JP2002170986A - Semiconductor light emitting diode - Google Patents

Semiconductor light emitting diode

Info

Publication number
JP2002170986A
JP2002170986A JP2000363783A JP2000363783A JP2002170986A JP 2002170986 A JP2002170986 A JP 2002170986A JP 2000363783 A JP2000363783 A JP 2000363783A JP 2000363783 A JP2000363783 A JP 2000363783A JP 2002170986 A JP2002170986 A JP 2002170986A
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
mask
electrode
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000363783A
Other languages
Japanese (ja)
Inventor
Chiaki Domoto
千秋 堂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000363783A priority Critical patent/JP2002170986A/en
Publication of JP2002170986A publication Critical patent/JP2002170986A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10125Reinforcing structures
    • H01L2224/10126Bump collar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable low power loss semiconductor light emitting device in which the majority of light generated in a light emitting diode can be taken out to the outside. SOLUTION: Upper surface of a single crystal substrate 1 is partially coated with a mask 2, a light emitting diode 3 of compound semiconductor thicker than the mask 2 and extending above the mask 2 is formed at a part where the mask 2 is not present, one electrode 8 is arranged on the extension of the light emitting diode 3 and the other electrode 9 is arranged in a region directly under the light emitting diode 3 thus constituting a semiconductor light emitting device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通信用光源・プリ
ンタ用光源・スキャナ用光源・各種装置のインジケータ
等に用いられる半導体発光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device used for a communication light source, a printer light source, a scanner light source, indicators of various devices, and the like.

【0002】[0002]

【従来の技術】従来の半導体発光装置は、例えば図4に
示す如く、シリコン等から成る単結晶基板11の上面
に、GaAs等の化合物半導体から成る発光ダイオード
12をエピタキシャル成長させ、該成長させた発光ダイ
オード12の一部上面に一方の電極13を、単結晶基板
11の下面に他方の電極14をそれぞれ配設した構造を
有し、一方の電極13と他方の電極14との間に所定の
電圧を印加して、発光ダイオード12内で電子と正孔と
を発生させるとともに、該発生した電子と正孔を発光ダ
イオード12の内部に形成されているpn接合付近で再
結合させ、この再結合の際に生じたエネルギーを光に変
換して、これを外部に放出することによって半導体発光
装置として機能する。
2. Description of the Related Art In a conventional semiconductor light emitting device, for example, as shown in FIG. 4, a light emitting diode 12 made of a compound semiconductor such as GaAs is epitaxially grown on an upper surface of a single crystal substrate 11 made of silicon or the like. It has a structure in which one electrode 13 is provided on a part of the upper surface of the diode 12 and the other electrode 14 is provided on the lower surface of the single crystal substrate 11, and a predetermined voltage is applied between the one electrode 13 and the other electrode 14. Is applied to generate electrons and holes in the light emitting diode 12, and the generated electrons and holes are recombined in the vicinity of a pn junction formed inside the light emitting diode 12. The energy generated at that time is converted into light and emitted to the outside to function as a semiconductor light emitting device.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の半導体発光装置においては、一方の電極13が
Zn/Au等の金属によって0.3μm以上の厚みに形
成されており、かかる電極13は最も強く光を出す発光
ダイオード12の中央付近を覆う形となっている。この
ため、電極13等からの電力を発光ダイオード12に印
加して発光ダイオード12を発光させた際、上方に向か
う光の多くが電極13によって遮られることとなり、外
部に出射される光量が著しく低下するという欠点を有し
ていた。
However, in the above-described conventional semiconductor light emitting device, one of the electrodes 13 is formed of a metal such as Zn / Au to have a thickness of 0.3 μm or more. The light emitting diode 12 that emits strong light covers the vicinity of the center. For this reason, when power from the electrode 13 or the like is applied to the light emitting diode 12 to cause the light emitting diode 12 to emit light, most of the upward light is blocked by the electrode 13, and the amount of light emitted to the outside is significantly reduced. Had the disadvantage of doing so.

【0004】また上記欠点を解消するために電極13を
ITO等の透明な導電材料で形成することが考えられ
る。
In order to solve the above-mentioned disadvantage, it is conceivable that the electrode 13 is formed of a transparent conductive material such as ITO.

【0005】ところが、電極13をITO等の透明な導
電材料で形成した場合、コンタクト抵抗が高く、大きな
電気的障壁が残ってしまうために化合物半導体から成る
発光ダイオード12に対して電極13を良好にオーミッ
ク接続するのは困難であった。発光ダイオード12と電
極13とのオーミック接続が良好にとれない場合、発光
ダイオード12への電流注入時にコンタクト抵抗による
大きな電力ロスがある上に、コンタクト抵抗が発熱して
発光ダイオードが過度に高温となり、その結晶性を著し
く劣化させる欠点が誘発される。
However, when the electrode 13 is formed of a transparent conductive material such as ITO, the contact resistance is high and a large electric barrier remains. Ohmic connection was difficult. If the ohmic connection between the light emitting diode 12 and the electrode 13 is not good, there is a large power loss due to the contact resistance when current is injected into the light emitting diode 12, and the contact resistance generates heat and the light emitting diode becomes excessively hot, A disadvantage is induced that significantly degrades the crystallinity.

【0006】本発明は上記欠点に鑑み案出されたもの
で、その目的は発光ダイオードの内部で発生した光の多
くを外部に取り出すことが可能で、電力ロスの少ない高
信頼性の半導体発光装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and has as its object to provide a highly reliable semiconductor light emitting device capable of extracting much of the light generated inside a light emitting diode to the outside, and having a small power loss. Is to provide.

【0007】[0007]

【課題を解決するための手段】本発明の半導体発光装置
は、単結晶基板の上面に、マスクを部分的に被着させる
とともに、該マスクの存在しない部位に、前記マスクよ
りも厚みが厚く、かつ上部を前記マスク上まで延出させ
た化合物半導体から成る発光ダイオードを形成し、該発
光ダイオードの前記延出部上に一方の電極を、前記発光
ダイオードの直下領域に他方の電極を配設して成ること
を特徴とするものである。
According to the semiconductor light emitting device of the present invention, a mask is partially adhered on the upper surface of the single crystal substrate, and the thickness of the mask is increased at a portion where the mask does not exist. And forming a light emitting diode made of a compound semiconductor having an upper part extended onto the mask, disposing one electrode on the extending part of the light emitting diode, and disposing the other electrode in a region immediately below the light emitting diode. It is characterized by comprising.

【0008】また本発明の半導体発光装置は、前記一方
の電極が、Zn/Au,Ti/Pt/Au,Mn/A
u,Cr/Auのうち少なくとも一種から成ることを特
徴とするものである。
Further, in the semiconductor light emitting device according to the present invention, the one electrode may be composed of Zn / Au, Ti / Pt / Au, Mn / A
u, Cr / Au.

【0009】更に本発明の半導体発光装置は、前記マス
クが、多結晶薄膜または非晶質薄膜により形成されてい
ることを特徴とするものである。
Further, in the semiconductor light emitting device according to the present invention, the mask is formed of a polycrystalline thin film or an amorphous thin film.

【0010】本発明の半導体発光装置によれば、マスク
上に迫り出した発光ダイオード上部の延出部に一方の電
極を設けたことから、発光ダイオードの直下領域に配さ
れる他方の電極と上記一方の電極との間に電力を印加す
ると、発光ダイオードの内部で発生する電子や正孔は発
光ダイオードを斜めに横切るように移動し、その多くが
一方の電極の存在しない領域で再結合することとなる。
これにより、発光ダイオードの発する光の多くは、一方
の電極によって遮られることなく、外部に出射されるよ
うになり、所望する強度の光を得ることが可能となる。
According to the semiconductor light emitting device of the present invention, since one electrode is provided on the extension of the upper part of the light emitting diode which protrudes above the mask, the other electrode disposed in the region immediately below the light emitting diode is connected to the other electrode. When power is applied to one of the electrodes, electrons and holes generated inside the light-emitting diode move diagonally across the light-emitting diode, and most of them recombine in a region where one electrode does not exist. Becomes
Thus, most of the light emitted from the light emitting diode is emitted to the outside without being blocked by one of the electrodes, and light having a desired intensity can be obtained.

【0011】また本発明の半導体発光装置によれば、一
方の電極を、Zn/Au,Ti/Pt/Au,Mn/A
u,Cr/Auのうち少なくとも一種で形成することに
より、一方の電極を発光ダイオードに対して簡単かつ確
実にオーミック接続することができ、コンタクト抵抗で
の電力ロスを極力小さく抑えることができる上に、コン
タクト抵抗の発熱による発光ダイオードの温度上昇を有
効に防止して、発光ダイオードの結晶性を良好に維持す
ることができる。
According to the semiconductor light emitting device of the present invention, one of the electrodes is formed of Zn / Au, Ti / Pt / Au, Mn / A
By forming at least one of u, Cr / Au, one of the electrodes can be easily and reliably ohmic-connected to the light emitting diode, and the power loss due to the contact resistance can be minimized. In addition, the temperature rise of the light emitting diode due to the heat generated by the contact resistance can be effectively prevented, and the crystallinity of the light emitting diode can be maintained well.

【0012】[0012]

【発明の実施の形態】以下、本発明を添付図面に基づい
て詳細に説明する。図1は本発明の一形態に係る半導体
発光装置の断面図であり、1は単結晶基板、2はマス
ク、3は発光ダイオード、8は一方の電極、9は他方の
電極である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a semiconductor light emitting device according to one embodiment of the present invention, wherein 1 is a single crystal substrate, 2 is a mask, 3 is a light emitting diode, 8 is one electrode, and 9 is the other electrode.

【0013】前記単結晶基板1は、単結晶シリコンやサ
ファイア,ガリウム砒素,インジウム燐(InP),炭
化珪素(SiC)等から成り、その上面にはマスク2や
発光ダイオード3等が設けられ、これらを支持する支持
母材として機能する。
The single-crystal substrate 1 is made of single-crystal silicon, sapphire, gallium arsenide, indium phosphide (InP), silicon carbide (SiC), etc., and a mask 2, a light emitting diode 3, etc. are provided on the upper surface thereof. It functions as a supporting base material for supporting.

【0014】また前記単結晶基板1の上面には、マスク
2が部分的に被着され、マスク2の存在しない部位に発
光ダイオード3が被着される。
A mask 2 is partially attached on the upper surface of the single crystal substrate 1, and a light emitting diode 3 is attached on a portion where the mask 2 does not exist.

【0015】前記マスク2は、例えば、SiOxやSi
Nxの多結晶薄膜、もしくは非晶質薄膜から成り、図1
の紙面と直交する方向に帯状をなすように1000Å〜
5000Åの厚みに形成される。
The mask 2 is made of, for example, SiOx or Si
Nx polycrystalline thin film or amorphous thin film
1000Å to form a band in the direction perpendicular to the paper
It is formed to a thickness of 5000 mm.

【0016】一方、発光ダイオード3は、GaAsやA
lGaAs,AlGaInP等の化合物半導体から成
り、例えば、バッファ層4、n型半導体層5、p型半導
体層6、コンタクト層7を順次積層した4層構造を有し
ている。
On the other hand, the light emitting diode 3 is made of GaAs or A
It is made of a compound semiconductor such as lGaAs or AlGaInP, and has a four-layer structure in which, for example, a buffer layer 4, an n-type semiconductor layer 5, a p-type semiconductor layer 6, and a contact layer 7 are sequentially stacked.

【0017】前記発光ダイオード3は、n型半導体層5
とp型半導体層6との界面にpn接合を有しており、そ
の厚み方向(積層方向)に後述する電極8,9を介して
所定の電力が印加されると、n型半導体層5内で電子
が、p型半導体層6内で正孔が注入され、これらの電子
と正孔とをpn接合付近で再結合させることによって発
光ダイオード3が所定の輝度で発光する。
The light emitting diode 3 includes an n-type semiconductor layer 5
Has a pn junction at the interface between the n-type semiconductor layer 5 and the p-type semiconductor layer 6. When a predetermined power is applied in the thickness direction (stacking direction) through electrodes 8 and 9 described later, Then, electrons are injected into the p-type semiconductor layer 6 into holes, and these electrons and holes are recombined near the pn junction, so that the light emitting diode 3 emits light at a predetermined luminance.

【0018】尚、前記バッファ層4はn型半導体層5や
p型半導体層6に結晶欠陥の少ない高品質な結晶を得る
ために歪緩和のための超格子構造を導入したり、貫通転
移を横に逃がすための熱サイクルを行う。また前記コン
タクト層7は電極7とのオーミック接続を良好とするた
めにキャリア密度を増やす必要があり、これには不純物
材料のデルタドープ等が用いられる。
The buffer layer 4 may have a superlattice structure for strain relaxation or a threading dislocation to obtain high-quality crystals with few crystal defects in the n-type semiconductor layer 5 and the p-type semiconductor layer 6. Perform a thermal cycle to release to the side. It is necessary to increase the carrier density of the contact layer 7 in order to improve the ohmic connection with the electrode 7, and delta doping of an impurity material or the like is used for this purpose.

【0019】更に前記発光ダイオード3は、先に述べた
マスク2よりも厚みが厚く、かつ上部がマスク2上まで
延出されている。
Further, the light emitting diode 3 is thicker than the mask 2 described above, and its upper part extends to above the mask 2.

【0020】本実施形態においては、発光ダイオード3
をマスク2の両側位置でエピタキシャル成長させて、マ
スク2上に迫り出した上部(延出部)同士をマスク2上
で接合させてあり、この場合、発光ダイオード3の厚み
は、マスク2の幅の0.5倍〜2倍に相当する2μm〜
8μmに設定され、発光ダイオード3の延出部とマスク
2との間には略三角形状の空間が設けられて、発光ダイ
オード3がマスク2を跨ぐ形となる。
In this embodiment, the light emitting diode 3
Are epitaxially grown on both sides of the mask 2 and upper portions (extending portions) protruding on the mask 2 are joined to each other on the mask 2. In this case, the thickness of the light emitting diode 3 is equal to the width of the mask 2. 2 μm or equivalent to 0.5 to 2 times
It is set to 8 μm, and a substantially triangular space is provided between the extending portion of the light emitting diode 3 and the mask 2 so that the light emitting diode 3 straddles the mask 2.

【0021】そして、前記発光ダイオード3の前記延出
部上には一方の電極8が設けられ、発光ダイオード3の
直下領域、例えば単結晶基板1の下面には他方の電極9
が設けられる。
One electrode 8 is provided on the extending portion of the light emitting diode 3, and the other electrode 9 is provided in a region immediately below the light emitting diode 3, for example, on the lower surface of the single crystal substrate 1.
Is provided.

【0022】これらの電極8,9は、前述した発光ダイ
オード3に外部電源からの電力を印加するためのもので
あり、例えば、Zn/Au,Ti/Pt/Au,Mn/
Au,Cr/Au等の導電材料により例えば3000Å
〜10000Åの厚みに形成される。
These electrodes 8 and 9 are for applying power from an external power supply to the light emitting diode 3 described above. For example, Zn / Au, Ti / Pt / Au, Mn /
A conductive material such as Au, Cr / Au, for example, 3000
It is formed to a thickness of 〜1010000Å.

【0023】この場合、発光ダイオード3上に配される
一方の電極8は、マスク2上に迫り出した延出部上に位
置しているため、他方の電極9との間に電力を印加する
と、発光ダイオード3の内部で発生する電子や正孔は発
光ダイオード3を斜めに横切るように移動し、その多く
が一方の電極7の存在しない領域で再結合することとな
る(a:電子の移動方向、b:正孔の移動方向、c:光
の向き)。これにより、発光ダイオード3の発する光の
多くは、一方の電極8によって遮られることなく、発光
ダイオード3の上面より外部に出射されるようになり、
所望する強度の光を得ることが可能となる。
In this case, one of the electrodes 8 disposed on the light emitting diode 3 is located on the extended portion protruding above the mask 2, and therefore, when power is applied between the other electrode 9 and the other electrode 8. The electrons and holes generated inside the light-emitting diode 3 move so as to cross the light-emitting diode 3 obliquely, and most of them recombine in a region where one of the electrodes 7 does not exist (a: electron movement). Direction, b: moving direction of holes, c: direction of light). Thereby, most of the light emitted from the light emitting diode 3 is emitted from the upper surface of the light emitting diode 3 to the outside without being blocked by the one electrode 8.
Light of a desired intensity can be obtained.

【0024】また、このような一方の電極8を、Zn/
Au,Ti/Pt/Au,Mn/Au,Cr/Auのう
ち少なくとも一種で形成すれば、一方の電極8を従来周
知の真空蒸着法や電子ビーム法,スパッタリング法等の
薄膜手法によって発光ダイオード3上に形成する際、電
極8を発光ダイオード3に対して簡単かつ確実にオーミ
ック接続することができ、コンタクト抵抗での電力ロス
を極力小さく抑えることができる上に、コンタクト抵抗
の発熱による発光ダイオードの温度上昇を有効に防止し
て、発光ダイオードの結晶性を良好に維持することもで
きる。従って、発光ダイオード3の延出部に配される一
方の電極8は、Zn/Au,Ti/Pt/Au,Mn/
Au,Cr/Auのうち少なくとも一種で形成すること
が好ましい。
Further, such one electrode 8 is connected to Zn /
If at least one of Au, Ti / Pt / Au, Mn / Au, and Cr / Au is used, one of the electrodes 8 is formed of a light emitting diode 3 by a known thin film method such as a vacuum deposition method, an electron beam method, or a sputtering method. When formed on the light emitting diode, the electrode 8 can be easily and surely ohmic-connected to the light emitting diode 3, so that the power loss due to the contact resistance can be suppressed as small as possible. The temperature rise can be effectively prevented, and the crystallinity of the light emitting diode can be maintained well. Therefore, one electrode 8 disposed on the extension of the light emitting diode 3 is composed of Zn / Au, Ti / Pt / Au, Mn /
It is preferable to form at least one of Au and Cr / Au.

【0025】かくして上述した本発明の半導体発光装置
は、一方の電極8と他方の電極9との間に所定の電圧を
印加して、発光ダイオード3内で電子と正孔とを発生さ
せるとともに、該発生した電子と正孔を発光ダイオード
3の内部に形成されているpn接合付近で再結合させ、
この再結合の際に生じたエネルギーを光に変換して、こ
れを外部に放出することによって半導体発光装置として
機能する。
Thus, in the semiconductor light emitting device of the present invention described above, a predetermined voltage is applied between one electrode 8 and the other electrode 9 to generate electrons and holes in the light emitting diode 3, and The generated electrons and holes are recombined near the pn junction formed inside the light emitting diode 3,
The energy generated at the time of the recombination is converted into light and emitted to the outside to function as a semiconductor light emitting device.

【0026】次に、上述した半導体発光装置の製造方法
について図2を用いて説明する。
Next, a method of manufacturing the above-described semiconductor light emitting device will be described with reference to FIG.

【0027】(1)まず、単結晶基板1を準備する。単
結晶基板1は、例えば単結晶シリコンから成る場合、従
来周知のチョコラルスキー法(引き上げ法)を採用する
ことによって単結晶シリコンのインゴット(塊)を形成
し、これを所定厚みにスライスした上、表面を研磨する
ことによって製作され、得られた単結晶基板1をアセト
ン等を用いて洗浄し、これをリン酸系エッチング液に所
定時間浸漬することによって基板表面のポリッシングダ
メージ層(研磨により損傷を受けた部位)が除去され
る。
(1) First, a single crystal substrate 1 is prepared. When the single-crystal substrate 1 is made of, for example, single-crystal silicon, an ingot of the single-crystal silicon is formed by adopting the conventionally-known Czochralski method (pulling method), which is sliced to a predetermined thickness. The single-crystal substrate 1 manufactured by polishing the surface is washed with acetone or the like, and is immersed in a phosphoric acid-based etching solution for a predetermined period of time, so that a polishing damage layer (damage due to polishing) on the substrate surface is obtained. Receiving site) is removed.

【0028】尚、単結晶基板1の表面に形成されている
酸化膜を除去する場合は、上述の単結晶基板1を分子線
単結晶成長装置の成膜室内に配置し、成膜室内を約85
0℃の高温に加熱して、酸化膜を昇華させることによっ
て行われる。
When the oxide film formed on the surface of the single crystal substrate 1 is removed, the above single crystal substrate 1 is placed in a film formation chamber of a molecular beam single crystal growth apparatus, and the film formation chamber is removed. 85
This is performed by heating to a high temperature of 0 ° C. to sublime the oxide film.

【0029】(2)次に図2(a)に示す如く、前記単
結晶基板1の上面にマスク2を形成する。前記マスク2
は、従来周知の真空蒸着法やスパッタリング法等を採用
し、SiOxやSiNx等の多結晶薄膜もしくは非晶質
薄膜を単結晶基板1の上面に所定厚みに被着させた上、
これを従来周知のフォトリソグラフィ技術及びエッチン
グ技術によって所定パターンに加工することで形成され
る。
(2) Next, as shown in FIG. 2A, a mask 2 is formed on the upper surface of the single crystal substrate 1. The mask 2
Is formed by depositing a polycrystalline thin film or an amorphous thin film such as SiOx or SiNx to a predetermined thickness on the upper surface of the single crystal substrate 1 by employing a conventionally known vacuum deposition method or sputtering method.
This is formed by processing this into a predetermined pattern by a conventionally known photolithography technique and etching technique.

【0030】(3)次に、図2(b)〜(d)に示す如
く、単結晶基板上面のマスク2が存在しない領域に、マ
スク2を跨ぐようにして発光ダイオード3を形成する。
(3) Next, as shown in FIGS. 2B to 2D, a light emitting diode 3 is formed across the mask 2 in a region where the mask 2 does not exist on the upper surface of the single crystal substrate.

【0031】前記発光ダイオード3は、例えば従来周知
のMOCVD(有機金属化学蒸気蒸着)法を採用し、G
aAs等の化合物半導体から成るバッファ層4、n型半
導体層5、p型半導体層6及びコンタクト層7を単結晶
基板1の上面に順次、エピタキシャル成長させ、その外
形を従来周知のメサエッチング等によって所定形状に加
工することで形成される。
The light emitting diode 3 employs, for example, a conventionally known MOCVD (organic metal chemical vapor deposition) method.
The buffer layer 4, the n-type semiconductor layer 5, the p-type semiconductor layer 6, and the contact layer 7 made of a compound semiconductor such as aAs are sequentially epitaxially grown on the upper surface of the single crystal substrate 1, and the outer shape is predetermined by a conventionally known mesa etching or the like. It is formed by processing into a shape.

【0032】このとき、前記マスク2は、SiOxやS
iNx等によって形成されており、Ga原子やAs原子
との結合エネルギーが小さいことから、高温に曝される
成膜工程においては結合が簡単に切れてしまう。従っ
て、マスク2上に化合物半導体がエピタキシャル成長す
ることはなく、発光ダイオード3はマスク2の存在しな
い領域にのみ選択的にエピタキシャル成長される。
At this time, the mask 2 is made of SiOx or S
Since it is made of iNx or the like and has a small bond energy with Ga atoms and As atoms, the bond is easily broken in a film forming process exposed to high temperatures. Therefore, the compound semiconductor does not epitaxially grow on the mask 2, and the light emitting diode 3 is selectively epitaxially grown only in a region where the mask 2 does not exist.

【0033】(4)そして最後に、図2(e)に示す如
く、マスク2上に迫り出した発光ダイオード上部の延出
部に一方の電極8(p型電極)を形成し、単結晶基板1
の下面に他方の電極9(n型電極)を形成する。
(4) Finally, as shown in FIG. 2 (e), one electrode 8 (p-type electrode) is formed on the extension of the upper part of the light emitting diode which protrudes onto the mask 2, and a single crystal substrate is formed. 1
The other electrode 9 (n-type electrode) is formed on the lower surface of the substrate.

【0034】前記一方の電極8は、Zn/Au,Ti/
Pt/Au,Mn/Au,Cr/Au等の導電材料を従
来周知のスパッタリング法、フォトリソグラフィー技術
及びエッチング技術等によって、発光ダイオード3の一
部上面に所定厚み、所定パターンに被着させることによ
って形成され、他方の電極9はAuGe/Ni/Au等
の導電材料を従来周知の真空蒸着法等によって所定厚み
に被着させることによって形成され、これにより製品と
しての半導体装置が完成する。
The one electrode 8 is made of Zn / Au, Ti /
By applying a conductive material such as Pt / Au, Mn / Au, Cr / Au on a part of the upper surface of the light emitting diode 3 in a predetermined thickness and a predetermined pattern by a conventionally known sputtering method, photolithography technology, etching technology and the like. The other electrode 9 is formed by applying a conductive material such as AuGe / Ni / Au to a predetermined thickness by a conventionally known vacuum evaporation method or the like, thereby completing a semiconductor device as a product.

【0035】尚、本発明は上述の実施形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲において
種々の変更、改良等が可能である。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the gist of the present invention.

【0036】例えば上述の実施形態においてはマスク2
を一層で形成するようにしたが、マスク2を複数の層の
積層体により構成するようにしても良い。
For example, in the above embodiment, the mask 2
Is formed in one layer, but the mask 2 may be formed of a laminate of a plurality of layers.

【0037】また上述の実施形態において、図3に示す
如く、発光ダイオード上部の延出部とマスク2との間に
形成される略三角形状の空間内に、発光には直接関与し
ない多結晶の化合物半導体2a等を充填するようにして
も構わない。
In the above-described embodiment, as shown in FIG. 3, a polycrystalline space which is not directly involved in light emission is provided in a substantially triangular space formed between the extended portion above the light emitting diode and the mask 2. The compound semiconductor 2a or the like may be filled.

【0038】[0038]

【発明の効果】本発明の半導体発光装置によれば、マス
ク上に迫り出した発光ダイオード上部の延出部に一方の
電極を設けたことから、発光ダイオードの直下領域に配
される他方の電極と上記一方の電極との間に電力を印加
すると、発光ダイオードの内部で発生する電子や正孔は
発光ダイオードを斜めに横切るように移動し、その多く
が一方の電極の存在しない領域で再結合することとな
る。これにより、発光ダイオードの発する光の多くは、
一方の電極によって遮られることなく、外部に出射され
るようになり、所望する強度の光を得ることが可能とな
る。
According to the semiconductor light emitting device of the present invention, since one electrode is provided in the extension of the upper part of the light emitting diode protruding on the mask, the other electrode arranged in the region immediately below the light emitting diode is provided. When power is applied between the light emitting diode and one of the electrodes, electrons and holes generated inside the light emitting diode move diagonally across the light emitting diode, and most of them recombine in a region where one electrode does not exist. Will be done. As a result, most of the light emitted from the light emitting diode is
The light is emitted to the outside without being blocked by one of the electrodes, so that light having a desired intensity can be obtained.

【0039】また本発明の半導体発光装置によれば、一
方の電極をZn/Au,Ti/Pt/Au,Mn/A
u,Cr/Auのうち少なくとも一種で形成することに
より、一方の電極を発光ダイオードに対して簡単かつ確
実にオーミック接続することができ、コンタクト抵抗で
の電力ロスを極力小さく抑えることができる上に、コン
タクト抵抗の発熱による発光ダイオードの温度上昇を有
効に防止して、発光ダイオードの結晶性を良好に維持す
ることができる。
According to the semiconductor light emitting device of the present invention, one of the electrodes is made of Zn / Au, Ti / Pt / Au, Mn / A
By forming at least one of u, Cr / Au, one of the electrodes can be easily and reliably ohmic-connected to the light emitting diode, and the power loss due to the contact resistance can be minimized. In addition, the temperature rise of the light emitting diode due to the heat generated by the contact resistance can be effectively prevented, and the crystallinity of the light emitting diode can be maintained well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る半導体発光装置の断
面図である。
FIG. 1 is a sectional view of a semiconductor light emitting device according to one embodiment of the present invention.

【図2】図1の半導体発光装置の製造方法を説明するた
めの工程毎の断面図である。
FIG. 2 is a cross-sectional view for explaining a method of manufacturing the semiconductor light emitting device of FIG.

【図3】本発明の他の実施形態に係る半導体発光装置の
断面図である。
FIG. 3 is a sectional view of a semiconductor light emitting device according to another embodiment of the present invention.

【図4】従来の半導体発光装置の断面図である。FIG. 4 is a sectional view of a conventional semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1・・・単結晶基板、2・・・マスク、3・・・発光ダ
イオード、8・・・一方の電極、9・・・他方の電極
DESCRIPTION OF SYMBOLS 1 ... Single crystal substrate, 2 ... Mask, 3 ... Light emitting diode, 8 ... One electrode, 9 ... The other electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】単結晶基板の上面に、マスクを部分的に被
着させるとともに、該マスクの存在しない部位に、前記
マスクよりも厚みが厚く、かつ上部を前記マスク上まで
延出させた化合物半導体から成る発光ダイオードを形成
し、該発光ダイオードの前記延出部上に一方の電極を、
前記発光ダイオードの直下領域に他方の電極を配設して
成る半導体発光装置。
A compound in which a mask is partially adhered on the upper surface of a single crystal substrate, and is thicker than the mask and has an upper part extended over the mask in a portion where the mask does not exist. Forming a light emitting diode comprising a semiconductor, and forming one electrode on the extension of the light emitting diode,
A semiconductor light emitting device having the other electrode disposed in a region directly below the light emitting diode.
【請求項2】前記一方の電極が、Zn/Au,Ti/P
t/Au,Mn/Au,Cr/Auのうち少なくとも一
種から成ることを特徴とする請求項1に記載の半導体発
光装置。
2. The method according to claim 1, wherein said one electrode is made of Zn / Au, Ti / P.
2. The semiconductor light emitting device according to claim 1, comprising at least one of t / Au, Mn / Au, and Cr / Au.
【請求項3】前記マスクが、多結晶薄膜または非晶質薄
膜により形成されていることを特徴とする請求項1また
は請求項2に記載の半導体発光装置。
3. The semiconductor light emitting device according to claim 1, wherein said mask is formed of a polycrystalline thin film or an amorphous thin film.
JP2000363783A 2000-11-29 2000-11-29 Semiconductor light emitting diode Pending JP2002170986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000363783A JP2002170986A (en) 2000-11-29 2000-11-29 Semiconductor light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000363783A JP2002170986A (en) 2000-11-29 2000-11-29 Semiconductor light emitting diode

Publications (1)

Publication Number Publication Date
JP2002170986A true JP2002170986A (en) 2002-06-14

Family

ID=18834841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000363783A Pending JP2002170986A (en) 2000-11-29 2000-11-29 Semiconductor light emitting diode

Country Status (1)

Country Link
JP (1) JP2002170986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208728A (en) * 2001-01-12 2002-07-26 Nichia Chem Ind Ltd Surface light emitting element and its fabricating method
JP2007173530A (en) * 2005-12-22 2007-07-05 Hitachi Cable Ltd Semiconductor light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334213A (en) * 1993-05-27 1994-12-02 Sharp Corp Semiconductor light emission element and fabrication thereof
JPH07263743A (en) * 1994-03-18 1995-10-13 Hitachi Cable Ltd Light-emitting diode
JPH09167861A (en) * 1995-12-14 1997-06-24 Nichia Chem Ind Ltd Multi-color light-emitting device and display device using that
JPH11191637A (en) * 1997-06-30 1999-07-13 Nichia Chem Ind Ltd Nitride semiconductor device
EP1054442A2 (en) * 1999-05-21 2000-11-22 Toyoda Gosei Co., Ltd. Method for growing epitaxial group III nitride compound semiconductors on silicon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334213A (en) * 1993-05-27 1994-12-02 Sharp Corp Semiconductor light emission element and fabrication thereof
JPH07263743A (en) * 1994-03-18 1995-10-13 Hitachi Cable Ltd Light-emitting diode
JPH09167861A (en) * 1995-12-14 1997-06-24 Nichia Chem Ind Ltd Multi-color light-emitting device and display device using that
JPH11191637A (en) * 1997-06-30 1999-07-13 Nichia Chem Ind Ltd Nitride semiconductor device
EP1054442A2 (en) * 1999-05-21 2000-11-22 Toyoda Gosei Co., Ltd. Method for growing epitaxial group III nitride compound semiconductors on silicon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208728A (en) * 2001-01-12 2002-07-26 Nichia Chem Ind Ltd Surface light emitting element and its fabricating method
JP4670151B2 (en) * 2001-01-12 2011-04-13 日亜化学工業株式会社 Surface-emitting light-emitting device and manufacturing method thereof
JP2007173530A (en) * 2005-12-22 2007-07-05 Hitachi Cable Ltd Semiconductor light-emitting device
JP4655920B2 (en) * 2005-12-22 2011-03-23 日立電線株式会社 Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP5932664B2 (en) Group III nitride semiconductor device and manufacturing method thereof
JP3700872B2 (en) Nitride III-V compound semiconductor device and method for manufacturing the same
JP2008205514A (en) Iii-v nitride semiconductor device
JP2007096300A (en) Gallium nitride based semiconductor light emitting device and method of manufacturing same
ZA200806479B (en) Buried contact devices for nitride-based films and manufacture thereof
JPH1065215A (en) Iii nitride semiconductor light-emitting device
WO2007060931A1 (en) Nitride semiconductor device
US8772800B2 (en) Semiconductor light-emitting device
JP2012500479A (en) Method for manufacturing a semiconductor light-emitting device with double-sided passivation
US8779445B2 (en) Stress-alleviation layer for LED structures
US20100012954A1 (en) Vertical III-Nitride Light Emitting Diodes on Patterned Substrates with Embedded Bottom Electrodes
KR100661960B1 (en) Light emitting diode and manufacturing method thereof
JP4530234B2 (en) Semiconductor light emitting device
JP5314257B2 (en) Low-defect semiconductor substrate, semiconductor light emitting device, and manufacturing method thereof
JP2003243701A (en) Iii nitride-based semiconductor light emitting element
JP2002170986A (en) Semiconductor light emitting diode
JP2007042944A (en) Method of manufacturing nitride semiconductor element
JP3577463B2 (en) III-nitride semiconductor light emitting diode
JPH06314821A (en) Formation of p-type gallium nitride compound semiconductor
JPH1065214A (en) Manufacture of semiconductor light-emitting device
JP2006287120A (en) Light emitting element and its manufacturing method
JP3978581B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3564811B2 (en) Group III nitride semiconductor light emitting device
JP3548654B2 (en) Semiconductor light emitting device
JP2000286499A (en) Iii nitride compound semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720