JP2002214204A - Ultrasonic flaw detector and method using the same - Google Patents

Ultrasonic flaw detector and method using the same

Info

Publication number
JP2002214204A
JP2002214204A JP2001012477A JP2001012477A JP2002214204A JP 2002214204 A JP2002214204 A JP 2002214204A JP 2001012477 A JP2001012477 A JP 2001012477A JP 2001012477 A JP2001012477 A JP 2001012477A JP 2002214204 A JP2002214204 A JP 2002214204A
Authority
JP
Japan
Prior art keywords
ultrasonic
defect
flaw detection
amplitude value
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001012477A
Other languages
Japanese (ja)
Other versions
JP4564183B2 (en
Inventor
Taiji Hirasawa
泰治 平澤
Ichiro Furumura
一朗 古村
Satoshi Nagai
敏 長井
Takahiro Kubo
貴博 久保
Katsuhiko Naruse
克彦 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001012477A priority Critical patent/JP4564183B2/en
Publication of JP2002214204A publication Critical patent/JP2002214204A/en
Application granted granted Critical
Publication of JP4564183B2 publication Critical patent/JP4564183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detector capable of efficiently inspecting the welding of a welded structure with high accuracy, and to provide a method using the same. SOLUTION: The ultrasonic flaw detector is equipped with a means for arranging an array type ultrasonic probe 2 equipped with a plurality of vibrators on the surface of an object 1 to be inspected, a drive means for moving the array type ultrasonic probe 2, a means for selecting the vibrators of the array type ultrasonic probe 2 as an ultrasonic transmission vibrator and an ultrasonic detection vibrator on the basis of the shape dimension of the object 1 to be inspected, a material of a welded part and a welding condition, a means 6 for converging and deflecting ultrasonic beam to the position of the object to be inspected using the selected vibrator group, a means 6 performing the electronic scanning of the ultrasonic transmission vibrator and the ultrasonic detection vibrator, a means 12 for performing image processing on the basis of the ultrasonic waveform detected by the ultrasonic detection vibrator to display an image processing result, a means for performing analyzing processing on the basis of the ultrasonic waveform and using the electronic scanning position of the ultrasonic probe or the amplitude value distribution of a flaw signal to a mechanical scanning position to calculate flaw data, and a means 12 for displaying the analyzed result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異種金属を溶接接
続した溶接部の欠陥検査の際、欠陥情報を効率的かつ高
精度に行う超音波探傷装置およびその方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection apparatus and method for efficiently and accurately detecting defect information in a defect inspection of a welded portion formed by welding and connecting different kinds of metals.

【0002】[0002]

【従来の技術】発電設備等で用いられている、例えば、
オーステナイト系ステンレス鋼、ニッケル基超合金の同
種あるいは炭素鋼、低合金鋼などを加えた異種金属で構
成される溶接部は、温度、溶接残留応力などの運転環境
により経年的に劣化・損傷し、割れなどの欠陥が生じる
場合がある。これら欠陥を検出し、その寸法等を高精度
に測定し評価することが、これらの機器・構造物の安定
運用にとって極めて重要である。溶接部の欠陥検査に
は、一つの振動子の斜角探触子を用いて溶接部を探傷
し、欠陥からの反射波を検出して、欠陥位置、欠陥深さ
を求めるものがあり、例えば、日本工業規格の鋼溶接部
の超音波探傷法(JIS Z3060−1996)など
に記載されているパルス探傷法が広く用いられている。
また、アレイ型超音波探触子を用いるケースには、例え
ば、特開平9−257763号公報、特開平9−257
774号公報などが開示されている。
2. Description of the Related Art For example, used in power generation facilities,
Welds composed of different metals, such as austenitic stainless steel and nickel-base superalloy or carbon steel, low alloy steel, etc., deteriorate and damage over time due to operating environment such as temperature and welding residual stress. Defects such as cracks may occur. Detecting these defects and measuring and evaluating their dimensions and the like with high accuracy is extremely important for the stable operation of these devices and structures. In the defect inspection of the welded part, there is a method of detecting a welded part using an oblique probe of one transducer, detecting a reflected wave from the defect, and finding a defect position, a defect depth, for example, A pulse flaw detection method described in, for example, an ultrasonic flaw detection method for steel welds of Japanese Industrial Standards (JIS Z3060-1996) is widely used.
Further, in the case of using an array type ultrasonic probe, for example, Japanese Patent Application Laid-Open Nos. 9-257763 and 9-257
No. 774 is disclosed.

【0003】[0003]

【発明が解決しようとする課題】オーステナイト系ステ
ンレス鋼、ニッケル基超合金などの同種あるいは異種金
属で構成される溶接部の溶接金属部には、溶接により結
晶粒が粗大化し、柱状晶組織が生成されるため、検査対
象物への超音波入射時、超音波減衰や歪曲が生じること
が知られている。
SUMMARY OF THE INVENTION In a weld metal portion of a weld portion composed of the same or different metals such as austenitic stainless steel and nickel-base superalloy, crystal grains are coarsened by welding to form a columnar crystal structure. Therefore, it is known that ultrasonic wave attenuation and distortion occur when ultrasonic waves are incident on the inspection object.

【0004】溶接部の超音波探傷法には、一つの振動子
の斜角探触子を用いて溶接部を探傷し、欠陥からの反射
波を検出して、欠陥位置、欠陥深さを求めるパルス反射
法がある。しかし、パルス反射法でも欠陥からの反射波
が溶接部の柱状晶組織からの反射波形に埋もれ、欠陥波
形を検出できない場合、あるいは柱状晶組織などの材料
からの擬似波形を誤って欠陥波形と認識する場合などが
ある。また、欠陥波形を検出できても欠陥位置、欠陥深
さ、欠陥の傾き等の欠陥情報を正確に測定できない場合
がある。
In the ultrasonic flaw detection method for a welded portion, a welded portion is flaw-detected by using an oblique probe of one vibrator, a reflected wave from the defect is detected, and a defect position and a defect depth are obtained. There is a pulse reflection method. However, even in the pulse reflection method, when the reflected wave from the defect is buried in the reflected waveform from the columnar crystal structure of the weld and the defect waveform cannot be detected, or the pseudo waveform from the material such as the columnar crystal structure is erroneously recognized as the defect waveform. And so on. Even if a defect waveform can be detected, defect information such as a defect position, a defect depth, and a defect inclination may not be accurately measured.

【0005】また、アレイ型超音波探触子を用いた通常
の超音波探傷法でも、上述のパルス反射法と同様、欠陥
を正確に測定できない場合がある。
[0005] In addition, even in the case of a normal ultrasonic flaw detection method using an array type ultrasonic probe, there is a case where a defect cannot be accurately measured as in the case of the above-described pulse reflection method.

【0006】本発明は、このような問題点に鑑みてなさ
れたもので、複数個の振動子からなるアレイ型超音波探
触子を検査対象物の表面側の特定の位置に設置し、その
底面側に開口する欠陥検査においては、検査対象物の底
面側の表層部を伝播するように超音波を伝播させ、欠陥
先端からの回折波および欠陥コーナ部からの反射波ある
いは欠陥からの反射波を検出して、欠陥位置、寸法等を
高精度に測定することができ、また、検査対象物表面側
に開口する欠陥検査においては、検査対象物の表面側の
表層部を伝播するように超音波を伝播させ、あるいは、
表面側の表層部から内部に亘って順次、超音波を入射さ
せ、欠陥からの反射波を検出し、超音波入射角あるいは
超音波送受信角度と反射波の振幅値との関係から欠陥の
検出、欠陥深さ等の欠陥情報を高精度に測定できる超音
波探傷装置およびその方法を提供することを目的とす
る。
The present invention has been made in view of such a problem, and an array type ultrasonic probe including a plurality of transducers is installed at a specific position on the surface side of an inspection object. In a defect inspection with an opening on the bottom side, an ultrasonic wave is propagated so as to propagate through the surface layer on the bottom side of the inspection object, and a diffraction wave from the tip of the defect and a reflected wave from the defect corner or a reflected wave from the defect. To detect defect positions, dimensions, etc. with high precision, and in defect inspections that open to the surface of the inspection object, the defect is transmitted over the surface layer on the surface side of the inspection object. Propagating sound waves, or
Ultrasonic waves are sequentially incident from the surface layer on the front side to the inside, the reflected wave from the defect is detected, and the defect is detected from the relationship between the ultrasonic incident angle or the ultrasonic transmission / reception angle and the amplitude value of the reflected wave, It is an object of the present invention to provide an ultrasonic flaw detector and a method thereof capable of measuring defect information such as defect depth with high accuracy.

【0007】[0007]

【課題を解決するための手段】本発明に係る超音波探傷
装置は、上述の目的を達成するために、請求項1に記載
したように、複数個の振動子を備えたアレイ型超音波探
触子を検査対象物の表面側の予め定められた位置に設置
する手段と、前記アレイ型超音波探触子を移動させる駆
動手段と、前記検査対象物の形状寸法、溶接部材料、溶
接条件に基づいて前記アレイ型超音波探触子の振動子を
超音波送信用振動子群および超音波受信用振動子群とし
て選択する手段と、前記選択された振動子群を用いて検
査対象物の位置に超音波ビームを集束および偏向させる
手段と、前記超音波送信用振動子群および超音波受信用
振動子群の電子走査を行わせる手段と、前記超音波受信
用振動子群で検出した超音波波形を基に画像処理し、画
像処理結果を表示する手段と、前記超音波波形を基に解
析処理するとともに超音波探触子の電子走査位置あるい
は機械走査位置に対する欠陥信号の振幅値分布を用いて
欠陥情報を求める手段と、前記解析結果を表示する手段
とを備えるものである。
According to a first aspect of the present invention, there is provided an ultrasonic testing apparatus having a plurality of transducers. Means for placing the probe at a predetermined position on the surface side of the inspection object, driving means for moving the array type ultrasonic probe, shape and dimension of the inspection object, welding material, welding conditions Means for selecting a transducer of the array-type ultrasonic probe as a transducer group for ultrasound transmission and a transducer group for ultrasound reception based on, and an inspection object using the selected transducer group. Means for focusing and deflecting the ultrasonic beam to a position, means for performing electronic scanning of the ultrasonic transmission transducer group and the ultrasonic reception transducer group, and an ultrasonic detector detected by the ultrasonic reception transducer group. Performs image processing based on sound wave waveforms and displays image processing results Means for performing analysis processing based on the ultrasonic waveform and obtaining defect information using an amplitude value distribution of a defect signal with respect to an electronic scanning position or a mechanical scanning position of the ultrasonic probe, and displaying the analysis result. And means for performing this.

【0008】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項2に記載したよう
に、過去の運転履歴を基に溶接構造物の検査対象部分を
選定する工程と、溶接部材料、開先形状、溶接条件を基
に、予めデータベースに格納しておいた探傷条件を選定
する工程と、選定された探傷条件を基に、検査対象部分
をアレイ型超音波探触子を用いた電子走査による探傷
し、検出された超音波波形データを収録する工程と、収
録した波形データを基に画像処理し、画像処理結果を検
査対象物の形状に重ね合わせ、エコー振幅値の大きさに
対応させたカラー階調表示を行う工程と、収録した波形
データを超音波受信用振動子群毎の位置に合わせて演算
し、前期溶接構造物の検査対象部分で検出した超音波波
形データを基に欠陥情報を解析する工程と、前記カラー
階調を行う工程結果と前記欠陥深さ、寸法、傾きを解析
する工程結果とに基づいて欠陥の有無を判定する工程
と、前記画像処理結果および解析結果とを表示する工程
とを備えた方法である。
Further, in order to achieve the above object, the ultrasonic flaw detection method according to the present invention selects a portion to be inspected of a welded structure on the basis of a past operation history. Based on the process, welding material, groove shape and welding conditions, the process of selecting the flaw detection conditions stored in the database in advance, and based on the selected flaw detection conditions, the part to be inspected is array-type ultrasonic. The process of flaw detection by electronic scanning using a probe and the recording of detected ultrasonic waveform data, image processing based on the recorded waveform data, superimposing the image processing result on the shape of the inspection object, echoing The process of performing color gradation display corresponding to the magnitude of the amplitude value, and the recorded waveform data was calculated according to the position of each ultrasonic receiving transducer group and detected in the inspection target part of the welded structure in the previous period Defect information based on ultrasonic waveform data Analyzing, the step of determining the presence or absence of a defect based on the result of the step of performing the color gradation and the result of the step of analyzing the depth, size, and inclination of the defect, and the image processing result and the analysis result And a step of displaying.

【0009】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項3に記載したよう
に、複数個の振動子を備えたアレイ型超音波探触子を検
査対象物の表面側の予め定められた位置に設置し、前記
アレイ型超音波探触子の中から超音波送受信用振動子群
を選定し、前記超音波送受信用振動子群の送受信角度を
同一に設定して前記検査対象物の底面側の表層部を伝播
するように設定し、前記アレイ型超音波探触子の送信用
振動子群をリニア走査させて探傷する工程と、前記超音
波受信用振動子群を用いて送信用角度と同一の条件で受
信したときに検出した欠陥からの反射波形に基づいて超
音波ビーム路程、エコー振幅値、エコー振幅値分布を求
める工程と、求めた振幅値分布に予めデータベース化し
ておいた欠陥深さ測定基準線を当てはめて欠陥の深さを
求める工程と、前記求めた超音波送受信用振動子群から
の欠陥波形の超音波ビーム路程を送受信角度とに基づい
て欠陥位置を求める工程とを備方法である。
According to a third aspect of the present invention, there is provided an ultrasonic testing method for testing an array type ultrasonic probe having a plurality of transducers. Installed at a predetermined position on the surface side of the object, select an ultrasonic transmission and reception transducer group from the array type ultrasonic probe, and set the same transmission and reception angle of the ultrasonic transmission and reception transducer group Setting to propagate the surface layer on the bottom surface side of the inspection object, linearly scanning the transmitting transducer group of the array-type ultrasonic probe, and performing flaw detection; and Obtaining an ultrasonic beam path, an echo amplitude value, and an echo amplitude value distribution based on a reflected waveform from a defect detected when receiving under the same conditions as the transmission angle using the transducer group; and Defect depth measurement previously stored in a database for value distribution A step of obtaining a defect depth by applying a reference line, and a step of obtaining a defect position based on an ultrasonic beam path of a defect waveform from the ultrasonic transmitting and receiving vibrator group thus obtained based on a transmitting and receiving angle. is there.

【0010】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項4に記載したよう
に、検査対象物の底面側の表層部を伝播するよう超音波
を入射させる際、超音波受信用振動子群の受信角度を検
査対象物に対して直角に設定し、欠陥から発生する回折
波および欠陥コーナ部から発生する反射波を検出し、そ
の検出した超音波ビーム路程、エコー振幅値から欠陥情
報を求める工程を備えている方法である。
Further, in order to achieve the above object, the ultrasonic flaw detection method according to the present invention is characterized in that an ultrasonic wave is incident so as to propagate through a surface layer on the bottom surface side of the object to be inspected. At this time, the receiving angle of the ultrasonic wave receiving transducer group is set at a right angle to the inspection object, the diffracted wave generated from the defect and the reflected wave generated from the defect corner are detected, and the detected ultrasonic beam is detected. This method includes a step of obtaining defect information from a path and an echo amplitude value.

【0011】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項5に記載したよう
に、検査対象物の底面側の表層部を伝播するよう超音波
を入射させる際、超音波受信用振動子の受信角度を欠陥
位置を中心とする円弧状に設定し、前記超音波受信用振
動子で受信した振動子の位置と欠陥からの回折波のエコ
ー振幅値で生成されるエコー振幅値分布および前記エコ
ー振幅値の最大値から選定された特定の超音波受信用振
動子に基づいて得られた超音波ビーム路程から欠陥情報
を求める工程を備えている方法である。
Further, in order to achieve the above-mentioned object, the ultrasonic flaw detection method according to the present invention is characterized in that an ultrasonic wave is incident so as to propagate on a surface layer on the bottom surface side of the inspection object. At the time of the reception, the receiving angle of the ultrasonic receiving transducer is set in an arc shape centering on the defect position, and the position of the transducer received by the ultrasonic receiving transducer and the echo amplitude value of the diffracted wave from the defect are used. A method of obtaining defect information from an ultrasonic beam path obtained based on a specific ultrasonic receiving transducer selected from a generated echo amplitude value distribution and a maximum value of the echo amplitude value. .

【0012】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項6に記載したよう
に、検査対象物の底面側の表層部を伝播するよう超音波
を入射させる際、超音波受信用振動子の受信角度を仮想
反射源位置を音源として受信できるように設定し、前記
仮想反射源位置を前記検査対象物の探傷範囲の全てを網
羅するように順次変化させて探傷し、各仮想音源での探
傷毎に受信した振動子の位置と欠陥からの回折波のエコ
ー振幅値で生成されるエコー振幅値分布および前記エコ
ー振幅値の最大値から選定された特定の超音波受信用振
動子に基づいて得られた超音波ビーム路程から欠陥情報
を求める工程を備えている方法である。
According to the ultrasonic flaw detection method of the present invention, in order to achieve the above object, as described in claim 6, an ultrasonic wave is incident so as to propagate on a surface layer on the bottom surface side of the inspection object. When doing so, the receiving angle of the ultrasonic receiving transducer is set so that the virtual reflection source position can be received as a sound source, and the virtual reflection source position is sequentially changed so as to cover the entire inspection range of the inspection object. A specific amplitude selected from the position of the transducer received for each flaw detection at each virtual sound source and the echo amplitude value distribution generated by the echo amplitude value of the diffracted wave from the defect and the maximum value of the echo amplitude value This method includes a step of obtaining defect information from an ultrasonic beam path obtained based on the ultrasonic receiving transducer.

【0013】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項7に記載したよう
に、検査対象物の底面側の表層部を伝播するよう超音波
を入射させる際、超音波受信用振動子群の受信角度を入
射角と異なる角度に設定し、欠陥部でモード変換した超
音波波形を検出し、その検出した超音波ビーム路程、エ
コー振幅値あるいはエコー振幅値で求めた探傷断面画像
から欠陥の位置、深さを求める工程を備えている方法で
ある。
According to the ultrasonic flaw detection method of the present invention, in order to achieve the above object, as described in claim 7, an ultrasonic wave is incident so as to propagate on a surface layer on the bottom surface side of the inspection object. At this time, the receiving angle of the ultrasonic receiving transducer group is set to an angle different from the incident angle, an ultrasonic waveform that is mode-converted at the defect is detected, and the detected ultrasonic beam path, echo amplitude value or echo amplitude is detected. This method includes a step of calculating the position and depth of the defect from the flaw detection cross-sectional image obtained by the value.

【0014】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項8に記載したよう
に、検査対象物の表面側の表層部を伝播するよう超音波
を入射させる際、超音波受信用振動子群の受信角度を入
射角とことなる角度に設定し、前欠陥でモード変換した
超音波波形を検出し、その検出した超音波ビーム路程、
エコー振幅値あるいはエコー振幅値で求めた探傷断面画
像から欠陥情報を求める工程を備えている方法である。
According to the ultrasonic flaw detection method of the present invention, in order to achieve the above-mentioned object, as described in claim 8, an ultrasonic wave is incident so as to propagate on a surface layer on the surface side of the inspection object. When the ultrasonic wave is received, the receiving angle of the ultrasonic receiving transducer group is set to an angle different from the incident angle, the ultrasonic waveform that is mode-converted by the front defect is detected, and the detected ultrasonic beam path,
This method includes a step of obtaining defect information from an echo amplitude value or a flaw detection cross-sectional image obtained from the echo amplitude value.

【0015】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項9に記載したよう
に、検査対象物の表面側の表層部を伝播するよう超音波
を入射させる際、超音波受信用振動子群の受信角度を検
査対象物に対して直角に設定し、欠陥先端から発生する
回折波および欠陥コーナ部から発生する反射波を検出
し、その検出した超音波ビーム路程、エコー振幅値に基
づいて欠陥情報を求める工程とを備えている方法であ
る。
According to the ultrasonic flaw detection method of the present invention, in order to achieve the above-mentioned object, as described in claim 9, an ultrasonic wave is incident so as to propagate on a surface layer on the surface side of the inspection object. At this time, the receiving angle of the ultrasonic wave receiving transducer group is set at a right angle to the inspection object, the diffracted wave generated from the defect tip and the reflected wave generated from the defect corner are detected, and the detected ultrasonic wave is detected. Obtaining defect information based on the beam path and the echo amplitude value.

【0016】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項10に記載したよう
に、検査対象物の表面側の表層部を伝播するよう超音波
を入射させる際、超音波受信用振動子群の受信角度を、
欠陥位置を中心とする円弧状に設定し、前記超音波受信
用振動子群で受信した振動子群の位置と欠陥からの回折
波のエコー振幅値で生成されるエコー振幅値分布および
前記エコー振幅値の最大値から選定された特定の超音波
受信用振動子群に基づいて得られた超音波ビーム路程か
ら欠陥情報を求める工程とを備えている方法である。
According to the ultrasonic flaw detection method of the present invention, in order to achieve the above object, as described in claim 10, an ultrasonic wave is incident so as to propagate on a surface layer on the surface side of the inspection object. When making it, the receiving angle of the ultrasonic receiving transducer group,
An echo amplitude value distribution and an echo amplitude distribution which are set in an arc shape with the defect position as a center and are generated by the position of the oscillator group received by the ultrasonic wave receiving oscillator group and the echo amplitude value of the diffracted wave from the defect. Obtaining defect information from an ultrasonic beam path obtained based on a specific ultrasonic receiving transducer group selected from the maximum value of the values.

【0017】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項11に記載したよう
に、検査対象物の表面側の表層部を伝播するよう超音波
を入射させる際、超音波受信用振動子群の受信角度を、
仮想反射源位置を音源として受信できるように設定し、
前記仮想反射源位置を前記検査対象物の探傷範囲の全て
を網羅するように順次変化させて探傷し、各仮想音源で
の探傷毎に受信した振動子群の位置と欠陥からの回折波
のエコー振幅値で生成されるエコー振幅値分布および前
記エコー振幅値の最大値から選定された特定の超音波受
信振動子群に基づいて得られた超音波ビーム路程から欠
陥情報を求める工程とを備えている方法である。
According to the ultrasonic flaw detection method of the present invention, in order to achieve the above object, as described in claim 11, an ultrasonic wave is incident so as to propagate on a surface layer on the surface side of the inspection object. When making it, the receiving angle of the ultrasonic receiving transducer group,
Set so that the virtual reflection source position can be received as a sound source,
Inspection is performed by sequentially changing the virtual reflection source position so as to cover the entire inspection range of the inspection object, and the position of the transducer group received for each inspection by each virtual sound source and the echo of the diffracted wave from the defect. Obtaining defect information from an ultrasonic beam path obtained based on a specific ultrasonic receiving transducer group selected from the echo amplitude value distribution generated by the amplitude value and the maximum value of the echo amplitude values. There is a way.

【0018】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項12に記載したよう
に、アレイ型超音波探触子を検査対象物の探傷部分に対
して平行および仰角となる角度のうちいずれか一方に設
置し、前記アレイ型超音波探触子の中から超音波送受信
用振動子群を選定し、前記超音波送受信用振動子群の入
射角度を同一に設定して、前記検査対象物の表面側の表
層部を伝播するように前記アレイ型超音波探触子をリニ
ア走査させて探傷する工程と、前記超音波受信用振動子
群から検出した欠陥の反射波形からエコー振幅値の分布
を求める工程と、求めた振幅値の分布に、予めデータベ
ース化しておいた欠陥深さ測定用基準線を当てはめ、特
定の超音波受信用振動子を求める工程と、求めた特定の
超音波受信用振動子からの欠陥波形の超音波ビーム路程
と入射角とに基づいて欠陥情報を求める工程とを備える
方法である。
According to the ultrasonic flaw detection method of the present invention, in order to achieve the above-mentioned object, an array-type ultrasonic probe is applied to a flaw detection portion of an inspection object. Installed at any one of parallel and elevation angles, select the ultrasonic transmission and reception transducer group from the array type ultrasonic probe, the incident angle of the ultrasonic transmission and reception transducer group is the same A step of linearly scanning the array-type ultrasonic probe so as to propagate the surface layer on the front surface side of the inspection object to detect flaws, and a defect detected from the ultrasonic receiving transducer group. A step of obtaining a distribution of echo amplitude values from the reflected waveform, and a step of applying a reference line for measuring the depth of a defect prepared in advance to a database to the distribution of the obtained amplitude values to obtain a specific ultrasonic receiving transducer. , Determined vibration for ultrasonic reception Based on the incident angle and the ultrasonic beam path length of a defect waveform from a method comprising a step of determining a defect information.

【0019】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項13に記載したよう
に、特定の超音波受信用振動子から検出した欠陥の反射
波形に基づき振幅値分布を求め、データベース化した欠
陥の傾き角と前記振幅値分布から欠陥の傾き角を求める
方法である。
In order to achieve the above object, an ultrasonic flaw detection method according to the present invention is based on a reflection waveform of a defect detected from a specific ultrasonic wave receiving vibrator. In this method, the amplitude value distribution is obtained, and the inclination angle of the defect is obtained from the inclination angle of the defect in the database and the amplitude value distribution.

【0020】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項14に記載したよう
に、アレイ型超音波探触子を検査対象物の探傷部分に対
して平行および仰角となる角度のうち、いずれか一方に
設置し、前記アレイ型超音波探触子の中から超音波送受
信用振動子群を選定し、前記超音波送受信用振動子群の
超音波偏向角を予め定められたピッチで順次に変化させ
て前記アレイ型超音波探触子を扇形走査させて探傷する
工程と、前記超音波受信用振動子群から検出した欠陥の
反射波形から振幅値の分布を求める工程と、求めた振幅
値の分布に、予めデータベース化しておいた欠陥深さ測
定用基準線を当てはめ、前記超音波受信用振動子の入射
角を求める工程と、求めた超音波受信用振動子の入射角
と特定の超音波受信用振動子からの欠陥波形の超音波ビ
ーム路程とに基づいて欠陥情報を求める工程とを備える
方法である。
According to the ultrasonic flaw detection method of the present invention, in order to achieve the above-mentioned object, as described in claim 14, an array-type ultrasonic probe is applied to a flaw detection portion of an inspection object. It is installed at one of parallel and elevation angles, and an ultrasonic transmission / reception transducer group is selected from the array type ultrasonic probe, and the ultrasonic deflection of the ultrasonic transmission / reception transducer group is selected. A step of performing a fan-shaped scan of the array-type ultrasonic probe by sequentially changing the angle at a predetermined pitch to detect flaws, and an amplitude value from a reflection waveform of a defect detected from the ultrasonic reception transducer group. A step of obtaining a distribution, and a step of applying a defect depth measurement reference line prepared in a database to the obtained amplitude value distribution to obtain an incident angle of the ultrasonic wave receiving vibrator; Angle of incidence of transducer for Defects waveform from use vibrators on the basis of the ultrasonic beam path length is a method and a step of obtaining defect information.

【0021】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項15に記載したよう
に、アレイ型超音波探触子は、少なくとも2個以上並列
配置して用いている方法である。
According to the ultrasonic flaw detection method of the present invention, at least two or more array type ultrasonic probes are arranged in parallel to achieve the above object. This is the method used.

【0022】また、本発明に係る超音波探傷方法は、上
述の目的を達成するために、請求項16に記載したよう
に、アレイ型超音波探触子は、検査対象物の探傷部分に
対して軸対称に超音波送受信用振動子を配置するものを
用いている方法である。
According to the ultrasonic flaw detection method of the present invention, in order to achieve the above-mentioned object, as described in claim 16, an array type ultrasonic probe is provided for a flaw detection part of an inspection object. This is a method using an ultrasonic transmitting / receiving vibrator arranged axially symmetrically.

【0023】[0023]

【発明の実施の形態】以下、本発明に係る超音波探傷装
置およびその方法の実施形態を図面および図面に付した
符号を引用して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of an ultrasonic flaw detector and a method thereof according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.

【0024】図1は、本発明に係る超音波探傷装置の実
施形態を示すブロック図であり、図2は、図1に示した
アレイ型超音波探触子を拡大して示す概念図である。
FIG. 1 is a block diagram showing an embodiment of an ultrasonic flaw detector according to the present invention, and FIG. 2 is a conceptual diagram showing an enlarged view of the array type ultrasonic probe shown in FIG. .

【0025】本実施形態に係る超音波探傷装置は、例え
ば、インコネルとインコネルとを突き合せた溶接構造物
1を検査対象とし、溶接構造物1における溶接金属1b
に発生し、溶接線に沿って成長した欠陥1cの検査を行
う場合に適用するものである。
The ultrasonic flaw detector according to the present embodiment, for example, inspects a welded structure 1 in which Inconel and Inconel are butted, and weld metal 1b in the welded structure 1
This is applied to the case of inspecting the defect 1c which has occurred in the welding line and has grown along the welding line.

【0026】アレイ型超音波探触子2は、振動子A
(1),A(2),…,A(n)を備え、水等の接触媒
質Cを溶接構造物1の外側に形成し、振動子A(1),
A(2),…,A(n)の配置を欠陥の成長方向に対し
て直角方向に列状に対峙させ、自在に変更可能な探傷屈
折角θで超音波ビームUBを溶接金属1bの欠陥1cに
入射することができるようになっている。また、溶接線
に直角方向に成長している欠陥1cを検査する場合、ア
レイ型超音波探触子2は、溶接線に平行方向に設置して
探傷する。
The array type ultrasonic probe 2 includes a transducer A
(1), A (2),..., A (n), a couplant C such as water is formed outside the welded structure 1, and the vibrators A (1),
A (2),..., A (n) are arranged in rows in a direction perpendicular to the defect growth direction, and the ultrasonic beam UB is irradiated with a flaw angle θ at which the flaw can be freely changed. 1c. When inspecting a defect 1c growing in a direction perpendicular to the welding line, the array-type ultrasonic probe 2 is installed in a direction parallel to the welding line to perform flaw detection.

【0027】このような振動子A(1),A(2),
…,A(n)を備えたアレイ型超音波探触子2は、セン
サ保持機構3で溶接構造物1に対し適正距離を保ちつ
つ、支持されている。センサ保持機構3は、駆動機構4
によって溶接方向あるいはその直交方向などに自在に移
動できるようになっている。駆動機構4の移動量、移動
方向などは、駆動機構制御装置5によって制御されてい
る。
Such oscillators A (1), A (2),
.., A (n) are supported by the sensor holding mechanism 3 while maintaining an appropriate distance from the welding structure 1. The sensor holding mechanism 3 includes a driving mechanism 4
It can be freely moved in the welding direction or the direction orthogonal thereto. The moving amount and moving direction of the driving mechanism 4 are controlled by the driving mechanism control device 5.

【0028】駆動機構制御装置5は、駆動機構4を制御
する際、制御装置6からの指令によって遠隔的に制御さ
れている。
When controlling the drive mechanism 4, the drive mechanism control device 5 is remotely controlled by a command from the control device 6.

【0029】制御装置6は、駆動機構制御装置5を遠隔
的に制御するほかに、アレイ型超音波探触子2の振動子
A(1),A(2),…,A(n)を電子的に走査させ
たり、溶接構造物1の予め定められた位置に超音波ビー
ムを自在に集束、偏向させたり、画像や信号を処理して
表示させるなどの総括的な指令を出せる機能を備えてい
る。
The controller 6 remotely controls the drive mechanism controller 5 and also controls the transducers A (1), A (2),..., A (n) of the array type ultrasonic probe 2. Equipped with a function to electronically scan, freely focus and deflect the ultrasonic beam at a predetermined position of the welded structure 1, and to issue general commands such as processing and displaying images and signals. ing.

【0030】アレイ型超音波探触子2は、1個あるいは
2個以上の振動子A(1),A(2),…,A(n)を
超音波送信用振動子および超音波受信用振動子としてラ
ンダムに選択できる構成となっている。例えば、送受信
用の振動子A(1),A(2),…,A(n)を群とし
て選択する手段として、送信用各振動子に超音波を発生
させる超音波送信器群8、受信用各振動子に超音波信号
波形を受信させる超音波受信器群9等が備えられてい
る。また、超音波送信器群8と超音波受信器群9には、
遅延時間制御器7が接続され、振動子A(1),A
(2),…,A(n)を制御することにより、溶接構造
物1の予め定められた位置に超音波ビームを集束および
偏向させることができるようになっている。
The array type ultrasonic probe 2 includes one or two or more transducers A (1), A (2),..., A (n) for transmitting ultrasonic waves and transmitting ultrasonic waves. The structure is such that a vibrator can be selected at random. For example, as means for selecting the transmitting and receiving transducers A (1), A (2),..., A (n) as a group, an ultrasonic transmitter group 8 for generating ultrasonic waves for each transmitting transducer, An ultrasonic receiver group 9 for allowing each transducer to receive an ultrasonic signal waveform is provided. The ultrasonic transmitter group 8 and the ultrasonic receiver group 9 include:
The delay time controller 7 is connected, and the vibrators A (1), A
By controlling (2),..., A (n), the ultrasonic beam can be focused and deflected to a predetermined position of the welded structure 1.

【0031】さらに、超音波受信器群9には、画像処理
装置10と、信号処理装置11が接続されている。この
画像処理装置10と信号処理装置11とは、超音波送受
信によって検出された超音波波形から欠陥信号を抽出
し、アレイ型超音波探触子2の電子的走査位置あるいは
機械的走査位置等に対する欠陥信号の振幅分布を用いて
欠陥情報等を算出し、画像化するものである。画像処理
装置10および信号処理装置11は、表示装置12が接
続され、制御装置6からの指令により信号処理された欠
陥1cの位置および寸法等が画像出力および記録出力で
きるようになっている。なお欠陥情報とは、欠陥位置、
深さ、長さ、傾きを表わすもので、以下欠陥情報という
表現は同一の内容を示す。
Further, an image processing device 10 and a signal processing device 11 are connected to the ultrasonic receiver group 9. The image processing apparatus 10 and the signal processing apparatus 11 extract a defect signal from an ultrasonic waveform detected by ultrasonic transmission / reception, and detect a defect signal with respect to an electronic scanning position or a mechanical scanning position of the array type ultrasonic probe 2. The defect information and the like are calculated using the amplitude distribution of the defect signal, and are imaged. The image processing device 10 and the signal processing device 11 are connected to the display device 12 so that the position and the size of the defect 1c subjected to the signal processing according to the command from the control device 6 can be output and recorded. The defect information includes the defect position,
Depth, length, and inclination are expressed. Hereinafter, the expression “defect information” indicates the same content.

【0032】図2は、アレイ型超音波探触子2の振動子
A(1),A(2),…,A(n)において、超音波送
信用振動子と超音波受信用振動子との配置を示してい
る。つまり、振動子A(1),A(2),…,A(n)
のうち、設定された送信用振動子群G(p1),G(p
2),…,G(pj),…および受信用振動子群G(r
1),G(r2),…,G(rj),…で、電子走査に
より溶接構造物1の検査対象部分が探傷できるようにな
っている。
FIG. 2 shows the transducers A (1), A (2),..., A (n) of the array type ultrasonic probe 2 in which the transducer for transmitting ultrasound and the transducer for receiving ultrasound are used. Is shown. That is, the transducers A (1), A (2),..., A (n)
Of the transmission oscillator groups G (p1), G (p
2),..., G (pj),.
1), G (r2),..., G (rj),.

【0033】また、アレイ型超音波探触子2は、その任
意の1個または複数の振動子を送信用振動子群G(p
1),G(p2),…,G(pj),…および受信用振
動子群G(r1),G(r2),…,G(rj),…と
してそれぞれ選択でき、送信用各振動子に超音波を発生
させる超音波送信器群8が、また受信用各振動子には超
音波信号波形を受信させる超音波受信器群9がそれぞれ
繋がっている。そして、遅延時間制御器7により各振動
子を制御することで、検査対象部分の位置に超音波ビー
ムを集束および偏向することができる。また、設定した
送信用振動子群G(p1),G(p2),…,G(p
j),…および受信用振動子群G(r1),G(r
2),…,G(rj),…は、電子走査により検査対象
部分を探傷することができる。さらに、これら電子走査
により得られた超音波受信波形を画像処理器10にて画
像処理し、画像処理結果を検査対象部分の形状と重ね合
わせて表示し、欠陥信号をエコー振幅値の大きさでカラ
ー諧調表示することができる。また、超音波受信波形は
信号処理器11で各波形のビーム路程、エコー振幅値を
計算し、検査対象部分の形状、溶接形状などと対比させ
るなどの解析処理を行い、欠陥の判別、欠陥の位置、寸
法などを測定することができる。さらに、画像処理結果
および解析処理結果は、表示装置12に表示することが
できる。これらの処理は、全て制御装置6からの指令に
より行うことができる。
The array-type ultrasonic probe 2 transmits one or more arbitrary transducers to the transmitting transducer group G (p
, G (pj),..., And G (r1), G (r2),..., G (rj),. An ultrasonic transmitter group 8 for generating ultrasonic waves, and an ultrasonic receiver group 9 for receiving ultrasonic signal waveforms are connected to each of the receiving transducers. By controlling each transducer by the delay time controller 7, the ultrasonic beam can be focused and deflected to the position of the inspection target portion. Also, the set transmitting transducer groups G (p1), G (p2),..., G (p
j),... and the receiving transducer groups G (r1), G (r
2),..., G (rj),. Further, the ultrasonic reception waveform obtained by the electronic scanning is subjected to image processing by the image processor 10, the image processing result is displayed so as to be superimposed on the shape of the inspection target portion, and the defect signal is represented by the magnitude of the echo amplitude value. Color gradation display can be performed. In addition, the ultrasonic wave reception waveform is analyzed by the signal processor 11 to calculate the beam path of each waveform and the echo amplitude value, and to perform analysis processing such as comparison with the shape of the portion to be inspected, the welding shape, etc. Position, dimensions, etc. can be measured. Further, the image processing result and the analysis processing result can be displayed on the display device 12. All of these processes can be performed by a command from the control device 6.

【0034】なお、本実施形態では、アレイ型超音波探
触子2から検査対象部分への探傷に際し、水を接触媒質
として用いているが、検査対象部分への直接接触による
探傷、あるいはアクリル等の樹脂を用いて検査対象部分
を探傷してもよい。
In the present embodiment, water is used as a couplant for the flaw detection from the array type ultrasonic probe 2 to the inspection target portion. However, flaw detection by direct contact with the inspection target portion, acrylic or the like is used. The inspection target portion may be flaw-detected using the above resin.

【0035】このように、本実施形態は、検査対象部分
の適正な位置にアレイ型超音波探触子を設置し、アレイ
型超音波探触子を移動させることなく、適正な探傷条件
で探傷し、検出した波形データの画像処理、解析処理を
行うことにより、検査対象部分の欠陥位置、欠陥深さを
効率的かつ高精度に測定することができる。
As described above, according to the present embodiment, the array type ultrasonic probe is installed at an appropriate position of the inspection target portion, and the flaw detection is performed under appropriate flaw detection conditions without moving the array type ultrasonic probe. Then, by performing image processing and analysis processing of the detected waveform data, the defect position and the defect depth of the inspection target portion can be measured efficiently and with high accuracy.

【0036】図3は、本発明に係る超音波探傷方法の実
施形態を説明するために用いたブロック図である。
FIG. 3 is a block diagram used for describing an embodiment of the ultrasonic flaw detection method according to the present invention.

【0037】本実施形態に係る超音波探傷方法は、例え
ばインコネルとインコネルとを突き合せた溶接構造物1
の溶接金属1bに発生した欠陥の検査を適用対象とする
もので、過去の運転履歴などから溶接構造物の検査対象
部分を選定する探傷部分選定工程(ステップ1)と、溶
接部の材料、開先形状、溶接条件などを基に、予めデー
タベースに格納しておいた探傷条件、具体的に送受信駆
動素子数、送受信入射角度等を選定する探傷条件設定工
程(ステップ2)と、選定された探傷条件の基に検査対
象部分に対して探傷し、欠陥1cからの反射波などの超
音波波形データを収録する探傷収録工程(ステップ3)
を備えた構成になっている。
The ultrasonic flaw detection method according to the present embodiment employs, for example, a welded structure 1 in which Inconel and Inconel are butted together.
Inspection of defects occurring in the weld metal 1b of the present invention is to be applied. A flaw detection part selection step (step 1) for selecting a part to be inspected of a welded structure from a past operation history and the like, A flaw detection condition pre-stored in a database based on the tip shape, welding conditions, etc., specifically, a flaw detection condition setting step (step 2) for selecting the number of transmission / reception drive elements, transmission / reception incident angle, and the like; A flaw detection recording step (step 3) in which flaw detection is performed on a portion to be inspected based on conditions and ultrasonic waveform data such as a reflected wave from the defect 1c is recorded.
It has a configuration with.

【0038】また、本実施形態に係る超音波探傷方法
は、探傷収録工程(ステップ3)で収録した波形データ
を基にリアルタイムで画像処理し、画像処理結果を検査
対象部分の形状に重ね合わせて断面画像表示、平面画像
表示、立体画像表示などをエコー振幅値の大きさに対応
したカラー階調表示を行う画像処理表示工程(ステップ
4)と、収録した波形データから超音波ビーム路程、エ
コー振幅値を振動子群ごとの位置に合わせて演算し、欠
陥先端からの回折波データと欠陥コーナ部のデータから
欠陥深さを求める処理、あるいは欠陥からの反射波のエ
コー振幅値を演算し、予めデータベース化しておいたエ
コー高さと欠陥深さの関係に照合して欠陥深さを求める
処理などの解析処理を行うデータ解析処理工程(ステッ
プ5)と、ステップ4およびステップ5の結果を基に、
検査対象部分の位置が溶接部の内部、溶接熱影響部、母
材部かによって欠陥か否かを判定する欠陥評価工程(ス
テップ6)と、画像処理結果および信号処理結果を表示
装置に表示する表示工程(ステップ7)を備えた構成に
なっている。
In the ultrasonic flaw detection method according to the present embodiment, image processing is performed in real time based on the waveform data recorded in the flaw detection recording step (step 3), and the image processing result is superimposed on the shape of the portion to be inspected. An image processing and displaying step (step 4) for displaying a color gradation corresponding to the magnitude of the echo amplitude value such as a sectional image display, a plane image display, and a stereoscopic image display, and an ultrasonic beam path and an echo amplitude from the recorded waveform data. Calculate the value in accordance with the position of each transducer group, calculate the defect depth from the diffracted wave data from the defect tip and the data at the defect corner, or calculate the echo amplitude value of the reflected wave from the defect, A data analysis process (step 5) for performing an analysis process such as a process for obtaining a defect depth by comparing the relationship between the echo height and the defect depth stored in a database; And based on the result of Step 5,
A defect evaluation step (step 6) of determining whether or not the inspection target portion is a defect depending on whether the position is inside the weld, the heat affected zone, or the base material; and displaying the image processing result and the signal processing result on a display device. It is configured to include a display step (step 7).

【0039】このように、本実施形態は、検査対象部分
を適正な探傷条件で探傷し、検出した波形データの画像
処理、解析処理を行うことにより、検査対象部分の欠陥
位置、欠陥深さを効率的かつ高精度に測定することがで
きる。
As described above, according to the present embodiment, the defect position of the inspection target portion and the defect depth of the inspection target portion are determined by detecting the inspection target portion under appropriate flaw detection conditions and performing image processing and analysis processing on the detected waveform data. Measurement can be performed efficiently and with high accuracy.

【0040】図4は、図2に示したアレイ型超音波探触
子を用いた本発明に係る超音波探傷方法の第1実施形態
を説明する概念図である。なお、図4中、(a)は、超
音波ビームが溶接構造物の底面側の表層部を伝播し、欠
陥からの反射波を同一の経路で受信することを示し、か
つリニア走査による探傷を示す概念図であり、(b)
は、任意に選択した送受信用振動子群における検出波形
を示すグラフであり、(c)は、リニア走査による探傷
時の検出波形の振幅値を超音波送受信用振動子群の中心
位置との関係で示すグラフである。その際、欠陥深さd
はパラメータにとっている。d1,d2は異なる欠陥深
さを示している。
FIG. 4 is a conceptual diagram illustrating a first embodiment of the ultrasonic flaw detection method according to the present invention using the array type ultrasonic probe shown in FIG. In FIG. 4, (a) shows that the ultrasonic beam propagates on the surface layer on the bottom side of the welded structure, and receives the reflected wave from the defect along the same path. It is a conceptual diagram shown, (b)
Is a graph showing a detection waveform in an arbitrarily selected transmission / reception vibrator group, and (c) shows a relationship between an amplitude value of a detection waveform at the time of flaw detection by linear scanning and a center position of the ultrasonic transmission / reception vibrator group. It is a graph shown by. At this time, the defect depth d
Is for parameters. d1 and d2 indicate different defect depths.

【0041】本実施形態は、多数の振動子A(1),A
(2),…,A(n)の中から選定した送信用振動子群
G(p1),G(p2),…,G(pj)…,G(p
n)および受信用振動子群G(r1),G(r2),
…,G(rj)…,G(rn)を用い、溶接構造物1の
底面側の表層部を伝播するように入射角θで超音波を送
受信している。
In this embodiment, a large number of transducers A (1), A
, G (p2), G (p2), G (pj), G (p)
n) and receiving transducer groups G (r1), G (r2),
, G (rj)..., G (rn), ultrasonic waves are transmitted and received at an incident angle θ so as to propagate through the surface layer on the bottom side of the welded structure 1.

【0042】このとき、往路の超音波は、Uw→U1→
U2の経路で伝播し、溶接構造物1の溶接金属1b内の
欠陥1cに到達する。
At this time, the outgoing ultrasonic wave is Uw → U1 →
It propagates along the path of U2 and reaches the defect 1c in the weld metal 1b of the welded structure 1.

【0043】また、欠陥1cからの復路の超音波(反射
波)はU2→U1→Uwの経路を辿る。その際、検出波
形は、図4(b)に示すように、受信される。
The ultrasonic wave (reflected wave) on the return path from the defect 1c follows the path of U2 → U1 → Uw. At that time, the detected waveform is received as shown in FIG.

【0044】このようにして検出した波形データから、
受信波形までの伝播時間Wdは、2×(tw+t1+t
2)であり、また、欠陥1cの位置は、受信用振動子A
(1),…,A(i),…,A(n)から欠陥1cまで
の距離Lとして次式から大略求めることができる。
From the waveform data thus detected,
The propagation time Wd to the reception waveform is 2 × (tw + t1 + t
2), and the position of the defect 1c is
The distance L from (1),..., A (i),.

【0045】[0045]

【数1】 ここで、Vw、V1、V2は、それぞれ接触媒質C、経
路U1,経路U2での伝播速度であり、wは、アレイ型
超音波探触子2と接触媒質Cとの距離、αは接触媒質C
と溶接構造物1とのなす角、θは送受信時の入射角度、
Tは厚みである。これらの値は予め求めておく。
(Equation 1) Here, Vw, V1, and V2 are the couplant C, the propagation speed in the path U1, and the path U2, respectively, w is the distance between the array-type ultrasonic probe 2 and the couplant C, and α is the couplant. C
, The angle between the welding structure 1 and θ, the incident angle during transmission and reception,
T is the thickness. These values are obtained in advance.

【0046】次に、図4(b)に示すように、欠陥から
の検出波形の振幅値Hを求め、超音波送受信用振動子群
の中心位置との関係で表すと、図4(c)のような振幅
値分布が求められる。ここで、欠陥深さdは、振幅値分
布のピーク位置Pと、振幅値分布と欠陥深さ測定用基準
線との交点Qのそれぞれの超音波送受信用振動子群の中
心位置G(P)およびG(Q)とから次式で求められ
る。
Next, as shown in FIG. 4B, the amplitude value H of the detected waveform from the defect is obtained and expressed in relation to the center position of the ultrasonic transmitting / receiving vibrator group. Is obtained. Here, the defect depth d is the center position G (P) of the ultrasonic transmission / reception vibrator group at the peak position P of the amplitude value distribution and the intersection Q between the amplitude value distribution and the defect depth measurement reference line. And G (Q) from the following equation.

【0047】[0047]

【数2】d=G(P)−G(Q) また、欠陥深さdは、探傷断面画像からも容易に求める
ことができる。
D = G (P) -G (Q) Further, the defect depth d can be easily obtained from the flaw detection sectional image.

【0048】なお、欠陥深さ測定用基準線は、予め実験
等で求められる。
The reference line for measuring the depth of a defect is obtained in advance by an experiment or the like.

【0049】このように、本実施形態では、適正な探傷
条件で探傷し、検出した波形データを基に各種演算処理
することにより、欠陥位置、欠陥深さを効率的かつ高精
度に測定することができる。
As described above, in this embodiment, the defect position and the defect depth can be efficiently and accurately measured by performing various kinds of arithmetic processing based on the detected waveform data under the appropriate flaw detection conditions. Can be.

【0050】図5は、図2に示したアレイ型超音波探触
子を用いた本発明に係る超音波探傷方法の第2実施形態
を説明する概念図である。なお、図5中、(a)は、溶
接構造物に対して超音波送信時に超音波ビームが底面側
の表層部を伝播するようにし、受信時、溶接構造物に対
して直角方向の超音波ビームを受信する探傷条件でリニ
ア走査することを示す概念図であり、(b−1)は、受
信用振動子群G(ri)における検出波形を示すグラ
フ、(b−2)は、受信用振動子群G(rj)における
検出波形を示すグラフ、(b−3)は、受信用振動子群
G(rk)における検出波形を示すグラフであり、
(c)は、受信用振動子群G(rj)が検出した反射波
としての端部エコーFtipの最大振幅値を示すグラフ
であり、(d)は、受信用振動子群G(rj)における
端部エコーFtipと反射波Fcとを対比させたグラフ
である。また、本実施形態は、図4に示した構成部分と
同一または対応する部分には同一符号を付している。
FIG. 5 is a conceptual diagram illustrating a second embodiment of the ultrasonic flaw detection method according to the present invention using the array type ultrasonic probe shown in FIG. In FIG. 5, (a) shows that the ultrasonic beam propagates through the surface layer on the bottom side when transmitting the ultrasonic wave to the welded structure, and the ultrasonic wave in the direction perpendicular to the welded structure when receiving the ultrasonic beam. It is a conceptual diagram which shows performing linear scanning on the flaw detection conditions which receive a beam, (b-1) is a graph which shows the detection waveform in the vibrator group G (ri) for reception, (b-2) is for reception. (B-3) is a graph showing a detected waveform in the transducer group G (rk), and (b-3) is a graph showing a detected waveform in the transducer group G (rk).
(C) is a graph showing the maximum amplitude value of the end echo Ftip as a reflected wave detected by the group of receiving transducers G (rj), and (d) is a graph showing the maximum amplitude value of the group of receiving transducers G (rj). It is the graph which compared end echo Ftip and reflected wave Fc. In this embodiment, the same reference numerals are given to the same or corresponding portions as the components shown in FIG.

【0051】本実施形態は、溶接構造物1の表面側に設
置したアレイ型超音波探触子2を構成する多数の振動子
の中から選定した送信用振動子群G(p1),G(p
2),…,G(pj),…,G(pn)を用い、溶接構
造物1の底面側の表層を伝播するように往路用の超音波
を入射角θで入射させている。
In the present embodiment, the transmitting transducer groups G (p1), G (p) selected from the many transducers constituting the array type ultrasonic probe 2 installed on the surface side of the welding structure 1 p
2),..., G (pj),..., G (pn), the forward-direction ultrasonic waves are incident at an incident angle θ so as to propagate through the surface layer on the bottom surface side of the welded structure 1.

【0052】このとき、送信超音波は、経路Uw→U1
→U2で伝播し、溶接構造物1の溶接金属1b内部の欠
陥1cに入射される。
At this time, the transmitted ultrasonic wave is transmitted from the route Uw to U1.
→ The light propagates at U2 and enters the defect 1c inside the weld metal 1b of the welded structure 1.

【0053】欠陥1cに入射された超音波は、欠陥1c
で振動し、その先端から端部エコー(回折波)Fti
p、そのコーナ部から反射波Fcが発生する。この波形
の受信において、受信用振動子群G(r1),…,G
(ri),…,G(rn)は、溶接構造物1に対して直
角方向からの信号を受信できるように設定して、順次、
電子走査を行って受信すると、図5(b−1),(b−
2),(b−3)に示すように、端部エコーFtip、
反射波Fcを検出する。
The ultrasonic wave incident on the defect 1c is
Vibration at the tip and end echo (diffraction wave) Fti
p, a reflected wave Fc is generated from the corner. In receiving this waveform, the receiving transducer groups G (r1),.
(Ri),..., G (rn) are set so that signals from the direction perpendicular to the welded structure 1 can be received.
When the electronic scanning is performed and received, FIGS.
2), (b-3), the end echo Ftip,
The reflected wave Fc is detected.

【0054】次に、図5(c)に示すように、端部エコ
ーFtipを受信する受信用振動子群G(r1),…,
G(ri),…,G(rn)のうち、振幅値の最大値を
得る受信用振動子G(rj)の検出波形をベースにし
て、図5の(d)に示すように、反射波Fcと端部エコ
ーFtipとの超音波ビーム路程差(Wc−Wtip)
から、欠陥深さdを求める。
Next, as shown in FIG. 5C, a group of receiving transducers G (r1),..., Which receive the end echo Ftip.
Of the G (ri),..., G (rn), based on the detection waveform of the receiving transducer G (rj) that obtains the maximum value of the amplitude value, as shown in FIG. Ultrasonic beam path difference between Fc and end echo Ftip (Wc-Wtip)
Is used to determine the defect depth d.

【0055】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データを元に各種演算処理す
ることにより、欠陥位置、欠陥深さを効率的かつ高精度
に測定することができる。
As described above, according to the present embodiment, the defect position and the defect depth can be measured efficiently and with high accuracy by performing the flaw detection under appropriate flaw detection conditions and performing various arithmetic processes based on the detected waveform data. Can be.

【0056】図6は、図2に示したアレイ型超音波探触
子を用いた本発明に係る超音波探傷方法の第3実施形態
を説明する概念図である。なお、図6中、(a)は、溶
接構造物に対して超音波送信時に超音波ビームが底面側
の表層部を伝播するようにし、受信時、溶接構造物に対
して直角方向の超音波ビームを受信する探傷条件でリニ
ア走査することを示す概念図であり、(b−1)は、受
信用振動子群G(ri)における検出波形を示すグラ
フ、(b−2)は、受信用振動子群G(rj)における
検出波形を示すグラフ、(b−3)は、受信用振動子群
G(rk)における検出波形を示すグラフであり、
(c)は、受信用振動子群G(rj)が検出した反射波
としての端部エコーの最大振幅値を示すグラフであり、
(d)は、受信用振動子群G(rj)における端部エコ
ーFtipと反射波Fcとを対比させたグラフである。
また、本実施形態は、図4に示した構成部分と同一また
は対応する部分には同一符号を付している。
FIG. 6 is a conceptual diagram for explaining a third embodiment of the ultrasonic flaw detection method according to the present invention using the array type ultrasonic probe shown in FIG. In FIG. 6, (a) shows that the ultrasonic beam propagates through the surface layer on the bottom side when transmitting ultrasonic waves to the welding structure, and the ultrasonic waves in the direction perpendicular to the welding structure during reception. It is a conceptual diagram which shows performing linear scanning on the flaw detection conditions which receive a beam, (b-1) is a graph which shows the detection waveform in the vibrator group G (ri) for reception, (b-2) is for reception. (B-3) is a graph showing a detected waveform in the transducer group G (rk), and (b-3) is a graph showing a detected waveform in the transducer group G (rk).
(C) is a graph showing the maximum amplitude value of the end echo as a reflected wave detected by the receiving transducer group G (rj),
(D) is a graph comparing the end echo Ftip and the reflected wave Fc in the receiving transducer group G (rj).
In this embodiment, the same reference numerals are given to the same or corresponding portions as the components shown in FIG.

【0057】本実施形態は、溶接構造物1の表面側に設
置したアレイ型超音波探触子2を構成する多数の振動子
A(1),…,A(n)の中から選定した送信用振動子
群G(p1),G(p2),…,G(pj),…,G
(pn)を用い、溶接構造物1の底面側の表層を伝播す
るように往路用の超音波を入射角θで入射させている。
In the present embodiment, the transmission selected from a number of transducers A (1),..., A (n) constituting the array type ultrasonic probe 2 installed on the surface side of the welded structure 1 is selected. G (p1), G (p2),..., G (pj),.
Using (pn), the forward-direction ultrasonic wave is made incident at an incident angle θ so as to propagate through the surface layer on the bottom surface side of the welded structure 1.

【0058】このとき、送信超音波は、経路Uw→U1
→U2で伝播し、溶接構造物1の溶接金属1b内部の欠
陥1cに入射される。
At this time, the transmitted ultrasonic wave is transmitted from the route Uw to U1.
→ The light propagates at U2 and enters the defect 1c inside the weld metal 1b of the welded structure 1.

【0059】欠陥1cに入射した超音波は、欠陥1cで
振動し、その先端から端部エコー(回折波)Ftip
と、そのコーナ部から反射波Fcが発生する。発生した
端部エコーFtipおよび反射波Fcは、受信用振動子
群G(r1),…,G(ri),…,G(rn)が欠陥
1cの先端を中心とする円弧状に受信できるように電子
走査を行う。すると、受信波形は、順次電子走査を行っ
て受信すると、図6の(b−1)〜(b−3)に示すよ
うに、欠陥1cから端部エコーFtipと反射波Fcと
が各受信用振動子群G(r1),…,G(ri),…,
G(rn)から検出される。
The ultrasonic wave incident on the defect 1c vibrates at the defect 1c, and an end echo (diffraction wave) Ftip from the tip thereof.
Then, a reflected wave Fc is generated from the corner. The generated end echo Ftip and the reflected wave Fc can be received by the receiving transducer groups G (r1),..., G (ri),..., G (rn) in an arc shape centered on the tip of the defect 1c. Is electronically scanned. Then, when the received waveform is sequentially scanned and received, as shown in (b-1) to (b-3) of FIG. 6, the end echo Ftip and the reflected wave Fc from the defect 1c are received. Vibrator groups G (r1),..., G (ri),.
G (rn).

【0060】さらに、図6の(c)に示すように、端部
エコーFtipを受信する各受信用振動子群G(r
1),…,G(ri),…,G(rn)のうち、振幅値
の最大値を得る受信用振動子G(rj)の検出波形をベ
ースにして、図6の(d)に示すように、反射波Fcと
端部エコーFtipとの超音波ビーム路程差(Wc−W
tip)から欠陥深さdを求める。
Further, as shown in FIG. 6C, each receiving transducer group G (r) for receiving the end echo Ftip.
6D based on the detection waveform of the receiving transducer G (rj) that obtains the maximum value of the amplitude values among 1),..., G (ri),. As described above, the ultrasonic beam path difference (Wc-W) between the reflected wave Fc and the end echo Ftip.
The defect depth d is obtained from (tip).

【0061】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データを基に演算処理するこ
とにより、欠陥位置、欠陥深さを効率的かつ高精度に測
定することができる。
As described above, according to the present embodiment, the defect position and the defect depth can be efficiently and accurately measured by performing the flaw detection under the appropriate flaw detection conditions and performing the arithmetic processing based on the detected waveform data. it can.

【0062】図7は、図2に示したアレイ型超音波探触
子を用いた本発明に係る超音波探傷方法の第4実施形態
を説明する概念図である。なお、図7中、(a)は、溶
接構造物に対して超音波送信時に超音波ビームが底面側
の表層部を伝播するようにし、受信時、溶接構造物に対
して直角方向の超音波ビームを受信する探傷条件でリニ
ア走査することを示す概念図であり、(b−1)は、検
査対象部分に欠陥がない場合の仮想音源からの検出波形
を示すグラフ、(b−2)は、検査対象部分に欠陥があ
る場合の仮想音源からの検出波形を示すグラフであり、
(c)は、受信用振動子群G(rj)が検出した反射波
としての端部エコーの最大振幅値を示すグラフであり、
(d)は、受信用振動子群G(rj)における端部エコ
ーFtipと反射波Fcとを対比させたグラフである。
また、本実施形態は、図4に示した構成部分と同一また
は対応する部分には同一符号を付す。
FIG. 7 is a conceptual diagram illustrating a fourth embodiment of the ultrasonic flaw detection method according to the present invention using the array type ultrasonic probe shown in FIG. In FIG. 7, (a) shows an ultrasonic beam propagating through the surface layer on the bottom side when transmitting ultrasonic waves to the welded structure, and an ultrasonic wave perpendicular to the welded structure during reception. It is a conceptual diagram which shows performing linear scanning under the flaw detection conditions which receive a beam, (b-1) is a graph which shows the detection waveform from a virtual sound source when there is no defect in a part to be inspected, and (b-2) is Is a graph showing a detected waveform from a virtual sound source when the inspection target has a defect,
(C) is a graph showing the maximum amplitude value of the end echo as a reflected wave detected by the receiving transducer group G (rj),
(D) is a graph comparing the end echo Ftip and the reflected wave Fc in the receiving transducer group G (rj).
In the present embodiment, the same reference numerals are given to the same or corresponding portions as the components shown in FIG.

【0063】本実施形態は、多数の振動子A(1),A
(2),…,A(n)の中から選定した送信用振動子群
G(p1)〜G(pn)および受信用振動子群G(r
1),…,G(ri),…,G(rj),…,G(r
n)を用い、溶接構造物1の底面側の表層部を伝播する
ように入射角θで超音波を送信している。
In this embodiment, a large number of transducers A (1), A
(2),..., A (n), a group of transmitting transducers G (p1) to G (pn) and a group of receiving transducers G (r)
1), ..., G (ri), ..., G (rj), ..., G (r
n), the ultrasonic wave is transmitted at the incident angle θ so as to propagate through the surface layer on the bottom surface side of the welded structure 1.

【0064】このとき、各受信用振動子群G(r1)〜
G(rn)は、仮想反射を音源P1から受信できるよう
に受信角度を設定する一方、他の仮想反射を音源P2,
P3,…,Pnからも受信でき、かつ欠陥1cの先端を
中心とする円弧状に受信できるように順次、設定され
る。そして、各受信用振動子群G(r1)〜G(rn)
は、溶接構造物1の溶接金属1bに欠陥1cが発生して
いない部分を探傷するとき、図7の(b−1)に示すよ
うに、欠陥からの反射波形が検出されない。また、溶接
構造物1の溶接金属1bに欠陥1cが発生していると
き、図7の(b−2)に示す端部エコーFtipと反射
波Fcとのそれぞれの波形が検出される。
At this time, each of the receiving transducer groups G (r1) to
G (rn) sets the reception angle so that the virtual reflection can be received from the sound source P1, and sets other virtual reflections to the sound sources P2 and P2.
Pn are sequentially set so that they can also be received from P3,..., Pn, and can be received in an arc shape centered on the tip of the defect 1c. Then, each of the receiving transducer groups G (r1) to G (rn)
When flaw detection is performed on a portion of the welded structure 1 where the defect 1c is not generated in the weld metal 1b, a reflected waveform from the defect is not detected as shown in (b-1) of FIG. When the defect 1c is generated in the weld metal 1b of the welded structure 1, the respective waveforms of the end echo Ftip and the reflected wave Fc shown in FIG. 7B-2 are detected.

【0065】各音源P1〜Pnでの探傷結果から端部エ
コーFtipの最大値が得られたデータを基に、受信用
振動子群G(rj)の振幅値から得られる。このように
して得られた最大値の受信用振動子群G(rj)の位置
が欠陥1cの位置に相当すると判定される。また、この
ときの受信用振動子群G(rj)の位置における端部エ
コーFtipと反射波反射波Fcとは図7の(d)に示
す波形となる。図7(d)に示した波形のうち、反射波
Fcと端部エコーFtipとの超音波ビーム路程差(W
c−Wtip)から欠陥深さdを求める。
The maximum value of the end echo Ftip is obtained from the flaw detection results of the sound sources P1 to Pn, and is obtained from the amplitude value of the receiving transducer group G (rj). It is determined that the position of the maximum value of the receiving transducer group G (rj) thus obtained corresponds to the position of the defect 1c. In this case, the end echo Ftip and the reflected wave Fc at the position of the receiving transducer group G (rj) have the waveforms shown in FIG. 7D. In the waveform shown in FIG. 7D, the ultrasonic beam path difference (W) between the reflected wave Fc and the end echo Ftip
Defect depth d is obtained from c-Wtip).

【0066】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データを元に各種演算処理す
ることにより、欠陥位置、欠陥深さを効率的かつ高精度
に測定することができる。
As described above, according to the present embodiment, the defect position and the defect depth can be measured efficiently and with high accuracy by performing the flaw detection under appropriate flaw detection conditions and performing various arithmetic processing based on the detected waveform data. Can be.

【0067】図8は、本発明に係る超音波探傷方法の第
5実施形態を説明する概念図である。図8中、(a)
は、溶接構造物に対して超音波送信時に超音波ビームが
底面側の表層部を伝播するようにし、受信時、溶接構造
物に対して直角方向の超音波ビームを受信する探傷条件
でリニア走査することを示す概念図であり、(b)は、
任意に検出した受信用振動子群G(Prn)における検
出波形を示すグラフであり、(c)は、リニア走査を用
いた探傷時の検出波形の振幅値を受信振動子群の中心位
置との関係で示したグラフであり、欠陥深さdをパラメ
ータとし、(d)は、リニア走査時に検出した欠陥から
のエコー振幅値強度をカラー階調表示した溶接構造物の
断面画像の模式図である。なおカラー階調表示は、白黒
階調でも、マーク方式でもよい。
FIG. 8 is a conceptual diagram illustrating a fifth embodiment of the ultrasonic flaw detection method according to the present invention. In FIG. 8, (a)
In the linear scanning under flaw detection conditions, when transmitting ultrasonic waves to the welded structure, the ultrasonic beam propagates through the surface layer on the bottom side, and when receiving, the ultrasonic beam is received in the direction perpendicular to the welded structure. FIG. 3 is a conceptual diagram showing that
It is a graph which shows the detection waveform in the receiving transducer group G (Prn) arbitrarily detected, and (c) shows the amplitude value of the detection waveform at the time of flaw detection using linear scanning with the center position of the receiving transducer group. FIG. 6 is a graph showing the relationship, in which a defect depth d is used as a parameter, and (d) is a schematic diagram of a cross-sectional image of a welded structure in which the echo amplitude value intensity from a defect detected during linear scanning is displayed in color gradation. . The color gradation display may be a black and white gradation or a mark method.

【0068】また、本実施形態は、図4に示した構成部
分と同一または対応する部分には同一の符号を付してい
る。
In this embodiment, the same or corresponding parts as those shown in FIG. 4 are denoted by the same reference numerals.

【0069】本実施形態は、溶接構造物1の表面側に設
置したアレイ型超音波探触子2を構成する多数の振動子
の中から選定した送受信用振動子群G(Pr1),G
(Pr2),…,G(Prn),…を用い、溶接構造物
1の底面側の表層部を伝播するように往路用に超音波を
入射角θ1で入射させている。
In this embodiment, the transmitting / receiving vibrator group G (Pr1), G (Pr1) is selected from a number of vibrators constituting the array type ultrasonic probe 2 installed on the surface side of the welded structure 1.
Using (Pr2),..., G (Prn),..., Ultrasonic waves are incident at an incident angle θ1 for the outward path so as to propagate through the surface layer on the bottom surface side of the welded structure 1.

【0070】このとき、送信用超音波は、経路Uw→U
1→U2で伝播し、溶接構造物1の溶接金属1b内部の
欠陥1cに入射される。
At this time, the transmission ultrasonic wave is transmitted from the route Uw to the U
The light propagates from 1 to U2 and enters the defect 1c inside the weld metal 1b of the welded structure 1.

【0071】そして、受信用振動子群G(Pr1),G
(Pr2),…,G(Prn),…は、経路U3で受信
できるように、受信角度θ2を設定し、超音波の欠陥へ
の入射により欠陥部分でモード変換した反射波を図8
(b)に示すように検出する。
Then, the receiving transducer groups G (Pr1), G
, G (Prn),... Set the reception angle θ2 so that the reflected wave can be received by the path U3, and reflect the reflected wave that is mode-converted at the defect portion by the incidence of the ultrasonic wave on the defect.
Detection is performed as shown in FIG.

【0072】送受信用振動子群G(Pr1),G(Pr
2),…,G(Prn),…において検出した波形の振
幅値Hを、各受信用振動子群G(Pr1),G(Pr
2),…,G(Prn),…の中心位置との関係を求め
ると図8(c)のような分布が得られる。このとき、欠
陥深さdが異なっている場合は、図8(c)のように分
布の形が異なる。欠陥深さdは、図8(c)の振幅値分
布のピーク位置Pで求められる受信用振動子群の中心位
置G(P)と、欠陥深さ測定用基準線と振幅値分布の交
点Qで求められる受信用振動子群の中心位置G(Q)か
ら、d=G(Q)−G(P)として求められる。また、
欠陥深さdは、図8(d)に示すように、探傷断面画像
からも容易に求めることができる。
The transmitting / receiving vibrator group G (Pr1), G (Pr
2),..., G (Prn),..., The amplitude value H of the waveform detected by each of the receiving transducer groups G (Pr1), G (Pr).
2),..., G (Prn),... And the center position thereof, a distribution as shown in FIG. At this time, when the defect depth d is different, the shape of the distribution is different as shown in FIG. The defect depth d is calculated from the center position G (P) of the group of receiving transducers determined at the peak position P of the amplitude value distribution in FIG. 8C, and the intersection Q between the defect depth measurement reference line and the amplitude value distribution. D = G (Q) -G (P) from the center position G (Q) of the group of receiving transducers determined by Also,
The defect depth d can be easily obtained from the flaw detection sectional image as shown in FIG.

【0073】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データを基に演算処理するこ
とにより、欠陥情報を効率的かつ高精度に測定すること
ができる。
As described above, according to the present embodiment, defect information can be measured efficiently and with high accuracy by performing flaw detection under appropriate flaw detection conditions and performing arithmetic processing based on detected waveform data.

【0074】また、図9に示すように、溶接構造物1の
表面側に設置したアレイ型超音波探触子2を構成する多
数の振動子の中から選定した送受信用アレイ振動子群G
(Pr1),G(Pr2),…,G(Prn)を用い、
送信用超音波ビームを溶接構造物1への入射角度θ2を
設定し、経路U3で欠陥方向に入射させる。受信時に
は、経路U2→U1→Uwで受信角度θ1を設定し、欠
陥からの反射波を検出する。検出した波形データは、前
述の図8(b),(c)で示した処理と同様な処理をす
ることで欠陥深さを求めることができる。
As shown in FIG. 9, a transmitting / receiving array transducer group G selected from a number of transducers constituting the array type ultrasonic probe 2 installed on the surface side of the welding structure 1.
(Pr1), G (Pr2),..., G (Prn)
The transmission ultrasonic beam is set at an incident angle θ2 to the welded structure 1 and is incident in the defect direction along a path U3. At the time of reception, a reception angle θ1 is set along a route U2 → U1 → Uw, and a reflected wave from a defect is detected. The detected waveform data is subjected to the same processing as the processing shown in FIGS. 8B and 8C to obtain the defect depth.

【0075】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データを基に演算処理するこ
とにより、欠陥位置、欠陥深さを効率的かつ高精度に測
定することができる。
As described above, according to the present embodiment, it is possible to efficiently and accurately measure the defect position and the defect depth by performing the flaw detection under the appropriate flaw detection conditions and performing the arithmetic processing based on the detected waveform data. it can.

【0076】また、図10に示すように、溶接構造物の
表面側に設置したアレイ型超音波探触子2を構成する多
数の振動子の中から選定した送信用振動子群G(p
1),…,G(pn)を用い、溶接構造物1の底面側の
表層部を伝播するように往路用に超音波を入射角θ1で
入射させる際、送信用振動子群G(p1),…,G(p
n)と異なる受信用振動子群G(r1),…,G(r
n)を選定し、入射角度θ1と異なる角度θ3で設定し
た経路U3´で欠陥からの反射波を検出する。
As shown in FIG. 10, a transmitting transducer group G (p) selected from a number of transducers constituting the array type ultrasonic probe 2 installed on the surface side of the welded structure.
1),..., G (pn), when transmitting an ultrasonic wave at an incident angle θ1 for the outward path so as to propagate on the surface layer on the bottom surface side of the welded structure 1, the transmitting transducer group G (p1) , ..., G (p
n), G (r1),..., G (r
n) is selected, and the reflected wave from the defect is detected on the path U3 ′ set at an angle θ3 different from the incident angle θ1.

【0077】検出した波形データは、前記図8(b),
(c)で示した処理と同様な処理をすることで欠陥深さ
dを求めることができる。
The detected waveform data is shown in FIG.
By performing the same processing as the processing shown in (c), the defect depth d can be obtained.

【0078】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データを基に演算処理するこ
とにより、欠陥位置、欠陥深さを効率的かつ高精度に測
定することができる。
As described above, according to the present embodiment, the defect position and the defect depth can be measured efficiently and with high accuracy by performing the flaw detection under appropriate flaw detection conditions and performing the arithmetic processing based on the detected waveform data. it can.

【0079】図11は、本発明に係る超音波探傷方法の
第8実施形態を説明する概念図である。
FIG. 11 is a conceptual diagram for explaining an eighth embodiment of the ultrasonic inspection method according to the present invention.

【0080】本実施形態は、溶接構造物1の表面側に設
置したアレイ型超音波探触子2を構成する多数の振動子
の中から選定した送受信用振動子群G(Pr1),…,
G(Prn)を用い、溶接構造物1の底面側の表層部を
伝播するように往路用に超音波を入射角θ1で入射さ
せ、経路Uw→U1→U2で欠陥へ入射させる。受信時
には前述の送受信用振動子群G(Pr1),…,G(P
rn)を用いて扇形走査による探傷を行い欠陥からの反
射波を検出する。このような扇形走査を行うことで、広
い範囲に亘って欠陥からの反射波を検出できる。
In this embodiment, the transmitting / receiving vibrator group G (Pr1),..., Is selected from a number of vibrators constituting the array type ultrasonic probe 2 installed on the surface side of the welding structure 1.
Using G (Prn), an ultrasonic wave is incident at an incident angle θ1 for the outward path so as to propagate through the surface layer on the bottom surface side of the welded structure 1, and is incident on the defect through a path Uw → U1 → U2. At the time of reception, the transmission / reception vibrator group G (Pr1),.
rn) to detect a flaw by a sector scan and detect a reflected wave from a defect. By performing such a sector scan, a reflected wave from a defect can be detected over a wide range.

【0081】このとき、受信用振動子群G(Pri)に
おいて特定の受信角度で検出した波形は図8(c)に示
すように得られ、さらに、受信用振動子群G(ri)の
扇形走査における受信角度に対する検出波形の振幅分布
は、図8(c)に示すように得られる。このとき、欠陥
深さが異なっている場合は、図8(c)のように分布の
形が異なる。欠陥深さdは、図8(c)の振幅値分布の
ピーク位置Pで求められる受信用振動子群の中心位置G
(P)と、欠陥深さ測定用基準線と振幅値分布の交点Q
で求められる受信用振動子群の中心位置G(Q)から、
d=G(Q)−G(P)として求められる。
At this time, a waveform detected at a specific reception angle in the receiving transducer group G (Pri) is obtained as shown in FIG. 8C, and further, the sector shape of the receiving transducer group G (ri) is obtained. The amplitude distribution of the detected waveform with respect to the reception angle in scanning is obtained as shown in FIG. At this time, when the defect depths are different, the distribution shape is different as shown in FIG. The defect depth d is the center position G of the receiving transducer group obtained at the peak position P of the amplitude value distribution in FIG.
(P) and the intersection Q between the reference line for measuring the depth of defect and the amplitude value distribution
From the center position G (Q) of the receiving transducer group obtained by
d = G (Q) -G (P).

【0082】また、受信用振動子群G(ri)の扇形走
査において受信波形の振幅値をカラー階調表示し、溶接
構造物1の断面画像として表示すると、図8(d)に示
すように、探傷断面画像が得られ、この図を用い、実験
等で予め求めておいた画像上のエコー振幅値と欠陥深さ
dの関係から、欠陥深さdを求めることもできる。
When the amplitude value of the received waveform is displayed as a color gradation in the sector scan of the receiving transducer group G (ri) and displayed as a cross-sectional image of the welded structure 1, as shown in FIG. The defect depth d can also be obtained from the relationship between the echo amplitude value and the defect depth d on the image obtained in advance by an experiment or the like using this figure.

【0083】また、図12に示すように、送信用振動子
群G(pi)で超音波を送信し、受信時には受信用振動
子群G(ri)の扇形走査を、受信用振動子群G(r
1),…,G(rn)を順次切り換えて扇形走査による
探傷を行い、さらに、送信用振動子群G(pi)を、G
(p1),…,G(rn)と順次切り換えて超音波を送
信させ、その都度、受信用振動子群G(r1),…,G
(rn)を順次切り換えて扇形走査による探傷を行うこ
と、すなわち、送信時に線形走査を行いつつ、受信時に
は送信時のその都度、扇形走査を行うことにより、溶接
構造物1の広い範囲に亘って探傷が可能となる。このと
きの検出波形の解析処理は、前述の図8(b)〜(d)
と同様の処理を行うことで、欠陥深さを測定することが
できる。
As shown in FIG. 12, an ultrasonic wave is transmitted by the transmitting transducer group G (pi), and the receiving transducer group G (ri) is scanned in a sector shape at the time of reception. (R
1),..., G (rn) are sequentially switched to perform flaw detection by sector scanning, and further, the transmitting transducer group G (pi) is
(P1),..., G (rn) are sequentially transmitted to transmit ultrasonic waves, and each time the receiving transducer group G (r1),.
(Rn) is sequentially switched to perform flaw detection by sector scanning, that is, linear scanning is performed at the time of transmission, and sector scanning is performed each time of transmission at the time of reception. Flaw detection becomes possible. The analysis processing of the detected waveform at this time is performed by the above-described FIGS. 8B to 8D.
By performing the same processing as described above, the defect depth can be measured.

【0084】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データを基に演算処理するこ
とにより、欠陥位置、欠陥深さを効率的かつ高精度に測
定することができる。
As described above, according to the present embodiment, the defect position and the defect depth can be measured efficiently and with high accuracy by performing the flaw detection under appropriate flaw detection conditions and performing the arithmetic processing based on the detected waveform data. it can.

【0085】図13は、図2に示したアレイ型超音波探
触子を用いた本発明に係る超音波探傷方法の第10実施
形態を説明する概念図である。なお、図13中、(a)
は、溶接構造物に対して超音波送信時に超音波ビームが
表面側の表層部を伝播するようにし、受信時、溶接構造
物に対して直角方向の超音波ビームを受信する探傷条件
でリニア走査することを示す概念図であり、(b−1)
は、受信用振動子群G(ri)における検出波形を示す
グラフであり、(b−2)は、受信用振動子群G(r
j)における検出波形を示すグラフであり、(b−3)
は、受信用振動子群G(rk)における検出波形を示す
グラフであり、(c)は、受信用振動子群G(rj)が
検出した反射波としての端部エコーFtipの最大振幅
値を示すグラフであり、(d)は、受信用振動子群G
(rj)における端部エコーFtipと反射波Fcとを
対比させたグラフである。また、本実施形態は、図4に
示した構成部分と同一または対応する部分には同一の符
号を付している。
FIG. 13 is a conceptual diagram illustrating a tenth embodiment of the ultrasonic flaw detection method according to the present invention using the array type ultrasonic probe shown in FIG. In FIG. 13, (a)
Linear scanning under flaw detection conditions where the ultrasonic beam propagates through the surface layer on the surface side when transmitting ultrasonic waves to the welded structure, and receives ultrasonic beams perpendicular to the welded structure during reception. (B-1).
Is a graph showing a detected waveform in the receiving transducer group G (ri), and (b-2) is a graph showing the detected transducer group G (r).
It is a graph which shows the detection waveform in j), (b-3)
Is a graph showing a detected waveform in the receiving transducer group G (rk), and (c) shows a maximum amplitude value of the end echo Ftip as a reflected wave detected by the receiving transducer group G (rj). FIG. 7D is a graph illustrating the receiving vibrator group G;
It is the graph which compared end echo Ftip and reflected wave Fc in (rj). In this embodiment, the same reference numerals are given to the same or corresponding portions as the components shown in FIG.

【0086】本実施形態は、溶接構造物1の表面側に設
置したアレイ型超音波探触子2を構成する多数の振動子
の中から選定した送信用振動子群G(p1),G(p
2),…,G(pj),…,G(pn)を用い、溶接構
造物1の表面側の表層部を伝播するように往路用に超音
波を入射角θで入射させている。
In the present embodiment, a group of transmitting transducers G (p1), G (p) selected from a number of transducers constituting the array type ultrasonic probe 2 installed on the surface side of the welding structure 1 are selected. p
2),..., G (pj),..., G (pn), ultrasonic waves are incident at an incident angle θ for the outward path so as to propagate through the surface layer on the surface side of the welded structure 1.

【0087】このとき、送信用超音波は、経路Uw→U
1で伝播し、溶接構造物1の溶接金属1b内部の欠陥1
cに入射される。
At this time, the transmitting ultrasonic wave is transmitted from the route Uw to U
1 and defects 1 inside the weld metal 1b of the welded structure 1
c.

【0088】欠陥1cに入射された超音波は、欠陥1c
で振動し、その先端から端部エコーFtip、そのコー
ナ部から反射波Fcが発生する。この波形の受信におい
て送信用振動子群G(p1),G(p2),…,G(p
i),…,G(pn)は、溶接構造物1に対して直角方
向からの信号を受信できるように設定して、順次、電子
走査を行って受信すると、図13(b−1),(b−
2),(b−3)に示すように、端部エコーFtip、
反射波Fcを検出する。
The ultrasonic wave incident on the defect 1c is
Then, an end echo Ftip is generated from the tip, and a reflected wave Fc is generated from the corner. In receiving this waveform, the transmitting transducer groups G (p1), G (p2),.
i),..., G (pn) are set so that signals can be received from the welded structure 1 in a direction perpendicular to the welded structure 1, and when electronic scanning is sequentially performed and received, the signals shown in FIG. (B-
2), (b-3), the end echo Ftip,
The reflected wave Fc is detected.

【0089】次に、図13(c)に示すように、端部エ
コーFtipを受信する受信用振動子群G(r1),G
(r2),…,G(ri),…,G(rn)のうち、振
幅値の最大値を得る受信用振動子群G(rj)の検出波
形をベースにして図13(d)に示すように、反射波F
cと端部エコーFtipの超音波ビーム路程差(Wc−
Wtip)から、欠陥深さを求める。
Next, as shown in FIG. 13 (c), the receiving transducer groups G (r1), G (r1) for receiving the end echo Ftip.
13D based on the detection waveform of the receiving transducer group G (rj) that obtains the maximum amplitude value among (r2),..., G (ri),. So, the reflected wave F
ultrasonic beam path difference between c and the end echo Ftip (Wc−
From Wtip), the defect depth is obtained.

【0090】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データをもとに演算処理する
ことにより、欠陥位置、欠陥深さを効率的かつ高精度に
測定することができる。
As described above, according to the present embodiment, a defect position and a defect depth can be measured efficiently and with high precision by performing a flaw detection under appropriate flaw detection conditions and performing arithmetic processing based on the detected waveform data. Can be.

【0091】図14は、図2に示したアレイ型超音波探
触子を用いた本発明に係る超音波探傷方法の第11実施
形態を説明する概念図である。なお、図14中、(a)
は、溶接構造物に対して超音波送信時に超音波ビームが
表面側の表層部を伝播するようにし、受信時、溶接構造
物に対して直角方向の超音波ビームを受信する探傷条件
でリニア走査することを示す概念図であり、(b−1)
は、受信用振動子群G(ri)における検出波形を示す
グラフであり、(b−2)は、受信用振動子群G(r
j)における検出波形を示すグラフであり、(b−3)
は、受信用振動子群G(rk)における検出波形を示す
グラフであり、(c)は、受信用振動子群G(rj)が
検出した反射波としての端部エコーFtipの最大振幅
値を示すグラフであり、(d)は、受信用振動子群G
(rj)における端部エコーFtipと反射波Fcとを
対比させたグラフである。また、本実施形態は、図4に
示した構成部分と同一または対応する部分には同一の符
号を付している。
FIG. 14 is a conceptual diagram illustrating an eleventh embodiment of the ultrasonic inspection method according to the present invention using the array-type ultrasonic probe shown in FIG. In FIG. 14, (a)
Linear scanning under flaw detection conditions where the ultrasonic beam propagates through the surface layer on the surface side when transmitting ultrasonic waves to the welded structure, and receives ultrasonic beams perpendicular to the welded structure during reception. (B-1).
Is a graph showing a detected waveform in the receiving transducer group G (ri), and (b-2) is a graph showing the detected transducer group G (r).
It is a graph which shows the detection waveform in j), (b-3)
Is a graph showing a detected waveform in the receiving transducer group G (rk), and (c) shows a maximum amplitude value of the end echo Ftip as a reflected wave detected by the receiving transducer group G (rj). FIG. 7D is a graph illustrating the receiving vibrator group G;
It is the graph which compared end echo Ftip and reflected wave Fc in (rj). Further, in the present embodiment, the same reference numerals are given to the same or corresponding portions as the components shown in FIG.

【0092】本実施形態は、溶接構造物1の表面側に設
置したアレイ型超音波探触子2を構成する多数の振動子
の中から選定した送信用振動子群G(p1),G(p
2),…,G(pj),…,G(pn)を用い、溶接構
造物1の表面側の表層部を伝播するように往路用に超音
波を入射角θで入射させている。
In the present embodiment, the transmitting transducer groups G (p1), G (p) selected from a number of transducers constituting the array type ultrasonic probe 2 installed on the surface side of the welding structure 1 are selected. p
2),..., G (pj),..., G (pn), ultrasonic waves are incident at an incident angle θ for the outward path so as to propagate through the surface layer on the surface side of the welded structure 1.

【0093】このとき、送信用超音波は、経路Uw→U
1で伝播し、溶接構造物1の溶接金属1b内部の欠陥1
cに入射される。
At this time, the transmitting ultrasonic wave is transmitted through the route Uw → U
1 and defects 1 inside the weld metal 1b of the welded structure 1
c.

【0094】欠陥1cに入射された超音波は、欠陥1c
で振動し、その先端から端部エコーFtip、そのコー
ナ部から反射波Fcが発生する。発生した点部エコーF
tipおよび反射波Fcは、受信用振動子群G(r
1),G(r2),…,G(ri),…,G(rn)が
欠陥1cの先端を中心とする円弧状に受信できるように
電子走査を行う。すると、受信波形は、順次、電子走査
を行って受信すると、図14(b−1),(b−2),
(b−3)に示すように、欠陥1cから端部エコーFt
ipと反射波Fcとが各受信用振動子群G(r1),G
(r2),…,G(ri),…,G(rn)から検出さ
れる。
The ultrasonic wave incident on the defect 1c is
Then, an end echo Ftip is generated from the tip, and a reflected wave Fc is generated from the corner. The generated point echo F
The tip and the reflected wave Fc are received by the receiving transducer group G (r
Electronic scanning is performed so that 1), G (r2),..., G (ri),..., G (rn) can be received in an arc shape centered on the tip of the defect 1c. Then, when the received waveform is sequentially subjected to electronic scanning and received, as shown in FIGS. 14 (b-1), (b-2),
As shown in (b-3), the edge echo Ft starts from the defect 1c.
ip and the reflected wave Fc correspond to each receiving transducer group G (r1), G
, G (ri),..., G (rn).

【0095】さらに、図14(c)に示すように、端部
エコーFtipを受信する受信用振動子群G(r1),
…,G(ri),…,G(rn)のうち、振幅値の最大
値を得る受信用振動子群G(rj)の検出波形をベース
にして図14(d)に示すように、反射波Fcと端部エ
コーFtipの超音波ビーム路程差(Wc−Wtip)
から、欠陥深さdを求める。
Further, as shown in FIG. 14 (c), a group of receiving transducers G (r1) for receiving the end echo Ftip,
, G (ri),..., G (rn), as shown in FIG. 14 (d), based on the detected waveform of the receiving vibrator group G (rj) which obtains the maximum value of the amplitude value. Ultrasonic beam path difference between the wave Fc and the end echo Ftip (Wc-Wtip)
Is used to determine the defect depth d.

【0096】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データをもとに演算処理する
ことにより、欠陥位置、欠陥深さを効率的かつ高精度に
測定することができる。
As described above, according to the present embodiment, the defect position and the defect depth can be measured efficiently and with high precision by performing the flaw detection under the appropriate flaw detection conditions and performing the arithmetic processing based on the detected waveform data. Can be.

【0097】図15は、図2に示したアレイ型超音波探
触子を用いた本発明に係る超音波探傷方法の第12実施
形態を説明する概念図であり、図15中、(a)は、溶
接構造物に対して超音波送信時に超音波ビームが底面側
の表層部を伝播するようにし、受信時、溶接構造物に対
して直角方向の超音波ビームを受信する探傷条件でリニ
ア走査することを示す概念図であり、(b−1)は、検
査対象部分に欠陥がない場合の仮想音源からの検出波形
を示すグラフであり、(b−2)は、検査対象部分に欠
陥がある場合の仮想音源からの検出波形を示すグラフで
あり、(c)は、受信用振動子群G(rj)が検出した
反射波としての端部エコーFtipの最大振幅値を示す
グラフであり、(d)は、受信用振動子群G(rj)に
おける端部エコーFtipと反射波Fcとを対比させた
グラフである。また、本実施形態は、図4に示した構成
部分と同一または対応する部分には同一の符号を付して
いる。
FIG. 15 is a conceptual diagram for explaining a twelfth embodiment of the ultrasonic flaw detection method according to the present invention using the array type ultrasonic probe shown in FIG. 2, and FIG. In the linear scanning under flaw detection conditions, when transmitting ultrasonic waves to the welded structure, the ultrasonic beam propagates through the surface layer on the bottom side, and when receiving, the ultrasonic beam is received in the direction perpendicular to the welded structure. (B-1) is a graph showing a detected waveform from a virtual sound source when there is no defect in the inspection target portion, and (b-2) is a graph showing a defect in the inspection target portion. It is a graph which shows the detection waveform from the virtual sound source in a certain case, (c) is a graph which shows the maximum amplitude value of the edge echo Ftip as a reflected wave which the receiving transducer group G (rj) detected, (D) is an end echo in the receiving transducer group G (rj). It is a graph obtained by comparison between the tip and the reflected wave Fc. In this embodiment, the same reference numerals are given to the same or corresponding portions as the components shown in FIG.

【0098】本実施形態は、溶接構造物1の表層側に設
置したアレイ型超音波探触子2を構成する多数の振動子
の中から選定した送信用振動子群G(p1),G(p
2),…,G(pj),…,G(pn)、および受信用
振動子群G(r1),G(r2),…,G(rj),
…,G(rn)を用い、溶接構造物1の表面側の表層部
を伝播するように超音波を入射角θで入射させている。
In the present embodiment, a group of transmitting transducers G (p1), G (p) selected from a number of transducers constituting the array type ultrasonic probe 2 installed on the surface layer side of the welding structure 1 are selected. p
2),..., G (pj),..., G (pn), and a group of receiving transducers G (r1), G (r2),.
, G (rn), ultrasonic waves are incident at an incident angle θ so as to propagate through the surface layer on the surface side of the welded structure 1.

【0099】このとき、各受信用振動子群G(r1),
G(r2),…,G(rj),…,G(rn)は、仮想
反射を音源P1から受信できるように受信角度を設定す
る一方、他の仮想音源P2,P3,…,Pnからも受信
でき、かつ欠陥1cの先端を中心とする円弧状に受信で
きるように順次設定される。そして、受信用振動子群G
(r1)〜G(rn)は、溶接構造物1の欠陥1cが発
生していない部分を探傷する場合には、図15の(b−
1)に示すように欠陥からの反射波形が検出されない。
また、溶接構造物1の溶接金属1bに欠陥1cが発生し
ている場合には、図15(b−2)に示す端部エコーF
tipと反射波Fcとのそれぞれの波形が検出される。
At this time, each of the receiving transducer groups G (r1),
G (rj), G (rj),..., G (rn) set the receiving angle so that the virtual reflection can be received from the sound source P1, and also from the other virtual sound sources P2, P3,. The reception is set so that the reception can be performed and the reception can be performed in an arc shape centering on the tip of the defect 1c. Then, the receiving transducer group G
(R1) to G (rn) correspond to (b-) of FIG.
As shown in 1), no reflection waveform from the defect is detected.
When the defect 1c is generated in the weld metal 1b of the welded structure 1, the end echo F shown in FIG.
Each waveform of the tip and the reflected wave Fc is detected.

【0100】音源P1〜Pnでの探傷結果から端部エコ
ーFtipの最大値が得られたデータを基に、受信用振
動子群G(rj)の振幅値が得られる。このようにして
得られた最大値の受信用振動子群G(rj)の位置が欠
陥1cの位置に相当すると判定される。またこのときの
受信用振動子群G(rj)の位置における端部エコーF
tipと反射波Fcとは図15(d)に示す波形とな
る。図15(d)に示した波形のうち、反射波Fcと端
部エコーFtipの超音波ビーム路程差(Wc−Wti
p)から、欠陥深さdを求める。
The amplitude value of the group of receiving transducers G (rj) is obtained based on the data in which the maximum value of the edge echo Ftip is obtained from the flaw detection results of the sound sources P1 to Pn. It is determined that the position of the maximum value of the receiving transducer group G (rj) thus obtained corresponds to the position of the defect 1c. Also, the end echo F at the position of the receiving transducer group G (rj) at this time.
The tip and the reflected wave Fc have waveforms shown in FIG. 15D, the ultrasonic beam path difference (Wc−Wti) between the reflected wave Fc and the end echo Ftip
The defect depth d is obtained from p).

【0101】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データを基に各種演算処理す
ることにより、欠陥位置、欠陥深さを効率的かつ高精度
に測定することができる。
As described above, according to the present embodiment, the defect position and the defect depth can be measured efficiently and with high accuracy by performing the flaw detection under appropriate flaw detection conditions and performing various arithmetic processing based on the detected waveform data. Can be.

【0102】図16は、本発明に係る超音波探傷方法の
第13実施形態を説明する概念図である。なお、図16
中、(a)は、溶接構造物に対して超音波送受信時に超
音波ビームが底面側の表層部を伝播するようにし、受信
時、溶接構造物に対して直角方向の超音波ビームを受信
する探傷条件でリニア走査することを示す概念図であ
り、(b)は、任意に検出した受信用振動子群G(r
n)における検出波形を示すグラフであり、(c)は、
リニア走査を用いた探傷時の検出波形の振幅値を受信振
動子群の中心位置との関係で示すグラフであり、欠陥深
さdをパラメータにとってある。(d)は、リニア走査
時に検出した欠陥からのエコー振幅値強度をカラー階調
表示したとき溶接構造物の断面画像の模式図である。
FIG. 16 is a conceptual diagram illustrating a thirteenth embodiment of the ultrasonic inspection method according to the present invention. Note that FIG.
In the middle, (a) shows that the ultrasonic beam propagates through the surface layer on the bottom side when transmitting / receiving the ultrasonic wave to / from the welding structure, and receives the ultrasonic beam in the direction perpendicular to the welding structure at the time of receiving. It is a conceptual diagram which shows that linear scanning is carried out under a flaw detection condition, and (b) is a receiving transducer group G (r) arbitrarily detected.
It is a graph which shows the detection waveform in n), (c) is
6 is a graph showing the amplitude value of a detected waveform at the time of flaw detection using linear scanning in relation to the center position of a group of receiving transducers, and using a defect depth d as a parameter. (D) is a schematic diagram of a cross-sectional image of a welded structure when the echo amplitude value intensity from a defect detected during linear scanning is displayed in color gradation.

【0103】また、本実施形態は、図4に示した構成部
分と同一または対応する部分には同一の符号を付してい
る。
In this embodiment, the same or corresponding parts as those shown in FIG. 4 are denoted by the same reference numerals.

【0104】本実施形態は溶接構造物の表面側に設置し
たアレイ型超音波探触子2を構成する多数の振動子の中
から選定した送信用振動子群G(p1),G(p2),
…,G(pn),…を用い、溶接構造物1の表面側の表
層部を伝播するように往路用に超音波を入射角θ1で入
射させている。
In the present embodiment, a group of transmitting transducers G (p1) and G (p2) selected from a number of transducers constituting the array type ultrasonic probe 2 installed on the surface side of the welded structure. ,
, G (pn),..., Ultrasonic waves are incident at an incident angle θ1 for the outward path so as to propagate through the surface layer on the surface side of the welded structure 1.

【0105】このとき、送信用超音波は、表縁側の表層
部を伝播し、溶接構造物1の溶接金属1b内部の欠陥1
cに入射される。
At this time, the transmitting ultrasonic wave propagates through the surface layer on the front edge side, and the defect 1 in the weld metal 1b of the welded structure 1 is removed.
c.

【0106】このとき、各受信用振動子群G(r1),
G(r2),…,G(rn),…は入射角と異なる受信
角度θ4で受信できるように設定し、超音波の欠陥への
入射により欠陥部分でモード変換した反射波を図16
(b)に示すように検出する。
At this time, each of the receiving transducer groups G (r1),
G (r2),..., G (rn),... Are set so that they can be received at a reception angle θ4 different from the incident angle.
Detection is performed as shown in FIG.

【0107】各受信用振動子群G(r1),G(r
2),…,G(rn),…において検出した波形の振幅
値Hを、各受信用振動子群G(r1),G(r2),
…,G(rn),…の中心位置との関係を求めると、図
16(c)のような分布が得られる。このとき、欠陥深
さdが異なっている場合は、図16(c)のように分布
の形が異なる。欠陥深さdは。図16(d)の振幅値分
布のピーク位置Pで求められる受信用振動子群の中心位
置G(P)と、欠陥深さ測定用基準線と振幅値分布の交
点Qで求められる受信用振動子群の中心位置G(Q)か
ら、d=G(Q)−G(P)として求められる。
Each of the receiving transducer groups G (r1), G (r
2),..., G (rn),..., The amplitude value H of the waveform detected by each of the receiving transducer groups G (r1), G (r2),
, G (rn),... And the center position, the distribution as shown in FIG. 16C is obtained. At this time, if the defect depth d is different, the shape of the distribution is different as shown in FIG. What is the defect depth d? The reception vibration obtained at the center position G (P) of the reception transducer group obtained at the peak position P of the amplitude value distribution in FIG. 16D and the intersection Q of the reference line for measuring the defect depth and the amplitude value distribution. From the center position G (Q) of the child group, d = G (Q) -G (P).

【0108】また、受信用振動子群G(ri)の受信波
形の振幅値をカラー階調表示し、溶接構造物1の断面画
像として表示すると、図16(d)が得られ、この図を
用い、実験等で予め求めておいた画像上のエコー振幅値
と欠陥深さdの関係から、欠陥深さdを求めることもで
きる。
When the amplitude value of the received waveform of the receiving transducer group G (ri) is displayed in color gradation and displayed as a cross-sectional image of the welded structure 1, FIG. 16D is obtained. The defect depth d can also be obtained from the relationship between the echo amplitude value on the image and the defect depth d which has been obtained in advance through experiments or the like.

【0109】また、選定した送信用振動子群G(p
1),…,G(pn)を用いて線形走査による探傷を行
う時に、その都度受信用振動子群G(ri),…,G
(rn)を用いて連続的に線形走査を行うことも可能で
あり、この操作により溶接構造物1の全体の詳細な探傷
ができる。このときの検出波形の解析処理は、図16で
示した方法を用いること、あるいは、各受信用振動子群
G(ri),…,G(rn)での検出波形データの比
較、加算平均処理等の処理を行うことで、欠陥深さdを
測定することができる。
Further, the selected transmitting transducer group G (p
1) When flaw detection by linear scanning is performed using G (pn), the receiving transducer groups G (ri),.
It is also possible to perform linear scanning continuously using (rn), and this operation enables detailed flaw detection of the entire welded structure 1. At this time, the detected waveform is analyzed by using the method shown in FIG. 16 or by comparing the detected waveform data of each of the receiving transducer groups G (ri),..., G (rn), and averaging. By performing such processing, the defect depth d can be measured.

【0110】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データを基に演算処理するこ
とにより、欠陥位置、欠陥深さを効率的かつ高精度に測
定することができる。
As described above, according to the present embodiment, the defect position and the defect depth can be measured efficiently and with high precision by performing the flaw detection under the appropriate flaw detection conditions and performing the arithmetic processing based on the detected waveform data. it can.

【0111】図17は、図2に示したアレイ型超音波探
触子を用いて、例えばK形開先の突合せ溶接部に適用す
る本発明に係る超音波探傷方法の第14実施形態を説明
する概念図である。なお、図17中、(a)は、アレイ
型超音波探触子を溶接構造物に対して平行に設置し、例
えばK形開先の突合せ溶接部の欠陥を検査する概念図で
あり、(b)は、受信用振動子群が検出した検出波形の
振幅値分布を示すグラフであり、(c)は、受信用振動
子群G(Prj)が検出した波形を示すグラフである。
FIG. 17 illustrates a fourteenth embodiment of the ultrasonic flaw detection method according to the present invention applied to, for example, a butt weld of a K-shaped groove using the array type ultrasonic probe shown in FIG. FIG. In FIG. 17, (a) is a conceptual diagram in which an array-type ultrasonic probe is installed in parallel to a welded structure and, for example, a defect is detected in a butt weld of a K-shaped groove. (b) is a graph showing the amplitude value distribution of the detected waveform detected by the group of receiving transducers, and (c) is a graph showing the waveform detected by the group of receiving transducers G (Prj).

【0112】本実施形態は、多数の振動子の中から選択
した送信用振動子群および受信用振動子群を備えたアレ
イ型超音波探触子2を、溶接構造物1に対して平行に設
置するとともに、溶接構造物1の底面側の表層部を伝播
するように超音波を予め入射角θで送受信しつつ、リニ
ア走査による探傷を行っている。
In this embodiment, the array type ultrasonic probe 2 having a group of transmitting transducers and a group of receiving transducers selected from a large number of transducers is arranged in parallel with the welding structure 1. At the same time, flaw detection by linear scanning is performed while transmitting and receiving ultrasonic waves in advance at an incident angle θ so as to propagate through the surface layer on the bottom surface side of the welded structure 1.

【0113】その際、各受信用振動子群では、溶接金属
1bの欠陥1cからの反射波を受信し、受信した反射波
が経路(Uw)を通って受信用振動子群の位置における
検出波形の振幅値が得られるようになっている。この振
幅値の分布は、図17の(b)に示すように、送受信用
振動子群G(Pr)の中心位置に対して示される。
At this time, each of the receiving transducer groups receives a reflected wave from the defect 1c of the weld metal 1b, and the received reflected wave passes through a path (Uw) to detect a detected waveform at the position of the receiving transducer group. Is obtained. The distribution of the amplitude values is shown with respect to the center position of the transmission / reception vibrator group G (Pr), as shown in FIG.

【0114】このように、図17の(b)に示した振幅
値分布の線に対し、本実施形態では、予めデータベース
化しておいた欠陥深さ測定用基準線を当てはめ、欠陥1
cの深さ測定に用いる受信振動子群G(Prj)の中か
ら交点Qに位置する特定の受信用振動子G(Pr)を求
める。
As described above, in the present embodiment, the reference line for defect depth measurement prepared in a database in advance is applied to the line of the amplitude value distribution shown in FIG.
A specific receiving transducer G (Pr) located at the intersection Q is obtained from the receiving transducer group G (Prj) used for measuring the depth c.

【0115】交点Qに位置する特定の受信用振動子G
(Pr)では、図17の(c)に示す波形が検出され
る。図17の(c)に示す波形線図から、本実施形態
は、欠陥1cまでの超音波ビーム路程Wdを用いて欠陥
1cの深さをdとするとき、d=Wd・cosθ、ま
た、欠陥1cの位置LをL=Wd・sinθとして求め
ることができる。
A specific receiving transducer G located at the intersection Q
In (Pr), the waveform shown in (c) of FIG. 17 is detected. From the waveform diagram shown in FIG. 17C, in the present embodiment, when the depth of the defect 1c is d using the ultrasonic beam path Wd to the defect 1c, d = Wd · cos θ, and The position L of 1c can be obtained as L = Wd · sin θ.

【0116】また、欠陥深さdは、図17(b)の振幅
幅分布のピーク位置Pで求められる受信振動子群の中心
位置G(Prj)と、欠陥深さ測定用基準線と振幅値分
布の交点Qで求められる受信振動子群の中心位置G(P
r)からd=G(Prj)−G(Pr)として求めるこ
とができる。
Further, the defect depth d is obtained by calculating the center position G (Prj) of the group of receiving transducers obtained at the peak position P of the amplitude width distribution in FIG. 17B, the reference line for measuring the defect depth, and the amplitude value. The center position G (P of the receiving transducer group obtained at the intersection Q of the distribution
r) can be obtained as d = G (Prj) -G (Pr).

【0117】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データを基に各種演算処理す
ることにより、欠陥位置、欠陥深さを効率的かつ高精度
に測定することができる。
As described above, according to the present embodiment, the defect position and the defect depth can be measured efficiently and with high accuracy by performing the flaw detection under appropriate flaw detection conditions and performing various arithmetic processing based on the detected waveform data. Can be.

【0118】図18は、図2に示したアレイ型超音波探
触子を用いて、例えばK形開先の突合せ溶接部に適用す
る本発明に係る超音波探傷方法の第15実施形態を説明
する概念図であり、図18中、(a)は、アレイ型超音
波探触子を溶接構造物に対して仰角になる角度に設置
し、例えばK形開先の突合せ溶接部の欠陥を検査する概
念図であり、(b)は、受信用振動子が検出した検出波
形の振幅値分布を示すグラフであり、(c)は、受信用
振動子群G(Prj)が検出した波形を示すグラフであ
る。
FIG. 18 illustrates a fifteenth embodiment of the ultrasonic flaw detection method according to the present invention which is applied to, for example, a K-shaped groove butt weld using the array type ultrasonic probe shown in FIG. FIG. 18 (a) shows an array-type ultrasonic probe installed at an angle of elevation with respect to a welded structure, and inspects, for example, a defect in a butt weld of a K-shaped groove. (B) is a graph showing an amplitude value distribution of a detected waveform detected by the receiving transducer, and (c) is a waveform detected by the receiving transducer group G (Prj). It is a graph.

【0119】本実施形態は、アレイ型超音波探触子2を
溶接構造物1に対して仰角になる角度に設置するので、
より大きな入射強度の超音波ビームを欠陥1cに対して
入射することができる。
In this embodiment, the array type ultrasonic probe 2 is installed at an angle of elevation with respect to the welded structure 1.
An ultrasonic beam having a higher incident intensity can be incident on the defect 1c.

【0120】なお、超音波送受信方法および解析処理方
法は第14実施形態と同一なので、重複説明を省略す
る。
The ultrasonic transmission / reception method and the analysis processing method are the same as those in the fourteenth embodiment, and a description thereof will not be repeated.

【0121】図19は、図2に示したアレイ型超音波探
触子を用いて、例えばK形開先の突合せ溶接部に適用す
る本発明に係る超音波探傷方法の第16実施形態を説明
する概念図である。なお、図19中、(a)は、アレイ
型超音波探触子2を溶接構造物に対して平行に設置し、
例えばK形開先の突合せ溶接部の欠陥を検査する概念図
であり、(b)は、振幅値と欠陥の傾き角との関係を示
すマスターカーブである。なお、図17と同一または対
応する部分には同一符号を付す。
FIG. 19 illustrates a sixteenth embodiment of the ultrasonic flaw detection method according to the present invention which is applied to, for example, a butt weld of a K-shaped groove using the array type ultrasonic probe shown in FIG. FIG. In FIG. 19, (a) shows that the array type ultrasonic probe 2 is installed in parallel with the welded structure,
For example, it is a conceptual diagram for inspecting a defect in a butt weld of a K-shaped groove, and (b) is a master curve showing a relationship between an amplitude value and a tilt angle of the defect. Note that the same reference numerals are given to the same or corresponding portions as those in FIG.

【0122】本実施形態は、図19の(a)に示すよう
に、特定の受信用振動子Gから欠陥1cの波形の振幅値
Hθを求め、求めた振幅値Hθを図19の(b)に示す
欠陥1cの傾き角βと検出波形の振幅値分布との関係
(入射角θの場合)を示したマスターカーブに照合して
溶接金属1bの欠陥1cの傾き角βdを求めるものであ
る。
In this embodiment, as shown in FIG. 19A, the amplitude value Hθ of the waveform of the defect 1c is obtained from a specific receiving transducer G, and the obtained amplitude value Hθ is converted to the amplitude value Hθ of FIG. The relationship between the inclination angle β of the defect 1c and the amplitude distribution of the detected waveform (in the case of the incident angle θ) is collated with the master curve indicating the inclination angle βd of the defect 1c of the weld metal 1b.

【0123】このように、本実施形態は、適正な探傷条
件で探傷し、検出波形の振幅値を求め、求めた検出波形
の振幅値をマスターカーブに照合して欠陥1cの傾き角
βdを求めるので、欠陥1cの傾き角βdを効率的かつ
高精度に測定することができる。
As described above, in this embodiment, the flaw detection is performed under appropriate flaw detection conditions, the amplitude value of the detected waveform is obtained, and the obtained amplitude value of the detected waveform is collated with the master curve to obtain the inclination angle βd of the defect 1c. Therefore, the inclination angle βd of the defect 1c can be measured efficiently and with high accuracy.

【0124】なお、本実施形態は、適正な探傷条件で探
傷し、検出波形の振幅値を求め、求めた検出波形の振幅
値をマスターカーブに照合して欠陥1cの傾き角βdを
求めているが、この例に限らず、例えば、図20の第1
7実施形態で示すように、アレイ型超音波探触子2を溶
接構造物1に対して仰角になる角に設置して、上述と同
様にマスターカーブを用いて探傷、解析等を行ってもよ
い。
In this embodiment, flaw detection is performed under appropriate flaw detection conditions, the amplitude value of the detected waveform is obtained, and the obtained amplitude value of the detected waveform is compared with the master curve to obtain the inclination angle βd of the defect 1c. However, the present invention is not limited to this example.
As shown in the seventh embodiment, the array-type ultrasonic probe 2 may be installed at an angle of elevation with respect to the welded structure 1, and flaw detection, analysis, and the like may be performed using the master curve as described above. Good.

【0125】図21は、図2に示したアレイ型超音波探
触子を用いて、例えばK形開先の突合せ溶接部に適用す
る本発明に係る超音波探傷方法の第18実施形態を説明
する概念図である。なお、図21中、(a)は、アレイ
型超音波探触子を溶接構造物に対して平行に設置し、例
えばK形開先の突合せ溶接部の欠陥検査において、扇形
の電子走査(扇形走査)の探傷を示す概念図であり、
(b)は、受信用振動子が検出した入射角に対する欠陥
反射波の振幅値分布を示すグラフであり、(c)は、特
定の受信用振動子G(Prj)が検出した波形を示すグ
ラフであり、(d)は、欠陥深さdを算出する際に説明
用として用いた図である。
FIG. 21 illustrates an eighteenth embodiment of the ultrasonic flaw detection method according to the present invention applied to, for example, a butt weld of a K-shaped groove using the array type ultrasonic probe shown in FIG. FIG. In FIG. 21, (a) shows an array type ultrasonic probe installed in parallel with the welded structure, and for example, in a defect inspection of a butt weld of a K-shaped groove, a sector-shaped electronic scanning (sector-shaped). It is a conceptual diagram showing flaw detection of (scanning),
(B) is a graph showing the amplitude value distribution of the defect reflected wave with respect to the incident angle detected by the receiving transducer, and (c) is a graph showing the waveform detected by the specific receiving transducer G (Prj). (D) is a diagram used for explanation when calculating the defect depth d.

【0126】本実施形態は、多数の振動子の中から選択
した送信用振動子群および受信用振動子群を備えたアレ
イ型超音波探触子2を、溶接構造物1に対して平行に設
置するとともに、溶接構造物1の底面側の表層部を伝播
するように超音波を予め入射角θで送受信しつつ、扇形
の電子走査による探傷を行っている。
In the present embodiment, the array type ultrasonic probe 2 having a group of transmitting transducers and a group of receiving transducers selected from a large number of transducers is arranged in parallel with the welding structure 1. At the same time, the flaw detection is carried out by fan-shaped electronic scanning while transmitting and receiving ultrasonic waves at an incident angle θ in advance so as to propagate through the surface layer on the bottom side of the welded structure 1.

【0127】その際、各受信用振動子群では、溶接金属
1bの欠陥1cからの反射波を受信し、受信した反射波
が経路(Uw)を通って各受信用振動子の位置における
検出波形の振幅値が得られるようになっている。この振
幅値の分布は、図21の(b)に示すように、送受信用
振動子群G(Prj)の中心位置に対して示される。
At this time, each receiving transducer group receives a reflected wave from the defect 1c of the weld metal 1b, and the received reflected wave passes through a path (Uw) to detect a detected waveform at the position of each receiving transducer. Is obtained. The distribution of the amplitude values is shown with respect to the center position of the transmitting / receiving vibrator group G (Prj), as shown in FIG.

【0128】このように、図21の(b)に示した振幅
値分布線に対し、本実施形態では、予めデータベース化
しておいた欠陥深さ測定用基準線を当てはめ、欠陥1c
の深さ測定に用いる受信振動子群の中から交点Haに位
置する特定の入射角θaと特定の受信用振動子G(Pr
j)を求める。
As described above, in the present embodiment, the reference line for defect depth measurement prepared in advance in the database is applied to the amplitude value distribution line shown in FIG.
A specific incident angle θa located at the intersection Ha and a specific receiving transducer G (Pr
j) is obtained.

【0129】交点Haに位置する特定の受信用振動子G
(Prj)では、入射角θaの条件の下、図21の
(c)に示す波形が検出され、超音波ビーム路程Wdが
求められる。図21の(c)に示す波形線図がわかる
と、本実施形態は、図21(d)に示すように、入射角
θaの条件の下、欠陥1cまでの超音波ビーム路程Wd
を用いて欠陥1cの深さをdとするとき、d=Wd・c
osθとし、また、欠陥1cの位置Lとするとき、L=
Wd・sinθとして求めることができる。
A specific receiving transducer G located at the intersection Ha
In (Prj), the waveform shown in FIG. 21C is detected under the condition of the incident angle θa, and the ultrasonic beam path Wd is obtained. As can be seen from the waveform diagram shown in FIG. 21C, in the present embodiment, as shown in FIG. 21D, the ultrasonic beam path Wd to the defect 1c is obtained under the condition of the incident angle θa.
When the depth of the defect 1c is d using the following equation, d = Wd · c
osθ and the position L of the defect 1c, L =
Wd · sin θ.

【0130】このように、本実施形態は、適正な探傷条
件で探傷し、検出した波形データを基に演算処理するこ
とにより、欠陥位置、欠陥深さを効率的かつ高精度に測
定することができる。
As described above, according to the present embodiment, the defect position and the defect depth can be measured efficiently and with high accuracy by performing the flaw detection under appropriate flaw detection conditions and performing the arithmetic processing based on the detected waveform data. it can.

【0131】なお、本実施形態は、アレイ型超音波探触
子2を、溶接構造物1に対して平行に設置するととも
に、溶接構造物1の底面側の表層部を伝播するように超
音波を予め入射角θで送受信しつつ、扇形の電子走査に
よる探傷を行っているが、この例に限らず、例えば、図
22の第19実施形態で示すように、アレイ型超音波探
触子2を、溶接構造物1に対して仰角になる角度に設置
し、扇形の電子走査による探傷を行ってもよい。その
際、欠陥1cの深さdと、位置Lは、図21と同様なの
で、重複説明を省略する。
In this embodiment, the array-type ultrasonic probe 2 is installed in parallel with the welding structure 1, and the ultrasonic probe 2 propagates through the surface layer on the bottom side of the welding structure 1. Is transmitted and received at an incident angle θ in advance, and the flaw detection is performed by fan-shaped electronic scanning. However, the present invention is not limited to this example. For example, as shown in a nineteenth embodiment of FIG. May be installed at an angle of elevation with respect to the welded structure 1 to perform flaw-shaped electronic scanning for flaw detection. At this time, the depth d and the position L of the defect 1c are the same as those in FIG.

【0132】また、本実施形態は、溶接構造物1に対し
て平行あるいは仰角となる角度に設置したアレイ型超音
波探触子2を1つにしたが、この例に限らず、例えば図
23の第20実施形態で示すように、溶接構造物1に対
して平行な並列配置のアレイ型超音波探触子2a,2b
を備えるか、あるいは、例えば、図24の第21実施形
態で示すように、溶接構造物1に対して仰角となる角度
に並列配置のアレイ型超音波探触子2a,2bを備える
かして、一方を送信用とし、他方を受信用とするととも
に、両方のアレイ型超音波探触子2a,2bの超音波ビ
ームの交軸が溶接金属1bの欠陥1cの位置になるよう
設定してもよく、また、例えば、図25の第22実施形
態で示すように、アレイ型超音波探触子2の送受信用振
動子群13a,13bを溶接構造物1における溶接金属
1bの欠陥1cに対して軸対称に配置してもよい。
Further, in the present embodiment, the array type ultrasonic probe 2 installed at an angle parallel or at an elevation angle with respect to the welded structure 1 is one, but is not limited to this example. As shown in the twentieth embodiment, array-type ultrasonic probes 2a and 2b arranged in parallel with welding structure 1 are arranged in parallel.
Or, for example, as shown in a twenty-first embodiment of FIG. 24, array-type ultrasonic probes 2a and 2b arranged in parallel at an angle of elevation with respect to the welded structure 1. One may be used for transmission and the other may be used for reception, and the intersection of the ultrasonic beams of both array-type ultrasonic probes 2a and 2b may be set to the position of the defect 1c of the weld metal 1b. Also, for example, as shown in the twenty-second embodiment of FIG. 25, the transmitting and receiving transducer groups 13a and 13b of the array-type ultrasonic probe 2 are moved with respect to the defect 1c of the weld metal 1b in the welded structure 1. They may be arranged axially symmetrically.

【0133】[0133]

【発明の効果】以上の説明のとおり、本発明によれば、
溶接構造物の溶接金属の欠陥を探傷する際、複数の振動
子を備えたアレイ型超音波探触子を溶接構造物の表面側
に設置し、溶接構造物底面側の欠陥検査においては、溶
接構造物の底面側の表層部を伝播するように超音波を伝
播させ、欠陥先端からの回折波および欠陥コーナ部から
の反射波あるいは欠陥からの反射波を検出し、波形デー
タの画像処理および解析処理を行うことにより、欠陥情
報を高精度に測定することができる。
As described above, according to the present invention,
When detecting flaws in the weld metal of a welded structure, an array-type ultrasonic probe equipped with a plurality of transducers is installed on the front side of the welded structure. Ultrasonic waves are propagated so as to propagate through the surface layer on the bottom side of the structure, diffracted waves from the tip of the defect, reflected waves from the defect corners or reflected waves from the defect, and image processing and analysis of waveform data By performing the processing, defect information can be measured with high accuracy.

【0134】また、本発明によれば、溶接構造物表面側
の欠陥検査においては、溶接構造物の表面側の表層部を
伝播するように超音波を伝播させ、リニア走査による探
傷を行い、あるいは、表面側の表層部から内部に亘って
順次超音波の入射角を変化させて探傷する、いわゆる扇
形走査による探傷を行い、欠陥からの反射波を検出し、
波形データの画像処理および解析処理を行うことで、超
音波の入射角と反射角の振幅値との関係から欠陥の検
出、深さを高精度に測定することができる。
Further, according to the present invention, in the defect inspection on the surface side of the welded structure, ultrasonic waves are transmitted so as to propagate on the surface layer on the surface side of the welded structure, and flaw detection by linear scanning is performed. Performing flaw detection by so-called fan-shaped scanning by sequentially changing the incident angle of ultrasonic waves from the surface layer on the surface side to the inside, detecting reflected waves from defects,
By performing the image processing and the analysis processing of the waveform data, it is possible to detect a defect and measure the depth with high accuracy from the relationship between the incident angle of the ultrasonic wave and the amplitude value of the reflection angle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る超音波探傷装置を示すブロック
図。
FIG. 1 is a block diagram showing an ultrasonic flaw detector according to the present invention.

【図2】図1に示したアレイ型超音波探触子を示す概念
図。
FIG. 2 is a conceptual diagram showing the array-type ultrasonic probe shown in FIG.

【図3】本発明に係る超音波送受信方法を説明するため
に用いたブロック図。
FIG. 3 is a block diagram used for explaining an ultrasonic transmission / reception method according to the present invention.

【図4】図2に示したアレイ型超音波探触子を用いた本
発明に係る超音波探傷方法の第7実施形態を説明する概
念図であり、図中、(a)は、超音波ビームが溶接構造
物の底面側の表層部を伝播し、欠陥からの反射波を同一
の経路で受信することを示し、かつリニア走査による探
傷を示す概念図であり、(b)は、任意に選択した送受
信用振動子群における検出波形を示すグラフであり、
(c)は、リニア走査による探傷時の検出波形の振幅値
を超音波送受信用振動子群の中心位置との関係で示すグ
ラフ。
FIG. 4 is a conceptual diagram illustrating a seventh embodiment of the ultrasonic flaw detection method according to the present invention using the array type ultrasonic probe shown in FIG. 2, wherein (a) is an ultrasonic wave; It is a conceptual diagram which shows that a beam propagates on the surface layer on the bottom side of a welded structure, receives reflected waves from a defect along the same path, and shows flaw detection by linear scanning. It is a graph showing a detection waveform in the selected transmitting and receiving transducer group,
(C) is a graph showing the relationship between the amplitude value of the detected waveform at the time of flaw detection by linear scanning and the center position of the ultrasonic transmission / reception transducer group.

【図5】図2に示したアレイ型超音波探触子を用いた本
発明に係る超音波探傷方法の第2実施形態を説明する概
念図であり、図中、(a)は、溶接構造物に対して超音
波送信時に超音波ビームが底面側の表層部を伝播するよ
うにし、受信時、溶接構造物に対して直角方向の超音波
ビームを受信する探傷条件でリニア走査することを示す
概念図であり、(b−1)は、受信用振動子群G(r
i)における検出波形を示すグラフ、(b−2)は、受
信用振動子群G(rj)における検出波形を示すグラ
フ、(b−3)は、受信用振動子群G(rk)における
検出波形を示すグラフであり、(c)は、受信用振動子
群G(rj)が検出した反射波としての端部エコーFt
ipの最大振幅値を示すグラフであり、(d)は、受信
用振動子群G(rj)における端部エコーFtipと反
射波Fcとを対比させたグラフ。
FIG. 5 is a conceptual diagram illustrating a second embodiment of the ultrasonic flaw detection method according to the present invention using the array type ultrasonic probe shown in FIG. 2, wherein (a) is a welding structure; Indicates that the ultrasonic beam propagates through the surface layer on the bottom side when transmitting ultrasonic waves to the object, and that linear scanning is performed under flaw detection conditions in which ultrasonic beams are received at right angles to the welded structure during reception. It is a conceptual diagram, (b-1) is a receiving transducer group G (r
A graph showing a detected waveform in i), (b-2) is a graph showing a detected waveform in the receiving transducer group G (rj), and (b-3) is a detection in the receiving transducer group G (rk). It is a graph which shows a waveform, (c) is an end echo Ft as a reflected wave which the receiving transducer group G (rj) detected.
It is a graph which shows the maximum amplitude value of ip, (d) is the graph which compared end echo Ftip and reflected wave Fc in the transducer group G (rj) for reception.

【図6】図2に示したアレイ型超音波探触子を用いた本
発明に係る超音波探傷方法の第7実施形態を説明する概
念図であり、図中、(a)は、溶接構造物に対して超音
波送信時に超音波ビームが底面側の表層部を伝播するよ
うにし、受信時、溶接構造物に対して直角方向の超音波
ビームを受信する探傷条件でリニア走査することを示す
概念図であり、(b−1)は、受信用振動子群G(r
i)における検出波形を示すグラフ、(b−2)は、受
信用振動子群G(rj)における検出波形を示すグラ
フ、(b−3)は、受信用振動子群G(rn)における
検出波形を示すグラフであり、(c)は、受信用振動子
群G(rj)が検出した反射波としての端部エコーの最
大振幅値を示すグラフであり、(d)は、受信用振動子
群G(rj)における端部エコーFtipと反射波Fc
とを対比させたグラフ。
FIG. 6 is a conceptual diagram illustrating a seventh embodiment of the ultrasonic inspection method according to the present invention using the array-type ultrasonic probe shown in FIG. 2, wherein (a) is a welding structure. Indicates that the ultrasonic beam propagates through the surface layer on the bottom side when transmitting ultrasonic waves to the object, and that linear scanning is performed under flaw detection conditions in which ultrasonic beams are received at right angles to the welded structure during reception. It is a conceptual diagram, (b-1) is a receiving transducer group G (r
A graph showing the detected waveform in i), (b-2) is a graph showing a detected waveform in the receiving transducer group G (rj), and (b-3) is a detection in the receiving transducer group G (rn). It is a graph which shows a waveform, (c) is a graph which shows the maximum amplitude value of the edge echo as a reflected wave which the receiving transducer group G (rj) detected, and (d) is a receiving transducer. End echo Ftip and reflected wave Fc in group G (rj)
The graph which contrasted with.

【図7】図2に示したアレイ型超音波探触子を用いた本
発明に係る超音波探傷方法の第7実施形態を説明する概
念図であり、図中、(a)は、溶接構造物に対して超音
波送信時に超音波ビームが底面側の表層部を伝播するよ
うにし、受信時、溶接構造物に対して直角方向の超音波
ビームを受信する探傷条件でリニア走査することを示す
概念図であり、(b−1)は、検査対象部分に欠陥がな
い場合の仮想音源からの検出波形を示すグラフ、(b−
2)は、検査対象部分に欠陥がある場合の仮想音源から
の検出波形を示すグラフであり、(c)は、受信用振動
子群G(rj)が検出した反射波としての端部エコーの
最大振幅値を示すグラフであり、(d)は、受信用振動
子群G(rj)における端部エコーFtipと反射波F
cとを対比させたグラフ。
FIG. 7 is a conceptual diagram illustrating a seventh embodiment of the ultrasonic inspection method according to the present invention using the array type ultrasonic probe shown in FIG. 2, wherein (a) is a welding structure. Indicates that the ultrasonic beam propagates through the surface layer on the bottom side when transmitting ultrasonic waves to the object, and that linear scanning is performed under flaw detection conditions in which ultrasonic beams are received at right angles to the welded structure during reception. It is a conceptual diagram, (b-1) is a graph which shows the detection waveform from a virtual sound source when there is no defect in a part to be inspected, (b-
2) is a graph showing a detected waveform from a virtual sound source when the inspection target portion has a defect, and (c) is a graph of an end echo as a reflected wave detected by the receiving transducer group G (rj). It is a graph which shows the maximum amplitude value, (d) is an end echo Ftip and the reflected wave F in the receiving transducer group G (rj).
The graph which compared with c.

【図8】本発明に係る超音波探傷方法の第5実施形態を
説明する概念図であり、図中、(a)は、溶接構造物に
対して超音波送信時に超音波ビームが底面側の表層部を
伝播するようにし、受信時、溶接構造物に対して直角方
向の超音波ビームを受信する探傷条件でリニア走査する
ことを示す概念図であり、(b)は、任意に検出した受
信用振動子群G(Prn)における検出波形を示すグラ
フであり、(c)は、リニア走査を用いた探傷時の検出
波形の振幅値を受信振動子群の中心位置との関係で示し
たグラフであり、欠陥深さをパラメータとし、(d)
は、リニア走査時に検出した欠陥からのエコー振幅値強
度をカラー階調表示した溶接構造物の断面画像の模式
図。
FIG. 8 is a conceptual diagram illustrating a fifth embodiment of an ultrasonic flaw detection method according to the present invention, in which (a) shows an ultrasonic beam on the bottom side when transmitting ultrasonic waves to a welded structure; FIG. 7B is a conceptual diagram showing that linear scanning is performed under a flaw detection condition of transmitting an ultrasonic beam in a direction perpendicular to a welded structure at the time of reception so as to propagate a surface layer portion, and FIG. 7A is a graph showing a detected waveform in the group of transducers for use G (Prn), and FIG. 7C is a graph showing the amplitude value of the detected waveform at the time of flaw detection using linear scanning in relation to the center position of the group of received transducers. And using the defect depth as a parameter, (d)
FIG. 5 is a schematic diagram of a cross-sectional image of a welded structure in which the echo amplitude value intensity from a defect detected during linear scanning is displayed in color gradation.

【図9】本発明に係る超音波探傷方法の第6実施形態を
説明する概念図。
FIG. 9 is a conceptual diagram illustrating a sixth embodiment of the ultrasonic inspection method according to the present invention.

【図10】本発明に係る超音波探傷方法の第7実施形態
を説明する概念図。
FIG. 10 is a conceptual diagram illustrating a seventh embodiment of the ultrasonic inspection method according to the present invention.

【図11】本発明に係る超音波探傷方法の第8実施形態
を説明する概念図。
FIG. 11 is a conceptual diagram illustrating an ultrasonic flaw detection method according to an eighth embodiment of the present invention.

【図12】本発明に係る超音波探傷方法の第9実施形態
を説明する概念図。
FIG. 12 is a conceptual diagram illustrating a ninth embodiment of the ultrasonic inspection method according to the present invention.

【図13】図2に示したアレイ型超音波探触子を用いた
本発明に係る超音波探傷方法の第10実施形態を説明す
る概念図であり、図中、(a)は、溶接構造物に対して
超音波送信時に超音波ビームが表面側の表層部を伝播す
るようにし、受信時、溶接構造物に対して直角方向の超
音波ビームを受信する探傷条件でリニア走査することを
示す概念図であり、(b−1)は、受信用振動子群G
(ri)における検出波形を示すグラフ、(b−2)
は、受信用振動子群G(rj)における検出波形を示す
グラフであり、(b−3)は、受信用振動子群G(r
k)における検出波形を示すグラフであり、(c)は、
受信用振動子群G(rj)が検出した反射波としての端
部エコーFtipの最大振幅値を示すグラフであり、
(d)は、受信用振動子群G(rj)における端部エコ
ーFtipと反射波Fcとを対比させたグラフ。
13 is a conceptual diagram illustrating a tenth embodiment of the ultrasonic inspection method according to the present invention using the array-type ultrasonic probe shown in FIG. 2, wherein (a) is a welding structure. Shows that the ultrasonic beam propagates through the surface layer on the surface side when transmitting ultrasonic waves to the object, and that linear scanning is performed under flaw detection conditions that receive ultrasonic beams perpendicular to the welded structure during reception. It is a conceptual diagram, (b-1) is a receiving transducer group G.
Graph showing the detected waveform in (ri), (b-2)
Is a graph showing a detected waveform in the receiving transducer group G (rj), and (b-3) is a graph showing the detected transducer group G (rj).
7 is a graph showing a detection waveform in k), and FIG.
It is a graph which shows the maximum amplitude value of the end echo Ftip as a reflected wave which the receiving transducer group G (rj) detected,
(D) is a graph comparing the end echo Ftip and the reflected wave Fc in the receiving transducer group G (rj).

【図14】図2に示したアレイ型超音波探触子を用いた
本発明に係る超音波探傷方法の第11実施形態を説明す
る概念図であり、図中、(a)は、溶接構造物に対して
超音波送信時に超音波ビームが表面側の表層部を伝播す
るようにし、受信時、溶接構造物に対して直角方向の超
音波ビームを受信する探傷条件でリニア走査することを
示す概念図であり、(b−1)は、受信用振動子群G
(ri)における検出波形を示すグラフ、(b−2)
は、受信用振動子群G(rj)における検出波形を示す
グラフであり、(b−3)は、受信用振動子群G(r
k)における検出波形を示すグラフであり、(c)は、
受信用振動子群G(rj)が検出した反射波としての端
部エコーFtipの最大振幅値を示すグラフであり、
(d)は、受信用振動子群G(rj)における端部エコ
ーFtipと反射波Fcとを対比させたグラフ。
FIG. 14 is a conceptual diagram illustrating an ultrasonic inspection method according to an eleventh embodiment of the present invention using the array-type ultrasonic probe shown in FIG. 2, wherein (a) is a welding structure. Shows that the ultrasonic beam propagates through the surface layer on the surface side when transmitting ultrasonic waves to the object, and that linear scanning is performed under flaw detection conditions that receive ultrasonic beams perpendicular to the welded structure during reception. It is a conceptual diagram, (b-1) shows the receiving transducer group G
Graph showing the detected waveform in (ri), (b-2)
Is a graph showing a detected waveform in the receiving transducer group G (rj), and (b-3) is a graph showing the detected transducer group G (rj).
7 is a graph showing a detection waveform in k), and FIG.
It is a graph which shows the maximum amplitude value of the end echo Ftip as a reflected wave detected by the receiving transducer group G (rj),
(D) is a graph comparing the end echo Ftip and the reflected wave Fc in the receiving transducer group G (rj).

【図15】図2に示したアレイ型超音波探触子を用いた
本発明に係る超音波探傷方法の第12実施形態を説明す
る概念図であり、図中、(a)は、溶接構造物に対して
超音波送信時に超音波ビームが表面側の表層部を伝播す
るようにし、受信時、溶接構造物に対して直角方向の超
音波ビームを受信する探傷条件でリニア走査することを
示す概念図であり、(b−1)は、検査対象部分に欠陥
がない場合の仮想音源からの検出波形を示すグラフであ
り、(b−2)は、検査対象部分に欠陥がある場合の仮
想音源からの検出波形を示すグラフであり、(c)は、
受信用振動子群G(rj)が検出した反射波としての端
部エコーFtipの最大振幅値を示すグラフであり、
(d)は、受信用振動子群G(rj)における端部エコ
ーFtipと反射波Fcとを対比させたグラフ。
FIG. 15 is a conceptual diagram illustrating a twelfth embodiment of the ultrasonic inspection method according to the present invention using the array-type ultrasonic probe shown in FIG. 2, wherein (a) is a welding structure. Shows that the ultrasonic beam propagates through the surface layer on the surface side when transmitting ultrasonic waves to the object, and that linear scanning is performed under flaw detection conditions that receive ultrasonic beams perpendicular to the welded structure during reception. It is a conceptual diagram, (b-1) is a graph which shows the detection waveform from a virtual sound source in the case where there is no defect in a part to be inspected, and (b-2) is a graph which shows the virtual waveform when there is a defect in a part to be inspected. It is a graph which shows the detection waveform from a sound source, (c) is
It is a graph which shows the maximum amplitude value of the end echo Ftip as a reflected wave which the receiving transducer group G (rj) detected,
(D) is a graph comparing the end echo Ftip and the reflected wave Fc in the receiving transducer group G (rj).

【図16】図2に示したアレイ型超音波探触子を用い
て、例えばK形開先の突合せ溶接部に適用する本発明に
係る超音波探傷方法の第13実施形態を説明する概念図
であり、図中、(a)は、溶接構造物に対して超音波送
受信時に超音波ビームが表面側の表層部を伝播するよう
にし、受信時、溶接構造物に対して直角方向の超音波ビ
ームを受信する探傷条件でリニア走査することを示す概
念図であり、(b)は、任意に検出した受信用振動子群
G(rn)における検出波形を示すグラフであり、
(c)は、リニア走査を用いた探傷時の検出波形の振幅
値を受信振動子群の中心位置との関係で示すグラフであ
り、(d)は、リニア走査時に検出した欠陥からのエコ
ー振幅値強度をカラー階調表示したとき溶接構造物の断
面画像の模式図。
16 is a conceptual diagram illustrating a thirteenth embodiment of an ultrasonic flaw detection method according to the present invention applied to, for example, a K-shaped groove butt weld using the array type ultrasonic probe shown in FIG. 2; In the figure, (a) shows that the ultrasonic beam propagates through the surface layer on the surface side when transmitting and receiving the ultrasonic wave to and from the welding structure, and the ultrasonic wave in the direction perpendicular to the welding structure when receiving the ultrasonic beam. It is a conceptual diagram which shows performing linear scanning on the flaw detection conditions which receive a beam, (b) is a graph which shows the detection waveform in the receiving transducer group G (rn) arbitrarily detected,
(C) is a graph showing the relationship between the amplitude value of the detected waveform at the time of flaw detection using linear scanning and the center position of the group of received transducers, and (d) is the echo amplitude from a defect detected during linear scanning. FIG. 3 is a schematic diagram of a cross-sectional image of a welded structure when a value intensity is displayed in color gradation.

【図17】図2に示したアレイ型超音波探触子を用い
て、例えばK形開先の突合せ溶接部に適用する本発明に
係る超音波探傷方法の第14実施形態を説明する概念図
であり、図中、(a)は、アレイ型超音波探触子を溶接
構造物に対して平行に設置し、例えばK形開先の突合せ
溶接部の欠陥を検査する概念図であり、(b)は、受信
用振動子が検出した検出波形の振幅値分布を示すグラフ
であり、(c)は、受信用振動子群G(Prj)が検出
した波形を示すグラフ。
17 is a conceptual diagram illustrating a fourteenth embodiment of the ultrasonic flaw detection method according to the present invention applied to, for example, a K-shaped groove butt weld using the array ultrasonic probe shown in FIG. 2; In the drawing, (a) is a conceptual diagram in which an array-type ultrasonic probe is installed in parallel with a welded structure and, for example, a defect of a butt weld portion of a K-shaped groove is inspected. (b) is a graph showing the amplitude value distribution of the detected waveform detected by the receiving transducer, and (c) is a graph showing the waveform detected by the receiving transducer group G (Prj).

【図18】図2に示したアレイ型超音波探触子を用い
て、例えばK形開先の突合せ溶接部に適用する本発明に
係る超音波探傷方法の第15実施形態を説明する概念図
であり、図中、(a)は、アレイ型超音波探触子を溶接
構造物に対して仰角になる角度に設置し、例えばK形開
先の突合せ溶接部の欠陥を検査する概念図であり、
(b)は、受信用振動子が検出した検出波形の振幅値分
布を示すグラフであり、(c)は、受信用振動子群G
(Prj)が検出した波形を示すグラフ。
FIG. 18 is a conceptual diagram illustrating a fifteenth embodiment of the ultrasonic flaw detection method according to the present invention applied to, for example, a K-shaped groove butt weld using the array-type ultrasonic probe shown in FIG. 2; In the drawing, (a) is a conceptual diagram in which an array type ultrasonic probe is installed at an angle of elevation with respect to a welded structure and, for example, a defect of a butt weld of a K-shaped groove is inspected. Yes,
(B) is a graph showing an amplitude value distribution of a detected waveform detected by the receiving transducer, and (c) is a receiving transducer group G.
7 is a graph showing a waveform detected by (Prj).

【図19】図2に示したアレイ型超音波探触子を用い
て、例えばK形開先の突合せ溶接部に適用する本発明に
係る超音波探傷方法の第16実施形態を説明する概念図
であり、図中、(a)は、アレイ型超音波探触子を溶接
構造物に対して平行に設置し、例えばK形開先の突合せ
溶接部の欠陥を検査する概念図であり、(b)は、振幅
値と欠陥の傾き角との関係を示すマスターカーブ。
FIG. 19 is a conceptual diagram illustrating a sixteenth embodiment of an ultrasonic flaw detection method according to the present invention applied to, for example, a K-shaped groove butt weld using the array type ultrasonic probe shown in FIG. 2; In the drawing, (a) is a conceptual diagram in which an array-type ultrasonic probe is installed in parallel with a welded structure and, for example, a defect of a butt weld portion of a K-shaped groove is inspected. b) is a master curve showing the relationship between the amplitude value and the inclination angle of the defect.

【図20】図2に示したアレイ型超音波探触子を用い
て、例えばK形開先の突合せ溶接部に適用する本発明に
係る超音波探傷方法の第17実施形態を説明する概念図
であり、図中、(a)は、アレイ型超音波探触子を溶接
構造物に対して仰角になる角度に設置し、例えばK形開
先の突合せ溶接部の欠陥を検査する概念図であり、
(b)は、振幅値と欠陥の傾き角との関係を示すマスタ
ーカーブ。
FIG. 20 is a conceptual diagram illustrating a seventeenth embodiment of an ultrasonic flaw detection method according to the present invention applied to, for example, a K-shaped groove butt weld using the array type ultrasonic probe shown in FIG. 2; In the drawing, (a) is a conceptual diagram in which an array type ultrasonic probe is installed at an angle of elevation with respect to a welded structure and, for example, a defect of a butt weld of a K-shaped groove is inspected. Yes,
(B) is a master curve showing the relationship between the amplitude value and the inclination angle of the defect.

【図21】図2に示したアレイ型超音波探触子を用い
て、例えばK形開先の突合せ溶接部に適用する本発明に
係る超音波探傷方法の第18実施形態を説明する概念図
であり、図中、(a)は、アレイ型超音波探触子を溶接
構造物に対して平行に設置し、例えばK形開先の突合せ
溶接部の欠陥検査において、扇形の電子走査(扇形走
査)の探傷を示す概念図であり、(b)は、受信用振動
子が検出した入射角に対する欠陥反射波の振幅値分布を
示すグラフであり、(c)は、特定の受信用振動子群G
(Prj)が検出した波形を示すグラフであり、(d)
は、欠陥の深さdを算出する際に説明用として用いた
図。
FIG. 21 is a conceptual diagram for explaining an eighteenth embodiment of an ultrasonic flaw detection method according to the present invention applied to, for example, a K-shaped groove butt weld using the array type ultrasonic probe shown in FIG. 2; In the figure, (a) shows an array-type ultrasonic probe installed in parallel with the welded structure, and for example, in a defect inspection of a butt weld of a K-shaped groove, a sector-shaped electronic scan (sector-shaped). FIG. 7B is a conceptual diagram showing flaw detection in (scanning), FIG. 8B is a graph showing the amplitude value distribution of a defective reflected wave with respect to the incident angle detected by the receiving oscillator, and FIG. 9C is a specific receiving oscillator. Group G
(Prj) is a graph showing a detected waveform, and (d)
FIG. 3 is a diagram used for explanation when calculating the depth d of a defect.

【図22】図2に示したアレイ型超音波探触子を用い
て、例えばK形開先の突合せ溶接部に適用する本発明に
係る超音波探傷方法の第19実施形態を説明する概念図
であり、図中、(a)は、アレイ型超音波探触子を溶接
構造物に対して仰角になる角度に設置して、例えばK形
開先の突合せ溶接部の欠陥検査において、扇形の電子走
査(扇形走査)の探傷を示す概念図であり、(b)は、
受信用振動子が検出した入射角に対する欠陥反射波の振
幅値分布を示すグラフであり、(c)は、特定の受信用
振動子群G(Prj)が検出した波形を示すグラフであ
り、(d)は、欠陥深さdを算出する際に説明図として
用いた図。
FIG. 22 is a conceptual diagram illustrating a nineteenth embodiment of the ultrasonic inspection method according to the present invention applied to, for example, a butt weld of a K-shaped groove using the array ultrasonic probe shown in FIG. 2; In the figure, (a) shows an array-type ultrasonic probe installed at an angle of elevation with respect to a welded structure, and for example, in a defect inspection of a butt weld of a K-shaped groove, a fan-shaped ultrasonic probe is used. It is a conceptual diagram which shows the flaw detection of electronic scanning (fan-shaped scanning), (b)
It is a graph which shows the amplitude value distribution of the defect reflected wave with respect to the incident angle which the receiving transducer detected, (c) is a graph which shows the waveform which the specific receiving transducer group G (Prj) detected, (d) is a diagram used as an explanatory diagram when calculating the defect depth d.

【図23】図2に示したアレイ型超音波探触子を用い
て、例えばK形開先の突合せ溶接部に適用する本発明に
係る超音波探傷方法の第20実施形態を説明する概念
図。
23 is a conceptual diagram illustrating a twentieth embodiment of the ultrasonic flaw detection method according to the present invention applied to, for example, a K-shaped groove butt weld using the array type ultrasonic probe shown in FIG. .

【図24】図2に示したアレイ型超音波探触子を用い
て、例えばK形開先の突合せ溶接部に適用する本発明に
係る超音波探傷方法の第21実施形態を説明する概念
図。
FIG. 24 is a conceptual diagram illustrating a twenty-first embodiment of an ultrasonic flaw detection method according to the present invention applied to, for example, a K-shaped groove butt weld using the array ultrasonic probe shown in FIG. 2; .

【図25】本発明に係る超音波探傷方法の第22実施形
態を説明する概念図。
FIG. 25 is a conceptual diagram illustrating a twenty-second embodiment of the ultrasonic inspection method according to the present invention.

【符号の説明】[Explanation of symbols]

1 溶接構造物 1a 母材 1b 溶接金属 1c 欠陥 2,2a,2b アレイ型超音波探触子 3 センサ保持機構 4 駆動機構 5 駆動機構制御装置 6 制御装置 7 遅延時間制御器 8 超音波送信器群 9 超音波受信器群 10 画像処理装置 11 信号処理装置 12 表示装置 13a,13b 振動子 DESCRIPTION OF SYMBOLS 1 Welded structure 1a Base material 1b Weld metal 1c Defect 2, 2a, 2b Array type ultrasonic probe 3 Sensor holding mechanism 4 Drive mechanism 5 Drive mechanism control device 6 Control device 7 Delay time controller 8 Ultrasonic transmitter group 9 Ultrasonic receiver group 10 Image processing device 11 Signal processing device 12 Display device 13a, 13b Transducer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長井 敏 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 (72)発明者 久保 貴博 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 (72)発明者 成瀬 克彦 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 Fターム(参考) 2G047 AA07 AB07 BA02 BB04 BC03 BC10 DB02 DB10 EA10 GB02 GF06 GG24 GG28 GG33 GH13 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Satoshi Nagai 2-4 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Keihin Works, Toshiba Corporation (72) Takahiro Kubo 2-chome, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Address Toshiba Keihin Works Co., Ltd. (72) Inventor Katsuhiko Naruse 8 Shinsugitacho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture F-term in Toshiba Yokohama Works Co., Ltd. GG33 GH13

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 複数個の振動子を備えたアレイ型超音波
探触子を検査対象物の表面側の予め定められた位置に設
置する手段と、前記アレイ型超音波探触子を移動させる
駆動手段と、前記検査対象物の形状寸法、溶接部材料、
溶接条件に基づいて前記アレイ型超音波探触子の振動子
を超音波送信用振動子群および超音波受信用振動子群と
して選択する手段と、前記選択された振動子群を用いて
検査対象物の位置に超音波ビームを集束および偏向させ
る手段と、前記超音波送信用振動子群および超音波受信
用振動子群の電子走査を行わせる手段と、前記超音波受
信用振動子群で検出した超音波波形を基に画像処理し、
画像処理結果を表示する手段と、前記超音波波形を基に
解析処理するとともに超音波探触子の電子走査位置ある
いは機械走査位置に対する欠陥信号の振幅値分布を用い
て欠陥情報を求める手段と、前記解析結果を表示する手
段とを備えることを特徴とする超音波探傷装置。
A means for setting an array-type ultrasonic probe having a plurality of transducers at a predetermined position on a surface side of an inspection object; and moving the array-type ultrasonic probe. Driving means, the shape and dimensions of the inspection object, welding material,
Means for selecting a transducer of the array type ultrasonic probe as a transducer group for transmitting ultrasound and a transducer group for receiving ultrasound based on welding conditions, and an inspection object using the selected transducer group Means for converging and deflecting the ultrasonic beam at the position of the object, means for performing electronic scanning of the ultrasonic transmission transducer group and the ultrasonic reception transducer group, and detection by the ultrasonic reception transducer group Image processing based on the obtained ultrasonic waveform,
Means for displaying an image processing result, means for performing analysis processing based on the ultrasonic waveform and obtaining defect information using an amplitude distribution of a defect signal with respect to an electronic scanning position or a mechanical scanning position of the ultrasonic probe, Means for displaying the analysis result.
【請求項2】 過去の運転履歴を基に溶接構造物の検査
対象部分を選定する工程と、溶接部材料、開先形状、溶
接条件を基に、予めデータベースに格納しておいた探傷
条件を選定する工程と、選定された探傷条件を基に、検
査対象部分をアレイ型超音波探触子を用いた電子走査に
より探傷し、検出された超音波波形データを収録する工
程と、収録した波形データを基に画像処理し、画像処理
結果を検査対象物の形状に重ね合わせ、エコー振幅値の
大きさに対応させたカラー階調表示を行う工程と、収録
した波形データを超音波受信用振動子群毎の位置に合わ
せて演算し、前期溶接構造物の検査対象部分で検出した
超音波波形データを基に欠陥情報を解析する工程と、前
記カラー階調を行う工程結果と前記欠陥情報を解析する
工程結果とに基づいて欠陥の有無を判定する工程と、前
記画像処理結果および解析結果とを表示する工程とを備
えたことを特徴とする超音波探傷方法。
2. A step of selecting a portion to be inspected of a welded structure based on a past operation history, and a flaw detection condition stored in a database in advance based on a material of a weld portion, a groove shape, and welding conditions. Based on the selected process, based on the selected flaw detection conditions, the part to be inspected is inspected by electronic scanning using an array type ultrasonic probe, and the process of recording the detected ultrasonic waveform data, and the recorded waveform Image processing based on the data, superimposing the image processing result on the shape of the inspection object, performing color gradation display corresponding to the magnitude of the echo amplitude value, and recording the waveform data for ultrasonic reception vibration Calculating in accordance with the position of each child group, analyzing the defect information based on the ultrasonic waveform data detected in the inspection target portion of the welded structure in the previous period, and performing the color gradation process result and the defect information. Based on the process results to be analyzed An ultrasonic flaw detection method, comprising the steps of: determining the presence or absence of a defect by performing the process; and displaying the image processing result and the analysis result.
【請求項3】 複数個の振動子を備えたアレイ型超音波
探触子を検査対象物の表面側の予め定められた位置に設
置し、前記アレイ型超音波探触子の中から超音波送受信
用振動子群を選定し、前記超音波送受信用振動子群の送
受信角度を同一に設定して前記検査対象物の底面側の表
層部を伝播するように設定し、前記アレイ型超音波探触
子の送信用振動子群をリニア走査させて探傷する工程
と、前記超音波受信用振動子群を用いて送信用角度と同
一条件で受信したときに検出した欠陥からの反射波形に
基づいて超音波ビーム路程、エコー振幅値、エコー振幅
値分布を求める工程と、求めた振幅値分布に予めデータ
ベース化しておいた欠陥深さ測定基準線を当てはめて欠
陥の深さを求める工程と、前記求めた超音波送受信用振
動子群からの欠陥波形の超音波ビーム路程を送受信角度
とに基づいて欠陥位置を求める工程とを備えたことを特
徴とする請求項2記載の超音波探傷方法。
3. An array-type ultrasonic probe having a plurality of transducers is installed at a predetermined position on the surface side of an inspection object, and an ultrasonic wave is selected from among the array-type ultrasonic probe. A transmitting / receiving vibrator group is selected, the transmitting / receiving angle of the ultrasonic transmitting / receiving vibrator group is set to be the same, and the ultrasonic wave transmitting / receiving vibrator group is set so as to propagate through the surface layer on the bottom side of the inspection object. The step of linearly scanning the group of transmitting transducers of the tentacles to detect flaws, and based on the reflected waveform from the defect detected when receiving under the same conditions as the transmitting angle using the ultrasonic receiving transducer group. Ultrasonic beam path, echo amplitude value, a step of obtaining an echo amplitude value distribution, a step of applying a defect depth measurement reference line prepared in a database to the obtained amplitude value distribution to obtain a defect depth, Defect Waveforms from Transduced Ultrasound Transducers 3. The ultrasonic flaw detection method according to claim 2, further comprising the step of obtaining a defect position based on said ultrasonic beam path and a transmission / reception angle.
【請求項4】 検査対象物の底面側の表層部を伝播する
よう超音波を入射させる際、超音波受信用振動子群の受
信角度を検査対象物に対して直角に設定し、欠陥から発
生する回折波および欠陥コーナ部から発生する反射波を
検出し、その検出した超音波ビーム路程、エコー振幅値
から欠陥情報を求める工程を備えていることを特徴とす
る請求項2記載の超音波探傷方法。
4. When ultrasonic waves are made to enter the surface layer on the bottom side of the inspection object, the receiving angle of the ultrasonic wave receiving transducer group is set to be perpendicular to the inspection object, and the ultrasonic waves are generated from defects. 3. The ultrasonic inspection method according to claim 2, further comprising a step of detecting a diffracted wave and a reflected wave generated from a defect corner portion, and obtaining defect information from the detected ultrasonic beam path and echo amplitude value. Method.
【請求項5】 検査対象物の底面側の表層部を伝播する
よう超音波を入射させる際、超音波受信用振動子の受信
角度を欠陥位置を中心とする円弧状に設定し、前記超音
波受信用振動子で受信した振動子の位置と欠陥からの回
折波のエコー振幅値で生成されるエコー振幅値分布およ
び前記エコー振幅値の最大値から選定された特定の超音
波受信用振動子に基づいて得られた超音波ビーム路程か
ら欠陥情報を求める工程を備えていることを特徴とする
請求項2記載の超音波探傷方法。
5. When the ultrasonic wave is made to enter the surface layer on the bottom side of the inspection object, the receiving angle of the ultrasonic wave receiving vibrator is set in an arc shape centering on the defect position, and the ultrasonic wave is received. A specific ultrasonic reception transducer selected from the position of the transducer received by the reception transducer and the echo amplitude value distribution generated by the echo amplitude value of the diffracted wave from the defect and the maximum value of the echo amplitude value. 3. The ultrasonic inspection method according to claim 2, further comprising a step of obtaining defect information from an ultrasonic beam path obtained based on the defect information.
【請求項6】 検査対象物の底面側の表層部を伝播する
よう超音波を入射させる際、超音波受信用振動子の受信
角度を仮想反射源位置を音源として受信できるように設
定し、前記仮想反射源位置を前記検査対象物の探傷範囲
の全てを網羅するように順次変化させて探傷し、各仮想
音源での探傷毎に受信した振動子の位置と欠陥からの回
折波のエコー振幅値で生成されるエコー振幅値分布およ
び前記エコー振幅値の最大値から選定された特定の超音
波受信用振動子に基づいて得られた超音波ビーム路程か
ら欠陥情報さを求める工程を備えていることを特徴とす
る請求項2記載の超音波探傷方法。
6. When ultrasonic waves are made to enter the surface layer on the bottom surface side of the inspection object, the receiving angle of the ultrasonic wave receiving vibrator is set so that the virtual reflection source position can be received as a sound source. The virtual reflection source position is sequentially changed so as to cover the entire inspection range of the inspection object to perform the inspection, and the position of the vibrator received for each inspection at each virtual sound source and the echo amplitude value of the diffracted wave from the defect. A step of obtaining defect information from an ultrasonic beam path obtained based on a specific ultrasonic receiving transducer selected from the echo amplitude value distribution generated in the above and the maximum value of the echo amplitude value. 3. The ultrasonic flaw detection method according to claim 2, wherein:
【請求項7】 検査対象物の底面側の表層部を伝播する
よう超音波を入射させる際、超音波受信用振動子群の受
信角度を入射角と異なる角度に設定し、欠陥部でモード
変換した超音波波形を検出し、その検出した超音波ビー
ム路程、エコー振幅値あるいはエコー振幅値で求めた探
傷断面画像から欠陥情報を求める工程を備えたことを特
徴とする請求項2記載の超音波探傷方法。
7. When an ultrasonic wave is made to enter the surface layer on the bottom side of the inspection object, the receiving angle of the ultrasonic wave receiving vibrator group is set to an angle different from the incident angle, and the mode conversion is performed at the defect part. 3. An ultrasonic wave according to claim 2, further comprising a step of detecting the detected ultrasonic waveform, and obtaining defect information from the detected ultrasonic beam path, the echo amplitude value, or the flaw detection sectional image obtained from the echo amplitude value. Flaw detection method.
【請求項8】 検査対象物の表面側の表層部を伝播する
よう超音波を入射させる際、超音波受信用振動子群の受
信角度を入射角とことなる角度に設定し、前欠陥でモー
ド変換した超音波波形を検出し、その検出した超音波ビ
ーム路程、エコー振幅値あるいはエコー振幅値で求めた
探傷断面画像から欠陥情報を求める工程を備えたことを
特徴とする請求項2記載の超音波探傷方法。
8. When ultrasonic waves are made to enter the surface layer on the front side of the inspection object, the receiving angle of the ultrasonic wave receiving vibrator group is set to an angle different from the incident angle, and the mode is determined by a front defect. 3. The method according to claim 2, further comprising a step of detecting the converted ultrasonic waveform and obtaining defect information from the detected ultrasonic beam path, the echo amplitude value or the flaw detection sectional image obtained from the echo amplitude value. Sonic flaw detection method.
【請求項9】 検査対象物の表面側の表層部を伝播する
よう超音波を入射させる際、超音波受信用振動子群の受
信角度を検査対象物に対して直角に設定し、欠陥先端か
ら発生する回折波および欠陥コーナ部から発生する反射
波を検出し、その検出した超音波ビーム路程、エコー振
幅値に基づいて欠陥情報を求める工程とを備えているこ
とを特徴とする請求項2記載の超音波探傷方法。
9. When ultrasonic waves are made to enter the surface layer on the surface side of the inspection object, the reception angle of the ultrasonic wave receiving transducer group is set to be perpendicular to the inspection object, and the ultrasonic wave is received from the tip of the defect. 3. The method according to claim 2, further comprising the steps of: detecting a diffracted wave generated and a reflected wave generated from the defect corner, and obtaining defect information based on the detected ultrasonic beam path and echo amplitude value. Ultrasonic flaw detection method.
【請求項10】 検査対象物の表面側の表層部を伝播す
るよう超音波を入射させる際、超音波受信用振動子群の
受信角度を、欠陥位置を中心とする円弧状に設定し、前
記超音波受信用振動子群で受信した振動子群の位置と欠
陥からの回折波のエコー振幅値で生成されるエコー振幅
値分布および前記エコー振幅値の最大値から選定された
特定の超音波受信用振動子群に基づいて得られた超音波
ビーム路程から欠陥情報を求める工程とを備えているこ
とを特徴とする請求項2記載の超音波探傷方法。
10. When ultrasonic waves are incident so as to propagate on a surface layer on the front surface side of an inspection object, the receiving angle of the ultrasonic wave receiving transducer group is set in an arc shape centering on a defect position. A specific ultrasonic reception selected from the position of the group of transducers received by the group of transducers for ultrasonic reception and the echo amplitude value distribution generated by the echo amplitude value of the diffracted wave from the defect and the maximum value of the echo amplitude value 3. The method according to claim 2, further comprising: obtaining defect information from an ultrasonic beam path obtained based on the transducer group.
【請求項11】 検査対象物の表面側の表層部を伝播す
るよう超音波を入射させる際、超音波受信用振動子群の
受信角度を、仮想反射源位置を音源として受信できるよ
うに設定し、前記仮想反射源位置を前記検査対象物の探
傷範囲の全てを網羅するように順次変化させて探傷し、
各仮想音源での探傷毎に受信した振動子群の位置と欠陥
からの回折波のエコー振幅値で生成されるエコー振幅値
分布および前記エコー振幅値の最大値から選定された特
定の超音波受信振動子群に基づいて得られた超音波ビー
ム路程から欠陥情報を求める工程とを備えていることを
特徴とする請求項2記載の超音波探傷方法。
11. When ultrasonic waves are made to enter the surface layer on the surface side of the inspection object, the receiving angle of the ultrasonic wave receiving transducer group is set so that the virtual reflection source position can be received as a sound source. Flaw detection by sequentially changing the virtual reflection source position so as to cover the entire flaw detection range of the inspection object,
A specific ultrasonic reception selected from the position of the group of transducers received for each flaw detection at each virtual sound source and the echo amplitude value distribution generated by the echo amplitude value of the diffracted wave from the defect and the maximum value of the echo amplitude value 3. The ultrasonic flaw detection method according to claim 2, further comprising a step of obtaining defect information from an ultrasonic beam path obtained based on the group of transducers.
【請求項12】 アレイ型超音波探触子を検査対象物の
探傷部分に対して平行および仰角となる角度のうちいず
れか一方に設置し、前記アレイ型超音波探触子の中から
超音波送受信用振動子群を選定し、前記超音波送受信用
振動子群の入射角度を同一に設定して、前記検査対象物
の表面側の表層部を伝播するように前記アレイ型超音波
探触子をリニア走査させて探傷する工程と、前記超音波
受信用振動子群から検出した欠陥の反射波形からエコー
振幅値の分布を求める工程と、求めた振幅値の分布に、
予めデータベース化しておいた欠陥深さ測定用基準線を
当てはめ、特定の超音波受信用振動子を求める工程と、
求めた特定の超音波受信用振動子からの欠陥波形の超音
波ビーム路程と入射角とに基づいて欠陥情報を求める工
程とを備えることを特徴とする請求項2記載の超音波探
傷方法。
12. An array type ultrasonic probe is installed at any one of an angle which is parallel and an elevation angle with respect to a flaw detection portion of an inspection object, and an ultrasonic wave is selected from the array type ultrasonic probe. A transducer group for transmission and reception is selected, the incident angle of the transducer group for ultrasonic transmission and reception is set to be the same, and the array-type ultrasonic probe is propagated on the surface layer on the surface side of the inspection object. A step of linear flaw detection and a step of obtaining a distribution of echo amplitude values from a reflected waveform of a defect detected from the ultrasonic receiving transducer group, and a distribution of the obtained amplitude values,
A step of applying a reference line for measuring the depth of the defect that has been made into a database in advance, and obtaining a specific ultrasonic receiving transducer,
3. The ultrasonic flaw detection method according to claim 2, further comprising a step of obtaining defect information based on an obtained ultrasonic beam path and an incident angle of a defect waveform from the specific ultrasonic receiving transducer.
【請求項13】 特定の超音波受信用振動子から検出し
た欠陥の反射波形に基づき振幅値分布を求め、データベ
ース化した欠陥の傾き角と前記振幅値分布から欠陥の傾
き角を求めることを特徴とする請求項12記載の超音波
探傷方法。
13. A method for determining an amplitude value distribution based on a reflection waveform of a defect detected from a specific ultrasonic wave receiving transducer, and determining a defect inclination angle in a database and the defect angle from the amplitude value distribution. The ultrasonic flaw detection method according to claim 12, wherein
【請求項14】 アレイ型超音波探触子を検査対象物の
探傷部分に対して平行および仰角となる角度のうち、い
ずれか一方に設置し、前記アレイ型超音波探触子の中か
ら超音波送受信用振動子群を選定し、前記超音波送受信
用振動子群の超音波偏向角を予め定められたピッチで順
次に変化させて前記アレイ型超音波探触子を扇形走査さ
せて探傷する工程と、前記超音波受信用振動子群から検
出した欠陥の反射波形から振幅値の分布を求める工程
と、求めた振幅値の分布に、予めデータベース化してお
いた欠陥深さ測定用基準線を当てはめ、前記超音波受信
用振動子の入射角を求める工程と、求めた超音波受信用
振動子の入射角と特定の超音波受信用振動子からの欠陥
波形の超音波ビーム路程とに基づいて欠陥情報を求める
工程とを備えることを特徴とする超音波探傷方法。
14. An array type ultrasonic probe is installed at any one of an angle which is parallel and an elevation angle with respect to a flaw detection part of an inspection object, and an ultrasonic type ultrasonic probe is selected from the array type ultrasonic probe. A group of ultrasonic wave transmitting / receiving transducers is selected, and the ultrasonic deflection angle of the ultrasonic wave transmitting / receiving vibrator group is sequentially changed at a predetermined pitch, and the array type ultrasonic probe is scanned in a sector shape to perform flaw detection. A step of obtaining an amplitude value distribution from a reflection waveform of a defect detected from the ultrasonic receiving transducer group; Fitting, the step of determining the incident angle of the ultrasonic receiving transducer, based on the calculated incident angle of the ultrasonic receiving transducer and the ultrasonic beam path of the defect waveform from the specific ultrasonic receiving transducer. And a process for obtaining defect information. Characteristic ultrasonic flaw detection method.
【請求項15】 アレイ型超音波探触子は、少なくとも
2個以上並列配置して用いていることを特徴とする請求
項2、12または14記載の超音波探傷方法。
15. The ultrasonic flaw detection method according to claim 2, wherein at least two or more array type ultrasonic probes are arranged and used in parallel.
【請求項16】 アレイ型超音波探触子は、検査対象物
の探傷部分に対して軸対称に超音波送受信用振動子を配
置するものを用いていることを特徴とする請求項2、1
2または14記載の超音波探傷方法。
16. An array type ultrasonic probe in which ultrasonic transmitting / receiving vibrators are arranged axially symmetrically with respect to a flaw detection portion of an inspection object.
15. The ultrasonic flaw detection method according to 2 or 14.
JP2001012477A 2001-01-19 2001-01-19 Ultrasonic flaw detection method Expired - Fee Related JP4564183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001012477A JP4564183B2 (en) 2001-01-19 2001-01-19 Ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012477A JP4564183B2 (en) 2001-01-19 2001-01-19 Ultrasonic flaw detection method

Publications (2)

Publication Number Publication Date
JP2002214204A true JP2002214204A (en) 2002-07-31
JP4564183B2 JP4564183B2 (en) 2010-10-20

Family

ID=18879478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012477A Expired - Fee Related JP4564183B2 (en) 2001-01-19 2001-01-19 Ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP4564183B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138672A (en) * 2004-11-10 2006-06-01 Hitachi Ltd Method of and device for ultrasonic inspection
JP2007292554A (en) * 2006-04-24 2007-11-08 Toshiba Corp Ultrasonic flaw inspection system
JP2009097876A (en) * 2007-10-12 2009-05-07 Toshiba Corp Ultrasonic flaw detection method
US8100015B2 (en) * 2007-11-20 2012-01-24 Kabushiki Kaisha Toshiba Ultrasonic inspection apparatus and ultrasonic probe used for same
KR101658120B1 (en) * 2015-04-15 2016-09-21 (주)피앤에스 Method and apparatus for maintaining acuracy of measured quality in depth measurement of welded sections using ultrasonic waves
KR20160117695A (en) * 2015-03-30 2016-10-11 (주)피앤에스 Method and apparatus for inspecting weld quality including welded depth using ultrasonic waves
KR101670235B1 (en) * 2015-08-12 2016-11-09 한국수력원자력 주식회사 Non destructive test analysis system and method of the nuclear power plant
JP2019109208A (en) * 2017-12-20 2019-07-04 日本製鉄株式会社 Surface flaw depth determination device
CN114235953A (en) * 2021-12-15 2022-03-25 中国航发动力股份有限公司 Ultrasonic phased array detection method for internal defects of reinforcing ribs of parts containing cavity diffusion welding

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129776A (en) * 1979-03-29 1980-10-07 Yokogawa Hokushin Electric Corp Sound field scanning method in phased array sonar
JPS57147054A (en) * 1981-03-06 1982-09-10 Toshiba Corp Method and device for ultrasonic flaw detection of austenitic welded member
JPS59109860A (en) * 1982-12-16 1984-06-25 Toshiba Corp Ultrasonic flaw detector
JPS59122944A (en) * 1982-12-28 1984-07-16 Toshiba Corp Probe and ultrasonic wave flaw detecting method
JPS59216051A (en) * 1983-05-23 1984-12-06 Hitachi Ltd Ultrasonic flaw detector using on-line variable convergent
WO1986006486A1 (en) * 1985-04-22 1986-11-06 Hitachi Construction Machinery Co., Ltd. Method of measuring angle of inclination of planar flaw in solid object with ultrasonic wave
JPH06102258A (en) * 1991-04-19 1994-04-15 Kawasaki Heavy Ind Ltd Method and equipment for ultrasonic flaw detection
JPH06300740A (en) * 1993-04-19 1994-10-28 Hitachi Constr Mach Co Ltd Ultrasonic microscope
JPH09113249A (en) * 1995-10-17 1997-05-02 Shikoku Sogo Kenkyusho:Kk Ultrasonic flaw detecting method
JPH09127071A (en) * 1995-11-02 1997-05-16 Yazaki Corp Waterdrop detection apparatus
JPH09145696A (en) * 1995-11-21 1997-06-06 Toshiba Corp Method and apparatus for measuring depth of flaw
JPH10123101A (en) * 1996-10-24 1998-05-15 Tokyo Gas Co Ltd Method and device for oblique angle ultrasonic flaw detection
JPH11248690A (en) * 1998-03-06 1999-09-17 Hitachi Ltd Ultrasonic flaw detector
JPH11316215A (en) * 1998-05-01 1999-11-16 Nippon Steel Corp Ultrasonic flaw detection apparatus and method
JP2000146927A (en) * 1998-11-12 2000-05-26 Nkk Corp Device and method for ultrasonic flaw detection of slab for clad steel

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129776A (en) * 1979-03-29 1980-10-07 Yokogawa Hokushin Electric Corp Sound field scanning method in phased array sonar
JPS57147054A (en) * 1981-03-06 1982-09-10 Toshiba Corp Method and device for ultrasonic flaw detection of austenitic welded member
JPS59109860A (en) * 1982-12-16 1984-06-25 Toshiba Corp Ultrasonic flaw detector
JPS59122944A (en) * 1982-12-28 1984-07-16 Toshiba Corp Probe and ultrasonic wave flaw detecting method
JPS59216051A (en) * 1983-05-23 1984-12-06 Hitachi Ltd Ultrasonic flaw detector using on-line variable convergent
WO1986006486A1 (en) * 1985-04-22 1986-11-06 Hitachi Construction Machinery Co., Ltd. Method of measuring angle of inclination of planar flaw in solid object with ultrasonic wave
JPH06102258A (en) * 1991-04-19 1994-04-15 Kawasaki Heavy Ind Ltd Method and equipment for ultrasonic flaw detection
JPH06300740A (en) * 1993-04-19 1994-10-28 Hitachi Constr Mach Co Ltd Ultrasonic microscope
JPH09113249A (en) * 1995-10-17 1997-05-02 Shikoku Sogo Kenkyusho:Kk Ultrasonic flaw detecting method
JPH09127071A (en) * 1995-11-02 1997-05-16 Yazaki Corp Waterdrop detection apparatus
JPH09145696A (en) * 1995-11-21 1997-06-06 Toshiba Corp Method and apparatus for measuring depth of flaw
JPH10123101A (en) * 1996-10-24 1998-05-15 Tokyo Gas Co Ltd Method and device for oblique angle ultrasonic flaw detection
JPH11248690A (en) * 1998-03-06 1999-09-17 Hitachi Ltd Ultrasonic flaw detector
JPH11316215A (en) * 1998-05-01 1999-11-16 Nippon Steel Corp Ultrasonic flaw detection apparatus and method
JP2000146927A (en) * 1998-11-12 2000-05-26 Nkk Corp Device and method for ultrasonic flaw detection of slab for clad steel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138672A (en) * 2004-11-10 2006-06-01 Hitachi Ltd Method of and device for ultrasonic inspection
JP2007292554A (en) * 2006-04-24 2007-11-08 Toshiba Corp Ultrasonic flaw inspection system
JP2009097876A (en) * 2007-10-12 2009-05-07 Toshiba Corp Ultrasonic flaw detection method
US8100015B2 (en) * 2007-11-20 2012-01-24 Kabushiki Kaisha Toshiba Ultrasonic inspection apparatus and ultrasonic probe used for same
KR20160117695A (en) * 2015-03-30 2016-10-11 (주)피앤에스 Method and apparatus for inspecting weld quality including welded depth using ultrasonic waves
KR101677604B1 (en) * 2015-03-30 2016-11-21 (주)피앤에스 Method and apparatus for inspecting weld quality including welded depth using ultrasonic waves
KR101658120B1 (en) * 2015-04-15 2016-09-21 (주)피앤에스 Method and apparatus for maintaining acuracy of measured quality in depth measurement of welded sections using ultrasonic waves
KR101670235B1 (en) * 2015-08-12 2016-11-09 한국수력원자력 주식회사 Non destructive test analysis system and method of the nuclear power plant
JP2019109208A (en) * 2017-12-20 2019-07-04 日本製鉄株式会社 Surface flaw depth determination device
JP7091646B2 (en) 2017-12-20 2022-06-28 日本製鉄株式会社 Surface scratch depth determination device
CN114235953A (en) * 2021-12-15 2022-03-25 中国航发动力股份有限公司 Ultrasonic phased array detection method for internal defects of reinforcing ribs of parts containing cavity diffusion welding
CN114235953B (en) * 2021-12-15 2024-03-12 中国航发动力股份有限公司 Ultrasonic phased array detection method for internal defects of reinforcing ribs of diffusion welding parts with cavities

Also Published As

Publication number Publication date
JP4564183B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
US7900516B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP5800667B2 (en) Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus
JP5841026B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP4709640B2 (en) Ultrasonic flaw detection method and apparatus
JP2008122209A (en) Ultrasonic flaw inspection device and method
WO2012008144A1 (en) Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
JP2009097972A (en) Ultrasonic welding defect flaw detection apparatus and method
JP5306919B2 (en) Ultrasonic flaw detection method and apparatus
JP2009540311A (en) Ultrasonic testing equipment with array probe
JP5574731B2 (en) Ultrasonic flaw detection test method
JP2008232627A (en) Ultrasonic flaw inspection device and method
JP4564183B2 (en) Ultrasonic flaw detection method
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
JP2007057485A (en) System and method of weld zone visualization
JP2002062281A (en) Flaw depth measuring method and its device
JP5285845B2 (en) Defect detection apparatus and defect detection method
JP2019078558A (en) Reference test piece and supersonic phased array flaw testing method
JP2004150875A (en) Method and system for imaging internal flaw using ultrasonic waves
JP5535680B2 (en) Ultrasonic inspection method
JP4410037B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP4866791B2 (en) Ultrasonic flaw detection apparatus and method
JPH11316215A (en) Ultrasonic flaw detection apparatus and method
JP4175762B2 (en) Ultrasonic flaw detector
JP5959677B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees