JP2002270175A - Secondary power source - Google Patents

Secondary power source

Info

Publication number
JP2002270175A
JP2002270175A JP2001066658A JP2001066658A JP2002270175A JP 2002270175 A JP2002270175 A JP 2002270175A JP 2001066658 A JP2001066658 A JP 2001066658A JP 2001066658 A JP2001066658 A JP 2001066658A JP 2002270175 A JP2002270175 A JP 2002270175A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary power
mass
positive electrode
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001066658A
Other languages
Japanese (ja)
Inventor
Isamu Kuruma
勇 車
Takeshi Morimoto
剛 森本
Manabu Tsushima
学 對馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001066658A priority Critical patent/JP2002270175A/en
Priority to DE60213696T priority patent/DE60213696T2/en
Priority to EP02005229A priority patent/EP1239495B1/en
Priority to US10/092,988 priority patent/US6824923B2/en
Publication of JP2002270175A publication Critical patent/JP2002270175A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary power source having a large capacity and excellent rapid charge and discharge cycle reliability. SOLUTION: This secondary power source is provided with a positive electrode containing activated carbon, a negative electrode containing Li4 Ti5 O12 or a mixture of a carbon material capable of storing and separating a lithium ion and Li4 Ti5 O12 , and an organic electrolyte containing lithium salt. The carbon material of the negative electrode has a surface space of 0.3335 to 0.410 nm at a (002) face measured by X-ray wide angle analysis. The mixture contains 20 to 50 mass % of Li4 Ti5 O12 and 80 to 50 mass % of the carbon material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放電容量が高く、
大電流での充放電サイクル信頼性に優れる二次電源に関
する。
TECHNICAL FIELD The present invention relates to a high discharge capacity,
The present invention relates to a secondary power supply having excellent charge / discharge cycle reliability at a large current.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタの電極に
は、正極、負極ともに活性炭を主体とする分極性電極が
使用されている。電気二重層キャパシタの耐電圧は、水
系電解液を使用すると1.2V、有機系電解液を使用す
ると2.5〜3.0Vである。電気二重層キャパシタの
エネルギは耐電圧の2乗に比例するので、耐電圧の高い
有機電解液の方が水系電解液より高エネルギである。し
かし、有機電解液を使用した電気二重層キャパシタでも
そのエネルギ密度は鉛蓄電池等の二次電池の1/10以
下であり、さらなるエネルギ密度の向上が必要とされて
いる。
2. Description of the Related Art Polarizable electrodes mainly composed of activated carbon are used for both positive and negative electrodes of conventional electric double layer capacitors. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.0 V when an organic electrolyte is used. Since the energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic electrolyte having a higher withstand voltage has higher energy than the aqueous electrolyte. However, even an electric double layer capacitor using an organic electrolyte has an energy density of 1/10 or less of a secondary battery such as a lead storage battery, and further improvement in energy density is required.

【0003】これに対し、特開昭64−14882号公
報には、活性炭を主体とする電極を正極とし、X線回折
による[002]面の面間隔が0.338〜0.356
nmである炭素材料にあらかじめリチウムイオンを吸蔵
させた電極を負極とする上限電圧3.0Vの二次電源が
提案されている。また、特開平8−107048号公報
には、リチウムイオンを吸蔵、脱離しうる炭素材料にあ
らかじめ化学的方法又は電気化学的方法でリチウムイオ
ンを吸蔵させた炭素材料を負極に用いる電池が提案され
ている。特開平9−55342号公報には、リチウムイ
オンを吸蔵、脱離しうる炭素材料をリチウムと合金を形
成しない多孔質集電体に担持させる負極を有する、上限
電圧4.0Vの二次電源が提案されている。
On the other hand, Japanese Patent Application Laid-Open No. 64-14882 discloses that an electrode mainly composed of activated carbon is used as a positive electrode, and the [002] plane is 0.338 to 0.356 in X-ray diffraction.
A secondary power supply with an upper limit voltage of 3.0 V has been proposed in which an electrode obtained by previously absorbing lithium ions in a carbon material having a thickness of nm is used as a negative electrode. Japanese Patent Application Laid-Open No. Hei 8-107048 proposes a battery using, as a negative electrode, a carbon material which can occlude and desorb lithium ions by absorbing lithium ions in advance by a chemical method or an electrochemical method. I have. Japanese Unexamined Patent Publication No. 9-55342 proposes a secondary power supply having an upper limit voltage of 4.0 V, which has a negative electrode in which a carbon material capable of absorbing and desorbing lithium ions is supported on a porous current collector that does not form an alloy with lithium. Have been.

【0004】正極に活性炭を用い、負極にリチウムイオ
ンを吸蔵、脱離しうる炭素材料を用いた二次電源は、従
来の正極、負極ともに活性炭を用いた電気二重層キャパ
シタより高電圧で作動できかつ高容量とすることができ
る。また、電気二重層キャパシタ、上記二次電源以外
に、高性能な二次電源としては正極にリチウム含有酸化
物、負極に炭素材料を用いるリチウムイオン二次電池が
ある。リチウムイオン二次電池は電気二重層キャパシタ
に比べて高電圧で作動できかつ高容量という性質を有す
るが、抵抗が高く、急速充放電サイクルによる寿命が電
気二重層キャパシタに比べ著しく短い問題があった。上
記電気二重層キャパシタ以外の二次電源とリチウムイオ
ン二次電池のいずれも上限作動電圧が4.0V以上に達
するが、有効な容量が得られるのは上限電圧から2.7
V付近までの電圧範囲である。2.7V以下では、ほと
んど容量が得られないため、作動電圧2.7V以下の使
用に対応できない。
A secondary power supply using activated carbon for the positive electrode and a carbon material capable of inserting and extracting lithium ions for the negative electrode can operate at a higher voltage than conventional electric double layer capacitors using activated carbon for both the positive electrode and the negative electrode. High capacity can be achieved. In addition to the electric double layer capacitor and the above-mentioned secondary power source, a high-performance secondary power source includes a lithium ion secondary battery using a lithium-containing oxide for a positive electrode and a carbon material for a negative electrode. Lithium-ion secondary batteries can operate at higher voltages and have higher capacities than electric double-layer capacitors, but have the problem of high resistance and a significantly shorter life due to rapid charge / discharge cycles than electric double-layer capacitors. . Although the upper limit operating voltage of each of the secondary power supplies other than the electric double layer capacitor and the lithium ion secondary battery reaches 4.0 V or more, an effective capacity is obtained only from the upper limit voltage of 2.7 V.
The voltage range is around V. At a voltage of 2.7 V or less, almost no capacity can be obtained, so that it cannot be used at an operating voltage of 2.7 V or less.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、急速
充放電が可能でエネルギー密度が高く、充放電サイクル
信頼性の高い二次電源を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a secondary power supply which is capable of rapid charging and discharging, has a high energy density, and has a high charge and discharge cycle reliability.

