JP2000044226A - Silane-surface-treated siliceous fine particles, their production and organic resin composition containing same - Google Patents

Silane-surface-treated siliceous fine particles, their production and organic resin composition containing same

Info

Publication number
JP2000044226A
JP2000044226A JP11067179A JP6717999A JP2000044226A JP 2000044226 A JP2000044226 A JP 2000044226A JP 11067179 A JP11067179 A JP 11067179A JP 6717999 A JP6717999 A JP 6717999A JP 2000044226 A JP2000044226 A JP 2000044226A
Authority
JP
Japan
Prior art keywords
fine particles
silica
dispersion
silica fine
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11067179A
Other languages
Japanese (ja)
Other versions
JP3756339B2 (en
Inventor
Muneo Kudo
宗夫 工藤
Seiji Ichinohe
省二 一戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP06717999A priority Critical patent/JP3756339B2/en
Publication of JP2000044226A publication Critical patent/JP2000044226A/en
Application granted granted Critical
Publication of JP3756339B2 publication Critical patent/JP3756339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Silicon Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce silane-surface-treated siliceous fine particles having high dispersibility and low aggregability and to obtain an org. resin compsn. giving a film having good transparency, superior blocking resistance, lubricity and scratch resistance. SOLUTION: These silane-surface-treated siliceous fine particles have 0.01-5 μm particle diameter of primary particles. When an org. compd. which is liq. at room temp. and has 1-40 F/m dielectric constant is mixed with the siliceous fine particles in a weight ratio of 5:1 and the mixture is shaken, the siliceous fine particles are uniformly dispersed in the org. compd. When the siliceous fine particles are dispersed in methanol, the methanol is distilled out of the resultant dispersion with an evaporator under heating and the siliceous fine particles are held at 100 deg.C for 2 hr, the ratio of the amt. of primary particles remaining as primary particles to the amt. of the originally present primary particles is >=20%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシラン表面処理シリ
カ系微粒子、特には高分散性、低凝集性を有するシリカ
系微粒子、その製造方法および該シリカ系微粒子を含む
有機樹脂組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to silane surface-treated silica-based fine particles, particularly to silica-based fine particles having high dispersibility and low cohesion, a method for producing the same and an organic resin composition containing the silica-based fine particles. .

【0002】[0002]

【従来の技術】シリカのシラン表面処理の方法として、
一般的にシリコーンオイル処理によるシリカ表面への付
着、あるいはヘキサメチルジシラザン処理によるシリカ
表面への化学結合などの方法がある。有機樹脂、特に、
有機樹脂フィルムに要求される特性として透明性、耐ブ
ロッキング性、滑り性、耐傷性などがある。有機樹脂フ
ィルムに球状のシリカ微粒子を添加することが提案さ
れ、得られるフィルムの透明性が向上すると記載されて
いる(特開平4−348147)。
2. Description of the Related Art As a method for treating a silane surface of silica,
Generally, there are methods such as adhesion to the silica surface by silicone oil treatment and chemical bonding to the silica surface by hexamethyldisilazane treatment. Organic resins, especially
Properties required of the organic resin film include transparency, blocking resistance, slipperiness, and scratch resistance. It has been proposed to add spherical silica fine particles to an organic resin film, and it is described that the transparency of the resulting film is improved (Japanese Patent Laid-Open No. 4-348147).

【0003】[0003]

【発明が解決しようとする課題】上記の表面処理法で得
られたシリカは疎水性の程度は良好であるが、シリカ表
面にシラノール基あるいはアルコキシ基などの反応性基
が残存するため、種々の有機溶媒に分散できなかった
り、凝集性が高かったりしており、高分散性、低凝集性
を有するシリカ系微粒子が望まれていた。特開平2-1606
13号公報には分散性に優れたシリカ系微粒子が提案され
ているが、これは溶媒留去のため加熱した場合一次粒子
保持率が悪くなるという問題があった。また、前記特開
平4−348147に開示の球状シリカ微粒子を比較的
低粘度の液状である熱硬化性あるいは紫外線硬化性の樹
脂組成物の成分として配合すると、該シリカ微粒子は無
機物であるため比重が大きく(2.0より大)、組成物
の他の材料(成分)と大きな比重差があり、その上該シ
リカ微粒子はそれが有するシラノール基の極性あるいは
水素結合などにより凝集しやすく、種々の樹脂あるいは
溶剤に分散しにくいため、組成物を貯蔵している間に経
時で沈降するという欠点がある。そこで、本発明の課題
は、高分散性、低凝集性を有するシリカ系微粒子および
その製造方法を提供することにある。また、本発明の別
の課題は、シリカ系微粒子の分散性およびその経時安定
性が高い有機樹脂組成物であり、そのために透明性が良
く、優れた耐ブロッキング性、滑り性、耐傷性を有する
フィルムが得られる有機樹脂組成物を提供することにあ
る。
The silica obtained by the above-mentioned surface treatment method has a good degree of hydrophobicity, but various reactive groups such as silanol groups or alkoxy groups remain on the silica surface. It cannot be dispersed in an organic solvent or has high cohesiveness, and silica-based fine particles having high dispersibility and low cohesiveness have been desired. JP 2-1606
No. 13 proposes silica-based fine particles having excellent dispersibility, but this method has a problem that when heated for distilling off the solvent, the primary particle retention is deteriorated. When the spherical silica fine particles disclosed in the above-mentioned JP-A-4-348147 are blended as a component of a relatively low-viscosity liquid thermosetting or ultraviolet-curable resin composition, the specific gravity of the silica fine particles is inorganic. It is large (greater than 2.0) and has a large specific gravity difference from other materials (components) of the composition. In addition, the silica fine particles are easily aggregated due to the polarity or hydrogen bond of the silanol group of the silica fine particles. Alternatively, since the composition is difficult to disperse in a solvent, there is a disadvantage that the composition sediments over time during storage of the composition. Therefore, an object of the present invention is to provide silica-based fine particles having high dispersibility and low cohesion, and a method for producing the same. Another object of the present invention is an organic resin composition having a high dispersibility of silica-based fine particles and its stability over time, and therefore has good transparency, excellent blocking resistance, excellent slip resistance, and scratch resistance. It is to provide an organic resin composition from which a film can be obtained.

【0004】[0004]

【課題を解決するための手段】本発明によれば、下記の
条件(i)および(ii)を満たす、1次粒子の粒径が
0.01〜5ミクロンのシラン表面処理シリカ系微粒子
が提供される。 (i)室温で液体であり、誘電率が1〜40F/mであ
る有機化合物とシリカ系微粒子とを5対1の重量比で混
合し振とうした際に、該シリカ系微粒子が前記有機化合
物中に均一に分散する。 (ii)該シリカ系微粒子をメタノールに分散した分散
液からメタノールをエバポレータで加熱下留去した後、
100℃の温度で2時間保持した際に、1次粒子として
残存する1次粒子量の当初存在した1次粒子量に対する
比率が20%以上である。
According to the present invention, there is provided silane surface-treated silica-based fine particles having a primary particle diameter of 0.01 to 5 microns, which satisfies the following conditions (i) and (ii). Is done. (I) When an organic compound which is liquid at room temperature and has a dielectric constant of 1 to 40 F / m and silica-based fine particles are mixed at a weight ratio of 5: 1 and shaken, the silica-based fine particles are mixed with the organic compound. Disperse evenly in it. (Ii) After methanol is distilled off from a dispersion in which the silica-based fine particles are dispersed in methanol by heating with an evaporator,
When kept at a temperature of 100 ° C. for 2 hours, the ratio of the amount of primary particles remaining as primary particles to the amount of primary particles initially present is 20% or more.

【0005】また、本発明によれば、上記シラン表面処
理シリカ系微粒子の製造方法として下記の方法が提供さ
れる。 (A)SiO2単位からなる親水性シリカ微粒子の表面に
2SiO3/2単位(但し、R2は置換または非置換の炭
素原子数1〜20の一価炭化水素基)を導入し、疎水性
シリカ微粒子を得る工程と、(B)得られた疎水性シリ
カ微粒子の表面にR1 3SiO1/2単位(但し、R1は同一
または異種の置換または非置換の炭素原子数1〜6の一
価炭化水素基)を導入する工程と、を含むことを特徴と
する、上記のシラン表面処理シリカ系微粒子の製造方法
が提供される。この方法によれば、粒径が0.01〜5
ミクロンの高分散性、低凝集性の疎水性シリカ系微粒子
が提供される。さらに、本発明によれば、(a)有機樹
脂100重量部と、(b)上記のシラン表面処理シリカ
系微粒子0.01〜10重量部とを含んでなる有機樹脂
組成物が提供される。
Further, according to the present invention, the following method is provided as a method for producing the silane surface-treated silica-based fine particles. (A) R 2 SiO 3/2 units (where R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms) is introduced into the surface of the hydrophilic silica fine particles composed of SiO 2 units, obtaining a hydrophobic silica fine particles, (B) R 1 3 SiO 1/2 units to the surface of the resultant hydrophobic fine silica particles (wherein, R 1 is a substituted or unsubstituted carbon atoms 1 to the same or different (6 monovalent hydrocarbon groups). A process for producing the above-mentioned silane surface-treated silica-based fine particles, comprising the steps of: According to this method, the particle size is from 0.01 to 5
The present invention provides high-dispersion, low-aggregation hydrophobic silica-based fine particles of micron size. Further, according to the present invention, there is provided an organic resin composition comprising (a) 100 parts by weight of an organic resin and (b) 0.01 to 10 parts by weight of the above-mentioned silane surface-treated silica-based fine particles.

【0006】[0006]

【発明の実施の形態】以下、本発明をより詳細に説明す
る。(A)工程 本発明の方法において、(A)工程で出発材料として使用
される親水性シリカ微粒子は、特に限定されないが、例
えば、一般式(I): Si(OR34 (I) (但し、R3は同一または異種の炭素原子数1〜6の一
価炭化水素基)で示される4官能性シラン化合物または
その部分加水分解生成物またはこれらの混合物を塩基性
物質を含む親水性有機溶媒と水の混合液中で加水分解、
縮合することによって親水性シリカ微粒子混合溶媒分散
液を得る段階、次いで該親水性シリカ微粒子混合溶媒分
散液の分散媒を水に変換することにより親水性シリカ微
粒子水性分散液を調製する段階を含む方法により得られ
るものが挙げられる。一般式(I)で示される4官能性
シラン化合物の具体例としては、テトラメトキシシラ
ン、テトラエトキシシラン、テトライソプロポキシシラ
ン、テトラブトキシシラン等のテトラアルコキシシラン
が挙げられる。また、一般式(I)で示される4官能性
シラン化合物の部分加水分解生成物の具体例としては、
メチルシリケート、エチルシリケート等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. (A) Step In the method of the present invention, the hydrophilic silica fine particles used as a starting material in the step (A) are not particularly limited. For example, the general formula (I): Si (OR 3 ) 4 (I) ( However, R 3 is the same or different and is a monofunctional hydrocarbon group having 1 to 6 carbon atoms), a tetrafunctional silane compound or a partial hydrolysis product thereof, or a mixture thereof, is converted into a hydrophilic organic compound containing a basic substance. Hydrolysis in a mixture of solvent and water,
Obtaining a hydrophilic silica fine particle mixed solvent dispersion by condensing, and then preparing a hydrophilic silica fine particle aqueous dispersion by converting the dispersion medium of the hydrophilic silica fine particle mixed solvent dispersion to water. Obtained by the following method. Specific examples of the tetrafunctional silane compound represented by the general formula (I) include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane. Specific examples of the partial hydrolysis product of the tetrafunctional silane compound represented by the general formula (I) include:
Methyl silicate, ethyl silicate and the like can be mentioned.

【0007】親水性有機溶媒は一般式(I)の化合物ま
たはその部分加水分解生成物および水を溶解するもので
あれば特に制限はなく、アルコール類、メチルセロソル
ブ、エチルセロソルブ、ブチルセロソルブ、酢酸セロソ
ルブ等のセロソルブ類、アセトン、メチルエチルケトン
等のケトン類、ジオキサン、テトラヒドロフラン等のエ
ーテル類等が挙げられ、好ましくはアルコール類が良
い。アルコール類としては、一般式(V): R6OH (V) (但し、R6は炭素原子数1〜6の一価炭化水素基)で
示されるアルコール溶媒が挙げられ、具体例としては、
メタノール、エタノール、イソプロパノール、ブタノー
ル等が挙げられる。アルコールの炭素原子数が増すと生
成するシリカ微粒子の粒子径が大きくなるため目的とす
るシリカ微粒子の粒径によりアルコールの種類を選択す
ることが望ましい。また、上記の塩基性物質としてはア
ンモニア、ジメチルアミン、ジエチルアミン等が挙げら
れ、好ましくはアンモニアである。これら塩基性物質は
水に所要量溶解したのち、得られた水溶液(塩基性の
水)を親水性有機溶媒と混合すればよい。
The hydrophilic organic solvent is not particularly limited as long as it can dissolve the compound of the formula (I) or a partial hydrolysis product thereof and water. And ketones such as acetone and methyl ethyl ketone, and ethers such as dioxane and tetrahydrofuran. Alcohols are preferable. Examples of the alcohol include an alcohol solvent represented by the general formula (V): R 6 OH (V) (where R 6 is a monovalent hydrocarbon group having 1 to 6 carbon atoms).
Examples include methanol, ethanol, isopropanol, butanol and the like. As the number of carbon atoms in the alcohol increases, the particle size of the silica fine particles formed increases. Therefore, it is desirable to select the type of alcohol according to the target particle size of the silica fine particles. Examples of the basic substance include ammonia, dimethylamine, diethylamine and the like, with ammonia being preferred. After dissolving a required amount of these basic substances in water, the resulting aqueous solution (basic water) may be mixed with a hydrophilic organic solvent.

【0008】このとき使用される水の量は一般式(I)
のシラン化合物またはその部分加水分解生成物のアルコ
キシ基のモル数に対して0.5〜5当量であることが好ま
しく、水と親水性有機溶媒の比率は重量比で0.5〜10で
あることが好ましく、塩基性物質の量は一般式(I)の
シラン化合物またはその部分加水分解生成物のアルコキ
シ基のモル数に対して0.01〜1当量であることが好まし
い。
The amount of water used at this time is determined by the general formula (I)
It is preferably 0.5 to 5 equivalents to the number of moles of the alkoxy group of the silane compound or its partial hydrolysis product, and the ratio of water to the hydrophilic organic solvent is preferably 0.5 to 10 by weight, The amount of the basic substance is preferably 0.01 to 1 equivalent to the number of moles of the alkoxy group of the silane compound of the general formula (I) or a partial hydrolysis product thereof.

【0009】一般式(I)の4官能性シラン化合物等の
加水分解、縮合は塩基性物質を含む親水性有機溶媒と水
の混合物中へ一般式(I)の4官能性シラン化合物を滴
下する周知の方法よって行われる。シリカ微粒子混合溶
液分散液の分散媒を水に変換するには、例えば、該分散
液に水を添加し親水性有機溶媒を留去する操作(必要に
応じこの操作を繰り返す)により行うことができる。こ
のときに添加される水量は、使用した親水性有機溶媒お
よび生成したアルコール量の合計に対して重量比で0.
5〜2倍量、好ましくはほぼ1倍量用いるのが良い。
For the hydrolysis and condensation of the tetrafunctional silane compound of the general formula (I), the tetrafunctional silane compound of the general formula (I) is dropped into a mixture of water and a hydrophilic organic solvent containing a basic substance. This is performed by a known method. In order to convert the dispersion medium of the silica fine particle mixed solution dispersion into water, for example, an operation of adding water to the dispersion and distilling off the hydrophilic organic solvent (if necessary, repeating this operation) can be performed. . The amount of water added at this time is 0.1% by weight based on the total amount of the hydrophilic organic solvent used and the amount of alcohol generated.
It is good to use 5 to 2 times, preferably almost 1 time.

【0010】(A)工程で出発原料として使用される親
水性シリカ微粒子は親水性シリカ微粒子を含む混合溶媒
分散液でもよいが、親水性シリカ微粒子混合溶媒分散液
に水を添加し親水性有機溶媒を留去し水性分散液に変換
することで、残存していたアルコキシ基が完全に加水分
解されるので、親水性シリカ微粒子を含む水性分散液で
あることが好ましい。 (A)工程は、より具体的には、例えば、前記親水性シリ
カ微粒子を含む水性分散液または混合溶媒分散液に、一
般式(II): R2Si(OR43 (II) (但し、R2は置換または非置換の炭素原子数1〜20
の一価炭化水素基、R4は同一または異種の炭素原子数
1〜6の一価炭化水素基)で示される3官能性シラン化
合物またはその部分加水分解生成物またはこれらの混合
物を添加して親水性シリカ微粒子表面をこれにより処理
し、疎水性シリカ微粒子水性分散液を得ることからな
る。
The hydrophilic silica fine particles used as a starting material in the step (A) may be a mixed solvent dispersion containing hydrophilic silica fine particles, but water is added to the hydrophilic silica fine particle mixed solvent dispersion to prepare a hydrophilic organic solvent. Since the remaining alkoxy groups are completely hydrolyzed by distilling off and converting to an aqueous dispersion, an aqueous dispersion containing hydrophilic silica fine particles is preferable. More specifically, the step (A) is carried out by, for example, adding an aqueous dispersion or a mixed solvent dispersion containing the hydrophilic silica fine particles to the general formula (II): R 2 Si (OR 4 ) 3 (II) , R 2 is a substituted or unsubstituted C 1-20 carbon atom
R 4 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms), a trifunctional silane compound represented by the formula (1), a partial hydrolysis product thereof, or a mixture thereof. The surface of the hydrophilic silica fine particles is treated thereby to obtain an aqueous dispersion of hydrophobic silica fine particles.

【0011】一般式(II)で示される3官能性シラン化
合物の具体例としては、メチルトリメトキシシラン、メ
チルトリエトキシシラン、エチルトリメトキシシラン、
エチルトリエトキシシラン、n−プロピルトリメトキシ
シラン、n−プロピルトリエトキシシラン、i−プロピ
ルトリメトキシシラン、i−プロピルトリエトキシシラ
ン、ブチルトリメトキシシラン、ブチルトリエトキシシ
ラン、ヘキシルトリメトキシシラン、トリフルオロプロ
ピルトリメトキシシラン、ヘプタデカフルオロデシルト
リメトキシシラン等のトリアルコキシシランが挙げら
れ、また、これらの部分加水分解生成物を用いても良
い。一般式(II)で示される3官能性シラン化合物の添
加量は、使用された親水性シリカ微粒子のSiO2単位1モ
ル数当り1〜0.001当量、好ましくは0.1〜0.
01当量用いるのが良い。
Specific examples of the trifunctional silane compound represented by the general formula (II) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane,
Ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, trifluoro Examples include trialkoxysilanes such as propyltrimethoxysilane and heptadecafluorodecyltrimethoxysilane, and their partial hydrolysis products may be used. The addition amount of the trifunctional silane compound represented by the general formula (II) is 1 to 0.001 equivalent, preferably 0.1 to 0. 1 equivalent per 1 mol of SiO 2 unit of the hydrophilic silica fine particles used.
It is better to use 01 equivalent.

【0012】(B)工程 (B)工程は、より具体的には、例えば、前記疎水性シリ
カ微粒子水性分散液の分散媒を水または親水性有機溶
媒、アルコール混合物からケトン系溶媒に変換し、疎水
性シリカ微粒子ケトン系溶媒分散液を得る段階と、該疎
水性シリカ微粒子ケトン系溶媒分散液に一般式(II
I): R1 3SiNHSiR1 3 (III) (但し、R1は同一または異種の置換または非置換の炭素原子数1〜6の一価炭 化水素基) で示されるシラザン化合物、一般式(IV): (IV) R1 3SiX (但し、R1は一般式(III)に同じ。XはOH基または加水分解性基) で示される1官能性シラン化合物またはこれらの混合物
を添加し、前記疎水性シリカ微粒子表面に残存する反応
性基をトリオルガノシリル化する段階と、からなる。
Step (B) The step (B) is more specifically, for example, converting the dispersion medium of the hydrophobic silica fine particle aqueous dispersion from water or a hydrophilic organic solvent, an alcohol mixture to a ketone solvent, A step of obtaining a ketone-based solvent dispersion of hydrophobic silica fine particles;
I): R 1 3 SiNHSiR 1 3 (III) ( where, R 1 is silazane compound represented by the same or different substituted or unsubstituted monovalent carbon hydrogen group having 1 to 6 carbon atoms), the general formula ( IV): (IV) R 1 3 SiX ( where, R 1 is the general formula (III) in the same .X is added an OH group or a monofunctional silane compound represented by the hydrolyzable groups) or a mixture thereof, Triorganosilylating the reactive groups remaining on the surface of the hydrophobic silica fine particles.

【0013】シリカ微粒子水性分散液または混合溶媒分
散液の分散媒を水または親水性有機溶媒、アルコール混
合物からケトン系溶媒に変換するには該分散液にケトン
系溶媒を添加し水または親水性有機溶媒、アルコール混
合物を留去する操作(必要に応じてこの操作を繰り返
す)により行うことができる。このとき添加されるケト
ン系溶媒量は、使用した親水性シリカ微粒子に対して重
量比で0.5〜5倍量、好ましくは1〜2倍量用いるの
が良い。ここで用いられるケトン系溶媒の具体例として
は、メチルエチルケトン、メチルイソブチルケトン、ア
セチルアセトン等が挙げられ、好ましくはメチルイソブ
チルケトンが良い。
To convert the dispersion medium of the aqueous silica fine particle dispersion or the mixed solvent dispersion from water or a hydrophilic organic solvent / alcohol mixture to a ketone-based solvent, add a ketone-based solvent to the dispersion and add water or hydrophilic organic solvent. It can be carried out by an operation of distilling off the solvent / alcohol mixture (this operation is repeated as necessary). The amount of the ketone solvent added at this time is 0.5 to 5 times, preferably 1 to 2 times the weight ratio of the hydrophilic silica fine particles used. Specific examples of the ketone solvent used here include methyl ethyl ketone, methyl isobutyl ketone, acetylacetone and the like, and preferably methyl isobutyl ketone.

【0014】一般式(III)で示されるシラザン化合物
の具体例としては、ヘキサメチルジシラザンが挙げら
れ、一般式(IV)で示される1官能性シラン化合物の具
体例としては、トリメチルシラノール、トリエチルシラ
ノール等のモノシラノール化合物、トリメチルクロロシ
ラン、トリエチルクロロシラン等のモノクロロシラン、
トリメチルメトキシシラン、トリメチルエトキシシラン
等のモノアルコキシシラン、トリメチルシリルジメチル
アミン、トリメチルシリルジエチルアミン等のモノアミ
ノシラン、トリメチルアセトキシシラン等のモノアシロ
キシシランが挙げられる。これらの使用量は、使用した
親水性シリカ微粒子のSiO2単位のモル数に対して0.1
〜0.5当量、好ましくは0.2〜0.3当量用いるの
がよい。
Specific examples of the silazane compound represented by the general formula (III) include hexamethyldisilazane. Specific examples of the monofunctional silane compound represented by the general formula (IV) include trimethylsilanol and triethyl. Monosilanol compounds such as silanol, trichlorochlorosilane, monochlorosilane such as triethylchlorosilane,
Monoalkoxysilanes such as trimethylmethoxysilane and trimethylethoxysilane; monoaminosilanes such as trimethylsilyldimethylamine and trimethylsilyldiethylamine; and monoacyloxysilanes such as trimethylacetoxysilane are exemplified. The amount of these used is 0.1 mol with respect to the number of moles of the SiO 2 unit of the hydrophilic silica fine particles used.
It is good to use -0.5 equivalent, preferably 0.2-0.3 equivalent.

【0015】このようにして、SiO2単位からなるシ
リカ微粒子をR2SiO3/2単位(但し、R2は一般式(I
I)に同じ)でコーティングし、この粒子の表面に残存
する反応性基をR1 3SiO1/2単位(但し、R1は一般式
(III)に同じ)でブロックした、粒径が0.01〜5
ミクロン、好ましくは0.01〜1ミクロンの高分散
性、低凝集性シリカ系微粒子が得られる。このシリカ系
微粒子は、常法によって粉体として取り出しても良い
し、また、シラザンとの反応後有機化合物を添加してこ
の分散体として得ても良い。
As described above, the silica fine particles composed of SiO 2 units are converted into R 2 SiO 3/2 units (where R 2 is represented by the general formula (I)
Were coated with the same) to I), the reactive groups remaining on the surface of the particles R 1 3 SiO 1/2 units (wherein, R 1 is blocked by the formula (III) in the same), the particle size is 0 .01-5
Microdispersed, preferably 0.01 to 1 micron, highly dispersible, low-agglomerated silica-based fine particles are obtained. The silica-based fine particles may be taken out as a powder by a conventional method, or may be obtained as a dispersion by adding an organic compound after the reaction with silazane.

【0016】有機樹脂組成物 本発明の有機樹脂組成物に使用される有機樹脂は、熱可
塑性樹脂でも硬化性樹脂でもよい。熱可塑性樹脂として
は、例えばポリプロピレン、ポリエチレンなどのポリオ
レフィン、ポリエチレンテレフタレート、ポリブチレン
テレフタレートなどのポリエステル、ナイロン6、ナイ
ロン66などのポリアミドなどが挙げられる。また、硬
化性樹脂組成物としては、例えばエポキシ樹脂組成物、
不飽和ポリエステル樹脂組成物などの熱硬化性樹脂組成
物、エポキシアクリレート樹脂組成物、ウレタンアクリ
レート樹脂組成物などの紫外線硬化性樹脂組成物があげ
られる。
Organic Resin Composition The organic resin used in the organic resin composition of the present invention may be a thermoplastic resin or a curable resin. Examples of the thermoplastic resin include polyolefins such as polypropylene and polyethylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, and polyamides such as nylon 6 and nylon 66. Further, as the curable resin composition, for example, an epoxy resin composition,
Examples include a thermosetting resin composition such as an unsaturated polyester resin composition, an ultraviolet curable resin composition such as an epoxy acrylate resin composition, and a urethane acrylate resin composition.

【0017】(b)成分のシラン表面処理シリカ系微粒子
は、高度に疎水化されているため、種々の有機溶媒、有
機樹脂に分散し易く、また、樹脂表面の滑り性、耐ブロ
ッキング性に悪影響を与えるシラノール基が粒子表面に
ほとんど存在しないため、本発明の目的、効果に良好な
結果を与えるものである。この微粒子の粒子径は、樹脂
フィルム表面の滑り性、耐ブロッキング性および透明性
が良好であり、並びに未硬化樹脂組成物中で経時的にも
沈降が起り難い点から、0.01〜5μmが好ましく、
0.05〜1μmがより好ましい。この(b)成分の微粒
子の配合量は、通常、有機樹脂100重量部に対して、
0.01〜10重量部が好ましく、さらに好ましくは
0.1〜5重量部である。かかる範囲内において樹脂の
種類に応じたより好適な配合量を決定することは当業者
には容易である。一般に配合量が少なすぎると、フィル
ムの滑り性、耐ブロッキング性の向上効果が低下し易
く、多すぎると得られる樹脂フィルムの透明性および強
度が低下する傾向がある。
The silane surface-treated silica-based fine particles of the component (b) are highly hydrophobized, so that they are easily dispersed in various organic solvents and organic resins, and adversely affect the slipperiness and blocking resistance of the resin surface. Since there is almost no silanol group present on the particle surface, good results can be obtained for the objects and effects of the present invention. The particle size of the fine particles is preferably 0.01 to 5 μm because the resin film surface has good slipperiness, good blocking resistance and good transparency, and sedimentation does not easily occur in the uncured resin composition over time. Preferably
0.05-1 μm is more preferable. The blending amount of the fine particles of the component (b) is usually based on 100 parts by weight of the organic resin.
It is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight. It is easy for those skilled in the art to determine a more suitable compounding amount depending on the type of the resin within such a range. In general, if the amount is too small, the effect of improving the slipperiness and blocking resistance of the film tends to decrease. If the amount is too large, the transparency and strength of the obtained resin film tend to decrease.

【0018】本発明の有機樹脂組成物には、前記の
(a)、(b)成分の他に、必要に応じて、酸化防止剤、紫外
線吸収剤等の安定剤、加工助剤、着色剤、帯電防止剤、
滑剤などが本発明の効果が損なわれない範囲で添加配合
されていてもよい。有機樹脂に前記のシラン表面処理シ
リカ系微粒子を配合するには公知の方法によれば良く、
ヘンシェルミキサー、V型ブレンダー、リボンブレンダ
ー、らいかい機などの混合機を使用すればよい。また、
組成物が低粘度の場合には、ニーダーミキサー、バタフ
ライミキサー、あるいは通常のプロペラ攪拌子による混
合機を用いて各成分の所定量を均一に混合すればよい。
これにより本発明の組成物が得られる。この組成物から
フィルムを形成するには公知の方法によれば良く、Tダ
イ法、サーキュラーダイ法、二軸延伸法などが挙げられ
る。また、組成物が低粘度の液状の場合には、転写法、
コーティング法等により製膜し、硬化すればよい。
The organic resin composition of the present invention contains
(a), in addition to the component (b), if necessary, antioxidants, stabilizers such as ultraviolet absorbers, processing aids, coloring agents, antistatic agents,
Lubricants and the like may be added and blended within a range that does not impair the effects of the present invention. In order to mix the silane surface-treated silica-based fine particles with the organic resin, a known method may be used.
A mixer such as a Henschel mixer, a V-type blender, a ribbon blender, and a grinder may be used. Also,
When the composition has a low viscosity, a predetermined amount of each component may be uniformly mixed using a kneader mixer, a butterfly mixer, or a mixer using a usual propeller stirrer.
Thereby, the composition of the present invention is obtained. A film can be formed from this composition by a known method, such as a T-die method, a circular die method, or a biaxial stretching method. When the composition is a low-viscosity liquid, a transfer method,
What is necessary is just to form into a film by a coating method etc., and to harden.

【0019】[0019]

【実施例】以下に実施例および比較例を挙げて本発明を
詳細に説明する。実施例1 (1)撹拌機、滴下ロート、温度計を備えた3リットルの
ガラス製反応器にメタノール623.7g、水41.4
g、28%アンモニア水49.8gを添加して混合し
た。この溶液を35℃に調整し、撹拌しながらテトラメ
トキシシラン1163.7gおよび5.4%アンモニア
水418.1gを同時に添加開始し、前者は6時間、そ
して後者は4時間かけて滴下した。テトラメトキシシラ
ン滴下後も0.5時間撹拌を続け加水分解を行いシリカ
微粒子の懸濁液を得た。ガラス製反応器にエステルアダ
プターと冷却管を取り付け、60〜70℃に加熱しメタ
ノール649gを留去したところで水1600gを添加
し、次いでさらに70〜90℃に加熱しメタノール16
0gを留去し、シリカ微粒子の水性懸濁液を得た。 (2)この水性懸濁液に室温でメチルトリメトキシシラン
115.8g(テトラメトキシシランのモル数に対して
0.1当量)および5.4%アンモニア水46.6gを
0.5時間かけて滴下し、滴下後も12時間撹拌しシリ
カ微粒子表面の処理を行った。 (3)こうして得られた分散液にメチルイソブチルケトン
1000gを添加した後、80〜110℃に加熱しメタ
ノール水1336gを11時間かけて留去した。得られ
た分散液に室温でヘキサメチルジシラザン357.6g
を添加し120℃に加熱し3時間反応させ、シリカ微粒
子をトリメチルシリル化した。その後溶媒を減圧下留去
してシラン表面処理シリカ477gを得た。
The present invention will be described in detail below with reference to examples and comparative examples. Example 1 (1) 623.7 g of methanol and 41.4 of water were placed in a 3-liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer.
g and 49.8 g of 28% aqueous ammonia were added and mixed. The solution was adjusted to 35 ° C., and 1163.7 g of tetramethoxysilane and 418.1 g of 5.4% aqueous ammonia were simultaneously added with stirring, and the former was added dropwise over 6 hours, and the latter over 4 hours. Stirring was continued for 0.5 hour after the addition of tetramethoxysilane to carry out hydrolysis to obtain a suspension of silica fine particles. An ester adapter and a condenser were attached to the glass reactor, and the mixture was heated to 60 to 70 ° C., and after 649 g of methanol was distilled off, 1600 g of water was added.
0 g was distilled off to obtain an aqueous suspension of silica fine particles. (2) 115.8 g of methyltrimethoxysilane (based on the number of moles of tetramethoxysilane) was added to this aqueous suspension at room temperature.
0.1 equivalent) and 46.6 g of 5.4% ammonia water were added dropwise over 0.5 hours, and after the addition, the mixture was stirred for 12 hours to treat the surface of the silica fine particles. (3) After 1000 g of methyl isobutyl ketone was added to the dispersion thus obtained, the mixture was heated to 80 to 110 ° C. and 1336 g of methanol water was distilled off over 11 hours. 357.6 g of hexamethyldisilazane was added to the obtained dispersion at room temperature.
Was added, and the mixture was heated to 120 ° C. and reacted for 3 hours to trimethylsilyl the silica fine particles. Thereafter, the solvent was distilled off under reduced pressure to obtain 477 g of silane surface-treated silica.

【0020】得られたシラン表面処理シリカについて以
下の試験を行った。 [分散性試験]室温で液体の有機化合物に微粒子を重量
比で5対1となるよう添加し、振とう機を用いて30分
振とうして混合した後、微粒子の分散状態を目視で観察
する。微粒子の全量が分散し全体がスラリー状に均一な
ものを○;微粒子の全量が有機化合物で湿潤するが一部
有機化合物中に分散せず不均一なものを△;微粒子が有
機化合物で湿潤せず、両者が混合しないものを×とし
て、結果を表3に示した。 [凝集促進試験] (1)メタノールに微粒子を重量比で5対1となるよう
添加し、振とう機を用いて30分振とうする。このよう
に処理した微粒子の粒度分布をレーザー回折散乱式粒度
分布測定装置(堀場製作所LA910)で粒度分布を測
定する。 (2)次に、(1)で得られた微粒子分散液からメタノ
ールをエバポレータで加熱下留去した後、100℃の温
度で2時間保持する。メタノールにこのように処理した
微粒子を添加し振とう機を用いて30分振とうした後、
粒度分布を上記と同様にして測定する。(1)で得られ
た粒径分布を基準として、1次粒子の残存量の比率を求
める。た。なお、一次粒子径はあらかじめ電子顕微鏡観
察によって確認しておく。結果を表3に示した。
The following tests were carried out on the obtained silane surface-treated silica. [Dispersibility test] Fine particles were added to a liquid organic compound at room temperature in a weight ratio of 5: 1, mixed by shaking using a shaker for 30 minutes, and the dispersion state of the fine particles was visually observed. I do. When the total amount of the fine particles is dispersed and the whole is uniform in the form of a slurry: ;: When the entire amount of the fine particles is wet with the organic compound, but partially not dispersed in the organic compound, and when the uniform amount is uneven, the fine particles are wet. The results are shown in Table 3 where x is not mixed. [Aggregation Acceleration Test] (1) Fine particles are added to methanol at a weight ratio of 5: 1, and shaken using a shaker for 30 minutes. The particle size distribution of the fine particles treated as described above is measured by a laser diffraction scattering type particle size distribution analyzer (LA910, Horiba, Ltd.). (2) Next, after methanol is distilled off from the fine particle dispersion obtained in (1) by heating with an evaporator, the mixture is kept at a temperature of 100 ° C. for 2 hours. After adding the fine particles thus treated to methanol and shaking for 30 minutes using a shaking machine,
The particle size distribution is measured as described above. Based on the particle size distribution obtained in (1), the ratio of the residual amount of the primary particles is determined. Was. The primary particle diameter is confirmed in advance by observation with an electron microscope. The results are shown in Table 3.

【0021】[シリコーン粘度試験]190gのジメチ
ルシリコーンオイル(粘度1000cSt/25℃)に
シリカ微粒子10gを添加し分散させて得た試料の粘度
をBM型回転粘度計を用い、回転速度60rpmで粘度
を測定した。結果を表3に示した。 [流動性試験]融点120℃のスチレン−アクリル(7
0:30)共重合体の粉砕物(粒径5〜20ミクロン)
100gにシリカ微粒子1gを添加し、該共重合体粉砕
物の流動性を調べた。結果を表3に示した。
[Silicone Viscosity Test] The viscosity of a sample obtained by adding and dispersing 10 g of silica fine particles to 190 g of dimethyl silicone oil (viscosity of 1000 cSt / 25 ° C.) was measured using a BM type rotational viscometer at a rotational speed of 60 rpm. It was measured. The results are shown in Table 3. [Fluidity test] Styrene-acryl (7
0:30) pulverized copolymer (particle size 5-20 microns)
1 g of silica fine particles was added to 100 g, and the fluidity of the pulverized copolymer was examined. The results are shown in Table 3.

【0022】実施例2〜7 加水分解温度、添加水量、5.4%アンモニア水滴下法
およびその量、メチルトリメトキシシラン滴下法、およ
びその量、メチルイソブチルケトン量を表1に示した通
りとする以外は実施例1と同様にして、シラン表面処理
シリカを得た。なお、実施例5ではメタノール留去操作
を行わなかった。得られたシリカ微粒子について実施例
1と同様の試験を行った。結果を表3に示す。
Examples 2 to 7 The hydrolysis temperature, the amount of water added, the amount of 5.4% ammonia water added dropwise and its amount, the methyltrimethoxysilane dropwise addition method, its amount, and the amount of methyl isobutyl ketone were as shown in Table 1. A silane surface-treated silica was obtained in the same manner as in Example 1 except for the above. In addition, in Example 5, the methanol distillation operation was not performed. The same test as in Example 1 was performed on the obtained silica fine particles. Table 3 shows the results.

【0023】比較例1 実施例1におけるメチルトリメトキシシランおよび5.
4%アンモニア水を用いたシリカ微粒子の処理工程を省
略した以外は実施例1と同様にして疎水性シリカの製造
を試みたところ、水留去時にシリカ微粒子の分散体が凝
固した。比較例2 実施例1におけるヘキサメチルジシラザンを用いたシリ
カ微粒子のトリメチルシリル化工程を省略した以外は実
施例1と同様にしてシラン表面処理シリカを得た。比較例3 実施例1における水の替わりに水1000重量部および
メチルイソブチルケトン1000重量部からなる混合物
を用いた以外は実施例1と同様にしてシラン表面処理シ
リカを得た。比較例2〜3で得られたシラン表面処理シ
リカを用いて実施例1と同様にして分散性試験、凝集促
進試験、シリコーン粘度試験、流動性試験を行い結果を
表4に示した。比較例4〜7 市販のシラン表面処理シリカを用いて実施例1と同様に
して試験を行い結果を表4に示した。
Comparative Example 1 Methyltrimethoxysilane and 5.
An attempt was made to produce hydrophobic silica in the same manner as in Example 1 except that the step of treating the silica fine particles with 4% aqueous ammonia was omitted. As a result, the dispersion of the silica fine particles solidified when water was distilled off. Comparative Example 2 Silane surface-treated silica was obtained in the same manner as in Example 1 except that the step of trimethylsilylation of silica fine particles using hexamethyldisilazane in Example 1 was omitted. Comparative Example 3 Silane surface-treated silica was obtained in the same manner as in Example 1, except that a mixture consisting of 1000 parts by weight of water and 1000 parts by weight of methyl isobutyl ketone was used instead of water in Example 1. Using the silane surface-treated silica obtained in Comparative Examples 2 and 3, a dispersibility test, an aggregation promotion test, a silicone viscosity test, and a fluidity test were performed in the same manner as in Example 1, and the results are shown in Table 4. Comparative Examples 4 to 7 Tests were conducted in the same manner as in Example 1 using commercially available silane surface-treated silica, and the results are shown in Table 4.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 注:MIBK:メチルイソブチルケトン、THF:テト
ラヒドロフラン、D5:デカメチルシクロペンタシロキ
サン
[Table 3] Note: MIBK: methyl isobutyl ketone, THF: tetrahydrofuran, D 5 : decamethylcyclopentasiloxane

【0027】[0027]

【表4】 注) Nipsil SS50F:日本シリカ(株)製商品名、沈降法シリ
カ表面を有機ケイ素化合物で処理したシリカ。 Nipsil SS10:日本シリカ(株)製商品名、沈降法シリ
カ表面を(CH3)2SiO2/2単位で処理したシリカ。エロシ゛ル R972:日本アエロジル(株)製商品名、フューム
ドシリカ表面を(CH3)2SiO2/2単位で処理したシリカ。ミューシル 130A:信越化学工業(株)製商品名、フュームド
シリカ表面をCH3SiO3/2単位で処理したシリカ。
[Table 4] Note) Nipsil SS50F: trade name of Nippon Silica Co., Ltd., silica obtained by treating the surface of a precipitated silica with an organosilicon compound. Nipsil SS10: trade name of Nippon Silica Co., Ltd., silica obtained by treating the surface of a precipitated silica with (CH 3 ) 2 SiO 2/2 units. Erosil R972: trade name, manufactured by Nippon Aerosil Co., Ltd. A silica obtained by treating the surface of fumed silica with (CH 3 ) 2 SiO 2/2 units. Musil 130A: a product of Shin-Etsu Chemical Co., Ltd., a fumed silica surface treated with CH 3 SiO 3/2 units.

【0028】実施例8 Tダイ成型用ポリプロピレン樹脂ノーブレンFL−20
0(メルトフローレート8g/10分)(商品名、三井
東圧化学製)100重量部に実施例1で得られたシラン
表面処理シリカ系微粒子を0.5重量部配合し均一に混
合した。得られた混合物を25mm径の単軸押出機にて
250℃で押し出し、ペレタイザーによりペレット化し
た。得られたペレットをさらに20mm径の単軸押出機
にて250℃でTダイ押し出し形成を行い、厚み0.5
mmのフィルムを得た。得られたフィルムについて以下
の特性評価を行った。
Example 8 T-die molding polypropylene resin Noblen FL-20
0 (melt flow rate: 8 g / 10 min) (trade name, manufactured by Mitsui Toatsu Chemicals, Inc.) was mixed with 0.5 part by weight of the silane surface-treated silica-based fine particles obtained in Example 1 and uniformly mixed. The obtained mixture was extruded at 250 ° C. by a single screw extruder having a diameter of 25 mm, and pelletized by a pelletizer. The obtained pellets were further extruded with a T-die at 250 ° C. using a 20 mm diameter single screw extruder to obtain a
mm of film was obtained. The following properties were evaluated for the obtained film.

【0029】[透明性]フィルムを10枚重ね、全光線透
過率を測定した。 [耐ブロッキング性]フィルム2枚を水平に重ねてその上
下を2枚のガラス板にはさみ、上側のガラス板の上に1
00g/cm2の荷重をのせて室温で24時間放置した。
その後上側のガラス板を取り、重なったままで2枚のフ
ィルムを5cm×5cmに切断して試料を作製した。こ
の試料の重ね合わさった端部において2枚のフィルムを
反対方向に引っ張り、剥離するのに要する力(g)を測
定して耐ブロッキング性の指標とした。剥離に要した力
が小さいほど耐ブロッキング性が高い。 [滑り性]フィルムとSBRゴム面の動摩擦係数をASTM D
-1894に準拠して測定した。結果を表5に示した。実施例9〜12 用いるシリカ系微粒子およびその配合量を表5に示すよ
うに変えた以外は実施例8と同様にしてフィルムを得、
諸特性を同様に評価した。結果を表5に示す。
[Transparency] Ten films were stacked, and the total light transmittance was measured. [Blocking resistance] Two films are stacked horizontally, and the upper and lower sides are sandwiched between two glass plates, and one film is placed on the upper glass plate.
A load of 00 g / cm 2 was applied and left at room temperature for 24 hours.
Thereafter, the upper glass plate was taken out, and the two films were cut into 5 cm × 5 cm while being overlapped to prepare a sample. At the overlapped end of the sample, the two films were pulled in opposite directions, and the force (g) required for peeling was measured and used as an index of blocking resistance. The smaller the force required for peeling, the higher the blocking resistance. [Slippery] ASTM D
It was measured according to -1894. Table 5 shows the results. Examples 9 to 12 Films were obtained in the same manner as in Example 8 except that the silica-based fine particles used and the compounding amounts thereof were changed as shown in Table 5,
Various properties were similarly evaluated. Table 5 shows the results.

【0030】[0030]

【表5】 [Table 5]

【0031】比較例8〜14 シリカ系微粒子およびその配合量を表6に示すように変
えた以外は実施例8と同様にしてフィルムを得、諸特性
を評価した。結果を表6に示す。なお、比較例14で使用
した二酸化ケイ素粒子は、アドマファインSO−C5
(商品名、アドマテック社製、平均粒径2μm、粒度分
布0.1〜5μm)であった。
Comparative Examples 8 to 14 Films were obtained in the same manner as in Example 8 except that the silica-based fine particles and the content thereof were changed as shown in Table 6, and various characteristics were evaluated. Table 6 shows the results. The silicon dioxide particles used in Comparative Example 14 were Admafine SO-C5
(Trade name, manufactured by Admatech, average particle size 2 μm, particle size distribution 0.1-5 μm).

【0032】[0032]

【表6】 [Table 6]

【0033】実施例13〜16 数平均分子量2,000のポリテトラメチレンエーテル
グリコール(三菱化成工業株式会社製、商品名:PTM
G−2000)150g、数平均分子量1,000のポ
リテトラメチレンエーテルグリコール(三菱化成工業株
式会社製、商品名:PTMG−1,000)150g、
ネオペンチルグリコール31.6g、2,4−トリレン
ジイソシアネート175.4gを反応容器に仕込み、こ
の混合物を60〜70℃の温度に保ち6時間反応させ
た。こうして得られたイソシアネート化した反応混合物
を約40℃まで冷却した。これにtert−ブチルヒドロキ
シトルエン0.15g、ジブチルスズラウレート0.0
8g、および2−ヒドロキシエチルアクリレート11
9.3gを添加した後、得られた混合物を60〜70℃
に保ち2時間反応させウレタンアクリレートオリゴマー
を得た。このウレタンオリゴマー55重量部、トリシク
ロデカンジメタノールジアクリレート(三菱化成工業株
式会社製、商品名:SA−1002)15重量部、ビス
フェノールA−EO変性ジアクリレート(東亜合成工業
株式会社製、商品名:M−210)10重量部、N−ビ
ニルピロリドン10重量部、イソホロニルアクリレート
10重量部、光重合開始剤として1−ヒドロキシシクロ
ヘキシルフェニルケトン3重量部とを混合し、紫外線硬
化型ウレタンアクリレート樹脂組成物を調製した。
Examples 13 to 16 Polytetramethylene ether glycol having a number average molecular weight of 2,000 (trade name: PTM, manufactured by Mitsubishi Kasei Kogyo Co., Ltd.)
G-2000) 150 g, polytetramethylene ether glycol having a number average molecular weight of 1,000 (manufactured by Mitsubishi Kasei Kogyo Co., Ltd., trade name: PTMG-1,000) 150 g,
31.6 g of neopentyl glycol and 175.4 g of 2,4-tolylene diisocyanate were charged in a reaction vessel, and the mixture was reacted at a temperature of 60 to 70 ° C. for 6 hours. The isocyanated reaction mixture thus obtained was cooled to about 40 ° C. 0.15 g of tert-butylhydroxytoluene and 0.05 g of dibutyltin laurate were added thereto.
8 g, and 2-hydroxyethyl acrylate 11
After adding 9.3 g, the resulting mixture is brought to 60-70 ° C.
And reacted for 2 hours to obtain a urethane acrylate oligomer. 55 parts by weight of this urethane oligomer, 15 parts by weight of tricyclodecane dimethanol diacrylate (trade name: SA-1002, manufactured by Mitsubishi Kasei Kogyo Co., Ltd.), bisphenol A-EO modified diacrylate (trade name, manufactured by Toa Gosei Co., Ltd.) : M-210) 10 parts by weight, 10 parts by weight of N-vinylpyrrolidone, 10 parts by weight of isophoronyl acrylate, and 3 parts by weight of 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator, and a UV-curable urethane acrylate resin A composition was prepared.

【0034】上記で調製した紫外線硬化型ウレタンアク
リレート樹脂組成物100重量部に、表7に示すシリカ
系微粒子を表7に示す配合量(重量部)で配合、混合し、
さらに三本ロールミルで2回混練し、均一に混合した。
得られた樹脂組成物をガラス板上に30〜50μmの厚
さに塗布し、得られた塗膜に200mJ/cm2(波長3
50nm)の紫外線を照射して硬化させ、厚さ50μm
の硬化フイルムを得た。得られたフイルムについて以下
の方法で特性評価を行った。
100 parts by weight of the ultraviolet-curable urethane acrylate resin composition prepared above were mixed and mixed with silica-based fine particles shown in Table 7 in the amounts (parts by weight) shown in Table 7;
Further, the mixture was kneaded twice with a three-roll mill and uniformly mixed.
The obtained resin composition is applied on a glass plate to a thickness of 30 to 50 μm, and the obtained coating film is coated with 200 mJ / cm 2 (wavelength 3
50 nm) to cure by irradiating with ultraviolet rays, thickness 50 μm
A cured film was obtained. The characteristics of the obtained film were evaluated by the following methods.

【0035】特性の評価 [滑り性]硬化フィルムを25℃、相対湿度50%で24
時間状態調整した後、フィルム同士の摩擦係数をASTM D
1894に準拠して測定した。 [耐ブロッキング性]5cm×5cmに切断した2枚の硬
化フィルムを水平に重ねてその上下を2枚のガラス板に
はさみ、上側のガラス板の上に100gの荷重をのせて
室温で24時間放置した。その後フィルムをガラス板か
ら取りはずした。この重ね合わさったフィルムの端部に
おいて2枚のフィルムを反対方向に10gの力で引っ張
り、フィルムの剥離ないしは密着の程度を次の基準で評
価した。 ○:容易にはがれる。 ×:密着している。 [透明性]上記の方法で膜厚50μmの硬化フィルムを作
成しフィルムを肉眼で透かして見た時に、フィルムの向
こう側が透けて見えるかどうかを判定し評価した。 ○:透けて見える。 ×:透けて見えない。 [沈降性]硬化前の樹脂組成物をガラスビンに入れ、40
℃で30日静置した後、シリカ系微粒子の沈降の程度を
肉眼で観察した。 ○:沈降が認められない。 ×:沈降が認められ、2層への分離も認められる。 結果を表7に示す。
Evaluation of Properties [Slidability] The cured film was treated at 25 ° C. and 50% relative humidity for 24 hours.
After adjusting the time condition, the coefficient of friction between
Measured according to 1894. [Blocking resistance] Two cured films cut to 5 cm x 5 cm are placed horizontally on top of each other and sandwiched between two glass plates. A 100 g load is placed on the upper glass plate and left at room temperature for 24 hours. did. Thereafter, the film was removed from the glass plate. At the end of the superposed films, the two films were pulled in opposite directions with a force of 10 g, and the degree of peeling or adhesion of the films was evaluated according to the following criteria. :: peels off easily. ×: Adhered. [Transparency] A cured film having a thickness of 50 μm was prepared by the above method, and when the film was seen through the naked eye, it was determined whether the other side of the film could be seen through and evaluated. ○: See through. ×: Invisible. [Precipitation] Put the resin composition before curing in a glass bottle,
After standing at 30 ° C. for 30 days, the degree of settling of the silica-based fine particles was visually observed. :: No sedimentation was observed. ×: Sedimentation was observed, and separation into two layers was also observed. Table 7 shows the results.

【0036】[0036]

【表7】 [Table 7]

【0037】比較例15〜18 シリカ系微粒子およびその配合量を表8に示すように変
えた以外は実施例13〜16と同様にしてフィルムを
得、諸特性を同様に評価した。結果を表8に示す。な
お、比較例14で使用した二酸化ケイ素粒子は、下記の
ようにして表面処理をしたものであった。アドマファイ
ンSO−C5(商品名、アドマテック社製、平均粒径2
μm、粒度分布0.1〜5μm)100重量部とイオン
交換水1重量部をミキサーで混合し、60℃で24時間
加熱処理した。処理した混合物を室温まで冷却し、ヘキ
サメチルシシラザン2重量部を添加混合後、24時間室
温で放置した。その後120℃で24時間加熱処理を行
い、表面処理二酸化ケイ素粒子を得た。
Comparative Examples 15 to 18 Films were obtained in the same manner as in Examples 13 to 16 except that the silica-based fine particles and the compounding amounts thereof were changed as shown in Table 8, and various characteristics were similarly evaluated. Table 8 shows the results. The silicon dioxide particles used in Comparative Example 14 had been surface-treated as described below. Admafine SO-C5 (trade name, manufactured by Admatech, average particle size 2)
(μm, particle size distribution: 0.1 to 5 μm) 100 parts by weight and 1 part by weight of ion-exchanged water were mixed by a mixer and heat-treated at 60 ° C. for 24 hours. The treated mixture was cooled to room temperature, and after adding and mixing 2 parts by weight of hexamethylsilazane, the mixture was allowed to stand at room temperature for 24 hours. Thereafter, heat treatment was performed at 120 ° C. for 24 hours to obtain surface-treated silicon dioxide particles.

【0038】[0038]

【表8】 [Table 8]

【0039】実施例17〜20 熱硬化性一液型エポキシ樹脂(旭電化工業社製、商品
名:アデカオプトンKT−970、粘度7300cP/25
℃)100重量部に表9に示すシリカ系微粒子を表9に
示す配合量(重量部)で配合、混合し、さらに三本ロール
ミルで2回混練し、均一に混合した。得られた樹脂組成
物を0.2mmの厚さのアルミニウム板上およびガラス
板上に30〜50μmの厚さに塗布し、130℃で2時
間加熱しアルミニウム板上およびガラス板上に形成され
た硬化フィルムを得た。得られたフィルムについて以下
の特性評価を行った。 [滑り性]アルミニウム板上に形成されたフィルムを25
℃、相対湿度50%で24時間状態調整した後、フィル
ム同士の摩擦係数をASTM D1894に準拠して測定した。 [耐ブロッキング性]5cm×5cmに切断した2枚の硬
化フィルムを水平に重ねてその上下を2枚のガラス板に
はさみ、上側のガラス板の上に100gの荷重をのせて
室温で24時間放置した。その後フィルムをガラス板か
ら取りはずした。この重ね合わさったフィルムの端部に
おいて2枚のフィルムを反対方向に10gの力で引っ張
り、フィルムの剥離ないしは密着の程度を次の基準で評
価した。 ○:容易にはがれる。 ×:密着している。 [透明性]上記と同様の方法でガラス板上に膜厚200〜
300μmの硬化フィルムを作成しこれをを肉眼で透か
して見た時に、フィルムの向こう側が透けて見えるかど
うかの基準で評価した。 ○:透けて見える。 ×:透けて見えない。 [沈降性]硬化前の樹脂組成物をガラスビンに入れ、40
℃で30日静置した後、沈降の程度を肉眼で観察した。 ○:沈降が認められない。 ×:沈降が認められ、2層への分離も認められる。 結果を表9に示す。
Examples 17 to 20 Thermosetting one-pack type epoxy resin (Adeka Opton KT-970, manufactured by Asahi Denka Kogyo KK, viscosity 7300 cP / 25)
C.) 100 parts by weight of the silica-based fine particles shown in Table 9 were blended in the amounts (parts by weight) shown in Table 9 and mixed, further kneaded twice with a three-roll mill, and uniformly mixed. The obtained resin composition was applied on an aluminum plate and a glass plate having a thickness of 0.2 mm to a thickness of 30 to 50 μm, and heated at 130 ° C. for 2 hours to form on the aluminum plate and the glass plate. A cured film was obtained. The following properties were evaluated for the obtained film. [Slidability] 25 films formed on aluminum plate
After conditioning for 24 hours at 50 ° C. and a relative humidity of 50%, the coefficient of friction between the films was measured according to ASTM D1894. [Blocking resistance] Two cured films cut to 5 cm x 5 cm are placed horizontally on top of each other and sandwiched between two glass plates. A 100 g load is placed on the upper glass plate and left at room temperature for 24 hours. did. Thereafter, the film was removed from the glass plate. At the end of the superposed films, the two films were pulled in opposite directions with a force of 10 g, and the degree of peeling or adhesion of the films was evaluated according to the following criteria. :: peels off easily. ×: Adhered. [Transparency] A film having a thickness of 200 to 200
When a cured film having a thickness of 300 μm was prepared and viewed with the naked eye, the evaluation was made based on whether or not the other side of the film could be seen through. ○: See through. ×: Invisible. [Precipitation] Put the resin composition before curing in a glass bottle,
After standing at 30 ° C. for 30 days, the degree of sedimentation was visually observed. :: No sedimentation was observed. ×: Sedimentation was observed, and separation into two layers was also observed. Table 9 shows the results.

【0040】[0040]

【表9】 [Table 9]

【0041】比較例19〜22 シリカ系微粒子およびその配合量を表10に示すように
変えた以外は実施例17〜20と同様にして硬化フィル
ムを得、諸特性を同様に評価した。結果を表10に示
す。なお、比較例22で使用した二酸化ケイ素粒子は、
下記のようにして表面処理をしたものであった。アドマ
ファインSO−C5(商品名、アドマテック社製、平均
粒径2μm、粒度分布0.1〜5μm)100重量部と
イオン交換水1重量部をミキサーで混合し、60℃で2
4時間加熱処理した。処理した混合物を室温まで冷却
し、ヘキサメチルジシラザン2重量部を添加混合後、室
温で24時間放置した。さらに、120℃で24時間加
熱処理を行い、表面処理二酸化ケイ素粒子を得た。
Comparative Examples 19 to 22 Cured films were obtained in the same manner as in Examples 17 to 20, except that the silica-based fine particles and the amount thereof were changed as shown in Table 10, and various properties were evaluated in the same manner. Table 10 shows the results. The silicon dioxide particles used in Comparative Example 22 were:
The surface was treated as described below. 100 parts by weight of Admafine SO-C5 (trade name, manufactured by Admatech Co., Ltd., average particle size: 2 μm, particle size distribution: 0.1 to 5 μm) and 1 part by weight of ion-exchanged water are mixed by a mixer.
Heat treatment was performed for 4 hours. The treated mixture was cooled to room temperature, 2 parts by weight of hexamethyldisilazane was added and mixed, and then left at room temperature for 24 hours. Further, heat treatment was performed at 120 ° C. for 24 hours to obtain surface-treated silicon dioxide particles.

【0042】[0042]

【表10】 [Table 10]

【0043】[0043]

【発明の効果】本発明により得られるシラン表面処理シ
リカ系微粒子は、従来にない高分散性、低凝集性を有す
る。このシリカ系微粒子は、各種ゴム、合成徴脂の特性
改質(滑り性、耐摩耗性、潤滑性、ブロッキング防止・
加撓性)、塗料、インキコーティング剤の特性改良、化
粧品への潤滑性、撥水性付与、研磨剤用研磨粒子、粉状
樹脂等、各種粉体の流動化剤としても好適に用いること
ができる。特に、本発明の有機樹脂組成物は、上記の高
分散性シリカ系微粒子を材料とするためシリカ系微粒子
の沈降が経時的にも起り難く、そのために透明性が良
く、優れた耐ブロッキング性、滑り性、耐傷性を有する
フィルムが得られる。
As described above, the silane surface-treated silica fine particles obtained by the present invention have high dispersibility and low agglomeration, which have never been obtained before. These silica-based fine particles are used to improve the properties of various rubbers and synthetic fats (slipperiness, abrasion resistance, lubricity, blocking prevention,
(Flexibility), improved properties of paints and ink coatings, lubricity and water repellency imparted to cosmetics, abrasive particles for abrasives, powdered resin, etc., can be suitably used as a fluidizing agent for various powders. . In particular, the organic resin composition of the present invention is hardly settled over time because of the use of the above-described highly dispersible silica-based fine particles, and thus has good transparency and excellent blocking resistance, A film having slipperiness and scratch resistance is obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09C 3/12 C09C 3/12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09C 3/12 C09C 3/12

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】下記の条件(i)および(ii)を満た
す、1次粒子の粒径が0.01〜5ミクロンのシラン表
面処理シリカ系微粒子: (i)室温で液体であり、誘電率が1〜40F/mであ
る有機化合物とシリカ系微粒子とを5対1の重量比で混
合し振とうした際に、該シリカ系微粒子が前記有機化合
物中に均一に分散する。 (ii)該シリカ系微粒子をメタノールに分散した分散
液からメタノールをエバポレータで加熱下留去した後、
100℃の温度で2時間保持した際に、1次粒子として
残存する1次粒子量の当初存在した1次粒子量に対する
比率が20%以上である。
1. Silane-treated silica-based fine particles having a primary particle size of 0.01 to 5 microns satisfying the following conditions (i) and (ii): (i) liquid at room temperature and having a dielectric constant Is mixed at a weight ratio of 5 to 1 with an organic compound having a particle size of 1 to 40 F / m, and the silica-based fine particles are uniformly dispersed in the organic compound. (Ii) After methanol is distilled off from a dispersion in which the silica-based fine particles are dispersed in methanol by heating with an evaporator,
When kept at a temperature of 100 ° C. for 2 hours, the ratio of the amount of primary particles remaining as primary particles to the amount of primary particles initially present is 20% or more.
【請求項2】(A)SiO2単位からなる親水性シリカ微
粒子の表面にR2SiO3/2単位(但し、R2は置換また
は非置換の炭素原子数1〜20の一価炭化水素基)を導
入し、疎水性シリカ微粒子を得る工程と、(B)得られ
た疎水性シリカ微粒子の表面にR1 3SiO1/2単位(但
し、R1は同一または異種の置換または非置換の炭素原
子数1〜6の一価炭化水素基)を導入する工程と、を有
することを特徴とする、諸求項1記載のシラン表面処理
シリカ系微粒子の製造方法。
Wherein (A) the surface of R 2 SiO 3/2 units of the hydrophilic silica fine particles comprising SiO 2 units (wherein, R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms ) was introduced, and obtaining a hydrophobic silica fine particles, (B) obtained hydrophobic silica surface to R 1 3 SiO 1/2 units of microparticles (wherein, R 1 is a substituted or unsubstituted identical or different 2. A method for producing silica-based fine particles treated with a silane surface according to claim 1, comprising a step of introducing a monovalent hydrocarbon group having 1 to 6 carbon atoms).
【請求項3】前記(A)工程に用いられる親水性シリカ
微粒子が、一般式(I): Si(OR34 (I) (但し、R3は同一または異種の炭素原子数1〜6の一
価炭化水素基)で示される4官能性シラン化合物または
その部分加水分解生成物またはこれらの混合物を塩基性
物質を含む親水性有機溶媒と水の混合液中で加水分解、
縮合することによって親水性シリカ微粒子混合溶媒分散
液を得る段階、次いで該親水性シリカ微粒子混合溶媒分
散液の分散媒を水に変換することにより親水性シリカ微
粒子水性分散液を調製する段階を含む方法により得られ
たものである請求項2に記載の製造方法。
3. The hydrophilic silica fine particles used in the step (A) are represented by the general formula (I): Si (OR 3 ) 4 (I) (where R 3 is the same or different and has 1 to 6 carbon atoms). Hydrolyzing a tetrafunctional silane compound represented by the formula (1) or a partial hydrolysis product thereof or a mixture thereof in a mixture of a hydrophilic organic solvent containing a basic substance and water;
Obtaining a hydrophilic silica fine particle mixed solvent dispersion by condensing, and then preparing a hydrophilic silica fine particle aqueous dispersion by converting the dispersion medium of the hydrophilic silica fine particle mixed solvent dispersion to water. The production method according to claim 2, which is obtained by the following method.
【請求項4】上記親水性有機溶媒が、一般式(V): R6OH (V) (但し、R6は炭素原子数1〜6の一価炭化水素基)で
示されるアルコール溶媒である請求項3記載のシリカ系
微粒子の製造方法。
4. The hydrophilic organic solvent is an alcohol solvent represented by the general formula (V): R 6 OH (V) (where R 6 is a monovalent hydrocarbon group having 1 to 6 carbon atoms). A method for producing the silica-based fine particles according to claim 3.
【請求項5】上記塩基性物質がアンモニアである請求項
3記載のシリカ系微粒子の製造方法。
5. The method according to claim 3, wherein the basic substance is ammonia.
【請求項6】前記(A)工程が、前記親水性シリカ微粒子
を含む水性分散液または混合溶媒分散液に、一般式(I
I): R2Si(OR43 (II) (但し、R2は置換または非置換の炭素原子数1〜20
の一価炭化水素基、R4は同一または異種の炭素原子数
1〜6の一価炭化水素基)で示される3官能性シラン化
合物またはその部分加水分解生成物またはこれらの混合
物を添加して親水性シリカ微粒子表面をこれにより処理
し、疎水性シリカ微粒子水性分散液を得ることからな
り、前記(B)工程が、前記疎水性シリカ微粒子水性分散
液の分散媒をケトン系溶媒に変換し、疎水性シリカ微粒
子ケトン系溶媒分散液を得る段階と、該疎水性シリカ微
粒子ケトン系溶媒分散液に一般式(III): R1 3SiNHSiR1 3 (III) (但し、R1は同一または異種の置換または非置換の炭
素原子数1〜6の一価炭化水素基)で示されるシラザン
化合物、一般式(IV): R1 3SiX (IV) (但し、R1は一般式(III)に同じ。XはOH基または
加水分解性基)で示される1官能性シラン化合物または
これらの混合物を添加し、前記疎水性シリカ微粒子表面
に残存する反応性基をトリオルガノシリル化する段階
と、からなる、請求項2記載のシリカ系微粒子の製造方
法。
6. The method according to claim 1, wherein the step (A) comprises adding an aqueous dispersion or a mixed solvent dispersion containing the hydrophilic silica fine particles to a dispersion of the general formula (I)
I): R 2 Si (OR 4 ) 3 (II) (where R 2 is a substituted or unsubstituted carbon atom having 1 to 20 carbon atoms)
R 4 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms), a trifunctional silane compound represented by the formula (1), a partial hydrolysis product thereof, or a mixture thereof. The surface of the hydrophilic silica fine particles is treated thereby, to obtain an aqueous dispersion of hydrophobic silica fine particles, and the step (B) converts the dispersion medium of the aqueous dispersion of hydrophobic silica fine particles into a ketone-based solvent, a step of obtaining a hydrophobic silica fine particles ketone solvent dispersion, hydrophobic silica microparticles ketone solvent dispersion into the general formula (III): R 1 3 SiNHSiR 1 3 (III) ( where, R 1 is identical or different silazane compound represented by a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms), the general formula (IV): R 1 3 SiX (IV) ( where, R 1 is the general formula (III) same as X is an OH group or a hydrolyzable group) 3. The method for producing silica-based fine particles according to claim 2, comprising: adding a monofunctional silane compound or a mixture thereof, and triorganosilylating a reactive group remaining on the surface of the hydrophobic silica fine particles. .
【請求項7】ケトン系溶媒がメチルイソブチルケトンで
ある請求項6記載のシリカ系微粒子の製造方法。
7. The method according to claim 6, wherein the ketone solvent is methyl isobutyl ketone.
【請求項8】(a)有機樹脂100重量部と、(b)請
求項1に記載のシラン表面処理シリカ系微粒子0.01
〜10重量部とを含んでなる有機樹脂組成物。
8. A silica-based fine particle having a silane surface treatment according to claim 1, wherein (a) 100 parts by weight of an organic resin and (b) 0.01% by weight of the silica-based fine particles.
An organic resin composition comprising from 10 to 10 parts by weight.
JP06717999A 1998-05-18 1999-03-12 Silane surface-treated silica fine particles, method for producing the same, and organic resin composition containing the same Expired - Lifetime JP3756339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06717999A JP3756339B2 (en) 1998-05-18 1999-03-12 Silane surface-treated silica fine particles, method for producing the same, and organic resin composition containing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15356498 1998-05-18
JP10-153564 1998-05-18
JP06717999A JP3756339B2 (en) 1998-05-18 1999-03-12 Silane surface-treated silica fine particles, method for producing the same, and organic resin composition containing the same

Publications (2)

Publication Number Publication Date
JP2000044226A true JP2000044226A (en) 2000-02-15
JP3756339B2 JP3756339B2 (en) 2006-03-15

Family

ID=26408356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06717999A Expired - Lifetime JP3756339B2 (en) 1998-05-18 1999-03-12 Silane surface-treated silica fine particles, method for producing the same, and organic resin composition containing the same

Country Status (1)

Country Link
JP (1) JP3756339B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256170A (en) * 2001-03-05 2002-09-11 Tokuyama Corp Hydrophobic silica powder and its manufacturing method
JP2003306322A (en) * 2002-04-10 2003-10-28 Tayca Corp Fat-covered insoluble inorganic particle
JP2003342017A (en) * 2002-05-27 2003-12-03 Ishihara Chem Co Ltd Fine anhydrous silica powder and its producing method
JP2004156039A (en) * 2002-11-07 2004-06-03 Degussa Ag Polymer composition, method for coating molded articles and use of the composition
US6916545B2 (en) 2001-10-31 2005-07-12 Nissan Motor Co., Ltd. Resin composition, thermoplastic resin laminate, and production methods thereof
JP2005239769A (en) * 2004-02-24 2005-09-08 Mitsubishi Rayon Co Ltd Acrylic polymer fine particle and production method therefor, and plastisol composition
EP1657283A1 (en) 2004-11-16 2006-05-17 Nissan Chemical Industries, Ltd. Process for producing hydrophobic silica powder
JP2006152191A (en) * 2004-12-01 2006-06-15 Shin Etsu Chem Co Ltd Composition for giving gloss
US7186440B2 (en) 2005-07-04 2007-03-06 Nissan Chemical Industries, Ltd. Process for producing hydrophobic silica powder
WO2007051747A2 (en) * 2005-10-31 2007-05-10 Evonik Degussa Gmbh Improved processing composition comprising silylated silica and method of forming the same
JP2008037995A (en) * 2006-08-04 2008-02-21 Tayca Corp Highly dispersed solid-liquid dispersion and coating liquid compounded with the same
WO2008033506A3 (en) * 2006-09-15 2008-05-08 Cabot Corp Method of preparing hydrophobic silica
JP2008184371A (en) * 2007-01-31 2008-08-14 Ube Nitto Kasei Co Ltd Method for manufacturing metal oxide particles, metal oxide particles and resin composition
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same
JP2009242599A (en) * 2008-03-31 2009-10-22 Aica Kogyo Co Ltd Urea urethane resin composition
JP2010001342A (en) * 2008-06-19 2010-01-07 Shin-Etsu Chemical Co Ltd Organic resin powder coating composition
JP2010180334A (en) * 2009-02-06 2010-08-19 Shin-Etsu Chemical Co Ltd Adhesive composition, adhesive sheet, and dicing die attach film
JP2010532740A (en) * 2007-07-06 2010-10-14 キャボット コーポレイション Hydrophobized metal oxide
JP2011137097A (en) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd Coating liquid for transparent film formation, substrate with transparent film, and method for producing hydrophobic metal oxide particle
WO2011102548A1 (en) 2010-02-19 2011-08-25 株式会社トクヤマ Method for producing inorganic oxide particles
US8435474B2 (en) 2006-09-15 2013-05-07 Cabot Corporation Surface-treated metal oxide particles
US8455165B2 (en) 2006-09-15 2013-06-04 Cabot Corporation Cyclic-treated metal oxide
JP2013204030A (en) * 2012-03-29 2013-10-07 Admatechs Co Ltd Filler containing liquid composition
JP2014136670A (en) * 2013-01-18 2014-07-28 Shin Etsu Chem Co Ltd Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP2015054886A (en) * 2013-09-11 2015-03-23 荒川化学工業株式会社 Resin composition, active energy ray-curable hard coat agent comprising the same, and decorative film
JP2015061881A (en) * 2014-12-25 2015-04-02 株式会社 菊星 Hair styling agent composition
US9233853B2 (en) 2010-12-13 2016-01-12 Fuji Xerox Co., Ltd. Method for producing silica particles
JP2018513826A (en) * 2015-03-12 2018-05-31 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップAkzo Nobel Chemicals International B.V. Methylsilyl derivatized silica particles, colloids, method for production and kit containing the same
US10081718B2 (en) 2016-02-10 2018-09-25 Fuji Xerox Co., Ltd. Resin particle composition
WO2018230179A1 (en) * 2017-06-15 2018-12-20 信越化学工業株式会社 Silicone composition and production method for same
JP2019001975A (en) * 2017-06-15 2019-01-10 信越化学工業株式会社 Silicone composition and manufacturing method therefor
KR20200013661A (en) 2017-06-02 2020-02-07 신에쓰 가가꾸 고교 가부시끼가이샤 Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and negative electrode material for nonaqueous electrolyte secondary battery
US10570020B2 (en) 2015-09-14 2020-02-25 Fuji Xerox Co., Ltd. Silica particle and method of preparing silica particle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194563B2 (en) 2007-05-28 2013-05-08 信越化学工業株式会社 Scratch resistant coating composition and coated article
JP5804568B2 (en) 2012-09-27 2015-11-04 信越化学工業株式会社 Silicone mist inhibitor

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256170A (en) * 2001-03-05 2002-09-11 Tokuyama Corp Hydrophobic silica powder and its manufacturing method
US6916545B2 (en) 2001-10-31 2005-07-12 Nissan Motor Co., Ltd. Resin composition, thermoplastic resin laminate, and production methods thereof
JP2003306322A (en) * 2002-04-10 2003-10-28 Tayca Corp Fat-covered insoluble inorganic particle
JP2003342017A (en) * 2002-05-27 2003-12-03 Ishihara Chem Co Ltd Fine anhydrous silica powder and its producing method
JP2004156039A (en) * 2002-11-07 2004-06-03 Degussa Ag Polymer composition, method for coating molded articles and use of the composition
KR101059377B1 (en) 2002-11-07 2011-08-26 에보닉 데구사 게엠베하 Polyamide powder with good fluidity and long lasting
JP2005239769A (en) * 2004-02-24 2005-09-08 Mitsubishi Rayon Co Ltd Acrylic polymer fine particle and production method therefor, and plastisol composition
EP1657283A1 (en) 2004-11-16 2006-05-17 Nissan Chemical Industries, Ltd. Process for producing hydrophobic silica powder
JP4489569B2 (en) * 2004-12-01 2010-06-23 信越化学工業株式会社 Polishing agent composition
JP2006152191A (en) * 2004-12-01 2006-06-15 Shin Etsu Chem Co Ltd Composition for giving gloss
US7186440B2 (en) 2005-07-04 2007-03-06 Nissan Chemical Industries, Ltd. Process for producing hydrophobic silica powder
JP2009513808A (en) * 2005-10-31 2009-04-02 エボニック デグサ ゲーエムベーハー Improved treatment composition and method of forming the same
WO2007051747A3 (en) * 2005-10-31 2008-05-22 Evonik Degussa Gmbh Improved processing composition comprising silylated silica and method of forming the same
WO2007051747A2 (en) * 2005-10-31 2007-05-10 Evonik Degussa Gmbh Improved processing composition comprising silylated silica and method of forming the same
JP2008037995A (en) * 2006-08-04 2008-02-21 Tayca Corp Highly dispersed solid-liquid dispersion and coating liquid compounded with the same
US8455165B2 (en) 2006-09-15 2013-06-04 Cabot Corporation Cyclic-treated metal oxide
US10407571B2 (en) 2006-09-15 2019-09-10 Cabot Corporation Hydrophobic-treated metal oxide
JP2013139389A (en) * 2006-09-15 2013-07-18 Cabot Corp Method of preparing hydrophobic silica
JP2010503604A (en) * 2006-09-15 2010-02-04 キャボット コーポレイション Method for preparing hydrophobic silica
US8202502B2 (en) 2006-09-15 2012-06-19 Cabot Corporation Method of preparing hydrophobic silica
WO2008033506A3 (en) * 2006-09-15 2008-05-08 Cabot Corp Method of preparing hydrophobic silica
US8435474B2 (en) 2006-09-15 2013-05-07 Cabot Corporation Surface-treated metal oxide particles
JP2008184371A (en) * 2007-01-31 2008-08-14 Ube Nitto Kasei Co Ltd Method for manufacturing metal oxide particles, metal oxide particles and resin composition
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same
JP4579265B2 (en) * 2007-04-25 2010-11-10 信越化学工業株式会社 Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
JP2010532740A (en) * 2007-07-06 2010-10-14 キャボット コーポレイション Hydrophobized metal oxide
JP2015061819A (en) * 2007-07-06 2015-04-02 キャボット コーポレイションCabot Corporation Hydrophobic-treated metal oxide
JP2017014107A (en) * 2007-07-06 2017-01-19 キャボット コーポレイションCabot Corporation Hydrophobic-treated metal oxide
JP2009242599A (en) * 2008-03-31 2009-10-22 Aica Kogyo Co Ltd Urea urethane resin composition
JP2010001342A (en) * 2008-06-19 2010-01-07 Shin-Etsu Chemical Co Ltd Organic resin powder coating composition
JP2010180334A (en) * 2009-02-06 2010-08-19 Shin-Etsu Chemical Co Ltd Adhesive composition, adhesive sheet, and dicing die attach film
JP2011137097A (en) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd Coating liquid for transparent film formation, substrate with transparent film, and method for producing hydrophobic metal oxide particle
WO2011102548A1 (en) 2010-02-19 2011-08-25 株式会社トクヤマ Method for producing inorganic oxide particles
US9000202B2 (en) 2010-02-19 2015-04-07 Tokuyama Corporation Method for producing inorganic oxide particles
US9079777B2 (en) 2010-02-19 2015-07-14 Tokuyama Corporation Method for producing inorganic oxide particles
US9233853B2 (en) 2010-12-13 2016-01-12 Fuji Xerox Co., Ltd. Method for producing silica particles
JP2013204030A (en) * 2012-03-29 2013-10-07 Admatechs Co Ltd Filler containing liquid composition
JP2014136670A (en) * 2013-01-18 2014-07-28 Shin Etsu Chem Co Ltd Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP2015054886A (en) * 2013-09-11 2015-03-23 荒川化学工業株式会社 Resin composition, active energy ray-curable hard coat agent comprising the same, and decorative film
JP2015061881A (en) * 2014-12-25 2015-04-02 株式会社 菊星 Hair styling agent composition
JP2018513826A (en) * 2015-03-12 2018-05-31 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップAkzo Nobel Chemicals International B.V. Methylsilyl derivatized silica particles, colloids, method for production and kit containing the same
US10570020B2 (en) 2015-09-14 2020-02-25 Fuji Xerox Co., Ltd. Silica particle and method of preparing silica particle
US10081718B2 (en) 2016-02-10 2018-09-25 Fuji Xerox Co., Ltd. Resin particle composition
KR20200013661A (en) 2017-06-02 2020-02-07 신에쓰 가가꾸 고교 가부시끼가이샤 Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and negative electrode material for nonaqueous electrolyte secondary battery
WO2018230179A1 (en) * 2017-06-15 2018-12-20 信越化学工業株式会社 Silicone composition and production method for same
JP2019001975A (en) * 2017-06-15 2019-01-10 信越化学工業株式会社 Silicone composition and manufacturing method therefor
KR20200019139A (en) * 2017-06-15 2020-02-21 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition and its manufacturing method
KR102479753B1 (en) * 2017-06-15 2022-12-21 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition and manufacturing method thereof

Also Published As

Publication number Publication date
JP3756339B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP3756339B2 (en) Silane surface-treated silica fine particles, method for producing the same, and organic resin composition containing the same
US6521290B1 (en) Silica particles surface-treated with silane, process for producing the same and uses thereof
US20080268362A1 (en) Hydrophobic spherical silica microparticles having a high degree of flowability, method of producing same, electrostatic image developing toner external additive using same, and organic resin composition containing same
EP2283081B1 (en) Process for the surface modification of particles
KR101365382B1 (en) Hollow silica microparticle, composition for transparent coating formation containing the same, and substrate with transparent coating
EP1302444B1 (en) Silica with low content of silanol groups
JP5867426B2 (en) Method for producing boron nitride powder
GB2129820A (en) Spherical silicone rubber particles and their manufacture
JP6099297B2 (en) Inorganic powder mixture and filler-containing composition
CN105793195B (en) Hydrophobic particulate wet silicon dioxide, its manufacturing method and antifoaming agent
WO2006128793A1 (en) Dispersible silica particles
JP6778662B2 (en) Manufacturing method of granulated silica
JP7238975B2 (en) Silica-coated particles and method for producing the same
JP2004025167A (en) Method for manufacturing nano zinc oxide dispersion body stabilized by hydroxyl group-containing inorganic polymer
JP5042529B2 (en) Fine particle-containing composition and method for producing the same
JP4060241B2 (en) Hydrophobic spherical silica-based fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JPH0827312A (en) Monodisperse spherical oxide particle and its preparation
CN112004860B (en) Spherical polymethylsilsesquioxane particles
WO2007116988A1 (en) Curable silicone coating agent
JP3139944B2 (en) Film-forming resin composition
EP4047064A1 (en) Gap material, adhesive, and display device
CN113939477B (en) Amorphous silica titania composite oxide powder, resin composition, dispersion liquid, and method for producing silica titania composite oxide powder coated with silica
JP5907092B2 (en) Method for producing metal silicon powder
JPH09100326A (en) Ultraviolet-curable tape-form composition for optical fiber
JPH10130390A (en) Organosilsesquioxane resin particle and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 9

EXPY Cancellation because of completion of term