JP2002363675A - Co BASED ALLOY FOR LIVING BODY AND PRODUCTION METHOD THEREFOR - Google Patents

Co BASED ALLOY FOR LIVING BODY AND PRODUCTION METHOD THEREFOR

Info

Publication number
JP2002363675A
JP2002363675A JP2001172377A JP2001172377A JP2002363675A JP 2002363675 A JP2002363675 A JP 2002363675A JP 2001172377 A JP2001172377 A JP 2001172377A JP 2001172377 A JP2001172377 A JP 2001172377A JP 2002363675 A JP2002363675 A JP 2002363675A
Authority
JP
Japan
Prior art keywords
alloy
based alloy
phase
forging
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001172377A
Other languages
Japanese (ja)
Other versions
JP4081537B2 (en
JP2002363675A5 (en
Inventor
Masahiko Chiba
晶彦 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001172377A priority Critical patent/JP4081537B2/en
Publication of JP2002363675A publication Critical patent/JP2002363675A/en
Publication of JP2002363675A5 publication Critical patent/JP2002363675A5/ja
Application granted granted Critical
Publication of JP4081537B2 publication Critical patent/JP4081537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a Co based alloy which has excellent wear resistance, and is suitable as a prosthetic material for artificial coxae, or the like. SOLUTION: The Co based alloy for the living body has a composition containing, by mass, 26 to 30% Cr, 6 to 12% Mo and 0 to 0.3% C, and the balance substantially Co, and has a structure in which a granular second phase is finely dispersed into a matrix consisting of crystal grains having the average crystal grain size of <=50 μm. The alloy is produced by subjecting a Co based alloy having a prescribed composition to rapid cooling casting by using a water cooled mold made of copper, and subjecting the obtained ingot to forging at 1,000 to 1,300 deg.C. In this way, its structure is controlled to the one where a granular second phase is finely dispersed into a fine structure, so that the alloy exhibits exceedingly excellent wear resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐食性,耐磨耗性,加
工性に優れ、人工骨材の補綴材料として好適な生体用C
o基合金及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biomedical C which is excellent in corrosion resistance, abrasion resistance and workability and is suitable as a prosthetic material for artificial aggregate.
The present invention relates to an o-based alloy and a method for producing the same.

【0002】[0002]

【従来の技術】生体用合金には、Co−Cr系の鋳造用
(HS−21),加工用(HS-25)のVitalliumやCo−Ni
−Cr−Mo合金(MP35N)等が知られているが、臨床
データや使用実績が多く安定度の高いことからVitalliu
mが多用されている。Vitalliumは、歯科用合金として開
発されたが、その後の改良を経て整形外科領域にも用途
が広がっており、他にAlivium,Endcast、Orthochrom
e,Orthochrome plus,Protasul,Zimaloy等の多くの商
品名で市販されている。Vitalliumの実用化は、ステン
レス鋼よりも10年遅い1937年であるが、ステンレ
ス鋼よりも耐食性に優れ、しかも十分な強度及び靭性を
兼ね備えていることから、骨頭,ステム等の人工股関節
用補綴材料として使用されている。
2. Description of the Related Art Co-Cr based alloys for casting (HS-21) and processing (HS-25) such as Vitallium and Co-Ni
-Cr-Mo alloy (MP35N) is known, but Vitalliu has high clinical data and experience in use and high stability.
m is frequently used. Vitallium was developed as a dental alloy, but its use has been expanded to the orthopedic field through subsequent improvements. Other products include Alivium, Endcast, Orthochrom
e, Orthochrome plus, Protasul, Zimaloy and many other trade names. Vitallium was put into practical use in 1937, 10 years later than stainless steel. However, since it has better corrosion resistance than stainless steel, and has both sufficient strength and toughness, prosthetic materials for artificial hip joints such as heads and stems Has been used as

【0003】鋳造用Vitallium(HS−21)は、5〜7質
量%のMoを含む高Cr(30質量%)−Co合金であ
り、Vitalliumの中でも最も耐食性に優れ、孔食,隙間
腐食,粒界腐食,応力腐食割れ等は実用上でほとんど問
題とならない。しかし、ヒケ巣,気泡,偏析等の内部欠
陥が発生しやすく、低い疲労強度(250MPa)が欠点であ
る。加工用Vitallium(HS−25)は、Moに代えてWを
含み、Crの一部をNiで置換することにより、鋳造材
の欠点であるヒケ巣や偏析を解消するように改良された
合金である。加工用Vitallium(HS−25)は、焼きなま
しステンレス鋼以上の展延性が溶体化処理で付与され、
加工用ステンレス鋼と同程度の強度が冷間加工によって
付与される。耐食性は、ステンレス鋼よりも優れている
ものの、長期のインプラント用としては十分でないた
め、ボーンプレート,ワイヤ等の短期固定用に使用され
ている。
Vitallium for casting (HS-21) is a high Cr (30% by mass) -Co alloy containing 5 to 7% by mass of Mo, and is the most excellent in corrosion resistance among Vitalliums, and has pitting corrosion, crevice corrosion, and granularity. Interfacial corrosion, stress corrosion cracking, and the like hardly cause problems in practical use. However, internal defects such as sink marks, bubbles, and segregation are likely to occur, and low fatigue strength (250 MPa) is a disadvantage. Vitallium (HS-25) for processing is an alloy that contains W instead of Mo and has been improved to eliminate sink marks and segregation, which are defects of cast materials, by replacing a part of Cr with Ni. is there. Vitallium (HS-25) for processing is given more ductility than solution-annealed stainless steel by solution treatment,
Cold working provides the same strength as stainless steel for working. Although corrosion resistance is superior to stainless steel, it is not sufficient for long-term implants, so it is used for short-term fixing of bone plates, wires, and the like.

