JP2002290151A - Temperature compensated quartz oscillator with afc - Google Patents

Temperature compensated quartz oscillator with afc

Info

Publication number
JP2002290151A
JP2002290151A JP2001093876A JP2001093876A JP2002290151A JP 2002290151 A JP2002290151 A JP 2002290151A JP 2001093876 A JP2001093876 A JP 2001093876A JP 2001093876 A JP2001093876 A JP 2001093876A JP 2002290151 A JP2002290151 A JP 2002290151A
Authority
JP
Japan
Prior art keywords
voltage
variable capacitance
temperature
capacitance element
afc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001093876A
Other languages
Japanese (ja)
Inventor
Kuichi Kubo
九一 久保
Fumio Asamura
文雄 浅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2001093876A priority Critical patent/JP2002290151A/en
Publication of JP2002290151A publication Critical patent/JP2002290151A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a temperature compensated oscillator which maintains variable voltage width and low noise by compensation voltage and exhibits proper AFC(automatic frequency control) operation. SOLUTION: The temperature compensated quartz oscillator is constituted of: a quartz oscillator which is constituted by using a quartz oscillator as an inductor components; a compensation voltage generation circuit for generating temperature compensated voltage corresponding to a temperature for compensating the frequency-temperature characteristics of the quartz oscillator; a first voltage variable capacitance element, which is inserted into the oscillation closed loop of the quartz oscillator and to which compensation voltage Vc is applied; a CR filter, arranged between the compensation voltage generation circuit and the first voltage variable capacitance element; a second voltage variable capacitance element is connected, in parallel with or in series with the first voltage variable capacitance element in terms of high frequency; and AFC control voltage from an automatic frequency control circuit is applied to the second voltage variable capacitance element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は温度補償水晶発振器
(温度補償発振器とする)を産業上の技術分野とし、特
に自動周波数制御(AFC)回路からの制御電圧(AF
C電圧VFとする)によって発振周波数を制御するAF
C付きの温度補償発振器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature-compensated crystal oscillator (hereinafter referred to as "temperature-compensated oscillator") as an industrial technical field, and particularly to a control voltage (AF) from an automatic frequency control (AFC) circuit.
AF for controlling the oscillation frequency by the C voltage VF)
The present invention relates to a temperature-compensated oscillator with C.

【0002】[0002]

【従来の技術】(発明の背景)温度補償発振器は水晶振
動子3に起因した周波数温度特性を平坦にして温度補償
することから、特に携帯電話等の動的環境下の元で使用
される通信機器に採用される。一方、AFC回路は例え
ば基地局からの通信周波数を受信し、発振周波数をこれ
に追従させる。これらは、いずれも発振閉ループ内に設
けた電圧可変容量素子に温度補償電圧Vc(補償電圧Vc
とする)及びAFC電圧VFを印加して温度補償すると
ともに発振周波数を制御する(参照特開2001-44758号公
報)。
2. Description of the Related Art A temperature-compensated oscillator flattens frequency-temperature characteristics caused by a quartz oscillator 3 and compensates for temperature. Therefore, a temperature-compensated oscillator is used especially in a dynamic environment such as a cellular phone. Used in equipment. On the other hand, the AFC circuit receives a communication frequency from a base station, for example, and causes the oscillation frequency to follow the communication frequency. These are all provided with a temperature compensation voltage Vc (compensation voltage Vc) in a voltage variable capacitance element provided in an oscillation closed loop.
And AFC voltage VF is applied to compensate for temperature and to control the oscillation frequency (see JP-A-2001-44758).

