 9 shows a detailed flow of the wafer process. Step 11 (oxidation) oxidizes the wafer's surface. Step 12 (CVD) forms an insulating film on the wafer surface. Step 13 (electrode formation) forms electrodes on the wafer by vapor deposition. Step 14 (ion implantation)
Then, ions are implanted into the wafer. In step 15 (resist processing), a photosensitive agent is applied to the wafer. Step 16 (exposure) uses the exposure apparatus to transfer a circuit pattern onto the wafer. Step 17 (development) develops the exposed wafer. Step 18 (etching) removes portions other than the developed resist image. Step 19 (resist stripping) removes unnecessary resist after etching. By repeating these steps, multiple circuit patterns are formed on the wafer.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
短波長の光を用いて露光を行う露光装置において、露光
領域の不活性ガス濃度分布の均一化と高濃度維持による
露光ムラの低減を実現すると共に、保守・メンテナンス
や感光性基板やマスクの交換を容易にできる。
As described above, according to the present invention,
In an exposure system that performs exposure using short-wavelength light, it achieves a uniform distribution of the inert gas concentration in the exposure area and reduces exposure unevenness by maintaining a high concentration, as well as maintenance and maintenance and replacement of photosensitive substrates and masks. Can be easily done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1実施形態の露光装置の全体構
成図である。
FIG. 1 is an overall configuration diagram of an exposure apparatus according to a first embodiment of the present invention.

【図2】図1に示す投影光学系、遮蔽部材、感光性基板
の周辺を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a periphery of a projection optical system, a shielding member, and a photosensitive substrate illustrated in FIG.

【図3】本発明に係る第2実施形態の露光装置における
投影光学系の拡大図である。
FIG. 3 is an enlarged view of a projection optical system in an exposure apparatus according to a second embodiment of the present invention.

【図4】本発明に係る第2実施形態の露光装置における
投影光学系の拡大図である。
FIG. 4 is an enlarged view of a projection optical system in an exposure apparatus according to a second embodiment of the present invention.

【図5】本発明に係る第2実施形態の露光装置における
投影光学系の拡大図である。
FIG. 5 is an enlarged view of a projection optical system in an exposure apparatus according to a second embodiment of the present invention.

【図6】走査型露光装置において感光性基板の周辺を露
光する際の開口と照明域を示す図である。
FIG. 6 is a diagram showing an opening and an illumination area when exposing the periphery of a photosensitive substrate in a scanning exposure apparatus.

【図7】本発明に係る第4実施形態の露光装置における
投影光学系の拡大図である。
FIG. 7 is an enlarged view of a projection optical system in an exposure apparatus according to a fourth embodiment of the present invention.

【図8】半導体デバイスの全体的な製造プロセスを示す
フローチャートである。
FIG. 8 is a flowchart showing an overall semiconductor device manufacturing process.

【図9】図8のウエハプロセスの詳細を示すフローチャ
ートである。
FIG. 9 is a flowchart showing details of the wafer process of FIG. 8;

【符号の説明】[Explanation of symbols]

1 光源 2 光源制御系 3 ステージ制御系 4 照明光学系 5 レチクルステージ遮蔽部材 6 投影光学系 7a,7b,7c,7d 遮蔽部材の垂直方向への駆動
機構 8a,8b,8c,8d 遮蔽部材の水平方向への駆動
機構 9,72,73 遮蔽部材 10,15,16,77 光学部材 11 主制御系 14 露光量検出器 30 露光装置を囲う容器 50 露光光透過硝子 52 窒素ガス給気ダクト Vo1,Vo2,Vo3,Vo4,Vo5 排気バルブ Vn1,Vn2,Vn3,Vn4,Vn5 窒素供給バ
ルブ 71 照明光学系 74,75 排気口
Reference Signs List 1 light source 2 light source control system 3 stage control system 4 illumination optical system 5 reticle stage shielding member 6 projection optical system 7a, 7b, 7c, 7d driving mechanism of shielding member in vertical direction 8a, 8b, 8c, 8d horizontal of shielding member Driving mechanism in direction 9, 72, 73 Shielding member 10, 15, 16, 77 Optical member 11 Main control system 14 Exposure detector 30 Container surrounding exposure device 50 Exposure light transmitting glass 52 Nitrogen gas supply duct Vo1, Vo2 , Vo3, Vo4, Vo5 Exhaust valve Vn1, Vn2, Vn3, Vn4, Vn5 Nitrogen supply valve 71 Illumination optical system 74, 75 Exhaust port

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 マスクパターンの投影像を露光光により
感光性基板に転写する露光装置であって、 前記露光光の光路に配設された光学部材周辺を取り囲
み、当該光学部材周辺の雰囲気を高濃度の気体に置換し
所定濃度に保持する遮蔽部材を有する露光装置におい
て、前記光学部材に対して水平方向及び垂直方向の少な
くともどちらかに移動可能な駆動機構を前記遮蔽部材に
設けたことを特徴とする露光装置。
1. An exposure apparatus for transferring a projection image of a mask pattern onto a photosensitive substrate by exposure light, wherein the exposure apparatus surrounds an optical member provided in an optical path of the exposure light, and enhances an atmosphere around the optical member. In an exposure apparatus having a shielding member for replacing a gas with a concentration and maintaining the concentration at a predetermined concentration, a driving mechanism movable in at least one of a horizontal direction and a vertical direction with respect to the optical member is provided on the shielding member. Exposure apparatus.
【請求項2】 前記マスクパターンを投影した露光光の
光路を形成する投影光学系を更に含み、前記遮蔽部材は
当該投影光学系から前記感光性基板への露光光の出射部
分に配設された光学部材周辺を取り囲むように設けられ
ることを特徴とする請求項1に記載の露光装置。
2. The image forming apparatus according to claim 1, further comprising a projection optical system for forming an optical path of the exposure light on which the mask pattern is projected, wherein the shielding member is provided at a portion where the exposure light is emitted from the projection optical system to the photosensitive substrate. 2. The exposure apparatus according to claim 1, wherein the exposure apparatus is provided so as to surround the periphery of the optical member.
【請求項3】 前記マスクパターンを投影した露光光の
光路を形成する投影光学系を更に含み、前記遮蔽部材は
当該投影光学系への露光光の入射部分に配設された光学
部材周辺を取り囲むように設けられることを特徴とする
請求項1又は2に記載の露光装置。
3. A projection optical system for forming an optical path of exposure light on which the mask pattern is projected, wherein the shielding member surrounds a periphery of an optical member disposed at a portion where the exposure light enters the projection optical system. The exposure apparatus according to claim 1, wherein the exposure apparatus is provided as follows.
【請求項4】 前記投影光学系の前段に設けられ、マス
クパターンを照明して投影像を生成する照明光の光路を
形成する照明光学系を更に含み、前記遮蔽部材は当該照
明光学系に保持されたマスクへの照明光の出射部分に配
設された光学部材周辺を取り囲むように設けられること
を特徴とする請求項2又は3に記載の露光装置。
4. An illumination optical system which is provided in front of the projection optical system and forms an optical path of illumination light for illuminating a mask pattern and generating a projection image, wherein the shielding member is held by the illumination optical system. 4. The exposure apparatus according to claim 2, wherein the exposure apparatus is provided so as to surround a periphery of an optical member disposed at a portion where the illumination light is emitted to the mask.
【請求項5】 前記遮蔽部材は、不活性ガスを前記光学
部材周辺に供給する供給部と、前記供給部から供給され
た不活性ガスを排出する排出部とを有することを特徴と
する請求項1乃至4のいずれか1項に記載の露光装置。
5. The apparatus according to claim 1, wherein the shielding member has a supply unit for supplying an inert gas to the periphery of the optical member, and a discharge unit for discharging the inert gas supplied from the supply unit. The exposure apparatus according to any one of claims 1 to 4.
【請求項6】 前記遮蔽部材は露光光を透過する透明部
材を有することを特徴とする請求項1乃至5のいずれか
1項に記載の露光装置。
6. The exposure apparatus according to claim 1, wherein the shielding member has a transparent member that transmits exposure light.
【請求項7】 前記遮蔽部材は、当該遮蔽部材と前記感
光性基板の間に不活性ガスを吹き付けることを特徴とす
る請求項1乃至6のいずれか1項に記載の露光装置。
7. The exposure apparatus according to claim 1, wherein the shielding member blows an inert gas between the shielding member and the photosensitive substrate.
【請求項8】 前記遮蔽部材は、当該遮蔽部材と前記マ
スクの間に不活性ガスを吹き付けることを特徴とする請
求項1乃至6のいずれか1項に記載の露光装置。
8. The exposure apparatus according to claim 1, wherein the shielding member blows an inert gas between the shielding member and the mask.
【請求項9】 前記遮蔽部材は不活性ガスを通過させる
開口を有し、前記投影光学系の光軸中心を通り且つ当該
光軸中心に略平行な方向から前記感光性基板に不活性ガ
スを供給し、前記投影光学系は当該不活性ガス雰囲気中
で露光光を出射することを特徴とする請求項1乃至7の
いずれか1項に記載の露光装置。
9. The shielding member has an opening through which an inert gas passes, and passes the inert gas to the photosensitive substrate from a direction passing through the center of the optical axis of the projection optical system and substantially parallel to the center of the optical axis. The exposure apparatus according to any one of claims 1 to 7, wherein the projection optical system supplies the exposure light in the inert gas atmosphere.
【請求項10】 前記遮蔽部材は不活性ガスを通過させ
る開口を有し、前記照明光学系の光軸中心を通り且つ当
該光軸中心に略平行な方向から前記マスクに不活性ガス
を供給し、前記照明光学系は当該不活性ガス雰囲気中で
照明光を出射することを特徴とする請求項1乃至7のい
ずれか1項に記載の露光装置。
10. The shielding member has an opening through which an inert gas passes, and supplies the inert gas to the mask from a direction passing through the center of the optical axis of the illumination optical system and substantially parallel to the center of the optical axis. The exposure apparatus according to any one of claims 1 to 7, wherein the illumination optical system emits illumination light in the inert gas atmosphere.
【請求項11】 前記供給部は、前記遮蔽部材へ供給さ
れる不活性ガス流量を測定し、所定流量以上の不活性ガ
スを供給することを特徴とする請求項5に記載の露光装
置。
11. The exposure apparatus according to claim 5, wherein the supply unit measures a flow rate of the inert gas supplied to the shielding member and supplies the inert gas at a predetermined flow rate or more.
【請求項12】 前記投影光学系と前記遮蔽部材との間
の空間の圧力を、前記感光性基板と前記遮蔽部材の空間
の圧力よりも高くする圧力調整部を更に備え、当該設定
された圧力で前記感光性基板へ不活性ガスを供給するこ
とを特徴とする請求項1乃至11のいずれか1項に記載
の露光装置。
12. The apparatus according to claim 11, further comprising a pressure adjusting unit configured to increase a pressure in a space between the projection optical system and the shielding member to be higher than a pressure in a space between the photosensitive substrate and the shielding member. The exposure apparatus according to claim 1, wherein an inert gas is supplied to the photosensitive substrate.
【請求項13】 前記照明光学系と前記遮蔽部材との間
の空間の圧力を、前記マスクと前記遮蔽部材の空間の圧
力よりも高くする圧力調整部を更に備え、当該設定され
た圧力で前記マスクへ不活性ガスを供給することを特徴
とする請求項1乃至11のいずれか1項に記載の露光装
置。
13. A pressure adjusting unit for increasing a pressure in a space between the illumination optical system and the shielding member to be higher than a pressure in a space between the mask and the shielding member, wherein the pressure is set at the set pressure. The exposure apparatus according to any one of claims 1 to 11, wherein an inert gas is supplied to the mask.
【請求項14】 前記遮蔽部材と前記感光性基板の空間
から不活性ガスを排気する排気部を更に備え、当該感光
性基板と前記遮蔽部材の空間の圧力が前記投影光学系と
前記遮蔽部材との間の空間の圧力よりも低い状態で、前
記感光性基板へ不活性ガスが供給されることを特徴とす
る請求項12に記載の露光装置。
14. The image forming apparatus according to claim 1, further comprising an exhaust unit configured to exhaust an inert gas from a space between the shielding member and the photosensitive substrate, wherein a pressure in the space between the photosensitive substrate and the shielding member is set between the projection optical system and the shielding member. 13. The exposure apparatus according to claim 12, wherein an inert gas is supplied to the photosensitive substrate in a state where the pressure is lower than a pressure of a space between the two.
【請求項15】 前記遮蔽部材と前記マスクの空間から
不活性ガスを排気する排気部を更に備え、当該マスクと
前記遮蔽部材の空間の圧力が前記照明光学系と前記遮蔽
部材との間の空間の圧力よりも低い状態で、前記マスク
へ不活性ガスが供給されることを特徴とする請求項13
に記載の露光装置。
15. An exhaust unit for exhausting an inert gas from a space between the shielding member and the mask, wherein a pressure in a space between the mask and the shielding member is a space between the illumination optical system and the shielding member. 14. An inert gas is supplied to the mask at a pressure lower than the pressure of the mask.
3. The exposure apparatus according to claim 1.
【請求項16】 前記遮蔽部材は、当該遮蔽部材と前記
感光性基板との距離を所定距離に保持され、前記投影光
学系から当該感光性基板までの前記不活性ガスの濃度を
所定濃度に保持することを特徴とする請求項1乃至15
のいずれか1項に記載の露光装置。
16. The shielding member maintains a distance between the shielding member and the photosensitive substrate at a predetermined distance, and maintains a concentration of the inert gas from the projection optical system to the photosensitive substrate at a predetermined concentration. 16. The method according to claim 1, wherein:
The exposure apparatus according to any one of the above items.
【請求項17】 前記遮蔽部材と前記感光性基板との距
離を測定する測定部を更に備え、当該測定部の測定結果
に基づいて前記遮蔽部材と前記感光性基板との距離が所
定距離に保持されて露光が行われることを特徴とする請
求項1乃至16のいずれか1項に記載の露光装置。
17. A measuring unit for measuring a distance between the shielding member and the photosensitive substrate, wherein a distance between the shielding member and the photosensitive substrate is maintained at a predetermined distance based on a measurement result of the measuring unit. The exposure apparatus according to claim 1, wherein the exposure is performed after the exposure.
【請求項18】 前記遮蔽部材と前記マスクとの距離を
測定する測定部を更に備え、当該測定部の測定結果に基
づいて前記遮蔽部材と前記マスクとの距離が所定距離に
保持されて露光が行われることを特徴とする請求項1乃
至16のいずれか1項に記載の露光装置。
And a measuring unit for measuring a distance between the shielding member and the mask, wherein a distance between the shielding member and the mask is maintained at a predetermined distance based on a measurement result of the measuring unit, and exposure is performed. The exposure apparatus according to claim 1, wherein the exposure is performed.
【請求項19】 前記露光時に、前記投影光学系の遮蔽
部材の開口は前記感光性基板に沿って水平に移動される
ことを特徴とする請求項1乃至18のいずれか1項に記
載の露光装置。
19. The exposure according to claim 1, wherein, at the time of the exposure, an opening of the shielding member of the projection optical system is moved horizontally along the photosensitive substrate. apparatus.
【請求項20】 前記遮蔽部材は、前記感光性基板及び
/又はマスクの交換時や保守メンテナンス時に当該感光
性基板及び/又はマスクからの距離を大きく離間させる
ように移動されることを特徴とする請求項1乃至19の
いずれか1項に記載の露光装置。
20. The method according to claim 1, wherein the shielding member is moved so as to largely separate the photosensitive substrate and / or the mask from the photosensitive substrate and / or the mask during replacement or maintenance of the photosensitive substrate and / or the mask. An exposure apparatus according to any one of claims 1 to 19.
【請求項21】 前記供給される不活性ガスは温度調節
された窒素ガス又はヘリウムガスであることを特徴とす
る請求項1乃至20のいずれか1項に記載の露光装置。
21. The exposure apparatus according to claim 1, wherein the supplied inert gas is a temperature-controlled nitrogen gas or a helium gas.
【請求項22】 請求項1乃至21のいずれか1項に記
載の露光装置を含む各種プロセス用の製造装置群を半導
体製造工場に設置する工程と、該製造装置群を用いて複
数のプロセスによって半導体デバイスを製造する工程と
を有することを特徴とする半導体デバイスの製造方法。
22. A step of installing a group of manufacturing apparatuses for various processes including the exposure apparatus according to claim 1 in a semiconductor manufacturing factory, and performing a plurality of processes using the group of manufacturing apparatuses. A method of manufacturing a semiconductor device.
JP2001182456A 2001-06-15 2001-06-15 Aligner Withdrawn JP2002373849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001182456A JP2002373849A (en) 2001-06-15 2001-06-15 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001182456A JP2002373849A (en) 2001-06-15 2001-06-15 Aligner

Publications (1)

Publication Number Publication Date
JP2002373849A true JP2002373849A (en) 2002-12-26

Family

ID=19022554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001182456A Withdrawn JP2002373849A (en) 2001-06-15 2001-06-15 Aligner

Country Status (1)

Country Link
JP (1) JP2002373849A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095139A1 (en) * 2003-04-22 2004-11-04 Tdk Corporation Exposing system, exposing method, process for producing stamper, and process for producing optical recording medium
WO2005024921A1 (en) * 2003-09-03 2005-03-17 Nikon Corporation Exposure apparatus and device producing method
EP1669805A3 (en) * 2004-12-08 2006-09-27 ASML Netherlands BV Lithographic projection apparatus and actuator
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
WO2004095139A1 (en) * 2003-04-22 2004-11-04 Tdk Corporation Exposing system, exposing method, process for producing stamper, and process for producing optical recording medium
JP4517367B2 (en) * 2003-09-03 2010-08-04 株式会社ニコン Exposure apparatus and device manufacturing method
CN101477312A (en) * 2003-09-03 2009-07-08 株式会社尼康 Exposure apparatus and device producing method
JPWO2005024921A1 (en) * 2003-09-03 2006-11-16 株式会社ニコン Exposure apparatus and device manufacturing method
KR101162527B1 (en) * 2003-09-03 2012-07-09 가부시키가이샤 니콘 Exposure apparatus and device producing method
US8253921B2 (en) 2003-09-03 2012-08-28 Nikon Corporation Exposure apparatus and device fabricating method
WO2005024921A1 (en) * 2003-09-03 2005-03-17 Nikon Corporation Exposure apparatus and device producing method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7180571B2 (en) 2004-12-08 2007-02-20 Asml Netherlands B.V. Lithographic projection apparatus and actuator
EP1669805A3 (en) * 2004-12-08 2006-09-27 ASML Netherlands BV Lithographic projection apparatus and actuator
JP2009111415A (en) * 2004-12-08 2009-05-21 Asml Netherlands Bv Lithographic projection apparatus and actuator
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
US6721031B2 (en) Exposure apparatus
US6954255B2 (en) Exposure apparatus
US6801301B2 (en) Exposure apparatus
US6833903B2 (en) Inert gas purge method and apparatus, exposure apparatus, reticle stocker, reticle inspection apparatus, reticle transfer box, and device manufacturing method
US20050157278A1 (en) Exposure apparatus and exposure method
JP2003115451A (en) Exposure system and method of manufacturing device using the same
JP2002373849A (en) Aligner
US7391498B2 (en) Technique of suppressing influence of contamination of exposure atmosphere
US6191843B1 (en) Exposure device, method of making and using same, and objects exposed by the exposure device
US7656507B2 (en) Processing unit, exposure apparatus having the processing unit, and protection unit
JP3977377B2 (en) Exposure apparatus and device manufacturing method
JP2003068622A (en) Aligner, control method thereof, and method of manufacturing device
JP2004327529A (en) Aligner
JP2004259786A (en) Aligner
US7705964B2 (en) Exposure system and exposure method
JP2003059803A (en) Aligner
JP3958049B2 (en) Reticle with pellicle, device manufacturing related apparatus, exposure apparatus and device manufacturing method
JPH05291115A (en) X-ray equipment, x-ray aligner and manufacture of semiconductor device
WO2007083686A1 (en) Exposure apparatus
JP2012114198A (en) Optical unit, optical system, exposure device, and method of manufacturing device
US7692762B2 (en) Exposure apparatus
JP2002373850A (en) Aligner
JP2000133583A (en) Aligner and manufacture thereof
JP7385421B2 (en) Exposure device and article manufacturing method
JP2002373853A (en) Aligner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902