【0004】[0004]

【発明が解決しようとする課題】加工用VitalliumのM
o含有量を増加させるとき、耐食性及び耐磨耗性が向上
する。実際、Moを10質量%まで増量した高Mo−Vi
talliumは、当初組成の合金に比較して優れた耐食性及
び耐磨耗性を呈することが知られている。しかし、Mo
の増量に伴ってVitalliumの塑性加工性が低下するた
め、高Mo−Vitalliumの微細組織を塑性加工法で制御
しがたい。
[Problems to be Solved by the Invention] M of Vitallium for processing
When the o content is increased, corrosion resistance and abrasion resistance are improved. In fact, high Mo-Vi with Mo increased to 10% by mass
Tallium is known to exhibit superior corrosion and abrasion resistance as compared to alloys of the original composition. But Mo
Since the plastic workability of Vitallium decreases with an increase in the amount, the fine structure of high Mo-Vitallium is difficult to control by the plastic working method.

【0005】鋳造用Vitalliumでは、熱履歴を調製する
ことによって内部欠陥を解消することも検討されてい
る。一般に、鋳造合金に生じているヒケ巣や気泡は鍛造
で圧潰され、デンドライト組織も破壊され、後続する再
結晶焼鈍によって均一な組織になる。しかし、Vitalliu
mでは、機械的性質の向上に関する数値的なデータはあ
るものの、熱履歴と組織との関係及びそれに伴う機械的
性質の変化に関しては十分な知見が得られていない。そ
のため、Vitalliumは、加工性に優れたステンレス鋼系
と、強度,耐食性等の特性に優れたチタン系合金の両方
の長所を兼ね備えた材料であるにも拘らず,需要が全体
の20%程度と低く、広く実用化されるまでに至ってい
ない。
[0005] In Vitallium for casting, it has been studied to eliminate internal defects by adjusting the thermal history. Generally, sinkholes and bubbles generated in a cast alloy are crushed by forging, the dendrite structure is also destroyed, and a uniform structure is obtained by subsequent recrystallization annealing. But Vitalliu
In m, although there is numerical data on the improvement of the mechanical properties, sufficient knowledge has not been obtained on the relationship between the thermal history and the structure and the change in the mechanical properties associated with it. Therefore, despite the fact that Vitallium is a material that combines the advantages of both stainless steel with excellent workability and titanium alloy with excellent properties such as strength and corrosion resistance, the demand is only about 20% of the total. Low and not yet widely used.

【0006】[0006]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、Moを増量する
と共に、塑性加工で組織調整することにより、高耐食性
で且つ高耐磨耗性を呈する生体用Co基合金を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been devised to solve such a problem. The present invention provides high corrosion resistance and high resistance by increasing the amount of Mo and adjusting the structure by plastic working. An object of the present invention is to provide a bio-based Co-based alloy exhibiting abrasion properties.

【0007】本発明の生体用Co基合金は、その目的を
達成するため、Cr:26〜30質量%,Mo:6〜1
2質量%,C:0〜0.3質量%,残部が実質的にCo
の組成をもち、平均結晶粒径50μm以下の結晶粒から
なるマトリックスに粒状の第二相が微細分散した組織を
もつことを特徴とする。
In order to achieve the object, the Co-based alloy for living body of the present invention has a Cr content of 26 to 30% by mass and a Mo content of 6-1.
2% by mass, C: 0 to 0.3% by mass, the balance being substantially Co
And a structure in which a granular second phase is finely dispersed in a matrix composed of crystal grains having an average crystal grain size of 50 μm or less.

【0008】このCo基合金は、水冷銅製鋳型を用いて
所定組成のCo基合金を急冷鋳造し、得られた鋳塊を1
000〜1300℃で鍛造することにより製造される。
This Co-base alloy is quenched by casting a Co-base alloy having a predetermined composition using a water-cooled copper mold.
It is manufactured by forging at 000 to 1300 ° C.

【0009】[0009]

【作用】本発明では、Moの増量及び組織調整によって
Vitalliumの耐食性及び耐磨耗性を改善している。耐食
性及び耐磨耗性に及ぼすMoの効果は、Mo:6質量%
以上で顕著になるが、12質量%で飽和し、過剰量のM
o含有は塑性加工性に悪影響を及ぼす。Crは耐食性を
確保する上で26質量%以上が必要であるが、30質量
%を超える過剰量は塑性加工性に悪影響を及ぼす。必要
に応じて添加されるC含有量は、耐磨耗性,塑性加工製
の観点から0.3質量%以下に規制している。
According to the present invention, by increasing the amount of Mo and adjusting the structure,
Improves the corrosion and abrasion resistance of Vitallium. The effect of Mo on corrosion resistance and abrasion resistance is Mo: 6% by mass.
Although it becomes remarkable above, it is saturated at 12% by mass and an excess amount of M
The o content adversely affects plastic workability. Cr is required to be 26% by mass or more to ensure corrosion resistance, but an excess amount exceeding 30% by mass adversely affects plastic workability. The C content added as necessary is regulated to 0.3% by mass or less from the viewpoint of abrasion resistance and plastic working.