【0006】[0006]

【課題を解決するための手段】本発明は、活性炭を含む
正極と、第1の態様としてチタン酸リチウム(以下Li
4 Ti5 12と略す)を活物質として含むまたは、第2
の態様としてリチウムイオンを吸蔵・脱離しうる炭素材
料とLi4 Ti5 12とを混合系活物質として含む負極
と、リチウム塩を含む有機電解液と、を有することを特
徴とする二次電源を提供する。本明細書において、リチ
ウムイオンを吸蔵、脱離しうるLi4 Ti5 12を含む
負極と集電体とを接合して一体化させたものを負極体と
いう。活性炭を含む正極と集電体とを接合して一体化さ
せたものを正極体と定義する。また、二次電池も電気二
重層キャパシタも二次電源の1種であるが、本明細書で
は、正極に活性炭を含み、負極にリチウムイオンを吸
蔵、脱離しうるLi4 Ti5 12および/または、炭素
材料を含む特定の構成の二次電源を単に二次電源とい
う。
According to the present invention, there is provided a positive electrode containing activated carbon, and lithium titanate (hereinafter referred to as Li) as a first embodiment.
4 Ti 5 O 12 ) as an active material or
A secondary power supply comprising: a negative electrode containing a carbon material capable of inserting and extracting lithium ions and Li 4 Ti 5 O 12 as a mixed active material; and an organic electrolyte containing a lithium salt. I will provide a. In the present specification, a negative electrode body in which a negative electrode containing Li 4 Ti 5 O 12 capable of inserting and extracting lithium ions and a current collector are joined and integrated is referred to as a negative electrode body. A positive electrode body is formed by joining and integrating a positive electrode containing activated carbon and a current collector. Although secondary batteries are electric double layer capacitor also one of the secondary power supply, in this specification and include activated carbon in the positive electrode, occluding lithium ions in the negative electrode, can desorb Li 4 Ti 5 O 12 and / Alternatively, a secondary power supply having a specific configuration including a carbon material is simply referred to as a secondary power supply.

【0007】スピネル型結晶構造を有するLi4 Ti5
12で示されるチタン酸リチウム材料は、充放電電位は
Li+ /Li電位に対して1.5V付近にあり、一方、
正極の活性炭はLi+ /Li電位に対して4.0V〜
4.2Vまで分極が可能であるため、活性炭正極とLi
4 Ti5 12負極とを組み合せた新たな二次電源系の上
限作動電圧は2.5V〜2.7V級であり、下限は1.
5Vである。炭素材料へのリチウムイオンの吸蔵、脱離
反応はLi+ /Li電位に対して主に1.0〜0Vの範
囲で起こり、1.0V以上ではほとんど容量の取れない
電位である。一方、電気二重層キャパシタの場合、正負
極ともに活性炭であり、2.7Vまで充電した時に、正
負極の活性炭質量あたりの放電容量は約30mAh/ g
である。一方、Li4 Ti5 12質量あたりの放電容量
は約150mAh/ gであり、ほぼ活性炭の5倍に相当
する。また、Li4 Ti5 12は充放電時の電位変化が
非常に平坦であり、二次電源の容量を最大限に引出すこ
とができるため、電気二重層キャパシタより高エネルギ
ー密度が得られる。
Li 4 Ti 5 having a spinel type crystal structure
The lithium titanate material represented by O 12 has a charge / discharge potential of about 1.5 V with respect to Li + / Li potential, while
The activated carbon of the positive electrode has a potential of 4.0 V or higher with respect to the Li + / Li potential.
Since polarization up to 4.2 V is possible, the activated carbon cathode and Li
The upper limit operating voltage of the new secondary power supply system combining the 4 Ti 5 O 12 negative electrode is in the range of 2.5 V to 2.7 V, and the lower limit is 1.
5V. The occlusion and elimination reactions of lithium ions into and from the carbon material occur mainly in the range of 1.0 to 0 V with respect to the Li + / Li potential, and at 1.0 V or higher, the capacity is hardly attained. On the other hand, in the case of an electric double layer capacitor, both the positive and negative electrodes are activated carbon, and when charged to 2.7 V, the discharge capacity per activated carbon mass of the positive and negative electrodes is about 30 mAh / g.
It is. On the other hand, the discharge capacity per Li 4 Ti 5 O 12 mass is about 150 mAh / g, which is almost five times that of activated carbon. In addition, Li 4 Ti 5 O 12 has a very flat potential change during charge and discharge and can maximize the capacity of the secondary power supply, so that a higher energy density can be obtained than an electric double layer capacitor.

【0008】上述したように正極の活性炭はLi+ /L
i電位に対して4.2Vまで分極が可能であるため、活
性炭正極と炭素材料単独の負極とを組み合せた場合、有
効な作動電圧範囲は4.2〜2.5Vである。炭素材料
とLi4 Ti5 12との混合系材料を負極として用い
て、活性炭の正極と組み合せた新たな二次電源は4.2
〜1.5Vまでの広い電圧範囲で作動可能であり、従来
の正負極ともに活性炭を用いた電気二重層キャパシタよ
り高電圧かつ高容量とすることができる。
As described above, the activated carbon of the positive electrode is Li + / L
Since polarization is possible up to 4.2 V with respect to the i potential, the effective operating voltage range is 4.2 to 2.5 V when an activated carbon positive electrode and a negative electrode made of a carbon material alone are combined. A new secondary power source using a mixed material of a carbon material and Li 4 Ti 5 O 12 as a negative electrode and combining with a positive electrode of activated carbon is 4.2.
It can operate in a wide voltage range of up to 1.5 V, and both the conventional positive and negative electrodes can have a higher voltage and higher capacity than an electric double layer capacitor using activated carbon.

【0009】リチウムイオン二次電池は、正極はリチウ
ム含有遷移金属酸化物を主体とする電極、負極はリチウ
ムイオンを吸蔵、脱離しうる炭素材料を主体とする電極
であり、充電によりリチウムイオンが正極のリチウム含
有遷移金属酸化物から脱離し、負極のリチウムイオンを
吸蔵、脱離しうる炭素材料へ吸蔵され、放電により負極
からリチウムイオンが脱離し、正極にリチウムイオンが
吸蔵される。したがって、本質的には電解液中のリチウ
ムイオンは電池の充放電に関与しない。
In a lithium ion secondary battery, the positive electrode is an electrode mainly composed of a transition metal oxide containing lithium, and the negative electrode is an electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions. Is released from the lithium-containing transition metal oxide, and is stored in a carbon material capable of storing and releasing lithium ions of the negative electrode. The lithium ions are released from the negative electrode by discharge, and the lithium ions are stored in the positive electrode. Therefore, lithium ions in the electrolyte do not essentially participate in charging and discharging of the battery.

【0010】一方、本発明の二次電源は、充電により電
解液中のアニオンが正極の活性炭に吸着し、電解液中の
リチウムイオンが負極のリチウムイオンを吸蔵、脱離し
うるチタン酸リチウムへ吸蔵される。そして放電により
負極からリチウムイオンが脱離し、正極ではアニオンが
脱着する。すなわち、本発明の二次電源では充放電に電
解液の溶質が本質的に関与しており、リチウムイオン電
池とは充放電の機構が異なっている。そしてリチウムイ
オン二次電池のように、正極活性物質自体にリチウムイ
オンが吸蔵、脱離することがなく、リチウムイオンの吸
蔵、脱離にともなう正極の劣化が起こらない。
On the other hand, in the secondary power supply of the present invention, the anions in the electrolyte are adsorbed on the activated carbon of the positive electrode by charging, and the lithium ions in the electrolyte are stored in lithium titanate, which can occlude and desorb the lithium ions of the negative electrode. Is done. Then, lithium ions are desorbed from the negative electrode by discharge, and anions are desorbed from the positive electrode. That is, in the secondary power supply of the present invention, the solute of the electrolytic solution is essentially involved in the charging and discharging, and the charging and discharging mechanism is different from that of the lithium ion battery. Unlike the lithium ion secondary battery, the positive electrode active material itself does not occlude and desorb lithium ions, and the deterioration of the positive electrode due to occlusion and desorption of lithium ions does not occur.

【0011】また、リチウムイオン二次電池の場合、充
放電を行う際、負極の炭素材料の層間へのリチウムイオ
ンの吸蔵、脱離に伴って、炭素結晶のLc方向の寸法変
化が起きる。この寸法変化により炭素表面の被膜が破壊
されることや、炭素粒子間の接合を緩めることなどの不
具合が発生し、セルの容量の低下や抵抗の上昇の原因に
なる。そこで、本発明の第1の態様は負極に、リチウム
の吸蔵脱離に伴う寸法変化がほとんどないスピネル型結
晶構造を有するチタン酸リチウムを用いることによっ
て、炭素負極に起因する劣化を防ぐことができる。本発
明の二次電源は充放電サイクルによる劣化が非常に少な
く、長期的信頼性に優れている。
In addition, in the case of a lithium ion secondary battery, when charging and discharging are performed, the dimensional change of the carbon crystal in the Lc direction occurs as lithium ions are absorbed and desorbed between layers of the carbon material of the negative electrode. This dimensional change causes problems such as destruction of the coating on the carbon surface and loosening of the bonding between the carbon particles, which causes a reduction in cell capacity and an increase in resistance. Therefore, the first aspect of the present invention can prevent deterioration caused by the carbon negative electrode by using, for the negative electrode, lithium titanate having a spinel-type crystal structure with almost no dimensional change due to insertion and extraction of lithium. . The secondary power supply of the present invention has very little deterioration due to charge / discharge cycles and has excellent long-term reliability.

【0012】安定したサイクル特性を得るためには、負
極の作動電位をLi+ /Li電位に対して1.5V付近
に維持する必要がある。なぜなら、負極が過充電された
場合、電位が1.5V以下に低下し、1.0Vより低い
電位になると、電解液の分解を引起し、容量の低下が起
こる。負極の過充電を防ぐためには正極の容量より負極
の容量を大きく設定する必要がある。具体的には負極と
正極の容量比(負極の容量/正極の容量)を1.05〜
1.3の範囲にすることが好ましい。上記容量比を1.
05より小さくすると、大電流充電時Li4 Ti5 12
負極内のLiイオンの拡散が電流に追いつかなくなると
負極近傍の電位が低下し、電解液の分解を引起す。ま
た、容量比を1.30より大きくすると、二次電源全体
のエネルギー密度が低下することになる。上述したよう
に、活性炭とLi4 Ti5 12では質量あたりの放電容
量がLi4 Ti5 12の方が約5倍大きいので上記容量
比となるように正極中の活性炭の量と負極中のLi4
5 12の量を調整すればよい。
In order to obtain stable cycle characteristics, it is necessary to maintain the operating potential of the negative electrode at around 1.5 V with respect to the Li + / Li potential. This is because, when the negative electrode is overcharged, the potential drops to 1.5 V or lower, and when the potential becomes lower than 1.0 V, the electrolyte is decomposed and the capacity is reduced. In order to prevent overcharging of the negative electrode, it is necessary to set the capacity of the negative electrode larger than the capacity of the positive electrode. Specifically, the capacity ratio of the negative electrode to the positive electrode (capacity of the negative electrode / capacity of the positive electrode) is 1.05 to
It is preferred to be in the range of 1.3. When the capacity ratio is 1.
05, the Li 4 Ti 5 O 12
If the diffusion of Li ions in the negative electrode cannot keep up with the current, the potential near the negative electrode drops, causing the decomposition of the electrolytic solution. If the capacitance ratio is larger than 1.30, the energy density of the entire secondary power supply will be reduced. As described above, activated carbon and Li 4 Ti 5 O 12 discharge capacity per mass in the better of Li 4 Ti 5 O 12 approximately five times greater because of the activated carbon in the amount and the negative electrode in the positive electrode so that the capacitance ratio Li 4 T
The amount of i 5 O 12 may be adjusted.

【0013】本発明の第2の態様において本発明者らは
鋭意研究により、炭素材料とLi4Ti5 12との混合
系を負極として用いると負極による劣化を最小限にする
ことができ、炭素材料やLi4 Ti5 12のいずれかを
単独で用いた負極の場合よりも充放電サイクル特性が向
上することを見出した。その機構についてはまだ明白で
はないが、炭素材料とLi4 Ti5 12のそれぞれの吸
蔵脱離反応が起こる電位は相手材料にとって不可逆反応
の起こりうる電位範囲にあるため、可逆な吸蔵脱離反応
が先行し、負極全体のクーロン効率を向上することによ
り充放電サイクル特性が改善されたと考えられる。
In the second aspect of the present invention, the present inventors have made intensive studies and have found that when a mixed system of a carbon material and Li 4 Ti 5 O 12 is used as a negative electrode, deterioration by the negative electrode can be minimized, It has been found that the charge / discharge cycle characteristics are improved as compared with the case of a negative electrode using either a carbon material or Li 4 Ti 5 O 12 alone. Although the mechanism is not yet clear, the potential at which the respective occlusion and desorption reactions of the carbon material and Li 4 Ti 5 O 12 occur are within a potential range where an irreversible reaction can occur with respect to the partner material. It is considered that the charge-discharge cycle characteristics were improved by improving the coulomb efficiency of the entire negative electrode.

【0014】本発明の第2の態様において混合系の負極
の活性物質中のLi4 Ti5 12の割合が20〜50質
量%であることが好ましい。Li4 Ti5 12の質量単
位の理論容量は約150mAh/ gであり、炭素材料の
質量単位理論容量( >300mAh/ g) の半分以下で
ある。50質量%より多いLi4 Ti5 12を混入する
と、全体の高容量化に悪影響する。20質量%より少な
いと、混合系によるサイクル特性を向上する効果があら
われにくい。混合系負極中の炭素材料は特に限定され
ず、X線広角回折法による(002)面の面間隔d00
2が0.335〜0.410nmの炭素材料が好ましく
使用できる。特に充放電に伴う寸法変化が小さく、プロ
ピレンカーボネート( 以下PCと略す) を主体とする電
解液でも安定であることからd002が0.345〜
0.390nmである炭素材料が好ましく、なかでもd
002が0.370〜0.380nmである難黒鉛化炭
素が好ましい。
In the second embodiment of the present invention, the ratio of Li 4 Ti 5 O 12 in the active material of the mixed negative electrode is preferably 20 to 50% by mass. The theoretical capacity of the mass unit of Li 4 Ti 5 O 12 is about 150 mAh / g, which is less than half of the theoretical mass unit of the carbon material (> 300 mAh / g). If more than 50% by mass of Li 4 Ti 5 O 12 is mixed, the overall capacity is adversely affected. If the amount is less than 20% by mass, the effect of improving the cycle characteristics by the mixed system is less likely to appear. The carbon material in the mixed negative electrode is not particularly limited, and the (002) plane spacing d00 by X-ray wide-angle diffraction method.
2 is preferably a carbon material having a thickness of 0.335 to 0.410 nm. In particular, since the dimensional change due to charge and discharge is small and the electrolyte mainly containing propylene carbonate (hereinafter, abbreviated as PC) is stable, d002 is 0.345 to 0.345.
A carbon material having a thickness of 0.390 nm is preferable.
002 is preferably 0.370 to 0.380 nm.

【0015】また、本発明における電解液の溶媒として
は、PC、エチレンカーボネート(以下ECと略す) 、
ブチレンカーボネート、ジメチルカーボネート、エチル
メチルカーボネート、ジエチルカーボネート、スルホラ
ン、ジメトキシエタン等が挙げられ、これらを単独で、
又は2種以上の混合溶媒として使用できる。なかでも、
正極の活性炭との相性や、耐電圧の安定性および低温特
性などの点では、主溶媒として、PCが好ましい。Li
4 Ti5 12負極または、難黒鉛化炭素とLi 4 Ti5
12との混合系負極を使用する場合は、PC溶媒中、難
黒鉛化炭素の負極上での典型的なPCの電気分解が起こ
らないため、PC主溶媒の電解液中でも安定な充放電サ
イクル特性が得られる。
In the present invention, the solvent of the electrolytic solution is
Is PC, ethylene carbonate (hereinafter abbreviated as EC),
Butylene carbonate, dimethyl carbonate, ethyl
Methyl carbonate, diethyl carbonate, sulfora
And dimethoxyethane, and the like.
Alternatively, it can be used as a mixed solvent of two or more kinds. Above all,
Compatibility with the activated carbon of the positive electrode, withstand voltage stability and low-temperature characteristics
In terms of properties and the like, PC is preferred as the main solvent. Li
FourTiFiveO12Negative electrode or non-graphitizable carbon and Li FourTiFive
O12When using a mixed anode with
Typical PC electrolysis on graphitized carbon anode
Is stable, even in the electrolyte of PC main solvent.
The cycle characteristics are obtained.

【0016】本発明における有機電解液に含まれるリチ
ウム塩は、LiPF6 、LiBF4、LiClO4 、L
iN(SO2 CF3 2 、CF3 SO3 Li、LiC
(SO 2 CF3 3 、LiAsF6 及びLiSbF6
らなる群から選ばれる1種以上が好ましい。電解液中の
リチウム塩の濃度は0.1〜2.5mol/L、さらに
は0.5〜2mol/Lが好ましい。
Lithium contained in the organic electrolytic solution of the present invention
Um salt is LiPF6, LiBFFour, LiClOFour, L
iN (SOTwoCFThree)Two, CFThreeSOThreeLi, LiC
(SO TwoCFThree)Three, LiAsF6And LiSbF6Or
One or more selected from the group consisting of is preferred. In the electrolyte
The concentration of the lithium salt is 0.1 to 2.5 mol / L,
Is preferably 0.5 to 2 mol / L.

【0017】本発明における正極に含まれる活性炭は、
比表面積が800〜3000m2 /gであることが好ま
しい。活性炭の原料、賦活条件は限定されないが、例え
ば原料としては、やしがら、フェノール樹脂、石油コー
クス等が挙げられ、賦活方法としては水蒸気賦活法、溶
融アルカリ賦活法等が挙げられる。特にやしがら又はフ
ェノール樹脂を原料として水蒸気賦活して得られる活性
炭が好ましい。正極の抵抗を低くするために、正極中に
導電材として導電性のカーボンブラック又は黒鉛を含ま
せておくのも好ましく、このとき導電材は正極中に0.
1〜20質量%含まれることが好ましい。
The activated carbon contained in the positive electrode of the present invention is:
The specific surface area is preferably from 800 to 3000 m 2 / g. The raw material and the activation conditions of the activated carbon are not limited. For example, the raw material includes coconut, phenolic resin, petroleum coke, and the like, and the activation method includes a steam activation method and a molten alkali activation method. Activated carbon obtained by activating steam from coconut or phenolic resin is particularly preferred. In order to reduce the resistance of the positive electrode, it is preferable to include conductive carbon black or graphite as a conductive material in the positive electrode.
It is preferably contained in an amount of 1 to 20% by mass.

【0018】正極体の作製方法としては、例えば活性炭
粉末と導電材との混合物にバインダとしてポリテトラフ
ルオロエチレンを混合し、混練した後シート状に成形し
て正極とし、これを集電体に導電性接着剤を用いて固定
する方法がある。また、バインダとしてポリフッ化ビニ
リデン、ポリアミドイミド、ポリイミド等を溶解したワ
ニスに活性炭粉末と導電材粉末とを分散させ、この液を
ドクターブレード法等によって集電体上に塗工し、乾燥
して得てもよい。正極中に含まれるバインダの量は、正
極体の強度と容量等の特性とのバランスから1〜20質
量%であることが好ましい。
As a method for manufacturing a positive electrode body, for example, a mixture of activated carbon powder and a conductive material is mixed with polytetrafluoroethylene as a binder, kneaded, and then formed into a sheet to form a positive electrode. There is a method of fixing using a conductive adhesive. In addition, the activated carbon powder and the conductive material powder are dispersed in a varnish in which polyvinylidene fluoride, polyamideimide, polyimide, etc. are dissolved as a binder, and this liquid is coated on a current collector by a doctor blade method or the like, and dried to obtain a powder. You may. The amount of the binder contained in the positive electrode is preferably 1 to 20% by mass in view of the balance between the strength of the positive electrode body and characteristics such as capacity.

【0019】本発明において、負極に用いるLi4 Ti
5 12は例えばLiOHとTiO2をモル比4:5とな
るように混合し、その混合物を700℃から900℃ま
での温度で酸素雰囲気中10時間焼成して得たものが使
用できる。Li4 Ti5 12の比表面積が1.0〜3.
0m2 /gのものが好ましい。1.0m2 /gより小さ
いものは、電極反応に寄与する有効面積が小さく、大電
流による充放電に対応できないことがある。一方、3.
0m2 /gより大きくなると、活性表面が大きくなり、
表面での有機電解液の分解によるクーロン効率の低下が
起こるおそれがある。本発明における負極体は、正極同
様Li4 Ti5 12にカーボンブラックや、気相成長炭
素繊維材料等の導電材と混合し、ポリテトラフルオロエ
チレンをバインダとして混練してシート状に成形して負
極を形成し、導電性接着剤を用いて集電体に接着させて
得ることができる。
In the present invention, Li 4 Ti used for the negative electrode is used.
5 O 12 may be obtained by mixing LiOH and TiO 2 at a molar ratio of 4: 5, and baking the mixture at a temperature of 700 ° C. to 900 ° C. in an oxygen atmosphere for 10 hours. The specific surface area of Li 4 Ti 5 O 12 is 1.0 to 3.
Those having 0 m 2 / g are preferred. If it is less than 1.0 m 2 / g, the effective area contributing to the electrode reaction is small, and it may not be possible to cope with charging and discharging with a large current. On the other hand, 3.
When it is larger than 0 m 2 / g, the active surface becomes large,
Coulomb efficiency may be reduced due to decomposition of the organic electrolyte on the surface. The negative electrode body of the present invention is formed by mixing Li 4 Ti 5 O 12 with a conductive material such as carbon black or a vapor-grown carbon fiber material as in the positive electrode, kneading polytetrafluoroethylene as a binder, and forming a sheet. It can be obtained by forming a negative electrode and bonding it to a current collector using a conductive adhesive.

【0020】本発明の第2の態様における負極体は、正
極同様炭素材料とLi4 Ti5 12と必要により用いら
れる導電材とをポリテトラフルオロエチレンをバインダ
として混練してシート状に成形して負極を形成し、導電
性接着剤を用いて集電体に接着させて得ることができ
る。また、ポリフッ化ビニリデン、ポリアミドイミド又
はポリイミドをバインダとし、バインダとなる樹脂又は
その前駆体を有機溶媒に溶解させた溶液に前記炭素材料
とLi4 Ti5 12と必要により用いられる導電材とを
分散させ、集電体に塗工し、乾燥させて得る方法もあ
る。これらの方法の中でも集電体に塗工する方法がより
好ましい。
The negative electrode body according to the second aspect of the present invention is obtained by kneading a carbon material, Li 4 Ti 5 O 12 and a conductive material used as required, using polytetrafluoroethylene as a binder, similarly to the positive electrode, and forming the mixture into a sheet. To form a negative electrode, and adhere to a current collector using a conductive adhesive. Further, polyvinylidene fluoride, polyamide imide or polyimide as a binder, the carbon material and Li 4 Ti 5 O 12 and a conductive material used as necessary in a solution in which a resin serving as a binder or a precursor thereof is dissolved in an organic solvent. There is also a method of dispersing, applying to a current collector, and drying. Among these methods, the method of coating the current collector is more preferable.

【0021】集電体に前記溶液を塗工して負極体を得る
方法において、バインダとなる樹脂又はその前駆体を溶
解させる溶媒は限定されないが、バインダを構成する樹
脂又はその前駆体を容易に溶解でき、入手も容易である
ことからN−メチル−2−ピロリドン(以下、NMPと
いう)が好ましい。ここで、ポリフッ化ビニリデンの前
駆体、ポリアミドイミドの前駆体又はポリイミドの前駆
体とは、加熱することにより重合してそれぞれポリフッ
化ビニリデン、ポリアミドイミド又はポリイミドとなる
ものをいう。本発明において、負極における炭素材料と
Li4 Ti5 12との混合系活物質とバインダとの質量
比は70:30〜96:4が好ましい。バインダが30
質量%より多いと、負極容量が小さくなる。バインダが
4質量%未満であると、バインダとしての効果が弱くな
り、負極と集電体との剥離が多くなる。
In the method of obtaining the negative electrode body by applying the solution to the current collector, the solvent for dissolving the resin serving as the binder or the precursor thereof is not limited, but the resin constituting the binder or the precursor thereof can be easily prepared. N-methyl-2-pyrrolidone (hereinafter, referred to as NMP) is preferable because it can be dissolved and is easily available. Here, the precursor of polyvinylidene fluoride, the precursor of polyamideimide, or the precursor of polyimide refers to those which are polymerized by heating to become polyvinylidene fluoride, polyamideimide, or polyimide, respectively. In the present invention, the mass ratio of the mixed active material of the carbon material and Li 4 Ti 5 O 12 in the negative electrode to the binder is preferably 70:30 to 96: 4. 30 binder
When it is more than mass%, the negative electrode capacity becomes small. When the amount of the binder is less than 4% by mass, the effect as the binder is weakened, and the separation between the negative electrode and the current collector is increased.

【0022】[0022]

【実施例】次に、例1〜例8により本発明をさらに具体
的に説明するが、本発明はこれらにより限定されない。
なお、例1〜例8の素子の作製及び測定は、すべて露点
が−60℃以下のアルゴングローブボックス中で行っ
た。 [例1]LiOHとTiO2 をモル比4:5となるよう
に混合し、その混合物を800℃で酸素雰囲気中10時
間焼成して、合成した比表面積が2.0m2 /gのLi
4 Ti5 12粉末80質量%、気相成長炭素繊維10質
量%、及びバインダとしてポリテトラフルオロエチレン
10質量%からなる混合物を、エタノールを加えて混練
し、圧延した後150℃で2時間真空乾燥して厚さ15
0μmの電極シートを得た。これをさらにロールプレス
機でプレスし、負極の面積を1cm×1cm、厚さを5
0μmとし、ポリアミドイミドをバインダとする導電性
接着剤を用いて銅箔に接合し、減圧下150℃で10時
間熱処理し、負極体とした。
Now, the present invention will be described in further detail with reference to Examples 1 to 8.
However, the present invention is not limited to these.
The production and measurement of the devices of Examples 1 to 8 were all performed at the dew point.
Performed in an argon glove box below -60 ° C
Was. [Example 1] LiOH and TiOTwoIn a molar ratio of 4: 5
At 800 ° C. in an oxygen atmosphere for 10 hours.
Baked for a specific surface area of 2.0 mTwo/ G Li
FourTiFiveO1280% by mass of powder, vapor grown carbon fiber 10
%, And polytetrafluoroethylene as a binder
A mixture consisting of 10% by mass is kneaded by adding ethanol.
Rolled and vacuum dried at 150 ° C. for 2 hours to a thickness of 15
A 0 μm electrode sheet was obtained. Roll press this further
Press, the area of the negative electrode is 1cm x 1cm, thickness is 5
Conductivity with polyamideimide as binder as 0μm
Bonded to copper foil using adhesive, 10 hours at 150 ° C under reduced pressure
During the heat treatment, a negative electrode body was obtained.

【0023】次に、フェノール樹脂を原料として水蒸気
賦活法によって得られた比表面積2000m2 /gの活
性炭80質量%、導電性カーボンブラック10質量%、
及びバインダとしてポリテトラフルオロエチレン10質
量%からなる混合物を、エタノールを加えて混練し、圧
延した後、200℃で2時間真空乾燥して厚さ200μ
mの電極シートを得た。この電極シートから1cm×1
cm×200μmの電極を得て、ポリアミドイミドをバ
インダとする導電性接着剤を用いてアルミニウム箔に接
合し、減圧下260℃で10時間熱処理し、正極体とし
た。上記正極体と上記負極体とを、ポリプロピレン製セ
パレータを介してそれぞれの電極面を対向させ、挟持板
で挟持して素子を作製した。PCとエチルメチルカーボ
ネートと (質量比1:1) の混合溶媒を用い、LiBF
4 を1mol/Lの濃度で溶解した溶液を電解液とし、
前記素子を充分に含浸させて、2.8Vから1.0Vま
での範囲で初期容量を測定した。その後、充放電電流1
0mA/cm 2 で、2.7Vから1.5Vまでの範囲で
充放電サイクルを行い、2000サイクル後の容量を測
定し、容量の変化率を算出した。結果を表1に示す。
Next, the phenol resin is used as a raw material for steam.
Specific surface area 2000m obtained by activation methodTwo/ G activity
80% by mass of charcoal, 10% by mass of conductive carbon black,
And polytetrafluoroethylene 10 as binder
% Of the mixture is kneaded with ethanol.
After spreading, vacuum drying at 200 ° C for 2 hours to a thickness of 200μ
m electrode sheets were obtained. 1cm x 1 from this electrode sheet
cm × 200 μm electrode, and
Use an electrically conductive adhesive to make contact with the aluminum foil
And heat-treated at 260 ° C. for 10 hours under reduced pressure to obtain a positive electrode body.
Was. The positive electrode body and the negative electrode body are
The respective electrode surfaces face each other through the
To produce a device. PC and ethyl methyl carb
LiBF and a mixed solvent of (mass ratio 1: 1)
FourIs dissolved at a concentration of 1 mol / L as an electrolyte,
Fully impregnate the device to allow 2.8V to 1.0V
The initial capacity was measured in the range of. Then, charge and discharge current 1
0mA / cm TwoIn the range from 2.7V to 1.5V
Perform a charge / discharge cycle and measure the capacity after 2000 cycles.
And the rate of change of capacity was calculated. Table 1 shows the results.

【0024】[例2]LiOHとTiO2 をモル比4:
5となるように混合し、その混合物を850℃で酸素雰
囲気中10時間焼成して、合成した比表面積が1.5m
2 /gのLi 4 Ti5 12粉末を得た以外、例1と同様
に負極体と正極体を作製し、例1と同様に評価した。結
果を表1に示す。 [例3]LiOHとTiO2 をモル比4:5となるよう
に混合し、その混合物を650℃で酸素雰囲気中10時
間焼成して、合成した比表面積が6.0m2 /gのLi
4 Ti5 12粉末を得た以外、例1と同様に負極体と正
極体を作製し、例1と同様に評価した。結果を表1に示
す。
[Example 2] LiOH and TiOTwoIn a molar ratio of 4:
And mixing the mixture at 850 ° C. in an oxygen atmosphere.
Fired in an atmosphere for 10 hours and the synthesized specific surface area is 1.5 m
Two/ G Li FourTiFiveO12Same as Example 1 except that powder was obtained
Then, a negative electrode body and a positive electrode body were prepared and evaluated in the same manner as in Example 1. Conclusion
The results are shown in Table 1. [Example 3] LiOH and TiOTwoIn a molar ratio of 4: 5
At 650 ° C. in an oxygen atmosphere for 10 hours.
During firing, the synthesized specific surface area is 6.0mTwo/ G Li
FourTiFiveO12Except for obtaining the powder, the anode body was
A polar body was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
You.

【0025】[例4]LiOHとTiO2 をモル比4:
5となるように混合し、その混合物を650℃で酸素雰
囲気中10時間焼成して、合成した比表面積が0.6m
2 /gのLi 4 Ti5 12粉末を得た以外、例1と同様
に負極体と正極体を作製し、例1と同様に評価した。結
果を表1に示す。 [例5 (比較例)]正負極ともに活性炭を用い、例1の
正極の組成および作製法と同様に同じ負極体及び正極体
を作製し例1と同様に評価した。結果を表1に示す。
Example 4 LiOH and TiOTwoIn a molar ratio of 4:
And the mixture was heated at 650 ° C. in an oxygen atmosphere.
Fired in an atmosphere for 10 hours and the synthesized specific surface area is 0.6m
Two/ G Li FourTiFiveO12Same as Example 1 except that powder was obtained
Then, a negative electrode body and a positive electrode body were prepared and evaluated in the same manner as in Example 1. Conclusion
The results are shown in Table 1. [Example 5 (Comparative Example)]
The same negative electrode body and positive electrode body as in the composition and manufacturing method of the positive electrode
Was prepared and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0026】[例6]LiOHとTiO2 をモル比4:
5となるように混合し、その混合物を800℃で酸素雰
囲気中10時間焼成して、合成した比表面積が2.0m
2 /gのLi 4 Ti5 12粉末30質量部と面間隔d0
02が0.380nmの難黒鉛化炭素材料40質量部と
導電材として気相成長炭素繊維1 0質量部を混合した混
合物をポリフッ化ビニリデン20質量部をNMPに溶解
した溶液に分散させて、銅からなる集電体に塗布して乾
燥し、集電体上に負極を形成した。これをさらにロール
プレス機でプレスし、負極の面積を1cm×1cm、厚
さを30μmとし、減圧下で150℃で10時間熱処理
し、負極体とした。次に、フェノール樹脂を原料として
水蒸気賦活法によって得られた比表面積2000m2
gの活性炭80質量%、導電性カーボンブラック10質
量%、及びバインダとしてポリテトラフルオロエチレン
10質量%からなる混合物を、エタノールを加えて混合
し、圧延した後、200℃で2時間真空乾燥して厚さ2
00μmの電極シートを得た。この電極シートから1c
m×1cm×200μmの電極を得て、ポリアミドイミ
ドをバインダとする導電性接着剤を用いてアルミニウム
箔に接合し、減圧下260℃で10時間熱処理し、正極
体とした。
Example 6 LiOH and TiOTwoIn a molar ratio of 4:
5 and the mixture was heated at 800 ° C. in an oxygen atmosphere.
Fired in an atmosphere for 10 hours and synthesized specific surface area is 2.0m
Two/ G Li FourTiFiveO1230 parts by mass of powder and spacing d0
02 is 40 mass parts of the non-graphitizable carbon material having 0.380 nm.
Mixing of 10 parts by mass of vapor grown carbon fiber as conductive material
Dissolve 20 parts by mass of polyvinylidene fluoride in NMP
Disperse in the solution, apply to a current collector made of copper, and dry.
After drying, a negative electrode was formed on the current collector. Roll this further
Press with a press machine, the area of the negative electrode is 1cm x 1cm, thickness
Heat treatment at 150 ° C under reduced pressure for 10 hours
Thus, a negative electrode body was obtained. Next, using phenolic resin as a raw material
Specific surface area 2000m obtained by steam activation methodTwo/
g activated carbon 80% by mass, conductive carbon black 10
%, And polytetrafluoroethylene as a binder
A mixture consisting of 10% by mass is mixed with ethanol
After rolling, vacuum drying at 200 ° C. for 2 hours
A 00 μm electrode sheet was obtained. 1c from this electrode sheet
After obtaining an electrode of mx 1 cm x 200 μm,
Aluminum using conductive adhesive with binder as binder
Bonded to foil, heat-treated under reduced pressure at 260 ° C for 10 hours,
Body.

【0027】上記正極体と上記負極体とを、ポリプロピ
レン製セパレータを介してそれぞれの電極面を対向さ
せ、挟持板で挟持して素子を作製した。PCとエチルメ
チルカーボネートと (質量比1:1) の混合溶媒を用
い、LiBF4 を1mol/Lの濃度で溶解した溶液を
電解液とし、前記素子を充分に含浸させて、4.2Vか
ら1.0Vまでの範囲で初期容量を測定した。その後、
充放電電流10mA/cm 2 で、4.0Vから1.5V
までの範囲で充放電サイクルを行い、2000サイクル
後の容量を測定し、容量の変化率を算出した。結果を表
1に示す。
The positive electrode body and the negative electrode body are
The respective electrode surfaces face each other with a ren separator
Then, the device was sandwiched by a sandwiching plate to produce an element. PC and ethylme
Use a mixed solvent of tilcarbonate and (mass ratio 1: 1)
Yes, LiBFFourIs dissolved at a concentration of 1 mol / L
As an electrolytic solution, fully impregnate the device with 4.2V
The initial capacity was measured in the range from 1.0 V to 1.0 V. afterwards,
Charge / discharge current 10mA / cm TwoFrom 4.0V to 1.5V
Charge / discharge cycles up to 2000 cycles
The subsequent capacity was measured and the rate of change of capacity was calculated. Table of results
It is shown in FIG.

【0028】[例7 (比較例)]面間隔0.337nm
の黒鉛(炭素材料)70質量部と導電材としての気相成
長炭素繊維1 0質量部を混合した混合物をポリフッ化ビ
ニリデン20質量部をNMPに溶解した溶液に分散させ
て、銅からなる集電体に塗布して乾燥し、集電体上に負
極を形成した以外、初期容量の測定は4.2Vから2.
75Vまでの電圧範囲、充放電電流10mA/cm2
4.0Vから2.75Vまでの範囲で充放電サイクルを
行った以外、例6と同様に素子を作製し評価した。結果
を表1に示す。
[Example 7 (Comparative Example)] Spacing 0.337 nm
A mixture of 70 parts by mass of graphite (carbon material) and 10 parts by mass of vapor-grown carbon fiber as a conductive material is dispersed in a solution in which 20 parts by mass of polyvinylidene fluoride is dissolved in NMP. The initial capacity was measured from 4.2 V to 2.2 V except that the negative electrode was formed on the current collector after being coated on the body and dried.
A device was prepared and evaluated in the same manner as in Example 6, except that the charge / discharge cycle was performed in a voltage range of up to 75 V and a charge / discharge current of 10 mA / cm 2 in a range from 4.0 V to 2.75 V. Table 1 shows the results.

【0029】[例8]比表面積が2.0m2/gのLi4
Ti5 12粉末40質量部と面間隔0.380nmの難
黒鉛化炭素材料30質量部と導電材として気相成長炭素
繊維1 0質量部を混合した混合物をポリフッ化ビニリデ
ン20質量部をNMPに溶解した溶液に分散させて、銅
からなる集電体に塗布して乾燥し、集電体上に負極を形
成した以外、例6と同様に素子を作製し評価した。結果
を表1に示す。
Example 8 Li 4 having a specific surface area of 2.0 m 2 / g
A mixture obtained by mixing 40 parts by mass of Ti 5 O 12 powder, 30 parts by mass of a non-graphitizable carbon material having a plane spacing of 0.380 nm, and 10 parts by mass of vapor-grown carbon fiber as a conductive material was converted into 20 parts by mass of polyvinylidene fluoride to NMP. A device was prepared and evaluated in the same manner as in Example 6, except that the element was dispersed in a dissolved solution, applied to a current collector made of copper, dried, and a negative electrode was formed on the current collector. Table 1 shows the results.

【0030】 [0030]

【0031】[0031]

【発明の効果】本発明の第1の態様によれば、容量が大
きく、かつ急速充放電サイクル信頼性の高い2.7V級
二次電源を提供できる。本発明の第2の態様によれば、
作動電圧範囲が広く、容量が大きく、耐電圧が高く、か
つ急速充放電サイクル信頼性の高い二次電源を提供でき
る。
According to the first aspect of the present invention, it is possible to provide a 2.7V class secondary power supply having a large capacity and a high reliability of a rapid charge / discharge cycle. According to a second aspect of the present invention,
A secondary power supply having a wide operating voltage range, a large capacity, a high withstand voltage, and high reliability in rapid charge / discharge cycles can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 對馬 学 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AK08 AL03 AL06 AL07 AL18 AM02 AM03 AM04 AM05 AM07 DJ17 HJ01 HJ02 HJ07 HJ13 HJ19 5H050 AA07 AA08 BA17 CA16 CB03 CB07 CB08 CB29 FA19 HA02 HA07 HA13 HA19  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Manabu Tsushima 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture F-term within Asahi Glass Co., Ltd. 5H029 AJ03 AJ05 AK08 AL03 AL06 AL07 AL18 AM02 AM03 AM04 AM05 AM07 DJ17 HJ01 HJ02 HJ07 HJ13 HJ19 5H050 AA07 AA08 BA17 CA16 CB03 CB07 CB08 CB29 FA19 HA02 HA07 HA13 HA19

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】活性炭を含む正極と、チタン酸リチウム
(Li4 Ti5 12)を含む負極と、リチウム塩を含む
有機電解液と、を有することを特徴とする二次電源。
1. A secondary power supply comprising: a positive electrode containing activated carbon; a negative electrode containing lithium titanate (Li 4 Ti 5 O 12 ); and an organic electrolyte containing a lithium salt.
【請求項2】活性炭を含む正極と、チタン酸リチウム
(Li4 Ti5 12)とリチウムイオンを吸蔵・脱離し
うる炭素材料とを含む負極と、リチウム塩を含む有機電
解液と、を有することを特徴とする二次電源。
2. A positive electrode containing activated carbon, a negative electrode containing lithium titanate (Li 4 Ti 5 O 12 ) and a carbon material capable of occluding and releasing lithium ions, and an organic electrolyte containing a lithium salt. A secondary power supply, characterized in that:
【請求項3】前記負極の炭素材料はX線広角回折法によ
る(002)面の面間隔d002が0.335nm以上
0.410nm以下である請求項2に記載の二次電源。
3. The secondary power supply according to claim 2, wherein the carbon material of the negative electrode has a (002) plane spacing d002 of 0.335 nm or more and 0.410 nm or less as measured by X-ray wide-angle diffraction.
【請求項4】前記負極中のチタン酸リチウム(Li4
5 12)の割合が20〜50質量%、前記炭素材料の
割合が80〜50質量%である請求項2または3に記載
の二次電源。
4. A lithium titanate (Li 4 T) in the negative electrode.
4. The secondary power supply according to claim 2, wherein the ratio of i 5 O 12 ) is 20 to 50% by mass, and the ratio of the carbon material is 80 to 50% by mass.
【請求項5】前記負極と前記正極との電気容量比は1.
05〜1.3である請求項1〜4のいずれかに記載の二
次電源。
5. An electric capacity ratio of said negative electrode to said positive electrode is 1.
The secondary power supply according to any one of claims 1 to 4, wherein the secondary power supply is in a range of 0.5 to 1.3.
【請求項6】前記負極のチタン酸リチウム(Li4 Ti
5 12)の比表面積は1.0〜3.0m2 /gである請
求項1〜5のいずれかに記載の二次電源。
6. The negative electrode of lithium titanate (Li 4 Ti
The secondary power source according to any one of claims 1 to 5 specific surface area of 1.0~3.0m 2 / g of 5 O 12).
JP2001066658A 2001-03-09 2001-03-09 Secondary power source Withdrawn JP2002270175A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001066658A JP2002270175A (en) 2001-03-09 2001-03-09 Secondary power source
DE60213696T DE60213696T2 (en) 2001-03-09 2002-03-07 Secondary energy source
EP02005229A EP1239495B1 (en) 2001-03-09 2002-03-07 Secondary power source
US10/092,988 US6824923B2 (en) 2001-03-09 2002-03-08 Secondary power source having a lithium titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066658A JP2002270175A (en) 2001-03-09 2001-03-09 Secondary power source

Publications (1)

Publication Number Publication Date
JP2002270175A true JP2002270175A (en) 2002-09-20

Family

ID=18925120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066658A Withdrawn JP2002270175A (en) 2001-03-09 2001-03-09 Secondary power source

Country Status (1)

Country Link
JP (1) JP2002270175A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077544A (en) * 2001-09-06 2003-03-14 Yuasa Corp Secondary battery
JP2005317509A (en) * 2004-03-30 2005-11-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008117942A (en) * 2006-11-06 2008-05-22 Gs Yuasa Corporation:Kk Electrochemical capacitor
JP2009094271A (en) * 2007-10-09 2009-04-30 Nec Tokin Corp Electric double layer capacitor
JP2010507917A (en) * 2006-10-25 2010-03-11 ナノテクテューレ リミテッド Mesoporous electrodes for electrochemical cells
JP2010102986A (en) * 2008-10-24 2010-05-06 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2010206127A (en) * 2009-03-06 2010-09-16 Toyota Central R&D Labs Inc Capacitor
US7974073B2 (en) 2006-11-13 2011-07-05 Mitsubishi Electric Corporation Electric double-layer capacitor with a negative electrode containing a carbon material and a titanium oxide
JP2011138646A (en) * 2009-12-28 2011-07-14 Hitachi Ltd Lithium-ion battery
WO2011136258A1 (en) 2010-04-28 2011-11-03 石原産業株式会社 Novel lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP2011246342A (en) * 2010-04-28 2011-12-08 Ishihara Sangyo Kaisha Ltd Lithium titanate, method for producing the same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP2012214362A (en) * 2011-03-31 2012-11-08 Toda Kogyo Corp Lithium titanate particulate powder and production method for the same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2013033685A (en) * 2011-08-03 2013-02-14 Showa Denko Kk Negative electrode for secondary battery, and secondary battery
JP2015038945A (en) * 2013-08-19 2015-02-26 日本ケミコン株式会社 Electrochemical capacitor
WO2015025764A1 (en) 2013-08-19 2015-02-26 日本ケミコン株式会社 Electrochemical capacitor
US9293235B2 (en) 2010-08-31 2016-03-22 Toda Kogyo Corporation Lithium titanate particles and process for producing the lithium titanate particles, Mg-containing lithium titanate particles and process for producing the Mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP2016518023A (en) * 2013-03-28 2016-06-20 コーニング インコーポレイテッド Composite electrode for lithium ion capacitor
JP2016536737A (en) * 2014-10-16 2016-11-24 エルジー・ケム・リミテッド Negative electrode for secondary battery containing additive for improving low temperature characteristics and secondary battery containing the same
WO2017221831A1 (en) 2016-06-22 2017-12-28 日本ケミコン株式会社 Hybrid capacitor and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955342A (en) * 1994-12-27 1997-02-25 Asahi Glass Co Ltd Electric double layer capacitor
JPH10312826A (en) * 1997-03-10 1998-11-24 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and charging method therefor
WO2000063929A1 (en) * 1999-04-21 2000-10-26 Telcordia Technologies, Inc. Rechargeable hybrid battery/surpercapacitor system
JP2000348725A (en) * 1999-06-08 2000-12-15 Toyota Motor Corp Lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955342A (en) * 1994-12-27 1997-02-25 Asahi Glass Co Ltd Electric double layer capacitor
JPH10312826A (en) * 1997-03-10 1998-11-24 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and charging method therefor
WO2000063929A1 (en) * 1999-04-21 2000-10-26 Telcordia Technologies, Inc. Rechargeable hybrid battery/surpercapacitor system
JP2000348725A (en) * 1999-06-08 2000-12-15 Toyota Motor Corp Lithium ion secondary battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496688B2 (en) * 2001-09-06 2010-07-07 株式会社ジーエス・ユアサコーポレーション Secondary battery
JP2003077544A (en) * 2001-09-06 2003-03-14 Yuasa Corp Secondary battery
JP2005317509A (en) * 2004-03-30 2005-11-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4667071B2 (en) * 2004-03-30 2011-04-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2010507917A (en) * 2006-10-25 2010-03-11 ナノテクテューレ リミテッド Mesoporous electrodes for electrochemical cells
JP2008117942A (en) * 2006-11-06 2008-05-22 Gs Yuasa Corporation:Kk Electrochemical capacitor
US7974073B2 (en) 2006-11-13 2011-07-05 Mitsubishi Electric Corporation Electric double-layer capacitor with a negative electrode containing a carbon material and a titanium oxide
JP2009094271A (en) * 2007-10-09 2009-04-30 Nec Tokin Corp Electric double layer capacitor
JP2010102986A (en) * 2008-10-24 2010-05-06 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2010206127A (en) * 2009-03-06 2010-09-16 Toyota Central R&D Labs Inc Capacitor
JP2011138646A (en) * 2009-12-28 2011-07-14 Hitachi Ltd Lithium-ion battery
WO2011136258A1 (en) 2010-04-28 2011-11-03 石原産業株式会社 Novel lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP2011246342A (en) * 2010-04-28 2011-12-08 Ishihara Sangyo Kaisha Ltd Lithium titanate, method for producing the same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP5701863B2 (en) * 2010-04-28 2015-04-15 石原産業株式会社 Novel lithium titanate and method for producing the same, electrode active material containing the lithium titanate, and power storage device using the electrode active material
US9150424B2 (en) 2010-04-28 2015-10-06 Ishihara Sangyo Kaisha, Ltd. Lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
US9847526B2 (en) 2010-08-31 2017-12-19 Toda Kogyo Corporation Lithium titanate particles and process for producing the lithium titanate particles, Mg-containing lithium titanate particles and process for producing the Mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
US9293235B2 (en) 2010-08-31 2016-03-22 Toda Kogyo Corporation Lithium titanate particles and process for producing the lithium titanate particles, Mg-containing lithium titanate particles and process for producing the Mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP2012214362A (en) * 2011-03-31 2012-11-08 Toda Kogyo Corp Lithium titanate particulate powder and production method for the same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2013033685A (en) * 2011-08-03 2013-02-14 Showa Denko Kk Negative electrode for secondary battery, and secondary battery
JP2016518023A (en) * 2013-03-28 2016-06-20 コーニング インコーポレイテッド Composite electrode for lithium ion capacitor
WO2015025764A1 (en) 2013-08-19 2015-02-26 日本ケミコン株式会社 Electrochemical capacitor
WO2015025763A1 (en) * 2013-08-19 2015-02-26 Nippon Chemi-Con Corporation Electrochemical capacitor
KR20160045064A (en) 2013-08-19 2016-04-26 닛뽄 케미콘 가부시끼가이샤 Electrochemical capacitor
JP2015038945A (en) * 2013-08-19 2015-02-26 日本ケミコン株式会社 Electrochemical capacitor
US9905372B2 (en) 2013-08-19 2018-02-27 Nippon Chemi-Con Corporation Electrochemical capacitor
JP2016536737A (en) * 2014-10-16 2016-11-24 エルジー・ケム・リミテッド Negative electrode for secondary battery containing additive for improving low temperature characteristics and secondary battery containing the same
US9859551B2 (en) 2014-10-16 2018-01-02 Lg Chem, Ltd. Anode for secondary battery comprising additive for improving low-temperature characteristics, and secondary battery having the same
WO2017221831A1 (en) 2016-06-22 2017-12-28 日本ケミコン株式会社 Hybrid capacitor and manufacturing method thereof
KR20190019050A (en) 2016-06-22 2019-02-26 니폰 케미콘 가부시키가이샤 Hybrid capacitor and method of manufacturing the same
US10984961B2 (en) 2016-06-22 2021-04-20 Nippon Chemi-Con Corporation Hybrid capacitor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6824923B2 (en) Secondary power source having a lithium titanate
US7468224B2 (en) Battery having improved positive electrode and method of manufacturing the same
JP6161328B2 (en) Electrode active material, electrode and power storage device
JP2002270175A (en) Secondary power source
JP4096438B2 (en) Secondary power supply
KR20050028863A (en) Method for producing an electrochemical device
JP2001093577A (en) Lithium secondary battery
JP2012174546A (en) Nonaqueous electrolyte secondary battery
WO2017213149A1 (en) Lithium-ion secondary battery and assembled battery
JP2003031220A (en) Secondary power source
JP2002298849A (en) Secondary electric power source
JPH1154383A (en) Electric double layer capacitor
JPH1131637A (en) Electric double-layer capacitor, carbon material for it and electrode
JPH1097956A (en) Electric double-layer capacitor
JP2000306609A (en) Secondary power supply
JP2002008657A (en) Negative electrode material for secondary power source, manufacturing method of secondary power source and negative electrode material
EP1239527B1 (en) Secondary power source
JP4099970B2 (en) Secondary power supply
JP2000036325A (en) Secondary power supply
JP4284934B2 (en) Secondary power supply
JP2002324583A (en) Flat nonaqueous electrolyte secondary battery
JP4039071B2 (en) Secondary power supply
JPH11185751A (en) Secondary power source
JP4030143B2 (en) Non-aqueous electrolyte secondary battery
JP2001266872A (en) Secondary power source and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110209