JP2002256170A - Hydrophobic silica powder and its manufacturing method - Google Patents

Hydrophobic silica powder and its manufacturing method

Info

Publication number
JP2002256170A
JP2002256170A JP2001060487A JP2001060487A JP2002256170A JP 2002256170 A JP2002256170 A JP 2002256170A JP 2001060487 A JP2001060487 A JP 2001060487A JP 2001060487 A JP2001060487 A JP 2001060487A JP 2002256170 A JP2002256170 A JP 2002256170A
Authority
JP
Japan
Prior art keywords
silica powder
polysiloxane
hydrophobic silica
amount
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001060487A
Other languages
Japanese (ja)
Other versions
JP4828032B2 (en
Inventor
Tadahiro Fukuju
忠弘 福寿
Toshishige Kajiyama
俊重 梶山
Ryohei Kataoka
良平 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2001060487A priority Critical patent/JP4828032B2/en
Publication of JP2002256170A publication Critical patent/JP2002256170A/en
Application granted granted Critical
Publication of JP4828032B2 publication Critical patent/JP4828032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrophobic silica powder which can stably maintain excellent hydrophobicity and fluidity and is useful as the fluidizing agent for various organic and inorganic powders, and the thickening agent and the reinforcing filler for resins and the like. SOLUTION: The hydrophobic silica powder is a silica powder having been surface treated with a polysiloxane and a trimethylsilylating agent, and 0.3-1.5 trimethylsilyl groups per 1 nm<2> surface area of the original silica powder of the silica powder are allowed to be present and, at the same time, the polysiloxane is attached at a ratio of A/20 pts.wt. to A/5 pts.wt. [provided that A is a specific surface area (m<2> /g) of the original silica powder] based on 100 pts.wt. original silica powder of the silica powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な疎水性シリ
カ粉末に関する。詳しくは、優れた疎水性、流動性を安
定して保持することが可能であり、各種有機、無機粉体
の流動化剤や、樹脂等の増粘剤、補強充填剤として有用
な疎水性シリカ粉末及びその製造方法に関する。
[0001] The present invention relates to a novel hydrophobic silica powder. Specifically, hydrophobic silica that can stably maintain excellent hydrophobicity and fluidity, is useful as a fluidizing agent for various organic and inorganic powders, a thickener for resins, and a reinforcing filler The present invention relates to a powder and a method for producing the powder.

【0002】[0002]

【従来の技術】シリカ粉末は、樹脂等の増粘剤、補強充
填剤や各種無機、有機粉体用の流動化剤として用いられ
ているが、これらの用途には、しばしば表面が疎水化処
理された疎水性シリカ粉末が好適に使用される。
2. Description of the Related Art Silica powder is used as a thickener for resins, reinforcing fillers and fluidizing agents for various inorganic and organic powders. Hydrophobic silica powder is preferably used.

【0003】即ち、樹脂等の増粘剤、補強充填剤として
疎水性シリカ粉末を用いる場合には、樹脂等のマトリク
スとの濡れ性が変化することにより、増粘性の向上や充
填量の増加といった効果が発現する。これらの用途にお
いては、樹脂等のマトリクスとの接触によってもこれら
の効果が低下しない、高度な安定性が要求される。
That is, when hydrophobic silica powder is used as a thickening agent such as a resin and a reinforcing filler, the wettability with a matrix such as a resin is changed, thereby increasing the viscosity and increasing the filling amount. The effect appears. In these applications, a high degree of stability is required in which these effects are not reduced even by contact with a matrix such as a resin.

【0004】また粉体の流動化剤として疎水性シリカ粉
末を用いる場合には、親水性のシリカ粉末を用いた場合
と比較すると、シリカ表面のシラノール基(−SiO
H)による水素結合性の付着力が低減されるため、流動
性が改善される。特に、複写機、レーザープリンターに
代表される電子写真技術においてトナー樹脂の流動化剤
として用いられる場合には、吸湿により帯電性が変化す
るため、流動性と共に高度な疎水性が要求される。
When hydrophobic silica powder is used as a fluidizing agent for the powder, silanol groups (-SiO 2) on the silica surface are compared with the case where hydrophilic silica powder is used.
Since the adhesive force of hydrogen bonding by H) is reduced, the fluidity is improved. In particular, when used as a fluidizing agent for a toner resin in electrophotographic technology represented by a copying machine and a laser printer, the chargeability changes due to moisture absorption, so that high hydrophobicity is required together with fluidity.

【0005】従来、疎水性シリカ粉末を製造する方法と
して、原体シリカ粉末を反応処理剤、例えばジメチルジ
クロロシラン、あるいはヘキサメチルジシラザンといっ
たシリル化剤の気体を原体シリカ粉末に接触させ処理す
ることが行われている。
Conventionally, as a method for producing a hydrophobic silica powder, a raw silica powder is treated by contacting a gas of a reaction treating agent, for example, a silylating agent such as dimethyldichlorosilane or hexamethyldisilazane, with the raw silica powder. That is being done.

【0006】上記処理法により得られた疎水性シリカ粉
末は、処理が均一になされており、流動性が高いシリカ
粉末が得られる。しかしながら、処理剤由来の表面修飾
基はある立体的な大きさをもつため、反応点であるシリ
カ表面のシラノール基のすべてを処理することはでき
ず、未反応のシラノール基が必ず残存する。残存シラノ
ール基をさらに少なくし、疎水性を向上することが望ま
れている。
[0006] The hydrophobic silica powder obtained by the above-mentioned treatment method is uniformly treated, and a silica powder having high fluidity can be obtained. However, since the surface modifying group derived from the treating agent has a certain three-dimensional size, it is not possible to treat all of the silanol groups on the silica surface, which is the reaction point, and unreacted silanol groups always remain. It is desired to further reduce the remaining silanol groups and improve the hydrophobicity.

【0007】粉体の疎水性を向上させるという意味で
は、ポリシロキサンのような適度に大きな分子量を持つ
化合物を微細な液滴の形で噴霧してシリカ粉末にコーテ
ィングするのが有効である。しかしこの方法では、疎水
度は上がるものの均一な処理を行うことが難しく、ま
た、過剰のポリシロキサンによる流動性の悪化が問題と
なっている。
In order to improve the hydrophobicity of the powder, it is effective to spray a compound having an appropriately large molecular weight, such as polysiloxane, in the form of fine droplets to coat the silica powder. However, in this method, although the hydrophobicity increases, it is difficult to perform a uniform treatment, and there is a problem in that the fluidity is deteriorated due to excessive polysiloxane.

【0008】以上のことから均一性、流動性、疎水性を
兼備する疎水性シリカ粉末を製造するために、ヘキサメ
チルジシラザンのような処理剤ガスで処理した後にポリ
シロキサンによるコーティングを行う方法が提案されて
いる(特公平7−113783)。しかし、この方法で
得られた疎水性シリカ粉末の表面に付着したポリシロキ
サンは脱離し易く、安定性の面で未だ改良の余地があ
る。
In view of the above, in order to produce a hydrophobic silica powder having both uniformity, fluidity and hydrophobicity, a method of coating with a polysiloxane after treating with a treating agent gas such as hexamethyldisilazane has been proposed. It has been proposed (Japanese Patent Publication No. 7-113783). However, the polysiloxane adhering to the surface of the hydrophobic silica powder obtained by this method is easily detached, and there is still room for improvement in stability.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明の目的
は、優れた疎水性と流動性を有し、且つこれらの特性が
高度に安定化された、疎水性シリカ粉末を提供すること
にある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a hydrophobic silica powder having excellent hydrophobicity and fluidity and having these properties highly stabilized. .

【0010】本発明の他の目的は、上記疎水性シリカ粉
末を簡便な方法により製造することができる、好適な製
造方法を提供することにある。
[0010] Another object of the present invention is to provide a suitable method for producing the above-mentioned hydrophobic silica powder by a simple method.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を重ねた。その結果、前記ヘキサ
メチルジシラザンの如きトリメチルシリル化剤で処理し
た後にポリシロキサンで処理したシリカ粉末は、トリメ
チルシリル基によりシリカ表面が覆われてしまった後に
ポリシロキサンで処理するため、ポリシロキサンとシリ
カ表面との結合力が弱く、例えばクロロホルム溶媒によ
る抽出試験により、殆どのポリシロキサンが抽出されて
しまうという知見を得た。
Means for Solving the Problems The present inventors have intensively studied to solve the above problems. As a result, the silica powder treated with a polysiloxane after being treated with a trimethylsilylating agent such as the above hexamethyldisilazane is treated with the polysiloxane after the silica surface has been covered by the trimethylsilyl group. Has been found that most polysiloxanes are extracted by an extraction test using, for example, a chloroform solvent.

【0012】上記知見に基づき、更に研究を重ねた結
果、トリメチルシリル化剤とポリシロキサンとの2重処
理を特定の方法によって実施することによって、シリカ
粉末表面に存在するトリメチルシリル基の量が特定の範
囲にコントロールされた新規な疎水性シリカ粉末を得る
ことに成功し、かかる疎水性シリカ粉末は、優れた疎水
性と流動性を有すると共に、クロロホルム溶媒による抽
出試験におけるポリシロキサンの抽出量が極めて少な
い、化学的に極めて安定化した特性を有することを見い
出し、本発明を完成するに至った。
As a result of further studies based on the above findings, it was found that the amount of trimethylsilyl groups present on the surface of the silica powder was within a specific range by performing the double treatment of the trimethylsilylating agent and the polysiloxane by a specific method. Succeeded in obtaining a novel hydrophobic silica powder controlled to, such hydrophobic silica powder has excellent hydrophobicity and fluidity, the extraction amount of polysiloxane in an extraction test with a chloroform solvent is extremely small, The inventors have found that they have extremely stable properties chemically, and have completed the present invention.

【0013】即ち、本発明は、ポリシロキサン及びトリ
メチルシリル化剤により表面処理されたシリカ粉末であ
り、トリメチルシリル基が原体シリカ粉末の表面積1n
2あたり0.3〜1.5個の割合で存在し、且つ、ポ
リシロキサンが原体シリカ粉末100重量部に対して、
A/20〜A/5重量部(但し、Aは原体シリカ粉末の
比表面積(m2/g)である。)の割合で付着している
ことを特徴とする疎水性シリカ粉末である。
That is, the present invention is a silica powder surface-treated with a polysiloxane and a trimethylsilylating agent, wherein the trimethylsilyl group has a surface area of 1 n of the original silica powder.
0.3 to 1.5 parts per m 2 , and the polysiloxane is based on 100 parts by weight of the raw silica powder.
A hydrophobic silica powder characterized by being adhered at a ratio of A / 20 to A / 5 parts by weight (where A is the specific surface area (m 2 / g) of the original silica powder).

【0014】[0014]

【発明の実施の形態】本発明において、処理する前のシ
リカ粉末である原体シリカ粉末は、公知の方法によって
得られたシリカ粉末が特に制限なく使用されるが、乾式
シリカ、湿式シリカ、ゾル−ゲル法シリカなどが代表的
である。また、これらのシリカは一部又は全部が溶融さ
れたシリカ粉末であっても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, silica powder obtained by a known method is used without any particular limitation as a raw silica powder which is a silica powder before a treatment, and dry silica, wet silica, sol -Gel silica is typical. In addition, these silicas may be partially or entirely fused silica powder.

【0015】上記乾式シリカは、一般に、四塩化珪素等
の珪素化合物を酸水素炎中で燃焼させて得られる。一般
的には、フュームドシリカとも称されている。乾式シリ
カは製造条件を変えることにより、比表面積がおよそ5
0〜500m2/gの範囲のシリカが得られる。比表面
積より計算されるシリカの一次粒子径は、およそ5〜2
00nmの範囲であるが、通常は1μm以上の凝集体と
して存在している。
The above-mentioned fumed silica is generally obtained by burning a silicon compound such as silicon tetrachloride in an oxyhydrogen flame. Generally, it is also called fumed silica. Dry silica has a specific surface area of about 5 by changing the manufacturing conditions.
Silica ranging 0~500m 2 / g is obtained. The primary particle diameter of silica calculated from the specific surface area is about 5 to 2
It is in the range of 00 nm, but usually exists as an aggregate of 1 μm or more.

【0016】また、湿式シリカとしては、珪酸ソーダを
鉱酸で中和することによって溶液中でシリカを析出させ
る沈澱法シリカが代表的である。一般的には、ホワイト
カーボンとも称されている。
A typical example of wet silica is precipitated silica in which sodium silicate is neutralized with a mineral acid to precipitate silica in a solution. Generally, it is also called white carbon.

【0017】尚、同様に珪酸ソーダを酸で中和すること
によって作るゲル法シリカも湿式シリカの一種であり、
これを粉砕したものは本発明の原体シリカ粉末として用
いることができる。
Gel silica produced by neutralizing sodium silicate with an acid is also a kind of wet silica.
The pulverized product can be used as the raw silica powder of the present invention.

【0018】湿式シリカも製造条件を変えることにより
各種のシリカが得られており、比表面積がおよそ50〜
1000m2/gの範囲のものが得られている。湿式シ
リカは、その製造方法より、一次粒子径がおよそ3〜5
0nmの微細粒子が合成途中で凝集した凝集粒子である
と考えられている。これらの湿式シリカは、通常、中和
反応後に濾過や洗浄を行い、乾燥後、必要により粉砕し
て粉末として得られる。一般的に、入手可能な湿式シリ
カ粒子の平均粒子径は1〜数100μmである。
Various silicas have been obtained by changing the production conditions of the wet silica, and the specific surface area is about 50 to 50.
Those having a range of 1000 m 2 / g are obtained. The wet silica has a primary particle diameter of about 3 to 5 depending on the production method.
It is considered that 0 nm fine particles are aggregated particles that are aggregated during synthesis. These wet silicas are usually filtered or washed after the neutralization reaction, dried, and, if necessary, pulverized to obtain powders. Generally, the average particle size of available wet silica particles is from 1 to several hundreds μm.

【0019】更に、ゾル−ゲル法シリカは、テトラメト
キシシランやテトラエトキシシランなどの珪素のアルコ
キシドを酸性あるいはアルカリ性の含水有機溶媒中で加
水分解することによって作るものである。珪素のアルコ
キシドは高価であるが、原料が蒸留によって高純度化で
きるため極めて高純度のシリカが得られるという特徴が
ある。加水分解を酸性もしくはアルカリ性の濃厚溶液中
で行うと、バルク状のシリカが得られ、それを粉砕する
ことによって、1〜数100μmの不定形のシリカ粒子
が得られる。
Further, the sol-gel method silica is produced by hydrolyzing a silicon alkoxide such as tetramethoxysilane or tetraethoxysilane in an acidic or alkaline aqueous organic solvent. Silicon alkoxides are expensive, but have the characteristic that extremely high-purity silica can be obtained because the raw materials can be highly purified by distillation. When the hydrolysis is carried out in an acidic or alkaline concentrated solution, bulk silica is obtained, and by crushing the silica, amorphous silica particles of 1 to several hundred μm are obtained.

【0020】上記のゾル−ゲル法シリカとしては、シリ
カ−チタニア、シリカ−アルミナ、シリカ−ジルコニア
などのいわゆるシリカ系複合酸化物も本発明の疎水性シ
リカ粉末の原体シリカ粉末として使用できる。これら
は、珪素のアルコキシドとチタニウム、アルミニウム、
ジルコニウムなどの金属アルコキシドを共加水分解する
ことによって得られる。これらのシリカ系複合酸化物
は、用いる珪素以外の金属酸化物の化学的及び物理的性
質によって通常のシリカにはない有用な特性を発現でき
る。例えば、金属酸化物の含有量を変えることによって
シリカ系複合酸化物の屈折率を調節することができる。
As the sol-gel silica, so-called silica-based composite oxides such as silica-titania, silica-alumina and silica-zirconia can be used as the raw silica powder of the hydrophobic silica powder of the present invention. These are silicon alkoxides and titanium, aluminum,
It is obtained by co-hydrolyzing a metal alkoxide such as zirconium. These silica-based composite oxides can exhibit useful properties not found in ordinary silica, depending on the chemical and physical properties of the metal oxide other than silicon used. For example, the refractive index of the silica-based composite oxide can be adjusted by changing the content of the metal oxide.

【0021】本発明において、原体シリカ粉末は、上述
した種類の中から、用途に応じて好適なシリカ、及び粒
径(比表面積)のものを選択して使用すればよい。好適
には、乾式シリカを用いることができる。
In the present invention, as the raw silica powder, silica having a suitable particle size and specific particle size (specific surface area) may be selected from the above-mentioned types and used. Preferably, fumed silica can be used.

【0022】本発明の疎水性シリカ粉末において、導入
されているトリメチルシリル基の量は、原体シリカ粉末
の表面積1nm2あたり0.3〜1.5個に調整される
ことが本発明の目的を達成するために極めて重要であ
る。
It is an object of the present invention that the amount of the introduced trimethylsilyl group in the hydrophobic silica powder of the present invention is adjusted to 0.3 to 1.5 per 1 nm 2 of the surface area of the raw silica powder. It is extremely important to achieve.

【0023】上記トリメチルシリル基の導入量が原体シ
リカ粉末の表面積1nm2あたり1.5個の範囲よりも
多い場合には、他の疎水化剤であるポリシロキサンが脱
離し易くなり、疎水性シリカ粉末の効果が安定して維持
されない。ポリシロキサンの脱離しやすさは、クロロホ
ルムによる抽出試験により確かめることができ、該トリ
メチルシリル基の数が1.5個を超えたものは、抽出試
験におけるポリシロキサンの残存量が極端に低下する。
When the introduction amount of the above trimethylsilyl group is larger than the range of 1.5 per 1 nm 2 of the surface area of the raw silica powder, the polysiloxane as another hydrophobizing agent is easily released, and the hydrophobic silica The effect of the powder is not maintained stably. The ease of desorption of polysiloxane can be confirmed by an extraction test with chloroform. When the number of trimethylsilyl groups exceeds 1.5, the residual amount of polysiloxane in the extraction test is extremely reduced.

【0024】因みに、一般的な方法によりヘキサメチル
ジシラザンなどのトリメチルシリル化剤を用いてシリカ
表面を処理する場合には、原体シリカ粉末の表面積1n
2あたり2.2個程度のトリメチルシリル基が導入さ
れて飽和に達し、本発明の効果を達成することができな
い 本発明の疎水性シリカ粉末は、上記構成により、クロロ
ホルムによる抽出試験によっても、後で詳述する疎水性
シリカにおけるポリシロキサンの付着量のうち、A/2
5以上(但し、Aは原体シリカ粉末の比表面積(m2
g)である。)が残存する、極めて高い安定性を得るこ
とが可能である。
Incidentally, when the silica surface is treated with a trimethylsilylating agent such as hexamethyldisilazane by a general method, the surface area of the raw silica powder is 1n.
Approximately 2.2 trimethylsilyl groups per m 2 are introduced and reach saturation, and the effect of the present invention cannot be achieved. Of the attached amount of polysiloxane on the hydrophobic silica described in detail in A / 2
5 or more (where A is the specific surface area of the original silica powder (m 2 /
g). ) Remains, and extremely high stability can be obtained.

【0025】また、本発明の疎水性シリカ粉末は、上記
トリメチルシリル基の割合が本発明の範囲の上限を超え
る疎水性シリカ粉末に対して、ポリシロキサンの含有量
が同じであっても、疎水性が大きく向上するという、驚
くべき効果を発揮する。
In addition, the hydrophobic silica powder of the present invention has a hydrophobicity even if the content of polysiloxane is the same as that of the above-mentioned hydrophobic silica powder in which the ratio of trimethylsilyl groups exceeds the upper limit of the range of the present invention. Has a surprising effect of greatly improving

【0026】一方、トリメチルシリル基の導入量が原体
シリカ粉末の表面積1nm2あたり0.3個の範囲より
も少ない場合には、ポリシロキサンと協同して発揮され
る流動性及び疎水性の向上効果が十分現れず、本発明の
目的を達成することができない。
On the other hand, when the amount of trimethylsilyl group introduced is less than the range of 0.3 per 1 nm 2 of surface area of the raw silica powder, the effect of improving the fluidity and hydrophobicity exhibited in cooperation with the polysiloxane is obtained. Do not appear sufficiently, and the object of the present invention cannot be achieved.

【0027】本発明の疎水性シリカ粉末において、シリ
カ粉末に付着せしめるポリシロキサンの量は、原体シリ
カ粉末100重量部に対しA/20〜A/5、好ましく
はA/14〜A/6(但し、Aは原体シリカ粉末の比表
面積(m2/g)である。)である。
In the hydrophobic silica powder of the present invention, the amount of polysiloxane adhered to the silica powder is A / 20 to A / 5, preferably A / 14 to A / 6 (100 parts by weight of the original silica powder). Here, A is the specific surface area (m 2 / g) of the raw silica powder.)

【0028】即ち、ポリシロキサンの量が、原体シリカ
粉末100重量部に対しA/5よりも多い場合には、シ
リカに凝集が生じ流動性が著しく低下する。また、上記
ポリシロキサンの量がA/20より少ない場合には、ポ
リシロキサンによる疎水性の向上効果が十分に発揮され
ない。
That is, when the amount of the polysiloxane is more than A / 5 based on 100 parts by weight of the raw silica powder, the silica is agglomerated and the fluidity is remarkably reduced. When the amount of the polysiloxane is less than A / 20, the effect of improving the hydrophobicity by the polysiloxane is not sufficiently exhibited.

【0029】本発明の疎水性シリカ粉末において、付着
しているポリシロキサンは、原体シリカ粉末の表面と化
学的な結合をしているものと、化学的な結合をしていな
いものを含有する。
In the hydrophobic silica powder of the present invention, the attached polysiloxane includes those that are chemically bonded to the surface of the raw silica powder and those that are not chemically bonded. .

【0030】本発明において、ポリシロキサンは、特に
限定されるものではなく、公知のものが特に制限なく使
用される。例えば、下記一般式で示されるものが代表的
である。
In the present invention, the polysiloxane is not particularly limited, and a known one can be used without any particular limitation. For example, those represented by the following general formula are typical.

【0031】[0031]

【化1】 Embedded image

【0032】(但し、Rは、アルキル基、R'は水素、
アルキル基、ハロゲン変性アルキル基、及びフェニル基
より選ばれた同種又は異種の基、R''はアルキル基又は
アルコキシ基、R'''はアルキル基又はアルコキシ基を
それぞれ示す。) 具体的には、ジメチルポリシロキサン、メチルフェニル
シリコーンオイル、メチルハイドロジェンシリコーンオ
イル、アルキル変性シリコーンオイル、フッ素変性シリ
コンオイル、末端反応性シリコーンオイル等が挙げられ
る。そのうち、安価であり、取り扱いが容易である、ジ
メチルポリシロキサン(式中のR、R'、R''、R'''
がすべてメチル基)が最も好適である。
(Where R is an alkyl group, R ′ is hydrogen,
The same or different groups selected from an alkyl group, a halogen-modified alkyl group and a phenyl group, R ″ represents an alkyl group or an alkoxy group, and R ′ ″ represents an alkyl group or an alkoxy group, respectively. Specific examples include dimethylpolysiloxane, methylphenyl silicone oil, methyl hydrogen silicone oil, alkyl-modified silicone oil, fluorine-modified silicone oil, and terminal-reactive silicone oil. Among them, dimethylpolysiloxane (R, R ′, R ″, R ′ ″ in the formula, which is inexpensive and easy to handle)
Are all methyl groups).

【0033】本発明の疎水性シリカ粉末について、トリ
メチルシリル基の原体シリカ粉末の表面積1nm2にお
ける存在量、ポリシロキサンのシリカ粉末への付着量、
抽出後に残るポリシロキサンの量は、以下の方法により
測定することができる。
With respect to the hydrophobic silica powder of the present invention, the amount of trimethylsilyl groups present in the surface area of 1 nm 2 of the raw silica powder, the amount of polysiloxane attached to the silica powder,
The amount of the polysiloxane remaining after the extraction can be measured by the following method.

【0034】(1)疎水性シリカ粉末を電気炉に入れ、
窒素雰囲気中において500℃で1時間以上保持する。
表面に付着している処理剤が無くなったことを、水に浮
かべてシリカ粉末が水に混ざることにより確認する。こ
の方法により熱処理されたシリカ粉末の比表面積をBE
T法で測定することにより、原体シリカ粉末の比表面積
を確認できる。
(1) Put the hydrophobic silica powder in an electric furnace,
Hold at 500 ° C. for 1 hour or more in a nitrogen atmosphere.
The absence of the treatment agent adhering to the surface is confirmed by floating on water and mixing the silica powder with water. The specific surface area of the silica powder heat treated by this method is determined by BE
By measuring by the T method, the specific surface area of the raw silica powder can be confirmed.

【0035】この原体シリカ粉末の比表面積をS(m2
/g)とする。また、熱処理前の質量をW1、熱処理後
の質量をW2とし、原体シリカ粉末が疎水性シリカ粉末
の重量に占める割合(G)を算出する。
The specific surface area of this bulk silica powder is S (m 2
/ G). The mass before heat treatment is W 1 and the mass after heat treatment is W 2, and the ratio (G) of the original silica powder to the weight of the hydrophobic silica powder is calculated.

【0036】G=W2/W1 G = W 2 / W 1

【0037】(2)次いで、トリメチルシリル基のシリ
カ粉末における存在量は、まずトリメチルシリル基の量
が既知の疎水性シリカ粉末を不活性ガス中において59
0℃の温度で熱分解させ、放出されるガスをガスクロマ
トグラフィーによりヘキサメチルジシロキサンのピーク
を測定し検量線をひく。目的の疎水性シリカ粉末を同様
の方法により測定することにより確認できる。この時、
測定時に導入する疎水性シリカ粉末の質量は、前記
(1)により求めたGにより原体シリカ粉末の質量に補
正する必要がある。トリメチルシリル基の原体シリカ粉
末100重量部に対する存在量をT(重量部)とする。
(2) Next, the amount of trimethylsilyl groups present in the silica powder was determined by first using a hydrophobic silica powder having a known amount of trimethylsilyl groups in an inert gas.
Pyrolyze at a temperature of 0 ° C., measure the peak of hexamethyldisiloxane by gas chromatography, and draw a calibration curve. It can be confirmed by measuring the target hydrophobic silica powder by the same method. At this time,
It is necessary to correct the mass of the hydrophobic silica powder to be introduced at the time of measurement to the mass of the raw silica powder by the G obtained in the above (1). The amount of trimethylsilyl groups present per 100 parts by weight of the raw silica powder is defined as T (parts by weight).

【0038】原体シリカ粉末1nm2あたりのトリメチ
ルシリル基の個数(N;個)は以下の式により求められ
る。
The number (N; number) of trimethylsilyl groups per 1 nm 2 of the bulk silica powder is determined by the following equation.

【0039】N=T×82.2/SN = T × 82.2 / S

【0040】(3)疎水性シリカ粉末の炭素含有量を微
量炭素分析計(Horiba社製EMIA)により測定
する。測定した炭素含有量をC1(%)とする。
(3) The carbon content of the hydrophobic silica powder is measured by a trace carbon analyzer (EMIA manufactured by Horiba). The measured carbon content is defined as C 1 (%).

【0041】(4)表面に付着しているポリシロキサン
の量は、まず表面に付着しているポリシロキサンをクロ
ロホルムにより抽出し、抽出液のクロロホルムを蒸発さ
せポリシロキサンをのみとし、ポリシロキサンの炭素含
有量をCHNコーダー(YANACO社製 MT−5)
により測定する。求めた炭素含有量を C2(%)とす
る。次式によりポリシロキサンの原体シリカ粉末100
重量部に対する付着量(P1;重量部)を算出する。
(4) The amount of the polysiloxane adhering to the surface is determined by first extracting the polysiloxane adhering to the surface with chloroform, evaporating the chloroform of the extract to make only polysiloxane, and reducing the carbon content of the polysiloxane. CHN coder (YANACO MT-5)
Measured by The obtained carbon content is defined as C 2 (%). According to the following formula, the original silica powder of polysiloxane 100
The amount of adhesion to the parts by weight (P 1 ; parts by weight) is calculated.

【0042】P1=(49.2T− 100C1−C
1T)/(C1−C2
P 1 = (49.2T-100C 1 -C
1 T) / (C 1 -C 2)

【0043】(5)抽出後に残るポリシロキサンの量
は、疎水性シリカ粉末を溶剤にクロロホルムを用い、ソ
ックスレー抽出法により8時間抽出する。抽出後の疎水
性シリカ粉末の炭素含有量を微量炭素分析計(Hori
ba社製EMIA)により測定する。測定した炭素含有
量をC3(%)とする。次式により抽出後に残るポリシ
ロキサンの原体シリカ粉末100重量部に対する付着量
(P2;重量部)を算出する。
(5) The amount of polysiloxane remaining after the extraction is determined by soxhlet extraction using hydrophobic silica powder with chloroform as a solvent for 8 hours. The carbon content of the hydrophobic silica powder after extraction was determined using a trace carbon analyzer (Hori
It is measured by EMIA manufactured by Ba. The measured carbon content is defined as C 3 (%). The adhesion amount (P 2 ; parts by weight) of the polysiloxane remaining after the extraction to 100 parts by weight of the raw silica powder is calculated by the following equation.

【0044】P2=(49.2T−100C3−C3T)
/(C3−C2
P 2 = (49.2T-100C 3 -C 3 T)
/ (C 3 -C 2)

【0045】上記方法によって算出されたトリメチルシ
リル基の原体シリカ粉末の表面積1nm2における存在
量、ポリシロキサンのシリカ粉末への付着量、及び抽出
後に残るポリシロキサンの量は、後記の実施例に示すよ
うに、製造方法から算出した値とほぼ一致するものであ
り、これらの量を正確に求めることが可能であることが
理解される。
The amount of trimethylsilyl group in the surface area of 1 nm 2 of the raw silica powder, the amount of the polysiloxane adhered to the silica powder, and the amount of the polysiloxane remaining after the extraction, calculated by the above method, are shown in Examples described later. As described above, the values almost coincide with the values calculated from the manufacturing method, and it is understood that these amounts can be accurately obtained.

【0046】本発明の疎水性シリカ粉末の製造方法は、
特に制限されるものではないが、下記の方法が好適であ
る。
The method for producing the hydrophobic silica powder of the present invention comprises:
Although not particularly limited, the following method is preferred.

【0047】即ち、本発明によれば、シリカ粉末を、ポ
リシロキサンで処理した後、トリメチルシリル化剤で処
理することを特徴とする疎水性シリカ粉末の製造方法が
提供される。
That is, according to the present invention, there is provided a method for producing a hydrophobic silica powder, which comprises treating a silica powder with a polysiloxane and then a trimethylsilylating agent.

【0048】本発明の疎水性シリカ粉末の製造方法にお
いて、ポリシロキサンによる処理は、公知の方法により
行うことができる。例えば、シリカ粉末をミキサーに入
れ、窒素雰囲気下、攪拌しながら前記ポリシロキサンを
噴霧し、所定温度で一定時間保持することにより行うこ
とができる。
In the method for producing hydrophobic silica powder of the present invention, the treatment with polysiloxane can be performed by a known method. For example, the method can be carried out by putting silica powder into a mixer, spraying the polysiloxane with stirring under a nitrogen atmosphere, and keeping the mixture at a predetermined temperature for a certain time.

【0049】上記噴霧するポリシロキサンは溶剤にあら
かじめ溶かしておいても良い。
The polysiloxane to be sprayed may be dissolved in a solvent in advance.

【0050】上記処理時の温度はポリシロキサンの種類
によるが、ポリシロキサンの分解温度以下で行うことが
必要である。また、処理温度が低すぎるとポリシロキサ
ンと原体シリカ粉末の結合力が低く、処理の効果が得ら
れない。よって処理剤にあわせた適切な温度で処理を行
う必要がある。例えば、ジメチルポリシロキサンで行う
場合には200〜300℃ の範囲で行われる。
The temperature at the time of the above treatment depends on the kind of the polysiloxane, but it is necessary that the temperature be lower than the decomposition temperature of the polysiloxane. On the other hand, if the treatment temperature is too low, the bonding force between the polysiloxane and the raw silica powder is low, and the effect of the treatment cannot be obtained. Therefore, it is necessary to perform the treatment at an appropriate temperature according to the treatment agent. For example, in the case of using dimethylpolysiloxane, it is performed in the range of 200 to 300 ° C.

【0051】更に、保持時間は処理剤の種類、処理温度
にもよるが、例えばジメチルポリシロキサンを250℃
で反応させた場合には10分から120分、好適には、
30分から60分である。
Further, the holding time depends on the type of the treating agent and the treating temperature.
When the reaction is performed for 10 to 120 minutes, preferably,
30 to 60 minutes.

【0052】また、上記ポリシロキサンの原体シリカ粉
末に対する付着量は、上記処理における添加量によって
適宜調整することができる。
The amount of the polysiloxane adhered to the raw silica powder can be appropriately adjusted by the amount added in the above treatment.

【0053】上記方法で使用し得る、ポリシロキサンは
特に限定されるものではなく、公知のものが特に制限な
く使用される。そのうち、25℃において10〜100
0cStの粘度を有するものが好適である。更にはジメ
チルポリシロキサンが最も好適である。
The polysiloxane that can be used in the above method is not particularly limited, and known polysiloxanes can be used without any particular limitation. Of which 10 to 100 at 25 ° C
Those having a viscosity of 0 cSt are preferred. Further, dimethylpolysiloxane is most preferred.

【0054】一方、トリメチルシリル化剤による処理
は、ポリシロキサンによる処理後行われる。トリメチル
シリル化剤による処理は、例えば、ポリシロキサンで処
理されたシリカ粉末をミキサーに入れ、トリメチルシリ
ル化剤を一定量ミキサーに導入し、所定温度で一定時間
保持することにより得られる。
On the other hand, the treatment with the trimethylsilylating agent is performed after the treatment with the polysiloxane. The treatment with the trimethylsilylation agent can be obtained, for example, by putting silica powder treated with the polysiloxane into a mixer, introducing a certain amount of the trimethylsilylation agent into the mixer, and maintaining the mixture at a predetermined temperature for a predetermined time.

【0055】導入するトリメチルシリル化剤の量は、目
的の反応量以上に加える必要がある。また、トリメチル
シリル化剤の沸点以上の温度で処理を行う場合には、ト
リメチルシリル化剤のミキサー内の分圧を一定以上に保
つことが処理時間を短縮する上で好ましい。例えば、ト
リメチルシリル化剤にヘキサメチルジシラザンを用い、
処理温度を250℃とした場合には、ミキサー内の分圧
を5kPa以上に保つことが好ましい。
The amount of the trimethylsilylating agent to be introduced must be greater than the desired reaction amount. When the treatment is performed at a temperature equal to or higher than the boiling point of the trimethylsilylating agent, it is preferable to keep the partial pressure of the trimethylsilylating agent in the mixer at a certain level or more in order to shorten the treatment time. For example, using hexamethyldisilazane as a trimethylsilylating agent,
When the treatment temperature is 250 ° C., it is preferable to maintain the partial pressure in the mixer at 5 kPa or more.