【0010】組織調整では、水冷式の銅製鋳型を用いて
急冷鋳造することにより析出物の成長を抑え、高温鍛造
等の塑性加工により析出物、金属間化合物等の第二相を
微細分散させている。鋳造時の急冷が析出物の成長抑制
に及ぼす影響は、鋳込み温度から400℃までの温度域
を1000℃/分以上の冷却速度で冷却するとき顕著に
なる。また、高温鍛造によりデンドライト等の鋳造組織
が破壊され、50μm以下に微細化された等軸結晶粒か
らなるマトリックスが形成される。マトリックスの微細
化は、耐磨耗性の向上にも有効である。しかし、Mo含
有量を単に6質量%以上に増量すると、鍛造等の塑性加
工性が失われるため、高Mo−Vitalliumの鍛造合金を
製造できない。
In the microstructure adjustment, the growth of precipitates is suppressed by rapid cooling casting using a water-cooled copper mold, and the precipitates and the second phase such as intermetallic compounds are finely dispersed by plastic working such as high-temperature forging. I have. The effect of rapid cooling during casting on growth suppression of precipitates becomes significant when the temperature range from the casting temperature to 400 ° C. is cooled at a cooling rate of 1000 ° C./min or more. Further, the casting structure such as dendrite is destroyed by the high-temperature forging, and a matrix composed of equiaxed crystal grains refined to 50 μm or less is formed. Refinement of the matrix is also effective in improving abrasion resistance. However, if the Mo content is simply increased to 6% by mass or more, plastic workability such as forging is lost, so that a high Mo-Vitallium forged alloy cannot be produced.

【0011】6質量%以上のMoを含む高Mo−Vitall
iumでは、700℃付近の温度領域から低温側にかけて
脆い金属間化合物相(σ相)が生成する。そこで、本発
明では、熱処理方法及び加工温度の選定によってσ相の
生成を防止している。具体的には、Mo含有量を6〜1
2質量%に設定した本発明系においては高温鍛造温度を
1100〜1400℃の範囲に設定する。高温鍛造した
高Mo−Vitalliumを室温に持ち来たす場合にも、水冷
等の急冷を採用することによってσ相が防止され、第二
相が成長することなく粒状の析出物又は晶出物としてマ
トリックスに微細分散する。
High Mo-Vitall containing 6% by mass or more of Mo
In ium, a brittle intermetallic compound phase (σ phase) is generated from a temperature region around 700 ° C. to a low temperature side. Therefore, in the present invention, generation of the σ phase is prevented by selecting the heat treatment method and the processing temperature. Specifically, the Mo content is set to 6-1.
In the present system set to 2% by mass, the high temperature forging temperature is set in the range of 1100 to 1400 ° C. Even when bringing the high Mo-Vitallium forged at high temperature to room temperature, the σ phase is prevented by adopting rapid cooling such as water cooling, and the second phase does not grow and the matrix as a granular precipitate or crystallized substance is formed. Finely dispersed.

【0012】[0012]

【実施例1】表1の組成をもつCo基合金600gを高
周波真空溶解炉で溶解し、15500℃の溶湯を水冷式
銅製金型に流し込み、30秒で400℃以下の温度にな
る冷却速度(2300℃/分)で急冷鋳造した。各鋳造
まま材(as cast材)の室温における引張り特性を図1
に示す。Co−Cr−Mo三元系合金では、Mo添加量
が多くなるほど伸びが向上している。また、Ni添加し
たNo.4,5は、高い伸び延性を示していた。
Example 1 600 g of a Co-based alloy having the composition shown in Table 1 was melted in a high-frequency vacuum melting furnace, a molten metal at 15500 ° C. was poured into a water-cooled copper mold, and a cooling rate at which the temperature became 400 ° C. or less in 30 seconds ( (2300 ° C./min). Figure 1 shows the tensile properties of each as-cast material at room temperature.
Shown in In the Co-Cr-Mo ternary alloy, the elongation is improved as the amount of Mo added is increased. Nos. 4 and 5 to which Ni was added exhibited high elongation and ductility.

【0013】 [0013]

【0014】鋳造ままの状態で最も小さな伸び延性を示
した試料No.1の合金について、伸び延性に及ぼす熱処
理の影響を調査した結果を図2に示す。比較のため、1
100℃の高温鍛造で組織調整した同じ試料No.1の伸
び延性に及ぼす熱処理の影響を併せ示す。図2から明ら
かなように、鍛造していない鋳造まま材では急冷効果が
働いており、as cast材,急冷材(1050℃で2時間
時効後、水焼入れ)共に低い伸び延性であった。なかで
も、1050℃の時効処理後に炉冷した炉冷材では、著
しく低い伸び延性を示した。伸び延性は、高温鍛造によ
って格段に向上した。
FIG. 2 shows the result of investigation on the effect of heat treatment on the elongation and ductility of the alloy of Sample No. 1 which showed the smallest elongation and ductility in the as-cast state. 1 for comparison
The effect of heat treatment on the elongation and ductility of the same sample No. 1 whose structure was adjusted by high-temperature forging at 100 ° C. is also shown. As is clear from FIG. 2, the as-cast material and the as-quenched material (after aging at 1050 ° C. for 2 hours and then water-quenched) exhibited low elongation and ductility in the as-cast material without forging. Above all, the furnace cold material cooled after the aging treatment at 1050 ° C. showed extremely low elongation. Elongation was significantly improved by hot forging.

【0015】As cast材と炉冷材との間で伸び延性が相
違する理由を調査するため、それぞれの金属組織を光学
顕微鏡で観察した。As cast材(図3)はMoリッチの
b.c.c.相が粒状に析出した金属組織であったが、炉
冷材(図4)ではσ相が直線状に成長していた。σ相
は、破壊の起点として働く脆弱な析出物であることか
ら、引張試験での低い伸び延性が示される原因であると
推察される。また、高い伸び延性を示した高温鍛造材で
は、直線状σ相が検出されず、粒状b.c.c.相が微細
分散した組織をもっていた。
[0015] In order to investigate the reason why the elongation ductility differs between the As cast material and the furnace cold material, the respective metal structures were observed with an optical microscope. The As cast material (FIG. 3) had a metal structure in which Mo-rich bcc phase was precipitated in a granular form, while the σ phase grew linearly in the furnace cooling material (FIG. 4). Since the σ phase is a fragile precipitate that acts as a starting point of fracture, it is presumed that the σ phase is a cause of exhibiting low elongation and ductility in a tensile test. Further, in the high-temperature forged material exhibiting high elongation and ductility, the linear σ phase was not detected, and had a structure in which the granular bcc phase was finely dispersed.

【0016】伸び延性及び金属組織の関係から、Moの
増量はCo−Cr−Mo三元系合金の高温鍛造性を損な
う直接の原因ではなく、σ相の析出が抑えられる100
0℃以上(好ましくは、1100℃以上)に鍛造温度を
設定して高温鍛造するとき、優れた伸び延性を示すCo
基合金が得られることが判る。また、鍛造素材として
は、σ相の析出を抑制するため水冷式銅製鋳型を用いて
急冷鋳造したものが好ましい。以上の結果から、鋳造条
件及び鍛造条件を制御することにより、伸び延性、換言
すると加工性の良好なCo−Cr−Mo三元系合金が得
られることが確認された。そこで、表2に示すCo−C
r−Mo三元系合金を溶製し、急冷鋳造及び高温鍛造が
及ぼす影響を調査した。
From the relationship between the elongation and ductility and the metal structure, the increase of Mo is not a direct cause of impairing the high-temperature forgeability of the Co—Cr—Mo ternary alloy, but suppresses the precipitation of the σ phase.
When a forging temperature is set at 0 ° C. or higher (preferably 1100 ° C. or higher) and high temperature forging is performed, Co that exhibits excellent elongation and ductility is obtained.
It can be seen that a base alloy is obtained. Further, as the forging material, a material which is rapidly cooled and cast using a water-cooled copper mold to suppress precipitation of the σ phase is preferable. From the above results, it was confirmed that a Co-Cr-Mo ternary alloy having good elongation and ductility, in other words, good workability, can be obtained by controlling the casting conditions and the forging conditions. Therefore, Co-C shown in Table 2
An r-Mo ternary alloy was melted, and the effects of rapid casting and high temperature forging were investigated.

【0017】 [0017]

【0018】合金No.1,2は、鋳込み後30秒で40
0℃以下の温度になる冷却速度で急冷鋳造した後、鋳塊
を1100℃に加熱して高温鍛造した。鍛造後の金属組
織を観察したところ、何れも等軸晶の結晶組織になって
いることが判った(図5,6)。合金No.1は平均結晶
粒径が約100μm,合金No.2は平均結晶粒径が約5
0μmであった。合金No.2を組織観察した結果、合金N
o.1では検出されなかった第二相が粒界に沿って析出又
は晶出していた。析出物又は晶出物は、Thermo−Calcの
計算状態図とEDS分析の結果から結晶構造がb.c.c.の
Mo富化相と考えられる。合金No.3,4については、
鋳塊を鍛造することなく、1100℃×4時間の熱処理
を施した。熱処理後の金属組織を観察すると、何れもデ
ンドライト状の凝固組織が観察された(図7,8)。
Alloy Nos. 1 and 2 are 40
After quenching at a cooling rate of 0 ° C. or less, the ingot was heated to 1100 ° C. and forged at a high temperature. When the metal structures after forging were observed, it was found that each of them had an equiaxed crystal structure (FIGS. 5 and 6). Alloy No. No. 1 has an average crystal grain size of about 100 μm, 2 has an average crystal grain size of about 5
It was 0 μm. As a result of observing the structure of alloy No. 2, alloy N
In o.1, the second phase not detected was precipitated or crystallized along the grain boundaries. The precipitate or the crystallized product is considered to be a Mo-enriched phase having a crystal structure of bcc from the results of Thermo-Calc calculation phase diagram and EDS analysis. For alloy Nos. 3 and 4,
The heat treatment was performed at 1100 ° C. × 4 hours without forging the ingot. When the metal structure after the heat treatment was observed, a dendrite-like solidified structure was observed in each case (FIGS. 7 and 8).

【0019】各合金No.1〜4から切り出した試験片の
表面を4000番のラッピングフィルムで最終研磨仕上
げした後、磨耗試験に供した。磨耗試験では、アルミナ
ボールを用いたピンオンフラット型往復運動磨耗試験機
を使用し、大気雰囲気,振幅10mm,辷り距離200000m
m,辷り速度8.33Hzの条件を採用した。図9の試験結
果にみられるように、MP35N相当の合金No.1に比較し
て、Vitallium相当の合金No.2〜4は耐磨耗性が格段に
優れていた。このことから、Co−Cr−Mo三元組成
にNiを高濃度で添加することは、伸び延性の点では有
効であるが、高耐磨耗性を確保する上では得策でないと
いえる。
Each alloy No. The surfaces of the test pieces cut out from Nos. 1 to 4 were finally polished and finished with a No. 4000 wrapping film, and then subjected to an abrasion test. In the abrasion test, a pin-on-flat type reciprocating motion abrasion tester using an alumina ball was used, and the atmosphere, the amplitude was 10 mm, and the sliding distance was 200,000 m.
m, the sliding speed was 8.33 Hz. As can be seen from the test results in FIG. 9, alloys Nos. 2 to 4 equivalent to Vitallium were much more excellent in wear resistance than alloy No. 1 equivalent to MP35N. From this, it can be said that adding Ni at a high concentration to the Co—Cr—Mo ternary composition is effective in terms of elongation and ductility, but is not advisable in securing high abrasion resistance.

【0020】更に、Vitallium相当合金No.2〜4の磨耗
量を詳細に調査した結果を図10に示す。合金No.4
は、Moを最も多量に含む凝固組織のままであることか
ら磨耗量が最も少なかった。他方、合金No.2は、Mo
含有量が最も少ない材料であるにも拘らず、合金No.4
とほぼ同程度の磨耗量であった。良好な耐磨耗性は、合
金No.2では高温鍛造によって微細組織が調整された結
果である。すなわち、耐磨耗性は、Moの増量によって
向上するが、組織を微細に調整することによって更に向
上することが判る。次いで、鍛造温度,圧下率等の鍛造
条件を種々変更した条件下でCo−Cr−Mo三元系合
金を高温鍛造することにより鍛造材の結晶粒径を変化さ
せ、結晶粒径が磨耗量に及ぼす影響を調査した。図11
の調査結果にみられるように、結晶粒の微細化により耐
磨耗性が向上し、結晶粒径15μm以下で磨耗量が顕著
に減少した。
FIG. 10 shows the results of a detailed investigation of the amount of wear of Vitallium equivalent alloys Nos. 2 to 4. Alloy No.4
Has the least amount of wear because it remains a solidified structure containing the largest amount of Mo. On the other hand, alloy No. 2 is Mo
Alloy No. 4 despite being the material with the lowest content
The amount of wear was almost the same as the above. Good abrasion resistance is the result of the fine structure of Alloy No. 2 being adjusted by high-temperature forging. That is, it is found that the wear resistance is improved by increasing the amount of Mo, but is further improved by finely adjusting the structure. Next, the crystal grain size of the forged material is changed by forging a Co-Cr-Mo ternary alloy at a high temperature under various forging conditions such as a forging temperature and a reduction ratio, and the crystal grain size is reduced by the amount of wear. The effects were investigated. FIG.
As a result, the wear resistance was improved by the refinement of the crystal grains, and the wear amount was remarkably reduced when the crystal grain size was 15 μm or less.

【0021】[0021]

【実施例2】表2の合金No.3の組成をもつCo基合金
600gを高周波真空溶解炉で溶解し、1550℃の溶
湯を水冷式銅製金型に流し込み、実施例1と同様な冷却
速度で急冷鋳造した。得られた鋳塊をSUS316Lス
テンレス鋼の中空棒でクラッドし、1100〜1400
℃で高温鍛造することにより組織調整した。ステンレス
鋼でクラッドすることにより、鍛造工具と鋳塊との直接
接触が避けられ、鍛造中の鋳塊を1100℃以上の高温
状態に保持できた。その結果、高温鍛造中にσ相の析出
が防止できた。クラッド材を含めて肉厚20mmになる
まで高温鍛造−1250℃焼鈍を繰り返し、最終的には
1250℃×2時間の焼鈍後に水焼入れした。
Example 2 600 g of a Co-based alloy having the composition of alloy No. 3 in Table 2 was melted in a high-frequency vacuum melting furnace, and a molten metal at 1550 ° C. was poured into a water-cooled copper mold, and the cooling rate was the same as in Example 1. Quenched casting. The obtained ingot was clad with a hollow rod of SUS316L stainless steel, and 1100 to 1400
The structure was adjusted by high-temperature forging at ℃. By cladding with stainless steel, direct contact between the forging tool and the ingot was avoided, and the ingot during forging could be maintained at a high temperature of 1100 ° C. or higher. As a result, the precipitation of the σ phase during the high-temperature forging was prevented. High-temperature forging-1250 ° C. annealing was repeated until the wall thickness became 20 mm including the clad material, and finally water quenching was performed after annealing at 1250 ° C. × 2 hours.

【0022】次いで、鍛造材を冷間圧延し、板厚5mm
の冷延材を得た。濃塩酸:濃硝酸=3:1(体積比)の
混酸に冷延材を浸漬することにより、冷延材表面にある
ステンレス鋼をエッチング除去した。更に、1250℃
×1時間の焼鈍を施し、水焼入れ後、再度の冷間圧延に
より板厚50μmのシート材を製造した。この製造実績
から、本発明のCo基合金は、良好な加工性を活かし、
各種人工骨材に適した形状に成形できることが判る。
Next, the forged material is cold-rolled to a thickness of 5 mm.
Was obtained. By immersing the cold-rolled material in a mixed acid of concentrated hydrochloric acid: concentrated nitric acid = 3: 1 (volume ratio), stainless steel on the surface of the cold-rolled material was removed by etching. 1250 ° C
After annealing for 1 hour and water quenching, a sheet material having a thickness of 50 μm was manufactured by cold rolling again. From the manufacturing results, the Co-based alloy of the present invention makes use of good workability,
It turns out that it can be molded into a shape suitable for various artificial aggregates.

【0023】[0023]

【発明の効果】以上に説明したように、本発明の生体用
Co基合金は、Mo含有量を6〜12質量%と多く設定
すると共に、急冷鋳造により第二相を微細分散させ、σ
相の生成を抑えた高温鍛造によって結晶組織を微細化し
ている。これにより、耐磨耗性が一層改善され、Vitall
ium本来の優れた特性が活用される生体用材料として使
用される。
As described above, the Co-based alloy for living body according to the present invention has a high Mo content of 6 to 12% by mass, and a fine phase dispersion of the second phase by quenching casting.
The crystal structure is refined by high-temperature forging that suppresses the formation of phases. This further improves wear resistance, and Vitall
It is used as a material for living organisms utilizing the original excellent properties of ium.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 各種Co基合金の歪−応力曲線を示すグラフFIG. 1 is a graph showing strain-stress curves of various Co-based alloys.

【図2】 製造条件がCo基合金の歪−応力曲線に及ぼ
す影響を表したグラフ
FIG. 2 is a graph showing the effect of manufacturing conditions on the strain-stress curve of a Co-based alloy.

【図3】 Co基合金as cast材の金属組織を示す写真FIG. 3 is a photograph showing the metal structure of a Co-based alloy as cast material.

【図4】 Co基合金炉冷材の金属組織を示す写真FIG. 4 is a photograph showing a metal structure of a cold material of a Co-based alloy furnace.

【図5】 実施例で使用した合金No.1高温鍛造材の金
属組織を示す写真
FIG. 5 is a photograph showing the metal structure of alloy No. 1 high-temperature forged material used in the examples.

【図6】 実施例で使用した合金No.2高温鍛造材の金
属組織を示す写真
FIG. 6 is a photograph showing the metallographic structure of alloy No. 2 high-temperature forged material used in Examples.

【図7】 実施例で使用した合金No.3熱処理材の金属
組織を示す写真
FIG. 7 is a photograph showing the metallographic structure of the heat-treated alloy No. 3 used in the examples.

【図8】 実施例で使用した合金No.4熱処理材の金属
組織を示す写真
FIG. 8 is a photograph showing a metal structure of a heat-treated alloy No. 4 used in Examples.

【図9】 各種Co基合金の磨耗特性を示すグラフFIG. 9 is a graph showing wear characteristics of various Co-based alloys.

【図10】 各種Co基合金の磨耗特性を示すグラフFIG. 10 is a graph showing wear characteristics of various Co-based alloys.

【図11】 結晶粒径がCo基合金鍛造材の耐磨耗性に
及ぼす影響を表したグラフ
FIG. 11 is a graph showing the effect of the crystal grain size on the wear resistance of a Co-based alloy forged material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630D 630G 630K 675 675 681 681 682 682 683 683 691 691B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int. Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 630 C22F 1/00 630D 630G 630K 675 675 681 681 681 682 682 683 683 691 691B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Cr:26〜30質量%,Mo:6〜1
2質量%,C:0〜0.3質量%,残部が実質的にCo
の組成をもち、平均結晶粒径50μm以下の結晶粒から
なるマトリックスに粒状の第二相が微細分散した組織を
もつことを特徴とする生体用Co基合金。
1. Cr: 26 to 30% by mass, Mo: 6-1.
2% by mass, C: 0 to 0.3% by mass, the balance being substantially Co
A Co-based alloy for a living body, characterized by having a structure in which a granular second phase is finely dispersed in a matrix composed of crystal grains having an average crystal grain size of 50 μm or less.
【請求項2】 水冷銅製鋳型を用いて請求項1記載の組
成をもつCo基合金を急冷鋳造し、得られた鋳塊を10
00〜1300℃で鍛造することにより、平均結晶粒径
が50μm以下の結晶粒径からなるマトリックスに粒状
の第二相が微細分散した組織に調整することを特徴とす
る生体用Co基合金の製造方法。
2. A Co-based alloy having the composition according to claim 1 is rapidly quenched and cast using a water-cooled copper mold.
Production of a Co-based alloy for a living body characterized in that by forging at 00 to 1300 ° C., a structure in which a granular second phase is finely dispersed in a matrix having an average crystal grain size of 50 μm or less is finely dispersed. Method.
JP2001172377A 2001-06-07 2001-06-07 Bio-based Co-based alloy and method for producing the same Expired - Lifetime JP4081537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001172377A JP4081537B2 (en) 2001-06-07 2001-06-07 Bio-based Co-based alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001172377A JP4081537B2 (en) 2001-06-07 2001-06-07 Bio-based Co-based alloy and method for producing the same

Publications (3)

Publication Number Publication Date
JP2002363675A true JP2002363675A (en) 2002-12-18
JP2002363675A5 JP2002363675A5 (en) 2004-08-12
JP4081537B2 JP4081537B2 (en) 2008-04-30

Family

ID=19014007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001172377A Expired - Lifetime JP4081537B2 (en) 2001-06-07 2001-06-07 Bio-based Co-based alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4081537B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1449550A1 (en) 2003-02-18 2004-08-25 Nemoto Kyorindo Co., Ltd. Liquid injector with selective operating modes set by selecting displayed image
EP1465101A2 (en) 2003-04-01 2004-10-06 Nemoto Kyorindo Co., Ltd. Liquid injector for controlling injection of liquid in real-time according to injection graph
EP1466991A1 (en) * 2003-04-11 2004-10-13 NHK Spring Co., Ltd. Co-Cr-Mo alloy fine wire, its method of manufacture, and use as a planar body, tubular body, stranded wire and cable
EP1655384A1 (en) * 2004-11-09 2006-05-10 Cordis Corporation A cobalt-chromium-molybdenum fatigue resistant alloy for intravascular medical devices
EP1698709A1 (en) 2005-02-24 2006-09-06 Nhk Spring Co.Ltd. Co-Cr-Mo-based alloy and production method therefor
JP2006265633A (en) * 2005-03-24 2006-10-05 Iwate Univ Co-Cr-Mo ALLOY FOR LIVING BODY FOR DEALING WITH MRI, AND ITS PRODUCTION METHOD
WO2006103742A1 (en) * 2005-03-28 2006-10-05 Iwate University Co-Cr-Mo ALLOY FOR ARTIFICIAL JOINT HAVING EXCELLENT WEAR RESISTANCE
JP2007211297A (en) * 2006-02-09 2007-08-23 Nhk Spring Co Ltd Co-Cr-Mo BASED ALLOY FIRE WIRE, ITS PRODUCTION METHOD, AND PLANAR BODY, CYLINDRICAL BODY, TWISTED WIRE AND CABLE OBTAINED BY WORKING THE FINE WIRE
JP2008001942A (en) * 2006-06-22 2008-01-10 Iwate Univ POROUS Co-BASED ALLOY SINTERED COATING MATERIAL AND ITS MANUFACTURING METHOD
US7520947B2 (en) * 2003-05-23 2009-04-21 Ati Properties, Inc. Cobalt alloys, methods of making cobalt alloys, and implants and articles of manufacture made therefrom
US7625519B2 (en) 2004-04-14 2009-12-01 Akihiko Chiba Method for manufacturing biomedical porous article
WO2010026996A1 (en) 2008-09-05 2010-03-11 国立大学法人東北大学 METHOD OF FORMING FINE CRYSTAL GRAINS IN NITROGEN-DOPED Co-Cr-Mo ALLOY AND NITROGEN-DOPED Co-Cr-Mo ALLOY
JP2011161482A (en) * 2010-02-09 2011-08-25 Osaka Univ CO-Cr BASED ALLOY SINGLE CRYSTAL FOR IMPLANT MEMBER, METHOD FOR PRODUCING THE SAME, AND IMPLANT MEMBER
CN109822023A (en) * 2019-02-21 2019-05-31 凯里学院 A kind of heat cladding forging method of cobalt-base alloys ingot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181190A (en) * 2012-02-29 2013-09-12 Seiko Instruments Inc Co-BASED ALLOY FOR LIVING BODY AND STENT

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1449550A1 (en) 2003-02-18 2004-08-25 Nemoto Kyorindo Co., Ltd. Liquid injector with selective operating modes set by selecting displayed image
EP2256654A1 (en) 2003-02-18 2010-12-01 Nemoto Kyorindo Co., Ltd. Liquid injector with appropriate operating conditions set by selecting displayed image
EP1465101A2 (en) 2003-04-01 2004-10-06 Nemoto Kyorindo Co., Ltd. Liquid injector for controlling injection of liquid in real-time according to injection graph
EP1466991A1 (en) * 2003-04-11 2004-10-13 NHK Spring Co., Ltd. Co-Cr-Mo alloy fine wire, its method of manufacture, and use as a planar body, tubular body, stranded wire and cable
US7857916B2 (en) 2003-04-11 2010-12-28 Nhk Spring Co., Ltd Co-Cr-Mo alloy fine wire, manufacturing method therefor, and planar body, tubular body, stranded wire and cable formed of wire
US7520947B2 (en) * 2003-05-23 2009-04-21 Ati Properties, Inc. Cobalt alloys, methods of making cobalt alloys, and implants and articles of manufacture made therefrom
US7625519B2 (en) 2004-04-14 2009-12-01 Akihiko Chiba Method for manufacturing biomedical porous article
EP1655384A1 (en) * 2004-11-09 2006-05-10 Cordis Corporation A cobalt-chromium-molybdenum fatigue resistant alloy for intravascular medical devices
US7569116B2 (en) 2005-02-24 2009-08-04 Nhk Spring Co., Ltd. Co-Cr-Mo-based alloy and production method therefor
EP1698709A1 (en) 2005-02-24 2006-09-06 Nhk Spring Co.Ltd. Co-Cr-Mo-based alloy and production method therefor
JP2006265633A (en) * 2005-03-24 2006-10-05 Iwate Univ Co-Cr-Mo ALLOY FOR LIVING BODY FOR DEALING WITH MRI, AND ITS PRODUCTION METHOD
JP4631050B2 (en) * 2005-03-24 2011-02-16 国立大学法人岩手大学 MRI compatible biomedical Co-Cr-Mo alloy and method for producing the same
WO2006103742A1 (en) * 2005-03-28 2006-10-05 Iwate University Co-Cr-Mo ALLOY FOR ARTIFICIAL JOINT HAVING EXCELLENT WEAR RESISTANCE
JP4843795B2 (en) * 2005-03-28 2011-12-21 国立大学法人岩手大学 Co-Cr-Mo alloy for artificial joints with excellent wear resistance
JP2007211297A (en) * 2006-02-09 2007-08-23 Nhk Spring Co Ltd Co-Cr-Mo BASED ALLOY FIRE WIRE, ITS PRODUCTION METHOD, AND PLANAR BODY, CYLINDRICAL BODY, TWISTED WIRE AND CABLE OBTAINED BY WORKING THE FINE WIRE
JP4675253B2 (en) * 2006-02-09 2011-04-20 日本発條株式会社 Co—Cr—Mo type alloy fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing this thin wire
JP2008001942A (en) * 2006-06-22 2008-01-10 Iwate Univ POROUS Co-BASED ALLOY SINTERED COATING MATERIAL AND ITS MANUFACTURING METHOD
WO2010026996A1 (en) 2008-09-05 2010-03-11 国立大学法人東北大学 METHOD OF FORMING FINE CRYSTAL GRAINS IN NITROGEN-DOPED Co-Cr-Mo ALLOY AND NITROGEN-DOPED Co-Cr-Mo ALLOY
US8460485B2 (en) 2008-09-05 2013-06-11 Tohoku University Method of forming fine grains of Co-Cr-Mo alloy with nitrogen addition and Co-Cr-Mo alloy with nitrogen addition
JP2011161482A (en) * 2010-02-09 2011-08-25 Osaka Univ CO-Cr BASED ALLOY SINGLE CRYSTAL FOR IMPLANT MEMBER, METHOD FOR PRODUCING THE SAME, AND IMPLANT MEMBER
CN109822023A (en) * 2019-02-21 2019-05-31 凯里学院 A kind of heat cladding forging method of cobalt-base alloys ingot

Also Published As

Publication number Publication date
JP4081537B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP7053529B2 (en) Magnesium alloy, its manufacturing method and its use
US9943625B2 (en) Magnesium alloy
JP3884316B2 (en) Superelastic titanium alloy for living body
JP4493029B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP4081537B2 (en) Bio-based Co-based alloy and method for producing the same
KR100977801B1 (en) Titanium alloy with exellent hardness and ductility and method thereof
US8529710B2 (en) High-strength co-based alloy with enhanced workability and process for producing the same
US20070137742A1 (en) Titanium alloy with extra-low modulus and superelasticity and its producing method and processing thereof
CN108486408B (en) Beta-type titanium alloy for filling teeth with low elastic modulus and manufacturing method thereof
JPWO2010026996A1 (en) Grain refinement method of nitrogen-added Co-Cr-Mo alloy and nitrogen-added Co-Cr-Mo alloy
JP5156943B2 (en) Method for producing bio-based Co-based alloy having excellent plastic workability
KR20130134014A (en) Beta type titanium alloy with low elastic modulus and high strength
JP2007084864A (en) alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP5155668B2 (en) Titanium alloy casting method
CA3098073A1 (en) Titanium alloys
JPH0762472A (en) Copper-based shape memory alloy having high workability and its production
JP4152050B2 (en) Ti-Zr alloy
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
JP2004269994A (en) BIOCOMPATIBLE Co BASED ALLOY, AND PRODUCTION METHOD THEREFOR
JP3907177B2 (en) Fe-based shape memory alloy and manufacturing method thereof
JPWO2007043687A1 (en) High-strength Co-based alloy with improved workability and method for producing the same
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JP6497689B2 (en) Co-Cr-W base alloy hot-worked material, annealed material, cast material, homogenized heat treatment material, Co-Cr-W-based alloy hot-worked material manufacturing method, and annealed material manufacturing method
JP2005060821A (en) beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4081537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term