【0003】(従来技術の一例)第3図は一従来例の概
略を説明する温度補償発振器のブロック回路図である。
温度補償発振器は、概ね、電圧制御型とした水晶発振器
1と補償電圧発生回路2とからなる。水晶発振器1は、
水晶振動子3と発振回路4からなる。水晶振動子3はイ
ンダクタ成分として、発振回路4内の図示しない分割コ
ンデンサと共振回路を形成し、これによる共振周波数を
増幅器によって帰還する所謂コルピッツ型からなる。そ
して、水晶発振器1の発振閉ループに電圧可変容量素
子、ここでは可変容量ダイオード5を挿入して一点鎖線
枠で示す電圧制御型とする。そして、可変容量ダイオー
ド5のアノードをアース接地としてカソードを水晶振動
子3に接続する。
(Example of Prior Art) FIG. 3 is a block circuit diagram of a temperature-compensated oscillator schematically illustrating a conventional example.
The temperature-compensated oscillator generally includes a voltage-controlled crystal oscillator 1 and a compensation voltage generation circuit 2. The crystal oscillator 1
It comprises a crystal unit 3 and an oscillation circuit 4. The crystal resonator 3 is of a so-called Colpitts type in which a resonance circuit is formed as an inductor component with a not-shown divided capacitor in the oscillation circuit 4 and the resonance frequency is fed back by an amplifier. Then, a voltage variable capacitance element, in this case, a variable capacitance diode 5 is inserted into the oscillation closed loop of the crystal oscillator 1 to obtain a voltage control type shown by a dashed line frame. Then, the anode of the variable capacitance diode 5 is connected to the earth ground, and the cathode is connected to the crystal unit 3.

【0004】補償電圧発生回路2は、例えば抵抗の温度
特性を利用して周囲温度に応答した検出電圧を得て、こ
れに基づいた補償電圧Vcを生成する。補償電圧Vcは、
水晶発振器1の水晶振動子3を主因とした周波数温度特
性例えば三次曲線(第4図の曲線イ)に対応してこれを
補償する三次曲線(同ロ)とする。そして、発振閉ルー
プの可変容量ダイオード5のカソードに+電圧即ち逆電
圧を印加する。これら(水晶振動子3を除く水晶発振器
1及び補償電圧発生回路2)は、1チップとしたLSI
内に一体的に集積化される。
The compensation voltage generating circuit 2 obtains a detection voltage responsive to the ambient temperature by using, for example, the temperature characteristic of a resistor, and generates a compensation voltage Vc based on the detection voltage. The compensation voltage Vc is
A frequency-temperature characteristic of the crystal oscillator 1 of the crystal oscillator 1 mainly due to the crystal resonator 3, for example, a cubic curve (curve (a) in FIG. 4) is used to compensate for this. Then, a positive voltage, that is, a reverse voltage is applied to the cathode of the variable capacitance diode 5 in the oscillation closed loop. These (the crystal oscillator 1 and the compensation voltage generating circuit 2 excluding the crystal oscillator 3) are integrated into one chip LSI.
It is integrated in one body.

【0005】このようなものでは、可変容量ダイオード
5のカソードに逆電圧とした補償電圧Vcが印加される
と、補償電圧Vcのレベルに応じて端子間の容量のみが
変化する。但し、逆電圧なので電流は流れず容量のみが
変化する。したがって、水晶振動子3から見た可変容量
ダイオード5を含む等価直列容量が変化するので、発振
周波数が変化する。そして、周波数温度特性に応じた補
償電圧Vcに設定することにより、周波数温度特性を規
格温度範囲内で平坦にして温度補償する。
In such a device, when a compensation voltage Vc as a reverse voltage is applied to the cathode of the variable capacitance diode 5, only the capacitance between the terminals changes according to the level of the compensation voltage Vc. However, because of the reverse voltage, no current flows and only the capacity changes. Therefore, since the equivalent series capacitance including the variable capacitance diode 5 as viewed from the crystal unit 3 changes, the oscillation frequency changes. Then, by setting the compensation voltage Vc according to the frequency temperature characteristic, the frequency temperature characteristic is flattened within the standard temperature range and the temperature is compensated.

【0006】なお、第3図中の符号6はコンデンサ7及
び抵抗8からなるローパスフィルタ(CRフィルタ)
で、定電圧源に含まれる高周波成分を除去して位相雑音
特性を良好にする。同符号9は水晶発振器1と高周波的
に分離する高周波阻止抵抗である。また、第4図中のV
coは常温時の基準電圧である。
Reference numeral 6 in FIG. 3 denotes a low-pass filter (CR filter) comprising a capacitor 7 and a resistor 8.
Thus, the high frequency component contained in the constant voltage source is removed to improve the phase noise characteristic. Reference numeral 9 denotes a high-frequency blocking resistor that is separated from the crystal oscillator 1 in high frequency. Also, V in FIG.
co is a reference voltage at normal temperature.

【0007】また、自動周波数制御回路(未図示)から
のAFC電圧VFを高周波阻止抵抗10を経て可変容量
ダイオード5のアノードに印加する。なお、AFC電圧
VFは補償電圧Vcよりも小さい+電圧として印加され
る。符号11は直流阻止コンデンサである。これによ
り、可変容量ダイオード5の端子間の印加電圧が変化し
て容量も変化するので、発振周波数が制御される。これ
らのことから、発振周波数を制御してしかも温度補償し
た安定な発振周波数を供給できる。
Further, an AFC voltage VF from an automatic frequency control circuit (not shown) is applied to the anode of the variable capacitance diode 5 via the high frequency blocking resistor 10. Note that the AFC voltage VF is applied as a + voltage smaller than the compensation voltage Vc. Reference numeral 11 denotes a DC blocking capacitor. As a result, the applied voltage between the terminals of the variable capacitance diode 5 changes and the capacitance also changes, so that the oscillation frequency is controlled. From these facts, it is possible to supply a stable oscillation frequency whose temperature is compensated while controlling the oscillation frequency.

【0008】[0008]

【発明が解決しようとする課題】(従来技術の問題点)
しかしながら、上記構成のAFC付き温度補償発振器で
は、可変容量ダイオード5を共用して、アノードに+電
圧としたAFC電圧VFを印加する。したがって、アノ
ードの電位は接地した場合よりも、AFC電圧VF分高
くなる。これにより、補償電圧Vcを印加すると、可変
容量ダイオード5の端子間電圧は(Vc−VF)Vとなっ
て、補償電圧Vcによる可変電圧幅が小さくなる問題が
あった。これらは、IC化が進み、例えば2V以下の低
電圧動作になるほど問題が大きくなる。
[Problems to be Solved by the Invention]
However, in the temperature-compensated oscillator with an AFC having the above configuration, the variable capacitance diode 5 is shared, and the AFC voltage VF, which is a positive voltage, is applied to the anode. Therefore, the potential of the anode is higher by the AFC voltage VF than in the case where the anode is grounded. Thus, when the compensation voltage Vc is applied, the voltage between the terminals of the variable capacitance diode 5 becomes (Vc-VF) V, and there is a problem that the variable voltage width due to the compensation voltage Vc is reduced. These become more problematic as IC operation progresses and, for example, operation at a low voltage of 2 V or less is performed.

【0009】また、この例では、低雑音化を計るため、
CRからなるローパスフィルタ6を挿入する。このた
め、CRの時定数によってAFC動作が速やかに追従し
ない問題があった。なお、温度補償は周囲温度に緩やか
に追従すればよいので、CRの時定数は問題にならな
い。
In this example, in order to reduce noise,
A low-pass filter 6 made of CR is inserted. For this reason, there is a problem that the AFC operation does not immediately follow due to the CR time constant. Since the temperature compensation only needs to follow the ambient temperature gently, the CR time constant does not matter.

【0010】(発明の目的)本発明は、補償電圧による
可変電圧幅及び低雑音を維持して、AFC動作を良好に
した温度補償発振器を提供することを目的とする。
(Object of the Invention) It is an object of the present invention to provide a temperature-compensated oscillator having improved AFC operation while maintaining a variable voltage width and low noise by a compensation voltage.

【0011】[0011]

【課題を解決するための手段】本発明は、補償電圧Vc
を印加される第1電圧可変容量素子に高周波的に並列又
は直列に第2電圧可変容量素子を接続し、第2電圧可変
容量素子にAFC電圧VFを印加したことを基本的な解
決手段とする。
The present invention provides a compensation voltage Vc.
The basic solution is to connect a second voltage variable capacitance element in parallel or series in high frequency to the first voltage variable capacitance element to which is applied the AFC voltage VF to the second voltage variable capacitance element. .

【0012】[0012]

【作用】本発明では、補償電圧VcとAFC電圧VFとを
第1と第2可変容量ダイオードに別個に印加するので、
補償電圧Vcの印加される第1可変容量ダイオードの可
変電圧幅を大きくする。以下、本発明の一実施例を説明
する。
According to the present invention, the compensation voltage Vc and the AFC voltage VF are separately applied to the first and second variable capacitance diodes.
The variable voltage width of the first variable capacitance diode to which the compensation voltage Vc is applied is increased. Hereinafter, an embodiment of the present invention will be described.

【0013】第1図は、本発明の一実施例を説明する温
度補償発振器のブロック回路図である。なお、前従来例
図と同一部分には同番号を付与してその説明は簡略又は
省略する。温度補償発振器は、前述したように、発振閉
ループ内に第1可変容量ダイオードを挿入して電圧制御
型とした水晶発振器1と、補償電圧Vcを生成する補償
電圧発生回路2とからなる。そして、発振閉ループ内に
第1可変容量ダイオード5と高周波的に並列に、即ち直
流阻止コンデンサ11と第2可変容量ダイオード12と
の直列回路を挿入する。これらは、いずれも各可変容量
ダイオード5,12のアノードを接地する。そして、第
1可変容量ダイオード5のカソードには補償電圧Vc
を、第2可変容量ダイオード12のカソードにはAFC
電圧VFを印加する。
FIG. 1 is a block circuit diagram of a temperature-compensated oscillator for explaining an embodiment of the present invention. The same parts as those in the prior art are denoted by the same reference numerals, and description thereof will be simplified or omitted. As described above, the temperature-compensated oscillator includes the crystal oscillator 1 of the voltage control type by inserting the first variable capacitance diode in the oscillation closed loop, and the compensation voltage generating circuit 2 for generating the compensation voltage Vc. Then, a series circuit of the DC blocking capacitor 11 and the second variable capacitance diode 12 is inserted into the oscillation closed loop in parallel with the first variable capacitance diode 5 in high frequency, that is, a series circuit of the second variable capacitance diode 12. Each of them connects the anode of each of the variable capacitance diodes 5 and 12 to ground. The compensation voltage Vc is applied to the cathode of the first variable capacitance diode 5.
And the cathode of the second variable capacitance diode 12 is
The voltage VF is applied.

【0014】このような構成であれば、補償電圧発生回
路2からの補償電圧Vcは、独立的に第1可変容量ダイ
オード5に印加される。したがって、補償電圧Vcの可
変電圧幅は、従来のAFC電圧VFをアノードに印加し
た場合よりも大きくなる。これにより、IC化を進める
に際しての低電圧化に適合する。
With such a configuration, the compensation voltage Vc from the compensation voltage generating circuit 2 is independently applied to the first variable capacitance diode 5. Therefore, the variable voltage width of the compensation voltage Vc is larger than when the conventional AFC voltage VF is applied to the anode. This is suitable for lowering the voltage when promoting the IC.

【0015】そして、AFC電圧VFの印加される第2
可変容量ダイオード12は、第1可変容量ダイオード5
とは直流阻止コンデンサ11によって遮断される。した
がって、ローパスフィルタ(CRフィルタ)6の時定数
によってのAFC動作の遅延を防止し、AFC動作を確
実にする。
The second AFC voltage VF is applied.
The variable capacitance diode 12 includes the first variable capacitance diode 5.
Is blocked by the DC blocking capacitor 11. Therefore, the delay of the AFC operation due to the time constant of the low-pass filter (CR filter) 6 is prevented, and the AFC operation is ensured.

【0016】[0016]

【他の事項】上記実施例では、補償電圧Vcの印加され
る第1可変容量ダイオード5に対して、AFC電圧VF
の印加される第2可変容量ダイオード12を高周波的に
並列に接続したが、第2図に示したように第1と第2可
変容量ダイオード5、12を高周波的に直列に接続して
もよい。但し、この場合、第1可変容量ダイオード5の
アノード側に高周波阻止抵抗13を設けて接地する。
In the above embodiment, the AFC voltage VF is applied to the first variable capacitance diode 5 to which the compensation voltage Vc is applied.
Is connected in parallel at high frequency, but the first and second variable capacitance diodes 5 and 12 may be connected in series at high frequency as shown in FIG. . However, in this case, a high frequency blocking resistor 13 is provided on the anode side of the first variable capacitance diode 5 and grounded.

【0017】[0017]

【発明の効果】本発明は、補償電圧Vcを印加される第
1電圧可変容量素子に並列に第2電圧可変容量素子を接
続し、第2電圧可変容量素子にAFC電圧VFを印加し
たので、補償電圧による可変電圧幅及び低雑音を維持し
て、AFC動作を良好にした温度補償発振器を提供でき
る。
According to the present invention, the second voltage variable capacitance element is connected in parallel to the first voltage variable capacitance element to which the compensation voltage Vc is applied, and the AFC voltage VF is applied to the second voltage variable capacitance element. It is possible to provide a temperature-compensated oscillator with improved AFC operation while maintaining a variable voltage width and low noise due to the compensation voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を説明する温度補償発振器の
ブロック回路図である。
FIG. 1 is a block circuit diagram of a temperature-compensated oscillator explaining one embodiment of the present invention.

【図2】本発明の他の実施例を説明する温度補償発振器
のブロック回路図である。
FIG. 2 is a block circuit diagram of a temperature compensated oscillator illustrating another embodiment of the present invention.

【図3】従来例を説明する温度補償発振器のブロック回
路図である。
FIG. 3 is a block circuit diagram of a temperature compensated oscillator illustrating a conventional example.

【図4】従来例を説明する水晶発振器の周波数温度特性
および電圧周波数特性である。
FIG. 4 shows frequency temperature characteristics and voltage frequency characteristics of a crystal oscillator for explaining a conventional example.

【符号の説明】[Explanation of symbols]

1 水晶発振器、2 補償電圧発生回路、3 水晶振動
子、4 発振回路、5、12 可変容量ダイオード、6
ローパスフィルタ(CRフィルタ)、7、11 コン
デンサ、8、9、10、13 抵抗.
Reference Signs List 1 crystal oscillator, 2 compensation voltage generation circuit, 3 crystal oscillator, 4 oscillation circuit, 5, 12 variable capacitance diode, 6
Low-pass filter (CR filter), 7, 11 Capacitor, 8, 9, 10, 13 Resistance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水晶振動子をインダクタ成分として構成さ
れた水晶発振器と、前記水晶発振器の周波数温度特性を
補償する温度に応答した温度補償電圧を発生する補償電
圧発生回路と、前記水晶発振器の発振閉ループ内に挿入
されて前記補償電圧Vcを印加される第1電圧可変容量
素子と、前記補償電圧発生回路と前記第1電圧可変容量
素子との間に設けたCRフィルタとからなる温度補償水
晶発振器において、前記第1電圧可変容量素子に高周波
的に並列又は直列に第2電圧可変容量素子を接続し、前
記第2電圧可変容量素子に自動周波数制御回路からのA
FC制御電圧を印加したことを特徴とするAFC付き温
度補償水晶発振器。
1. A crystal oscillator having a crystal resonator as an inductor component, a compensation voltage generation circuit for generating a temperature compensation voltage responsive to temperature for compensating frequency temperature characteristics of the crystal oscillator, and an oscillation of the crystal oscillator. A temperature-compensated crystal oscillator comprising a first voltage variable capacitance element inserted into a closed loop to which the compensation voltage Vc is applied, and a CR filter provided between the compensation voltage generation circuit and the first voltage variable capacitance element In the above, a second voltage variable capacitance element is connected to the first voltage variable capacitance element in parallel or in series in a high frequency manner, and the second voltage variable capacitance element is connected to A from an automatic frequency control circuit.
A temperature-compensated crystal oscillator with an AFC, characterized by applying an FC control voltage.
JP2001093876A 2001-03-28 2001-03-28 Temperature compensated quartz oscillator with afc Pending JP2002290151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001093876A JP2002290151A (en) 2001-03-28 2001-03-28 Temperature compensated quartz oscillator with afc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001093876A JP2002290151A (en) 2001-03-28 2001-03-28 Temperature compensated quartz oscillator with afc

Publications (1)

Publication Number Publication Date
JP2002290151A true JP2002290151A (en) 2002-10-04

Family

ID=18948158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001093876A Pending JP2002290151A (en) 2001-03-28 2001-03-28 Temperature compensated quartz oscillator with afc

Country Status (1)

Country Link
JP (1) JP2002290151A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531471A (en) * 2004-03-30 2007-11-01 クゥアルコム・インコーポレイテッド Temperature stabilized voltage controlled oscillator
JP2010219980A (en) * 2009-03-18 2010-09-30 Seiko Epson Corp Temperature-compensated voltage generated circuit and temperature compensated type oscillation circuit
JP2011518535A (en) * 2008-04-22 2011-06-23 クゥアルコム・インコーポレイテッド Auxiliary varactor for temperature compensation
JP2013017176A (en) * 2011-07-05 2013-01-24 Fujitsu Semiconductor Ltd System and method for reducing temperature-dependent and process-dependent frequency variation of crystal oscillator circuit
JP5129394B2 (en) * 2009-12-22 2013-01-30 旭化成エレクトロニクス株式会社 Oscillator
JP2013146114A (en) * 2013-04-30 2013-07-25 Seiko Epson Corp Temperature compensation voltage generation circuit and temperature compensation type oscillation circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531471A (en) * 2004-03-30 2007-11-01 クゥアルコム・インコーポレイテッド Temperature stabilized voltage controlled oscillator
JP2011010343A (en) * 2004-03-30 2011-01-13 Qualcomm Inc Temperature stabilized voltage-controlled oscillator
JP2011518535A (en) * 2008-04-22 2011-06-23 クゥアルコム・インコーポレイテッド Auxiliary varactor for temperature compensation
JP2010219980A (en) * 2009-03-18 2010-09-30 Seiko Epson Corp Temperature-compensated voltage generated circuit and temperature compensated type oscillation circuit
JP5129394B2 (en) * 2009-12-22 2013-01-30 旭化成エレクトロニクス株式会社 Oscillator
US8629730B2 (en) 2009-12-22 2014-01-14 Asahi Kasei Microdevices Corporation Oscillator
JP2013017176A (en) * 2011-07-05 2013-01-24 Fujitsu Semiconductor Ltd System and method for reducing temperature-dependent and process-dependent frequency variation of crystal oscillator circuit
JP2013146114A (en) * 2013-04-30 2013-07-25 Seiko Epson Corp Temperature compensation voltage generation circuit and temperature compensation type oscillation circuit

Similar Documents

Publication Publication Date Title
US7298226B2 (en) Noise tolerant voltage controlled oscillator
US6064277A (en) Automatic biasing scheme for reducing oscillator phase noise
US6731182B2 (en) Voltage-controlled oscillator and communication apparatus employing the same
KR20060012239A (en) Lc oscillator with wide tuning range and low phase noise
JPH08293758A (en) Monolithic hbt type active tunable band-pass filter
JP3921362B2 (en) Temperature compensated crystal oscillator
JP3950703B2 (en) Temperature compensated crystal oscillator
US6504443B1 (en) Common anode varactor tuned LC circuit
JP2002290151A (en) Temperature compensated quartz oscillator with afc
JP2004297166A (en) Temperature-compensated piezoelectric oscillator and electronic equipment using the same
EP0755112A1 (en) Tunable voltage-controlled oscillator
US7501907B1 (en) Self-biased active VCO level shifter
JPH0697734A (en) Electronic circuit provided with voltage- controlled constituent element
US6181216B1 (en) Low phase-noise voltage controlled oscillator
JPH0846427A (en) Voltage controlled crystal oscillator
JP2005217773A (en) Voltage-controlled piezoelectric oscillator
JP3466944B2 (en) Voltage controlled crystal oscillator
JP4507070B2 (en) Communication device
JP2007019565A (en) Crystal oscillator
JP2002009546A (en) Voltage controlled oscillator
JP4228758B2 (en) Piezoelectric oscillator
JP2004104609A (en) Temperature compensation type piezoelectric oscillator
JP2000244243A (en) Voltage-controlled crystal oscillator
JP2002198736A (en) Temperature compensation crystal oscillator
JP2010206432A (en) Crystal oscillator