【0056】トリメチルシリル化剤の導入に先立ち、水
蒸気を導入することも可能である。処理温度は処理剤の
分解温度以下であれば良いが、好ましくは、トリメチル
シリル化剤の沸点以上の温度で行われる。又、処理時間
は、処理剤の種類、処理温度、及び処理剤の添加量にも
よるが、ヘキサメチルジシラザンを250℃で反応さ
せ、ミキサー内のヘキサメチルジシラザンの分圧を20
kPaとした場合には、5分以上、好ましくは、15分
以上行われる。
Prior to the introduction of the trimethylsilylating agent, it is also possible to introduce steam. The treatment temperature may be lower than the decomposition temperature of the treatment agent, but is preferably at a temperature higher than the boiling point of the trimethylsilylating agent. The processing time depends on the type of the processing agent, the processing temperature, and the amount of the processing agent to be added, but hexamethyldisilazane is reacted at 250 ° C., and the partial pressure of hexamethyldisilazane in the mixer is reduced to 20%.
When the pressure is set to kPa, the treatment is performed for 5 minutes or more, preferably 15 minutes or more.

【0057】本発明で使用しうるトリメチルルシリル化
剤は、特に制限されないが、例えば、下記一般式で示さ
れるものが好適に使用される。
The trimethylsilylating agent that can be used in the present invention is not particularly limited, but for example, those represented by the following general formula are preferably used.

【0058】(Me3Si)nZ 〔式中、Meはメチル基、nは1または2の整数、Zは
−OH、−OR、−NR’2-nX、−ONR’2、R’は
1〜4個の炭素原子を有するアルキル基、XはH又は
R’と同じ〕 もしくは Me3SiY 〔式中、Meはメチル基、Yはハロゲン原子〕
(Me 3 Si) n Z wherein Me is a methyl group, n is an integer of 1 or 2, Z is —OH, —OR, —NR ′ 2- nx, —ONR ′ 2 , R ′ Is an alkyl group having 1 to 4 carbon atoms, X is the same as H or R ′] or Me 3 SiY (where Me is a methyl group, Y is a halogen atom)

【0059】本発明で好適に使用されるトリメチルシリ
ル化剤を具体的に例示すると、トリメチルシラノール、
トリメチルメトキシシラン、トリメチルクロロシラン、
アミノメチルトリメチルシラン、ヘキサメチルジシラザ
ン、ジメチルアミノトリメチルシラン、ジエチルアミノ
トリメチルシランである。好ましくは、ヘキサメチルジ
シラザンが挙げられる。
Specific examples of the trimethylsilylating agent suitably used in the present invention include trimethylsilanol,
Trimethylmethoxysilane, trimethylchlorosilane,
Aminomethyltrimethylsilane, hexamethyldisilazane, dimethylaminotrimethylsilane, and diethylaminotrimethylsilane. Preferably, hexamethyldisilazane is used.

【0060】[0060]

【発明の効果】以上の説明より理解されるように、本発
明の疎水性シリカ粉末は、トリメチルシリル基の存在量
を特定の範囲に制限することにより、同時に表面に付着
せしめるポリシロキサンの結合力を向上させることが可
能となり、極めて高い安定性を示すと共に、流動性及び
疎水性においても優れた性能を発揮するものである。
As will be understood from the above description, the hydrophobic silica powder of the present invention restricts the amount of trimethylsilyl groups to a specific range, thereby simultaneously reducing the bonding force of polysiloxane which is simultaneously attached to the surface. This makes it possible to improve the composition, exhibit extremely high stability, and exhibit excellent performance in fluidity and hydrophobicity.

【0061】従って、トナー用等における流動化剤を始
め、樹脂等の増粘剤、充填剤としての用途において、良
好な性能を発揮することが可能であり、その工業的価値
は極めて高いといえる。
Accordingly, it is possible to exhibit good performance in use as a thickener such as a resin, a thickener such as a resin, and a filler, in addition to a fluidizing agent for toner and the like, and it can be said that its industrial value is extremely high. .

【0062】[0062]

【実施例】以下、実施例及び比較例を挙げて本発明を更
に具体的に説明するが、本発明は、これらの実施例に何
ら限定されるものでは無い。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0063】尚、試料(実施例または比較例によるシリ
カ粉末)の特性は以下の値を測定することにより評価し
た。
The properties of the samples (silica powders according to Examples and Comparative Examples) were evaluated by measuring the following values.

【0064】1.得られた疎水性シリカ粉末(試料)に
ついてのトリメチルシリル基の量、ポリシロキサンの付
着量、及び抽出後に残るポリシロキサンの量の測定 前記の測定方法に従って行った。
1. Measurement of the amount of the trimethylsilyl group, the amount of the attached polysiloxane, and the amount of the polysiloxane remaining after the extraction on the obtained hydrophobic silica powder (sample) were carried out according to the above-described measurement methods.

【0065】2.上記トリメチルシリル基の量、ポリシ
ロキサンの付着量、及び抽出後に残るポリシロキサンの
量は、製造方法から下記の方法によって確認し、上記測
定値の右の( )内に確認値を示した。
2. The amount of the trimethylsilyl group, the amount of the attached polysiloxane, and the amount of the polysiloxane remaining after the extraction were confirmed by the following method from the production method, and the confirmation values were shown in parentheses to the right of the measured values.

【0066】(1)疎水性シリカ粉末の炭素含有量を微
量炭素分析装置(Horiba製EMIA)により測定
し求めた。求めた炭素含有量の値をC1%とする。
(1) The carbon content of the hydrophobic silica powder was determined by measuring with a trace carbon analyzer (EMIA manufactured by Horiba). The value of the obtained carbon content is defined as C 1 %.

【0067】(2)ポリシロキサンのシリカ粉末の付着
量は、添加したポリシロキサンの量と同じである。該疎
水性シリカ粉末においてポリシロキサンの原体シリカ粉
末100重量部に対する付着量をP1(重量部)とす
る。
(2) The adhesion amount of the polysiloxane silica powder is the same as the amount of the added polysiloxane. The amount of polysiloxane adhered to 100 parts by weight of the raw silica powder in the hydrophobic silica powder is defined as P 1 (parts by weight).

【0068】(3)トリメチルシリル基の原体シリカ粉
末100重量部に対する量(T;重量部)及び原体シリ
カ粉末の表面積1nm2当りの個数(N;個)は以下の
式により算出した。この時付着しているポリシロキサン
の分子式より計算できるポリシロキサンの炭素含有量を
2とし、原体シリカ粉末の比表面積をS(m2/g)と
する。
(3) The amount of trimethylsilyl group per 100 parts by weight of the raw silica powder (T; parts by weight) and the number of the raw silica powder per 1 nm 2 of surface area (N; pieces) were calculated by the following equations. At this time, the carbon content of the polysiloxane, which can be calculated from the molecular formula of the attached polysiloxane, is C 2, and the specific surface area of the raw silica powder is S (m 2 / g).

【0069】 T=(C21―100C1−C11)/(C1−49.
2) N=T×82.2/S
T = (C 2 P 1 -100 C 1 -C 1 P 1 ) / (C 1 -49.
2) N = T × 82.2 / S

【0070】(4)抽出後に残るポリシロキサンの量
は、疎水性シリカを溶剤にクロロホルムを用い、ソック
スレー抽出法により8時間抽出した。抽出後の疎水性シ
リカの微量炭素分析装置(Horiba製EMIA)に
より測定し求めた。求めた炭素含有量をC3(%)と
し、次式により抽出後に残るポリシロキサンの原体シリ
カ100重量部に対する割合(P2;重量部)を計算し
た。抽出後に残存するポリシロキサンの量をP2とす
る。
(4) The amount of polysiloxane remaining after the extraction was determined by soxhlet extraction using hydrophobic silica as a solvent with chloroform for 8 hours. The hydrophobic silica after extraction was measured and determined by a trace carbon analyzer (EMIA manufactured by Horiba). The obtained carbon content was defined as C 3 (%), and the ratio (P 2 ; parts by weight) of the polysiloxane remaining after extraction to 100 parts by weight of the raw silica was calculated by the following equation. The amount of polysiloxane remaining after the extraction and P 2.

【0071】P2=(49.2T−100C3−C3T)
/(C3−C2
P 2 = (49.2T-100C 3 -C 3 T)
/ (C 3 -C 2)

【0072】3.疎水性試験 以下の方法により疎水化度を測定し、疎水性の指標とし
た。疎水性シリカ粉末0.2gを容量250mlのビー
カー中の50mlの水に添加した。メタノールをビュー
レットからシリカ全量が懸濁するまで加えた。この時メ
タノールが直接試料に触れない様に、チューブで溶液内
に導いた。ビーカー内の溶液をマグネティックスターラ
ーで常時攪拌した。疎水性シリカ粉末の全量が溶液中に
懸濁された時点を終点とし、終点におけるメタノール水
中のメタノール容量の百分率を疎水化度とした。
3. Hydrophobicity test The degree of hydrophobicity was measured by the following method and used as an index of hydrophobicity. 0.2 g of hydrophobic silica powder was added to 50 ml of water in a 250 ml beaker. Methanol was added from the burette until all of the silica was suspended. At this time, the solution was introduced into the solution with a tube so that methanol did not directly touch the sample. The solution in the beaker was constantly stirred with a magnetic stirrer. The time when the entire amount of the hydrophobic silica powder was suspended in the solution was defined as the end point, and the percentage of the methanol volume in methanol water at the end point was defined as the degree of hydrophobicity.

【0073】4.流動性試験 試料の流動性を以下の方法により調べた。粒径が10μ
mの球状アクリル樹脂に対して疎水性シリカ粉末を1%
添加し、ミキサーで十分に混合し、35℃、湿度85%
の条件下で2日間放置した。混合粉の流動性をパウダテ
スタ(ホソカワミクロン社製、PT−R型)にて、圧縮
度を測定することにより評価した。圧縮度とは次式で示
される。また式中のゆるみ見掛比重とは、100mlの
カップに混合粉を入れタッピングをしない状態で測定し
た見掛け比重であり、固め見掛比重とは180回タッピ
ングした後の見掛け比重である。
4. Fluidity test The fluidity of the sample was examined by the following method. Particle size is 10μ
1% hydrophobic silica powder to spherical acrylic resin
Add, mix well with a mixer, 35 ° C, 85% humidity
For 2 days. The fluidity of the mixed powder was evaluated by measuring the degree of compression with a powder tester (manufactured by Hosokawa Micron Corporation, PT-R type). The compression degree is represented by the following equation. The loose apparent specific gravity in the formula is an apparent specific gravity measured in a state in which the mixed powder is put in a 100 ml cup without tapping, and the solidified apparent specific gravity is an apparent specific gravity after tapping 180 times.

【0074】圧縮度=(固め見掛け比重−ゆるみ見掛け
比重)/固め見掛け比重×100 この方法により1%圧縮度が変わった場合、流動性が大
きく違うと言える。
Compressibility = (solid apparent specific gravity−loose apparent specific gravity) / solid apparent specific gravity × 100 When 1% compressibility is changed by this method, it can be said that fluidity is greatly different.

【0075】実施例1 比表面積200m2/gの乾式シリカをミキサーに入れ
窒素雰囲気下ジメチルポリシロキサン(動粘度 50c
St)を20重量部添加し、250℃で30分保持し
た。引き続き、ヘキサメチルジシラザンを10重量部添
加後、ミキサーを密閉し250℃で30分保持した。こ
の時、ミキサー内のヘキサメチルジシラザンの分圧は3
0kPaであった。得られた疎水性シリカ粉末のトリメ
チルシリル基とポリシロキサンの量を表1、物性を表2
に示す。
Example 1 Dry silica having a specific surface area of 200 m 2 / g was put in a mixer and dimethylpolysiloxane (kinematic viscosity: 50 c
St) was added at 20 parts by weight and kept at 250 ° C. for 30 minutes. Subsequently, after adding 10 parts by weight of hexamethyldisilazane, the mixer was closed and kept at 250 ° C. for 30 minutes. At this time, the partial pressure of hexamethyldisilazane in the mixer was 3
It was 0 kPa. Table 1 shows the amounts of trimethylsilyl groups and polysiloxane in the obtained hydrophobic silica powder, and Table 2 shows physical properties.
Shown in

【0076】実施例2 ジメチルポリシロキサンの添加量を30重量部とした以
外は、実施例1と同じ条件で処理を行った。得られた疎
水性シリカ粉末のトリメチルシリル基とポリシロキサン
の量を表1、物性を表2に示す。
Example 2 A treatment was performed under the same conditions as in Example 1 except that the amount of dimethylpolysiloxane was changed to 30 parts by weight. Table 1 shows the amounts of trimethylsilyl groups and polysiloxane in the obtained hydrophobic silica powder, and Table 2 shows the physical properties.

【0077】実施例3 処理温度を220℃とした以外は、実施例1と同じ条件
で処理を行った。得られた疎水性シリカ粉末のトリメチ
ルシリル基とポリシロキサンの量を表1、物性を表2に
示す。
Example 3 Processing was performed under the same conditions as in Example 1 except that the processing temperature was 220 ° C. Table 1 shows the amounts of trimethylsilyl groups and polysiloxane in the obtained hydrophobic silica powder, and Table 2 shows the physical properties.

【0078】実施例4 原体シリカ粉末の比表面積を300m2/gとした以外
は、実施例2と同じ条件で処理を行った。得られた疎水
性シリカ粉末のトリメチルシリル基とポリシロキサンの
量を表1、物性を表2に示す。
Example 4 A treatment was performed under the same conditions as in Example 2 except that the specific surface area of the raw silica powder was changed to 300 m 2 / g. Table 1 shows the amounts of trimethylsilyl groups and polysiloxane in the obtained hydrophobic silica powder, and Table 2 shows the physical properties.

【0079】比較例1 比表面積200m2/gの親水性乾式シリカをミキサー
に入れ、窒素雰囲気下ヘキサメチルジシラザンを10重
量部添加し、その後ミキサーを密閉し250℃で30分
保持した。この時ミキサー内のヘキサメチルジシラザン
の分圧は30kPaであった。引き続きジメチルポリシ
ロキサン(動粘度 50cSt)を20重量部添加し、
250℃で30分保持した。得られた疎水性シリカ粉末
のトリメチルシリル基とポリシロキサンの量を表1、物
性を表2に示す。
Comparative Example 1 Hydrophilic dry silica having a specific surface area of 200 m 2 / g was put in a mixer, 10 parts by weight of hexamethyldisilazane was added under a nitrogen atmosphere, and then the mixer was closed and kept at 250 ° C. for 30 minutes. At this time, the partial pressure of hexamethyldisilazane in the mixer was 30 kPa. Subsequently, 20 parts by weight of dimethylpolysiloxane (kinematic viscosity: 50 cSt) was added,
It was kept at 250 ° C. for 30 minutes. Table 1 shows the amounts of trimethylsilyl groups and polysiloxane in the obtained hydrophobic silica powder, and Table 2 shows physical properties.

【0080】比較例2 比表面積200m2/gの親水性乾式シリカをミキサー
に入れ窒素雰囲気下ジメチルポリシロキサン(動粘度
50cSt)を20重量部添加し、250℃で60分保
持した。得られた疎水性シリカ粉末のトリメチルシリル
基とポリシロキサンの量を表1、物性を表2に示す。
Comparative Example 2 Hydrophilic dry silica having a specific surface area of 200 m 2 / g was put in a mixer and dimethylpolysiloxane (kinematic viscosity) was placed under a nitrogen atmosphere.
50 cSt) was added, and the mixture was kept at 250 ° C. for 60 minutes. Table 1 shows the amounts of trimethylsilyl groups and polysiloxane in the obtained hydrophobic silica powder, and Table 2 shows the physical properties.

【0081】比較例3 比表面積200m2/gの親水性乾式シリカをミキサー
に入れ窒素雰囲気下ジメチルポリシロキサン(動粘度
50cSt)を30重量部添加し、250℃で60分保
持した。得られた疎水性シリカ粉末のトリメチルシリル
基とポリシロキサンの量を表1、物性を表2に示す。
Comparative Example 3 A hydrophilic dry silica having a specific surface area of 200 m 2 / g was put in a mixer and dimethylpolysiloxane (kinematic viscosity
50 cSt) was added, and the mixture was kept at 250 ° C. for 60 minutes. Table 1 shows the amounts of trimethylsilyl groups and polysiloxane in the obtained hydrophobic silica powder, and Table 2 shows the physical properties.

【0082】[0082]

【表1】 [Table 1]

【0083】[0083]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G072 AA41 GG01 GG02 GG03 HH14 HH28 HH29 4J002 AA001 DJ016 FB146 FB266 GS00 4J037 AA18 CB23 CB26 CC28 EE02 EE03 EE04 EE25 EE43 EE44 EE50 FF17  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G072 AA41 GG01 GG02 GG03 HH14 HH28 HH29 4J002 AA001 DJ016 FB146 FB266 GS00 4J037 AA18 CB23 CB26 CC28 EE02 EE03 EE04 EE25 EE43 EE44 EE50 FF17

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原体シリカ粉末をポリシロキサン及びト
リメチルシリル化剤により表面処理したシリカ粉末であ
って、トリメチルシリル基が該原体シリカ粉末の表面積
1nm2あたり0.3〜1.5個の割合で存在し、且
つ、ポリシロキサンが該原体シリカ粉末100重量部に
対して、A/20〜A/5重量部(但し、Aは原体シリ
カ粉末の比表面積(m2/g)である。)の割合で付着
していることを特徴とする疎水性シリカ粉末。
1. A silica powder obtained by subjecting an original silica powder to a surface treatment with a polysiloxane and a trimethylsilylating agent, wherein the ratio of trimethylsilyl groups is 0.3 to 1.5 per 1 nm 2 of surface area of the original silica powder. A / 20 to A / 5 parts by weight (where A is a specific surface area (m 2 / g) of the original silica powder) with respect to 100 parts by weight of the original silica powder. A) a hydrophobic silica powder which is attached at a ratio of
【請求項2】 ポリシロキサンがジメチルポリシロキサ
ンである請求項1記載の疎水性シリカ粉末。
2. The hydrophobic silica powder according to claim 1, wherein the polysiloxane is dimethylpolysiloxane.
【請求項3】 シリカ粉末が乾式シリカである請求項1
又は2記載の疎水性シリカ粉末。
3. The method according to claim 1, wherein the silica powder is fumed silica.
Or the hydrophobic silica powder according to 2.
【請求項4】 クロロホルムで抽出処理後のポリシロキ
サンの残存量が原体シリカ粉末100重量部に対して、
A/25重量部(但し、Aは原体シリカ粉末の比表面積
(m2/g)である。)以上である請求項1〜3のいず
れかに記載の疎水性シリカ粉末。
4. The residual amount of polysiloxane after the extraction treatment with chloroform is based on 100 parts by weight of the raw silica powder.
A / 25 parts by weight (where, A is the specific surface area of the drug substance silica powder (m 2 / g).) Or a hydrophobic silica powder according to any of claims 1 to 3.
【請求項5】 シリカ粉末を、ポリシロキサンで処理し
た後、トリメチルシリル化剤で処理することを特徴とす
る疎水性シリカ粉末の製造方法。
5. A method for producing a hydrophobic silica powder, comprising treating a silica powder with a polysiloxane and then a trimethylsilylating agent.
【請求項6】 ポリシロキサンがジメチルポリシロキサ
ンでありトリメチルシリル化剤がヘキサメチルジシラザ
ンである請求項5記載の疎水性シリカ粉末の製造方法。
6. The method according to claim 5, wherein the polysiloxane is dimethylpolysiloxane and the trimethylsilylating agent is hexamethyldisilazane.
JP2001060487A 2001-03-05 2001-03-05 Hydrophobic silica powder and method for producing the same Expired - Fee Related JP4828032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060487A JP4828032B2 (en) 2001-03-05 2001-03-05 Hydrophobic silica powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060487A JP4828032B2 (en) 2001-03-05 2001-03-05 Hydrophobic silica powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002256170A true JP2002256170A (en) 2002-09-11
JP4828032B2 JP4828032B2 (en) 2011-11-30

Family

ID=18919898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060487A Expired - Fee Related JP4828032B2 (en) 2001-03-05 2001-03-05 Hydrophobic silica powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4828032B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176122A (en) * 2001-09-13 2003-06-24 Wacker Chemie Gmbh Silica with low silanol group content
EP1580019A1 (en) 2004-03-25 2005-09-28 Fuji Photo Film Co., Ltd. Ink-jet recording medium
JP2006002152A (en) * 2004-06-16 2006-01-05 Degussa Ag Coating composition with improved rheological property
JP2006002151A (en) * 2004-06-16 2006-01-05 Degussa Ag Coating composition for improving surface property
EP1657283A1 (en) 2004-11-16 2006-05-17 Nissan Chemical Industries, Ltd. Process for producing hydrophobic silica powder
JP2006206413A (en) * 2005-01-31 2006-08-10 Tokuyama Corp Surface-treated silica microparticle
JP2006299248A (en) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd Composition comprising inorganic fine particles, optical film, antireflection film, and polarizing plate and display device using the same
US7186440B2 (en) 2005-07-04 2007-03-06 Nissan Chemical Industries, Ltd. Process for producing hydrophobic silica powder
WO2007051747A2 (en) * 2005-10-31 2007-05-10 Evonik Degussa Gmbh Improved processing composition comprising silylated silica and method of forming the same
JP2007176747A (en) * 2005-12-28 2007-07-12 Tokuyama Corp Surface-coated silica and production method thereof
JP2007519793A (en) * 2004-01-30 2007-07-19 ロディア・シミ Use of pretreated precipitated silica as a reinforcing filler for silicone elastomers, and curable silicone elastomer compositions obtained by ambient mixing
JP2008501862A (en) * 2004-06-10 2008-01-24 シーブイアールディ、インコ、リミテッド Method and composition for dispersing ultrafine nickel powder
WO2008033506A3 (en) * 2006-09-15 2008-05-08 Cabot Corp Method of preparing hydrophobic silica
EP1988129A2 (en) 2007-04-25 2008-11-05 Shin-Etsu Chemical Co., Ltd. Hydrophobic spherical silica microparticles having a high degree of flowability, method of producing same, electrostatic image developing toner external additive using same, and organic resin compositon containing same
JP2009120416A (en) * 2007-11-12 2009-06-04 Nippon Shokubai Co Ltd Particle and method for producing particle
JP2009190956A (en) * 2008-02-18 2009-08-27 Nippon Shokubai Co Ltd Silica particle and method for producing the same
WO2009139502A1 (en) 2008-05-16 2009-11-19 キヤノン株式会社 Hydrophobic inorganic fine particle and toner
JP2011148946A (en) * 2010-01-25 2011-08-04 Hitachi Chem Co Ltd Adhesive for connecting circuit and anisotropic electroconductive film
JP2012501946A (en) * 2008-09-05 2012-01-26 キャボット コーポレイション Fumed silica with controlled aggregate size and process for producing the same
US8435474B2 (en) 2006-09-15 2013-05-07 Cabot Corporation Surface-treated metal oxide particles
US8455165B2 (en) 2006-09-15 2013-06-04 Cabot Corporation Cyclic-treated metal oxide
WO2013148241A1 (en) * 2012-03-26 2013-10-03 Cabot Corporation Treated fumed silica
US8729158B2 (en) 2008-09-05 2014-05-20 Cabot Corporation Fumed silica of controlled aggregate size and processes for manufacturing the same
JP2014162681A (en) * 2013-02-26 2014-09-08 Nippon Aerosil Co Ltd Surface-treated silica powder and method for manufacturing the same
JP2014189020A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Solution film formation method
JP2015029986A (en) * 2013-08-07 2015-02-16 信越化学工業株式会社 Method for producing organic resin particle
KR101796076B1 (en) 2010-04-27 2017-11-10 주식회사 케이씨씨 Process for the preparation of hydrophobic silicon particles and hydrophobic silicon particles produced therefrom
CN107406327A (en) * 2015-04-14 2017-11-28 株式会社Lg化学 The preparation method of felt containing aerosil and the felt containing aerosil prepared using the preparation method
US9864287B2 (en) 2016-02-10 2018-01-09 Fuji Xerox Co., Ltd. Electrostatic charge image developing toner, electrostatic charge image developer, and toner cartridge
US10407571B2 (en) 2006-09-15 2019-09-10 Cabot Corporation Hydrophobic-treated metal oxide
US10919772B2 (en) 2015-11-03 2021-02-16 Lg Chem, Ltd. Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby
US10941897B2 (en) 2015-02-13 2021-03-09 Lg Chem, Ltd. Preparation method of silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same
US11279622B2 (en) 2016-09-12 2022-03-22 Lg Chem, Ltd. Method for producing silica aerogel and silica aerogel produced thereby
US11505657B2 (en) 2016-03-24 2022-11-22 Lg Chem, Ltd. System and rotating blade unit for preparing silica aerogel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582776B2 (en) 2015-09-14 2019-10-02 富士ゼロックス株式会社 Silica particles and method for producing silica particles
JP2017142398A (en) 2016-02-10 2017-08-17 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP6658044B2 (en) 2016-02-10 2020-03-04 富士ゼロックス株式会社 Electrostatic image developing toner, electrostatic image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP6610317B2 (en) 2016-02-10 2019-11-27 富士ゼロックス株式会社 Electrostatic image developing toner, electrostatic image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP6648547B2 (en) 2016-02-10 2020-02-14 富士ゼロックス株式会社 Electrostatic image developer, developer cartridge, process cartridge, image forming apparatus, and image forming method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636062A (en) * 1986-06-25 1988-01-12 Toray Silicone Co Ltd Method of modifying surface of fine silica powder
JPS63139367A (en) * 1986-12-01 1988-06-11 Canon Inc Developer
JPH0710524A (en) * 1993-06-23 1995-01-13 Tokuyama Corp Hydrophobic fine silica and production thereof
JPH10183010A (en) * 1996-12-21 1998-07-07 Huels Silicone Gmbh Method for deflocculating silicic acid and use of deflocculated silicic acid as filler in silicone rubber mixture
JP2000044226A (en) * 1998-05-18 2000-02-15 Shin Etsu Chem Co Ltd Silane-surface-treated siliceous fine particles, their production and organic resin composition containing same
JP2002174926A (en) * 2000-04-28 2002-06-21 Ricoh Co Ltd Toner and image forming method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636062A (en) * 1986-06-25 1988-01-12 Toray Silicone Co Ltd Method of modifying surface of fine silica powder
JPS63139367A (en) * 1986-12-01 1988-06-11 Canon Inc Developer
JPH0710524A (en) * 1993-06-23 1995-01-13 Tokuyama Corp Hydrophobic fine silica and production thereof
JPH10183010A (en) * 1996-12-21 1998-07-07 Huels Silicone Gmbh Method for deflocculating silicic acid and use of deflocculated silicic acid as filler in silicone rubber mixture
JP2000044226A (en) * 1998-05-18 2000-02-15 Shin Etsu Chem Co Ltd Silane-surface-treated siliceous fine particles, their production and organic resin composition containing same
JP2002174926A (en) * 2000-04-28 2002-06-21 Ricoh Co Ltd Toner and image forming method

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176122A (en) * 2001-09-13 2003-06-24 Wacker Chemie Gmbh Silica with low silanol group content
JP4688895B2 (en) * 2001-09-13 2011-05-25 ワッカー ケミー アクチエンゲゼルシャフト Silica with low silanol group content
JP2008189545A (en) * 2001-09-13 2008-08-21 Wacker Chemie Ag Silica with low content of silanol group
JP2007519793A (en) * 2004-01-30 2007-07-19 ロディア・シミ Use of pretreated precipitated silica as a reinforcing filler for silicone elastomers, and curable silicone elastomer compositions obtained by ambient mixing
JP4842840B2 (en) * 2004-01-30 2011-12-21 ロディア・シミ Use of pretreated precipitated silica as a reinforcing filler for silicone elastomers, and curable silicone elastomer compositions obtained by ambient mixing
EP1580019A1 (en) 2004-03-25 2005-09-28 Fuji Photo Film Co., Ltd. Ink-jet recording medium
JP2008501862A (en) * 2004-06-10 2008-01-24 シーブイアールディ、インコ、リミテッド Method and composition for dispersing ultrafine nickel powder
JP2006002151A (en) * 2004-06-16 2006-01-05 Degussa Ag Coating composition for improving surface property
JP2006002152A (en) * 2004-06-16 2006-01-05 Degussa Ag Coating composition with improved rheological property
EP1657283A1 (en) 2004-11-16 2006-05-17 Nissan Chemical Industries, Ltd. Process for producing hydrophobic silica powder
JP2006206413A (en) * 2005-01-31 2006-08-10 Tokuyama Corp Surface-treated silica microparticle
JP2006299248A (en) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd Composition comprising inorganic fine particles, optical film, antireflection film, and polarizing plate and display device using the same
US7186440B2 (en) 2005-07-04 2007-03-06 Nissan Chemical Industries, Ltd. Process for producing hydrophobic silica powder
WO2007051747A2 (en) * 2005-10-31 2007-05-10 Evonik Degussa Gmbh Improved processing composition comprising silylated silica and method of forming the same
WO2007051747A3 (en) * 2005-10-31 2008-05-22 Evonik Degussa Gmbh Improved processing composition comprising silylated silica and method of forming the same
JP2007176747A (en) * 2005-12-28 2007-07-12 Tokuyama Corp Surface-coated silica and production method thereof
US10407571B2 (en) 2006-09-15 2019-09-10 Cabot Corporation Hydrophobic-treated metal oxide
US8455165B2 (en) 2006-09-15 2013-06-04 Cabot Corporation Cyclic-treated metal oxide
US8435474B2 (en) 2006-09-15 2013-05-07 Cabot Corporation Surface-treated metal oxide particles
US8202502B2 (en) 2006-09-15 2012-06-19 Cabot Corporation Method of preparing hydrophobic silica
WO2008033506A3 (en) * 2006-09-15 2008-05-08 Cabot Corp Method of preparing hydrophobic silica
EP1988129A2 (en) 2007-04-25 2008-11-05 Shin-Etsu Chemical Co., Ltd. Hydrophobic spherical silica microparticles having a high degree of flowability, method of producing same, electrostatic image developing toner external additive using same, and organic resin compositon containing same
JP2009120416A (en) * 2007-11-12 2009-06-04 Nippon Shokubai Co Ltd Particle and method for producing particle
JP2009190956A (en) * 2008-02-18 2009-08-27 Nippon Shokubai Co Ltd Silica particle and method for producing the same
US7811734B2 (en) 2008-05-16 2010-10-12 Canon Kabushiki Kaisha Hydrophobic inorganic fine particles and toner
WO2009139502A1 (en) 2008-05-16 2009-11-19 キヤノン株式会社 Hydrophobic inorganic fine particle and toner
JP2012501946A (en) * 2008-09-05 2012-01-26 キャボット コーポレイション Fumed silica with controlled aggregate size and process for producing the same
US8729158B2 (en) 2008-09-05 2014-05-20 Cabot Corporation Fumed silica of controlled aggregate size and processes for manufacturing the same
JP2011148946A (en) * 2010-01-25 2011-08-04 Hitachi Chem Co Ltd Adhesive for connecting circuit and anisotropic electroconductive film
KR101796076B1 (en) 2010-04-27 2017-11-10 주식회사 케이씨씨 Process for the preparation of hydrophobic silicon particles and hydrophobic silicon particles produced therefrom
US9581922B2 (en) 2012-03-26 2017-02-28 Cabot Corporation Treated fumed silica
WO2013148241A1 (en) * 2012-03-26 2013-10-03 Cabot Corporation Treated fumed silica
JP2014162681A (en) * 2013-02-26 2014-09-08 Nippon Aerosil Co Ltd Surface-treated silica powder and method for manufacturing the same
JP2014189020A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Solution film formation method
JP2015029986A (en) * 2013-08-07 2015-02-16 信越化学工業株式会社 Method for producing organic resin particle
US10941897B2 (en) 2015-02-13 2021-03-09 Lg Chem, Ltd. Preparation method of silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same
CN107406327A (en) * 2015-04-14 2017-11-28 株式会社Lg化学 The preparation method of felt containing aerosil and the felt containing aerosil prepared using the preparation method
CN107406327B (en) * 2015-04-14 2019-04-19 株式会社Lg化学 The preparation method of felt containing aerosil and the felt containing aerosil prepared using the preparation method
US10882750B2 (en) 2015-04-14 2021-01-05 Lg Chem, Ltd. Method for preparing silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same
US10919772B2 (en) 2015-11-03 2021-02-16 Lg Chem, Ltd. Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby
US9864287B2 (en) 2016-02-10 2018-01-09 Fuji Xerox Co., Ltd. Electrostatic charge image developing toner, electrostatic charge image developer, and toner cartridge
US11505657B2 (en) 2016-03-24 2022-11-22 Lg Chem, Ltd. System and rotating blade unit for preparing silica aerogel
US11279622B2 (en) 2016-09-12 2022-03-22 Lg Chem, Ltd. Method for producing silica aerogel and silica aerogel produced thereby

Also Published As

Publication number Publication date
JP4828032B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP2002256170A (en) Hydrophobic silica powder and its manufacturing method
JP5983490B2 (en) Method for producing silica particles
EP2066754B1 (en) Method of preparing hydrophobic silica
JP5644789B2 (en) Powder composition
US5750610A (en) Hydrophobic organosilicate-modified silica gels
JP3891265B2 (en) Hydrophobic silica fine powder and method for producing the same
JP5267758B2 (en) Method for producing hydrophobic silica powder
JP4888633B2 (en) Method for producing hydrophobic silica powder
JP2023511850A (en) Fumed silica with modified surface activity
JP5020224B2 (en) Method for producing surface-treated silica
JP4346403B2 (en) Surface-treated silica particles and uses thereof
CN111867974B (en) Precipitated white carbon black and preparation method thereof
JP2019182688A (en) Manufacturing method of silica particle or dispersion element thereof
JP2000302878A (en) Impalpable powder of water-repellent silicone resin
JP4065757B2 (en) External toner additive
US20180141821A1 (en) Hydrophobic aerogels comprising low occupancy of monofunctional units
JPH078981B2 (en) Powder fluidity improver
JP2022011975A (en) Hydrophobic silica particles
JP2005292592A (en) Surface-treated silica
JP2006083015A (en) Dispersion of silica ultrafine particles, its producing method, and resin formed article using the same
EP4043398B1 (en) Silica with reduced tribo-charge for toner applications
JP2018203601A (en) Method for producing phenyl alkoxysilane-treated silica
TW202244002A (en) Fumed silica powder with reduced silanol group density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4828032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees