JP2002136494A - Method for measuring magnetic field - Google Patents

Method for measuring magnetic field

Info

Publication number
JP2002136494A
JP2002136494A JP2001086628A JP2001086628A JP2002136494A JP 2002136494 A JP2002136494 A JP 2002136494A JP 2001086628 A JP2001086628 A JP 2001086628A JP 2001086628 A JP2001086628 A JP 2001086628A JP 2002136494 A JP2002136494 A JP 2002136494A
Authority
JP
Japan
Prior art keywords
magnetic field
opening
magnetic
field shielding
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001086628A
Other languages
Japanese (ja)
Other versions
JP4013492B2 (en
JP2002136494A5 (en
Inventor
Daisuke Suzuki
大介 鈴木
Atsushi Ninomiya
篤 二ノ宮
Takeshi Miyashita
豪 宮下
Akihiko Kandori
明彦 神鳥
Keiji Tsukada
啓二 塚田
Koichi Yokozawa
宏一 横澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001086628A priority Critical patent/JP4013492B2/en
Publication of JP2002136494A publication Critical patent/JP2002136494A/en
Publication of JP2002136494A5 publication Critical patent/JP2002136494A5/ja
Application granted granted Critical
Publication of JP4013492B2 publication Critical patent/JP4013492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic field measuring method through the use of sheets with high magnetic permeability. SOLUTION: A magnetic field shielding device 40 is the one where a plurality of sheets having high magnetic permeability are arranged by partial superimposition on pluralities of non-magnetic cylindrical members which is arranged by concentrically enclosing a first direction axis to have a hollow part, where the most inner cylindrical member is provided with first and second openings 41 and 42 at both ends in a first direction and with a third opening being put through the cylindrical members in a vertical direction with respect to the first direction axis and also by which a component in the vertical direction concerning the first direction in an extraneous magnetic field is shielded in the internal space of the most inner cylindrical member. A living body is loaded on loading devices in the internal space of the device 40 or the loading devices where the living body is loaded are carried into the internal space. The bottom surface of a cryostat 50 for keeping low temperature in pluralities of SQUID flux meters is arranged to face the front surface of the living body and, then, the component in the vertical direction concerning the first direction in the magnetic field generated from the living body is detected by the SQUID flux meters. Thus, the magnetic field is measured with high performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,検査対象から発生
する磁場を,高感度な量子干渉素子(SQUID:super
conducting quantum interference device)からなる複
数の磁束計を用いて計測するための磁場遮蔽装置,及
び,これを用いる磁場計測方法,磁場計測装置に関す
る。本発明は,特に,生体の心臓の心筋活動等により発
生する生体磁場を計測するための磁場遮蔽装置,及び,
これを用いる生体磁場計測方法,生体磁場計測装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly sensitive quantum interference device (SQUID: super
The present invention relates to a magnetic field shielding device for measuring using a plurality of magnetometers comprising a conducting quantum interference device, and a magnetic field measuring method and a magnetic field measuring device using the same. In particular, the present invention relates to a magnetic field shielding device for measuring a biomagnetic field generated by a myocardial activity or the like of a living body, and
The present invention relates to a biomagnetic field measurement method and a biomagnetic field measurement device using the same.

【0002】[0002]

【従来技術】径の異なる複数の円筒形シールドを順次同
芯状に配置し,各円筒形シールドの間に間隙を形成した
磁気シールドが報告されている(従来技術1:特開平9
−214166号公報)。
2. Description of the Related Art A magnetic shield in which a plurality of cylindrical shields having different diameters are sequentially arranged concentrically and a gap is formed between the cylindrical shields has been reported (prior art 1: Japanese Patent Application Laid-open No.
-214166).

【0003】従来技術1に記載の技術では,厚さ0.1
mm〜0.5mm,幅20cm〜50cmのテープ状の
パーマロイからなる磁気シールド材を用い,軽量なプラ
スチック円筒を芯として磁気シールド材をスパイラル状
に巻きつけ,隙間なく重ね合わせたオーバーラップ部の
幅を5cm〜10cmとって円筒形に形成されている。
オーバーラップ部は,実質的に2層〜5層となり,その
厚みの合計が0.5mm〜3mm程度となるようなスパ
イラル状に巻きつけられている。また,オーバーラップ
部には,周方向の長さで30cm間隔にリベットが設け
られ,締め付け固定され,オーバーラップ部の接着面
は,金属と金属の接触となっている。
In the technique described in the prior art 1, a thickness of 0.1
Using a magnetic shielding material made of tape-shaped permalloy with a thickness of 20 mm to 0.5 cm and a width of 20 cm to 50 cm, the magnetic shielding material is spirally wound around a lightweight plastic cylinder as a core, and the width of the overlapped portion overlapped without gaps Of 5 cm to 10 cm is formed in a cylindrical shape.
The overlap portion has substantially two to five layers, and is spirally wound so that the total thickness is about 0.5 mm to 3 mm. Also, rivets are provided in the overlap portion at intervals of 30 cm in the circumferential direction and are fixed by tightening, and the bonding surface of the overlap portion is in contact with metal.

【0004】なお,従来技術1には,従来の技術とし
て,Ni−Fe系の高透磁率の合金材料であるパーマロ
イの板を多数枚用いてプレハブ部屋のようなシールドル
ームを製作するの記載があり,この従来技術には,磁気
シールドの製作に長時間を要し,部品点数が多く,磁気
シールドが非常に高価になるという問題があり,生体磁
気計測機器の価格で磁気シールドの占める割合は大き
く,磁気シールドの低価格化が望まれているとの記載が
ある。
The prior art 1 describes, as a conventional technique, the production of a shielded room such as a prefabricated room using a large number of permalloy plates, which are Ni-Fe-based alloy materials having high magnetic permeability. There is a problem with this conventional technology that it takes a long time to manufacture a magnetic shield, the number of parts is large, and the magnetic shield becomes very expensive. There is a statement that it is desired to reduce the price of the magnetic shield.

【0005】パーマロイの板の代わりに,磁気シールド
材として,軟磁性アモルファス合金の膜とポリマーフィ
ルムとを貼り合わせた磁気シールドシートを用いて,軽
量なシールドルームを製作することが報告されている
(従来技術2:特開平2000−077890号公
報)。
[0005] It has been reported that a light-weight shield room is manufactured by using a magnetic shield sheet in which a soft magnetic amorphous alloy film and a polymer film are bonded together as a magnetic shield material, instead of a permalloy plate ( Prior art 2: JP-A-2000-077890).

【0006】[0006]

【発明が解決しようとする課題】パーマロイの板を組合
せてシールドルームを製作する従来技術,従来技術1で
は,加工後のパーマロイの焼鈍処理を必要とするという
問題,広い面積を必要とするという問題,シールドルー
ムの重量が大きくシールドルームを設置する場所に制限
があるという問題,シールドルームが高価格となるとい
う問題等があった。 従来技術2では,パーマロイの板
を組合せてシールドルームを製作する従来技術1より
も,シールドルームの重量が軽量化され,低価格化が実
現できるが,広い面積を必要とするという問題は解決さ
れておらず,シールドルームのより軽量化,より低価格
化が望まれていた。
In the prior art 1 and the prior art 1 in which a shield room is manufactured by combining permalloy plates, there is a problem that an annealing process of permalloy after processing is required, and a problem that a large area is required. However, there is a problem that the weight of the shield room is large and there is a limit to a place where the shield room is installed, and there is a problem that the shield room becomes expensive. In the prior art 2, the weight of the shield room can be reduced and the price can be reduced as compared with the prior art 1 in which a shield room is manufactured by combining permalloy plates, but the problem of requiring a large area is solved. Therefore, a lighter and lower price shielded room was desired.

【0007】本発明の目的は,高透磁率を持つ高透磁率
シートを用いて,軽量,小型の高性能な磁場遮蔽装置を
低コストで提供し,検査対象,特に,生体から発生する
磁場を計測するための磁場計測方法,磁場計測装置を提
供することにある。
An object of the present invention is to provide a light-weight, small-sized, high-performance magnetic field shielding device at a low cost by using a high magnetic permeability sheet having a high magnetic permeability, and to reduce a magnetic field generated from an object to be inspected, particularly, a living body. An object of the present invention is to provide a magnetic field measurement method and a magnetic field measurement device for measurement.

【0008】[0008]

【課題を解決するための手段】本発明の代表的な磁場計
測装置は,外来磁場の第1の方向に垂直な方向の成分が
遮蔽される磁場遮蔽装置と,検査対象から発生する磁場
の第1の方向に垂直な方向の成分を検出する複数のSQ
UID磁束計を低温に保持するクライオスタット,クラ
イオスタットを保持する装置と,SQUID磁束計を駆
動し,SQUID磁束計からの信号を検出する駆動検出
回路と,駆動検出回路の出力を収集し演算処理を行なう
演算処理装置と,演算処理装置の出力を表示する表示装
置とから構成される。
A representative magnetic field measuring apparatus according to the present invention includes a magnetic field shielding apparatus for shielding a component of an external magnetic field in a direction perpendicular to a first direction, and a magnetic field shielding apparatus for generating a magnetic field generated from an inspection object. A plurality of SQs for detecting components in a direction perpendicular to one direction
A cryostat that holds the UID magnetometer at low temperature, a device that holds the cryostat, a drive detection circuit that drives the SQUID magnetometer, and detects a signal from the SQUID magnetometer, and collects the output of the drive detection circuit to perform arithmetic processing. It comprises an arithmetic processing unit and a display device for displaying the output of the arithmetic processing unit.

【0009】本発明の磁場遮蔽装置は,中空部をもつ非
磁性の複数の筒形部材が第1の方向の軸を同心状に囲み
配置され形成される。各筒形部材の面(内面又は/及び
外面)に,高透磁率を持つ高透磁率シートの複数枚が,
相互に一部分が重複するように貼付して配置される。
The magnetic field shielding device of the present invention is formed by arranging a plurality of non-magnetic cylindrical members having hollow portions so as to concentrically surround the axis in the first direction. On the surface (inner surface and / or outer surface) of each tubular member, a plurality of high permeability sheets having high permeability
They are affixed and arranged so that a part of them is mutually overlapped.

【0010】最も内側に配置される筒形部材は,第1の
方向の一端に第1の開口を,第1の方向の他端に第2の
開口を持っている。第1の方向の軸に垂直な方向で複数
の筒形部材を貫通する第3の開口が形成されている。最
も内側に配置される筒形部材の内側の空間で,外来磁場
の第1の方向に垂直な方向の成分が遮蔽される。最も内
側に配置される筒形部材の内側の空間に,検査対象が生
体である場合には,検査対象部位の体軸方向を第1の方
向の軸にほぼ平行にして生体(被験者)を搭載する生体
搭載装置(ベッド,椅子)が配置される。
The innermost tubular member has a first opening at one end in a first direction and a second opening at the other end in the first direction. A third opening is formed through the plurality of tubular members in a direction perpendicular to the axis in the first direction. In the space inside the innermost cylindrical member, the component of the external magnetic field in the direction perpendicular to the first direction is shielded. When the test object is a living body, the living body (subject) is mounted in the space inside the cylindrical member arranged at the innermost side with the body axis direction of the test target part substantially parallel to the axis in the first direction. A living body mounted device (bed, chair) is arranged.

【0011】クライオスタットの一部が第3の開口に挿
入され,クライオスタットの底面が内側の空間に配置さ
れる。第3の開口の直径を,クライオスタットの底面の
直径よりも小さくして,クライオスタットの径が小さい
部分を第3の開口に挿入する構成により,第3の開口の
直径を大きくする必要がないので,外来磁場の磁場遮蔽
率を向上させることができる。第3の開口は,検査対象
が生体である場合には,生体(被験者)の胸面,又は,
背面に対向し,クライオスタットの底面は,生体の胸
面,又は,背面に対向して上記内側の空間に配置されて
いる。
[0011] A part of the cryostat is inserted into the third opening, and the bottom surface of the cryostat is disposed in the inner space. By making the diameter of the third opening smaller than the diameter of the bottom surface of the cryostat and inserting the small diameter portion of the cryostat into the third opening, it is not necessary to increase the diameter of the third opening. The magnetic field shielding rate of the extraneous magnetic field can be improved. The third opening is, when the test object is a living body, a chest surface of the living body (subject), or
Facing the back, the bottom surface of the cryostat is disposed in the chest space of the living body or in the inner space facing the back.

【0012】クライオスタットの底面と検査対象の表面
との位置関係は位置調整装置により調整され,第1の方
向に垂直な方向で位置関係が調整される。位置調整装置
は,第1の方向に垂直な第2の方向で,クライオスタッ
トの位置,又は検査対象を搭載する搭載装置の位置を変
化させることができる。更に,位置調整装置は,第1及
び第2の方向に垂直な第3の方向,及び第1の方向で,
搭載装置の位置を変化させることができる。
The positional relationship between the bottom surface of the cryostat and the surface to be inspected is adjusted by a position adjusting device, and the positional relationship is adjusted in a direction perpendicular to the first direction. The position adjusting device can change the position of the cryostat or the position of the mounting device on which the inspection object is mounted in a second direction perpendicular to the first direction. Further, the position adjusting device may be arranged in a third direction perpendicular to the first and second directions, and in the first direction.
The position of the mounting device can be changed.

【0013】更に,磁場遮蔽装置には,第1の方向の軸
に垂直な方向で各筒形部材を貫通する第4の開口が形成
されており,検査対象が生体である場合には,第4の開
口は被験者の視野内にあり,開放感を被験者に与えてい
る。
Further, the magnetic field shielding device is provided with a fourth opening which penetrates each cylindrical member in a direction perpendicular to the axis of the first direction. The opening 4 is within the field of view of the subject, giving the subject a sense of openness.

【0014】[0014]

【実施の形態】以下の説明では,検査対象として,代表
的な例として生体の心臓を対象として説明する。本発明
は,生体の心臓に限定されるものではなく,例えば,一
般の検査対象に含まれる磁性体の有無,磁性体の分布の
検査にも適用できることは言うまでもない。本発明の装
置の構成は大きな面積を必要としないので,例えば,磁
性体を含む危険物の検査装置として使用でき,飛行場,
港等での手荷物の検査にも適用可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description, an examination object will be described as a typical example of a living heart. The present invention is not limited to the heart of a living body, and it is needless to say that the present invention can be applied to, for example, inspection of the presence / absence of a magnetic substance and distribution of the magnetic substance included in a general inspection target. Since the configuration of the device of the present invention does not require a large area, it can be used, for example, as an inspection device for dangerous substances including magnetic substances,
It is also applicable to inspection of baggage at ports and the like.

【0015】本発明の磁場遮蔽装置では,非晶質又は多
結晶質から構成される高透磁率の磁性材料の薄層を含
み,柔軟性と薄い厚さを持つ複数の高透磁率シート,あ
るいは,Niを含む合金から構成される高透磁率の磁性
材料を使用した複数の高透磁率シートが使用される。本
発明で使用される高透磁率シートはフレキシブルであ
る。
According to the magnetic field shielding apparatus of the present invention, a plurality of high permeability sheets having flexibility and a small thickness including a thin layer of a magnetic material having high permeability composed of amorphous or polycrystalline, or And a plurality of high-permeability sheets using a high-permeability magnetic material composed of an alloy containing Ni. The high magnetic permeability sheet used in the present invention is flexible.

【0016】複数の高透磁率シートは,中空部をもつ非
磁性の2個から5個の筒形部材に高透磁率シートの一部
分が重複して配置されている。複数の筒形部材は,第1
の方向の軸を同心状に囲むように相互に固定され配置さ
れる。高透磁率シートには,磁性材料が配置される領域
が,非磁性の保持シート(例えば,紙,高分子フィル
ム,金属フィルム)の間に挟まれて短冊の形状に形成さ
れ,複数の短冊は隣接する短冊の長辺で重複し,更に,
複数の短冊の長辺がほぼ平行に配列されている。
The plurality of high-permeability sheets are arranged such that a part of the high-permeability sheet is overlapped with two to five non-magnetic cylindrical members having a hollow portion. The plurality of tubular members are the first
Are fixed and arranged so as to concentrically surround the axis in the direction of. In the high-permeability sheet, a region where the magnetic material is arranged is formed in a strip shape sandwiched between non-magnetic holding sheets (eg, paper, polymer film, metal film). Overlap on the long sides of adjacent strips,
The long sides of the plurality of strips are arranged substantially in parallel.

【0017】各高透磁率シートの複数の短冊の短辺は,
第1の方向の軸にほぼ平行に配置され,高透磁率シート
が複数の各筒形部材の面(内面又は/及び外面)に,各
高透磁率シートの複数の短冊の長辺が第1の方向の軸を
内側に取り囲むように貼付され,保持されている。この
ような短冊の形状を持つ磁性材料が配置される複数の領
域を配置することにより,外来磁場の磁場遮蔽率を向上
させている。
The short sides of a plurality of strips of each high magnetic permeability sheet are
The high magnetic permeability sheet is disposed substantially parallel to the axis in the first direction, and the long side of the plurality of strips of each high magnetic permeability sheet is placed on the surface (inner surface and / or outer surface) of each of the plurality of cylindrical members. It is stuck and held so as to surround the axis in the direction of. By arranging a plurality of regions in which the magnetic material having such a strip shape is arranged, the magnetic field shielding rate of an external magnetic field is improved.

【0018】最も内側に配置される筒形部材には,第1
の方向の一端に第1の開口が,第1の方向の他端に第2
の開口が形成されている。第1の方向の軸に垂直な方向
で複数の筒形部材を貫通し,複数のSQUID磁束計を
低温に保持するクライオスタットが挿入される第3の開
口が形成されている。最も内側に配置される筒形部材の
内側の空間で,外来磁場の第1の方向に垂直な方向の成
分が遮蔽される。
The innermost cylindrical member has a first member.
A first opening is provided at one end in the direction
Openings are formed. A third opening is formed to penetrate the plurality of cylindrical members in a direction perpendicular to the axis of the first direction and to insert a cryostat that holds the plurality of SQUID magnetometers at low temperature. In the space inside the innermost cylindrical member, the component of the external magnetic field in the direction perpendicular to the first direction is shielded.

【0019】複数の筒形部材の第1の方向の軸に垂直な
断面のより好ましい形状は,外来磁場の磁場遮蔽率を向
上させる観点から,対称性が高い形状がより好ましく円
とするが,円を第1の方向の軸に垂直な方向に,例え
ば,円の直径の約10%だけ押しつぶした形状でも良
い。
A more preferable shape of the cross section of the plurality of cylindrical members perpendicular to the axis in the first direction is a circle having higher symmetry from the viewpoint of improving the magnetic field shielding rate of an external magnetic field. The circle may be crushed in a direction perpendicular to the axis in the first direction, for example, by about 10% of the diameter of the circle.

【0020】最も内側に配置される筒形部材の第1の方
向の軸に垂直な断面のより好ましい形状は,直径が約5
0cm以上約200cm以下の円であり,最も内側に配
置される筒形部材の内部に挿入される被験者に圧迫感を
与えないようにする。小児を専用に検査する装置の場合
には,もっと間も内側に配置される円筒部材の内径は約
50cmであれば良く,小児,大柄な大人を検査対象と
する装置の場合には,もっと間も内側に配置される円筒
部材の内径は約50cmであれば良い。
A more preferred shape of the innermost cylindrical member having a cross section perpendicular to the axis in the first direction has a diameter of about 5 mm.
It is a circle of 0 cm or more and about 200 cm or less, and does not give a subject a feeling of oppression inserted into the innermost tubular member. In the case of a device dedicated to examining children, the inner diameter of the cylindrical member that is located farther inside should be about 50 cm. The inside diameter of the cylindrical member disposed on the inside may be about 50 cm.

【0021】複数の非磁性の筒形部材として,磁場遮蔽
装置の製作,コストの観点から,厚さ0.5mmから1
mmをもつ,FRPの中空円筒,アルミニウムの中空円
筒を使用するのがより好ましい。
As a plurality of non-magnetic cylindrical members, from the viewpoint of the manufacture and cost of the magnetic field shielding device, the thickness is 0.5 mm to 1 mm.
It is more preferable to use a hollow cylinder made of FRP or aluminum having a diameter of 0.1 mm.

【0022】外来磁場の第1の方向に垂直な方向の成分
が遮蔽される,最も内側に配置される筒形部材の内側の
空間に,以下に示す3つの何れかの態様で被験者が楽な
状態で置かれ,生体磁場を検出しようとする被験者の部
位の体軸方向が第1の方向の軸にほぼ平行となるように
して,例えば,被験者の胸部,腹部内の胎児等から発生
する生体磁場が検出される。 (1)第1の方向の軸を床面に対してほぼ水平とする場
合には,被験者が横たわるベッドが,ほぼ水平の状態
で,最も内側に配置される筒形部材の内部に配置され
る。 (2)第1の方向の軸を床面に対してほぼ垂直とする場
合には,被験者は椅子に座っている状態で,最も内側に
配置される筒形部材の内部に配置される。 (3)第1の方向の軸を水平面に対して角度が20度以
上30度以下で傾斜させた場合には,被験者が横たわる
ベッドを傾斜させた状態で,あるいは,被験者が座って
いる椅子の背持たれの角度を傾斜させた状態で,最も内
側に配置される筒形部材の内部に配置される。
In the space inside the innermost cylindrical member, where the component of the extraneous magnetic field in the direction perpendicular to the first direction is shielded, the subject can comfortably take one of the following three modes. Placed in a state, the body axis direction of the part of the subject whose biomagnetic field is to be detected is substantially parallel to the axis of the first direction, for example, a living body generated from a fetus or the like in the chest or abdomen of the subject. A magnetic field is detected. (1) When the axis in the first direction is substantially horizontal with respect to the floor, the bed on which the subject lies is placed in a substantially horizontal state inside the innermost tubular member. . (2) When the axis in the first direction is substantially perpendicular to the floor, the subject is placed inside the innermost tubular member while sitting on a chair. (3) When the axis of the first direction is inclined at an angle of not less than 20 degrees and not more than 30 degrees with respect to the horizontal plane, the bed on which the subject lies is inclined, or the chair on which the subject sits is tilted. It is arranged inside the innermost tubular member with the backrest angled.

【0023】第3の開口及び/又は第4の開口は,以下
の3つの何れかの態様で形成される。(1)各筒形部材
に穴が開けられており,複数の筒形部材を,第1の方向
の軸を同心状に囲むように相互に固定し一体化すること
により,各筒形部材の穴により第3の開口が形成され
る。(1)の態様の他に,各筒形部材の一部分が移動可
能に構成され,各筒形部材の一部分の移動により第3及
び/又は第4の開口が形成される。
The third opening and / or the fourth opening are formed in any one of the following three modes. (1) A hole is formed in each cylindrical member, and a plurality of cylindrical members are fixed to each other so as to concentrically surround the axis in the first direction and integrated, thereby forming each cylindrical member. The third opening is formed by the hole. In addition to the mode (1), a part of each cylindrical member is configured to be movable, and the third and / or fourth openings are formed by moving a part of each cylindrical member.

【0024】即ち,各筒形部材の一部分が,第1の方
向,第1の方向の軸を囲む周方向,第1の方向に交叉す
る方向の何れかの方向で移動可能であり,各筒形部材の
一部分の移動により第3及び/又は第4の開口が形成さ
れる。具体的な態様を以下に示す。 (2)各筒形部材が第1の方向で,第1の部分と第2の
部分との2つに分割される。第1及び第2の部分の各筒
形部材はそれぞれ第1の方向の軸を同心状に囲むように
相互に固定し一体化して構成される。第1の部分は第2
の部分に対して第1の方向に移動して分離可能である。
That is, a part of each cylindrical member is movable in any one of a first direction, a circumferential direction surrounding the axis of the first direction, and a direction intersecting the first direction. A third and / or fourth opening is formed by movement of a portion of the profile. Specific embodiments will be described below. (2) Each cylindrical member is divided in the first direction into two parts, a first part and a second part. Each of the cylindrical members of the first and second portions is integrally fixed and integrated so as to concentrically surround the axis in the first direction. The first part is the second
Can be separated by moving in the first direction with respect to the portion.

【0025】第1の部分の各筒形部材は,端部に開口す
る半円状の部分をもつ第1の切欠き部を持つ。第2の部
分の各筒形部材は,端部に開口する半円状の部分をもつ
第2の切欠き部を持つ。
Each cylindrical member of the first portion has a first notch having a semicircular portion opening at an end. Each tubular member of the second portion has a second notch having a semicircular portion opening at the end.

【0026】第1の部分の第2の部分に対する第1の方
向での移動により,第1の部分の端部と第2の部分の端
部とが第1の方向で重複する結果,第1及び第2の切欠
き部により,第3及び/又は第4の開口が形成される。
The movement of the first part in the first direction relative to the second part causes the end of the first part and the end of the second part to overlap in the first direction. The third and / or fourth openings are formed by the second cutout portion.

【0027】第1の部分の第2の部分に対する第1の方
向の第1の移動に加え,更に,第1の方向に交叉する方
向の第2の移動も可能である。第1の移動,あるいは,
第1の移動及び第2の移動により,磁場遮蔽装置に開放
部が形成される。 (3)各筒形部材が第1の方向の軸を囲む周方向で,第
1の部分と第2の部分との2つに分割される。第1及び
第2の部分の各筒形部材はそれぞれ相互に固定し一体化
して構成される。第1の部分は第2の部分に対してを囲
む周方向に移動可能に構成される。
In addition to the first movement of the first part relative to the second part in the first direction, a second movement in a direction crossing the first direction is also possible. The first move, or
An opening is formed in the magnetic field shielding device by the first movement and the second movement. (3) Each cylindrical member is divided into two parts, a first part and a second part, in the circumferential direction surrounding the axis in the first direction. Each of the cylindrical members of the first and second portions is fixed and integrated with each other. The first portion is configured to be movable in a circumferential direction surrounding the second portion.

【0028】第1の部分の各筒形部材は,第1の方向に
ほぼ平行な1辺に開口する半円状の部分をもつ第1の切
欠き部を持つ。第2の部分の各筒形部材は,第1の方向
にほぼ平行な1辺に開口する半円状の部分をもつ第2の
切欠き部を持つ。
Each cylindrical member of the first portion has a first notch having a semicircular portion opened on one side substantially parallel to the first direction. Each cylindrical member of the second portion has a second notch having a semicircular portion that opens on one side substantially parallel to the first direction.

【0029】第1の部分の第2の部分に対する第1の方
向の軸を囲む周方向での移動により,第1の部と第2の
部分とが第1の方向の軸を囲む周方向で重複する結果,
第1及び第2の切欠き部により,第3の開口が形成され
る。
The movement of the first part in the circumferential direction surrounding the axis in the first direction with respect to the second part causes the first part and the second part to move in the circumferential direction surrounding the axis in the first direction. Duplicate results,
A third opening is formed by the first and second notches.

【0030】第1の部分と第2の部分は,第1の方向に
ほぼ平行な2辺でそれぞれ,第1の方向の軸を囲む周方
向で約10度から約15度の範囲で重複する。第1の部
分の移動により,第1の方向の軸を囲む周方向で約90
度の範囲の開放部が,磁場遮蔽装置に形成される。
The first portion and the second portion overlap each other on two sides substantially parallel to the first direction in a range from about 10 degrees to about 15 degrees in a circumferential direction surrounding the axis in the first direction. . The movement of the first part causes about 90 in the circumferential direction surrounding the axis in the first direction.
Openings in the range of degrees are formed in the magnetic shielding device.

【0031】磁場遮蔽装置の他の構成では,上記の
(2),(3)で説明したように,各筒形部材が,第1
の部分と第2の部分との2つに分割されて形成され,上
記の第3の開口を形成するが,上記で説明した第3の開
口を形成しない構成とする。クライオスタットの底部
は,第1の開口,又第2の開口から挿入される。第4の
開口は,被験者の検査対象部位から遠い位置に形成され
るので,外来磁場の磁場遮蔽率を劣化させることはな
い。
In another configuration of the magnetic field shielding device, as described in the above (2) and (3), each cylindrical member is the first member.
And the second portion are formed so as to be divided into two, and the third opening is formed, but the above-described third opening is not formed. The bottom of the cryostat is inserted through the first opening and the second opening. The fourth opening is formed at a position far from the subject to be inspected by the subject, so that the magnetic field shielding rate of the external magnetic field does not deteriorate.

【0032】以下,本発明に於ける磁場計測の手順につ
いて説明する。
Hereinafter, the procedure of magnetic field measurement according to the present invention will be described.

【0033】まず,磁場遮蔽装置の各筒形部材の一部分
を,第1の方向,第1の方向の軸を囲む周方向,第1の
方向に交叉する方向の何れかの方向で移動させることに
より,開放部を形成する。
First, a part of each cylindrical member of the magnetic field shielding device is moved in any one of a first direction, a circumferential direction surrounding an axis of the first direction, and a direction intersecting the first direction. Thus, an open portion is formed.

【0034】第1の方向の軸に交叉する方向から開放部
を通して,生体が,磁場遮蔽装置の内側の空間に置かれ
る生体搭載装置(ベッド,椅子)に搭載される。あるい
は,生体が搭載される生体搭載装置が,第1の方向の軸
に沿って,第1の方向にほぼ平行な方向,又は,第1の
方向の軸に交叉する方向から,開放部を通して磁場遮蔽
装置の内側の空間に搬入される。
The living body is mounted on a living body mounting device (bed, chair) placed in a space inside the magnetic field shielding device through an opening from a direction crossing the axis of the first direction. Alternatively, the living body mounting device on which the living body is mounted is moved along the axis in the first direction, from the direction substantially parallel to the first direction, or from the direction crossing the axis in the first direction, through the opening portion. It is carried into the space inside the shielding device.

【0035】次に,各筒形部材の一部分を,第1の方
向,第1の方向の軸を囲む周方向,第1の方向に交叉す
る方向の何れかの方向の移動させることにより,開放部
を閉鎖する。この結果,第3及び/又は第4の開口部が
形成され,第3の開口部に,クライオスタットの一部が
挿入された形となる。
Next, a part of each cylindrical member is moved in any one of the first direction, the circumferential direction surrounding the axis in the first direction, and the direction intersecting the first direction, thereby opening the cylindrical member. Close the part. As a result, a third and / or fourth opening is formed, and a part of the cryostat is inserted into the third opening.

【0036】磁場遮蔽装置の内側の空間に配置されるク
ライオスタットの底面と,生体の表面との位置関係を,
磁場信号が大きく検出されるように,第1の方向に垂直
な方向で調整する。複数のSQUID磁束計により,生
体から発生する磁場の第1の方向に垂直な方向の成分が
検出される。
The positional relationship between the bottom surface of the cryostat placed in the space inside the magnetic field shielding device and the surface of the living body is
Adjustment is performed in a direction perpendicular to the first direction so that a large magnetic field signal is detected. The components of the magnetic field generated from the living body in the direction perpendicular to the first direction are detected by the plurality of SQUID magnetometers.

【0037】本発明によれば,軽量,小型,低コストで
高性能な,外来磁場の高い磁場遮蔽率を持つ磁場遮蔽装
置を提供することができ,更に,この磁場遮蔽装置を用
いる生体磁場を計測するための磁場計測方法,磁場計測
装置を提供できる。
According to the present invention, it is possible to provide a light-weight, small-sized, low-cost, high-performance magnetic field shielding device having a high magnetic field shielding ratio of an external magnetic field. A magnetic field measurement method and a magnetic field measurement device for measurement can be provided.

【0038】また,本発明の磁場遮蔽装置は,軽量,小
型であるため,設置する場所に耐加重性が特に要求され
ず,小さい面積があれば設置が可能であるので,磁場遮
蔽装置,即ち,磁場計測装置を設置する場所に制限がな
くなる。
Further, since the magnetic field shielding device of the present invention is lightweight and small, it does not particularly require load resistance at the place where it is installed, and can be installed if it has a small area. In addition, there is no restriction on the place where the magnetic field measuring device is installed.

【0039】ここで,時間変数をt,生体の面を(x,
y)面,生体の面に垂直な方向をz方向とする。クライ
オスタットの内部で底面の近傍に等間隔で2次元に格子
状に配列されるSQUID磁束計の位置を(x,y),
SQUID磁束計により検出される生体磁場の磁場成分
(法線成分)をBz(x,y,t)とする。
Here, the time variable is t, and the surface of the living body is (x,
y) The direction perpendicular to the plane and the plane of the living body is defined as the z direction. The positions of the SQUID magnetometers arranged in a two-dimensional grid at equal intervals near the bottom surface inside the cryostat are (x, y),
The magnetic field component (normal component) of the biomagnetic field detected by the SQUID magnetometer is defined as Bz (x, y, t).

【0040】本発明の磁場計測装置では,生体磁場の接
線成分Bx(x,y,t),By(x,y,t)をそれ
ぞれ,計測された法線成分Bz(x,y,t)のx方向
の変化率∂Bz(x,y,t)/∂x,y方向の変化率
∂Bz(x,y,t)/∂yに比例する値として求め
る。比例定数を1とすると,接線成分Bx(x,y,
t),By(x,y,t)は,(数1),(数2)によ
って与えられる。
In the magnetic field measuring apparatus of the present invention, the tangential components Bx (x, y, t) and By (x, y, t) of the biomagnetic field are respectively measured by the measured normal component Bz (x, y, t). In the x direction 比例 Bz (x, y, t) / ∂x, y The change rate in the ∂Bz (x, y, t) / ∂y is obtained as a value proportional to the change rate. Assuming that the proportionality constant is 1, the tangent component Bx (x, y,
t) and By (x, y, t) are given by (Equation 1) and (Equation 2).

【0041】[0041]

【数1】 Bx(x,y,t)=−(∂Bz(x,y,t)/∂x) …(数1)Bx (x, y, t) = − (∂Bz (x, y, t) / ∂x) (Equation 1)

【0042】[0042]

【数2】 By(x,y,t)=−(∂B(x,y,t)z/∂y) …(数2) 次に,x方向の変化率とy方向の変化率の2乗和の平方
根に比例する値St(x,y,t)を求める。比例定数
を1とすると,磁場波形St(x,y,t)は,(数
3)によって与えられる。
## EQU2 ## By (x, y, t) =-(∂B (x, y, t) z / ∂y) (Equation 2) Next, the rate of change in the x direction and the rate of change in the y direction are given by 2 A value St (x, y, t) proportional to the square root of the sum of squares is obtained. Assuming that the proportionality constant is 1, the magnetic field waveform St (x, y, t) is given by (Equation 3).

【0043】[0043]

【数3】 St(x,y,t)=√[{∂Bz(x,y,t)/∂x}2 +{∂Bz(x,y,t)/∂y}2] …(数3) St(x,y,t)は,生体内部の磁場発生源を(x,
y)面に投影した磁場強度情報を与える。tとして,
Q,R,Sの各波のピーク位置をとり,St(x,y,
t)のデータから内挿,外挿により同じ磁場強度を与え
る(x,y)点を結ぶ等磁場線図を求める。
## EQU3 ## St (x, y, t) = √ [{∂Bz (x, y, t) / ∂x} 2+ {∂Bz (x, y, t) / ∂y} 2] (number 3) St (x, y, t) represents the magnetic field source inside the living body as (x, y, t).
y) Give magnetic field intensity information projected on the surface. As t
Taking the peak position of each wave of Q, R, and S, St (x, y,
From the data of t), an isomagnetic field diagram connecting (x, y) points giving the same magnetic field strength by interpolation and extrapolation is obtained.

【0044】次に,各点(x,y)について任意の期間
での磁場波形St(x,y,t)の積分値I(x,y)
を(数4)により求め,内挿,外挿により積分値I
(x,y)が同じ値の点を結ぶ等積分図を求める。
Next, for each point (x, y), the integrated value I (x, y) of the magnetic field waveform St (x, y, t) in an arbitrary period
Is obtained by (Equation 4), and the integrated value I is obtained by interpolation and extrapolation.
An isointegral diagram connecting points where (x, y) has the same value is obtained.

【0045】積分範囲として,例えば,心臓を測定の対
象とする時には,Q,R,Sの各波の発生する期間,Q
波からS波の発生するQRS波(QRS complex)の期間,
T波の発生する期間等をとる。
As the integration range, for example, when the heart is to be measured, the period during which the Q, R, and S waves are generated, Q
The period of the QRS complex (QRS complex) in which the S-wave is generated from the wave,
A period during which the T wave is generated is taken.

【0046】[0046]

【数4】 I(x,y)=∫│St(x,y,t)│dt …(数4) 更に,x,y,zの3方向の磁場成分を合成した磁場強
度の時間波形V(x,y,t)を,(数5)により求め
ることにより,特に,胎児のように動きが激しい場合で
も,安定した磁場波形を得ることができる。
I (x, y) = ∫ | St (x, y, t) | dt (Equation 4) Further, a time waveform V of a magnetic field intensity obtained by synthesizing magnetic field components in three directions x, y, and z. By calculating (x, y, t) by (Equation 5), a stable magnetic field waveform can be obtained, especially in a case where the movement is severe such as a fetus.

【0047】[0047]

【数5】 V(x,y,t)=√[{∂Bz(x,y,t)/∂x}2 +{∂Bz(x,y,t)/∂y}2+{Bz(x,y,t)}2]…(数5) St(x,y,t)の代わり,V(x,y,t)を使用
して,上記と同様にして,等磁場線図,等積分図を求め
ることができる。
V (x, y, t) = √ [{∂Bz (x, y, t) / ∂x} 2+ {∂Bz (x, y, t) / ∂y} 2+ {Bz (x , Y, t)} 2] (Equation 5) Using V (x, y, t) instead of St (x, y, t), in the same manner as described above, the isomagnetic field map, the equal integration A figure can be obtained.

【0048】各SQUID磁束計により計測された磁場
波形St(x,y,t),V(x,y,t)を表示する
と共に,磁場分布図として,等磁場線図,等積分図を,
表示装置の表示画面に表示する。等磁場線図,等積分図
を,それらの等高線の高低により色分けをして3次元カ
ラー表示して,診断に有用なデータを得ることができ
る。
The magnetic field waveforms St (x, y, t) and V (x, y, t) measured by the SQUID magnetometers are displayed, and the magnetic field distribution map is represented by an isomagnetic field diagram and an equal integration diagram.
Display on the display screen of the display device. The contour map and the isointegral chart are color-coded according to the level of the contour lines, and three-dimensionally displayed to obtain data useful for diagnosis.

【0049】即ち,本発明の磁場計測装置では,接線成
分Bx(x,y,t),By(x,y,t)を計測する
ことなく,法線成分Bz(x,y,t)の計測のみか
ら,電流源の直上にピークパターンが出現する磁場分布
図を得ることができる。この結果,生体内の複数の電流
源の位置を直読できるので,心筋梗塞,虚血,不整脈,
心筋肥大等の診断,術前術後の心筋状態の変化の評価等
の心臓に関する疾患の診断に有用なデータを得ることが
できる。本発明の磁場計測装置は,特に,成人,胎児の
心臓の診断のためのデータ(磁場分布)を,10秒ない
し5分程度の短時間で計測して表示できる。
That is, the magnetic field measuring apparatus of the present invention does not measure the tangential components Bx (x, y, t) and By (x, y, t), but measures the normal component Bz (x, y, t). From the measurement alone, a magnetic field distribution map in which a peak pattern appears immediately above the current source can be obtained. As a result, the positions of multiple current sources in the living body can be read directly, so that myocardial infarction, ischemia, arrhythmia,
It is possible to obtain useful data for diagnosing diseases related to the heart such as diagnosis of myocardial hypertrophy and evaluation of changes in myocardial condition before and after surgery. The magnetic field measuring apparatus of the present invention can measure and display data (magnetic field distribution) for diagnosis of an adult or fetal heart in a short time of about 10 seconds to 5 minutes.

【0050】以下,より具体的に,代表的な実施例を図
面を参照して詳細に説明する。
Hereinafter, a typical embodiment will be described in more detail with reference to the drawings.

【0051】図1は本発明の各実施例で使用される高透
磁率を有する高透磁率シート23の構成例を説明する図
である。図2は本発明の各実施例に於ける磁場遮蔽装置
を構成する中空円筒への高透磁率シートの配置例を説明
する斜視図である。図3は本発明の各実施例に於ける磁
場遮蔽装置を構成する中空円筒への高透磁率シートの配
置例を説明する断面図である。
FIG. 1 is a view for explaining a configuration example of a high magnetic permeability sheet 23 having a high magnetic permeability used in each embodiment of the present invention. FIG. 2 is a perspective view illustrating an example of the arrangement of a high magnetic permeability sheet on a hollow cylinder constituting a magnetic field shielding device in each embodiment of the present invention. FIG. 3 is a cross-sectional view illustrating an example of the arrangement of a high magnetic permeability sheet on a hollow cylinder constituting a magnetic field shielding device in each embodiment of the present invention.

【0052】フレキシブルな高透磁率シート23は,短
冊の形状の磁性材料(磁性材リボン,磁性材テープ)2
5が非磁性の保持シート26−1,26−2の間に挟ま
れて構成される。この高透磁率シート23は,従来技術
2に記載される高透磁率シートと同じである。高透磁率
材料として軟磁性アモルファス合金が使用される。
The flexible high magnetic permeability sheet 23 is made of a strip-shaped magnetic material (magnetic material ribbon, magnetic material tape) 2.
5 is sandwiched between the non-magnetic holding sheets 26-1 and 26-2. The high magnetic permeability sheet 23 is the same as the high magnetic permeability sheet described in the related art 2. A soft magnetic amorphous alloy is used as the high magnetic permeability material.

【0053】短冊の形状の磁性材リボン25は,隣接す
る短冊の長辺で重複して配列され,複数の短冊の長辺は
ほぼ並行に配列さる。複数の磁性材リボン25は,保持
シート26−1,26−2の間に可撓性を有する樹脂,
又は接着剤24により固定されている。保持シート26
−1,26−2の材質として代表的にPET(ポリエチ
レンテレフタレート)シートが使用される。高透磁率シ
ート23の大きさは,例えば,縦450cm,横600
cmである。
The strip-shaped magnetic material ribbons 25 are arranged so as to overlap on the long sides of adjacent strips, and the long sides of a plurality of strips are arranged almost in parallel. The plurality of magnetic material ribbons 25 are made of a resin having flexibility between the holding sheets 26-1 and 26-2.
Alternatively, it is fixed by the adhesive 24. Holding sheet 26
As a material of -1, 26-2, a PET (polyethylene terephthalate) sheet is typically used. The size of the high magnetic permeability sheet 23 is, for example, 450 cm long and 600 cm wide.
cm.

【0054】軟磁性アモルファス合金は,最大比透磁率
が50000以上であるFe−Cu−Nb−Si−B系
(Fe:73.5%,Cu:1%,Nb:3%,Si:
13.5%,B:9%)合金であり,結晶粒界の大きさ
が100nm以下の超微結晶組織をもっている。
The soft magnetic amorphous alloy is a Fe—Cu—Nb—Si—B system (Fe: 73.5%, Cu: 1%, Nb: 3%, Si:
(13.5%, B: 9%) alloy, and has an ultrafine crystal structure with a crystal grain boundary size of 100 nm or less.

【0055】使用した磁性材リボン25の厚みは約20
μm,保持シート26−1,26−2の厚さは30μm
であり,高透磁率シート23の全厚は100μmであ
る。磁性材リボン25の厚さを約10μm〜100μ
m,保持シート26−1,26−2の厚さを10μm〜
500μmとし,高透磁率シート23の全厚を50μm
〜1.5mmとすると,高透磁率シート23の貼付,折
り曲げ作業が容易となる。
The thickness of the used magnetic ribbon 25 is about 20.
μm, and the thickness of the holding sheets 26-1 and 26-2 is 30 μm.
The total thickness of the high magnetic permeability sheet 23 is 100 μm. The thickness of the magnetic material ribbon 25 is about 10 μm to 100 μm.
m, the thickness of the holding sheets 26-1 and 26-2 is 10 μm or more.
500 μm, and the total thickness of the high magnetic permeability sheet 23 is 50 μm.
When the thickness is set to 1.5 mm, the attaching and bending work of the high magnetic permeability sheet 23 becomes easy.

【0056】本発明の各実施例に於ける磁場遮蔽装置
は,同軸に配置される複数の磁場遮蔽円筒60から構成
される。各磁場遮蔽円筒は,内半径の異なる高透磁率シ
ート支持円筒80と,高透磁率シート支持円筒80の内
周面及び/又は外周面に配置される高透磁率シート層8
2から構成される。
The magnetic field shielding device according to each embodiment of the present invention comprises a plurality of magnetic field shielding cylinders 60 arranged coaxially. Each magnetic field shielding cylinder is composed of a high magnetic permeability sheet supporting cylinder 80 having a different inner radius, and a high magnetic permeability sheet layer 8 disposed on the inner peripheral surface and / or outer peripheral surface of the high magnetic permeability sheet supporting cylinder 80.
2

【0057】各磁場遮蔽円筒には,各実施例に対応し
て,最も内側に配置される磁場遮蔽円筒の内部にクライ
オスタットの底面を挿入するための円形の第3の開口4
3が形成され,最も内側に配置される磁場遮蔽円筒の内
部に配置される患者の視野内に,円形の第4の開口44
が形成され,患者は医師と視線を合わせて対話ができ
る。
In each magnetic field shielding cylinder, corresponding to each embodiment, a circular third opening 4 for inserting the bottom of the cryostat into the innermost magnetic field shielding cylinder.
3 is formed, and within the patient's field of view placed inside the innermost magnetic field shielding cylinder, a fourth circular opening 44 is formed.
Is formed, and the patient can talk with the doctor in line of sight.

【0058】図2には1つの磁場遮蔽円筒60が示さ
れ,高透磁率シート支持円筒80の外周面に,複数の高
透磁率シート23が接着剤等を用いて貼付されて高透磁
率シート層82が形成されている。高透磁率シート支持
円筒80は,内半径rの厚さ0.5mmのアルミニウム
の中空円筒を使用している。
FIG. 2 shows one magnetic field shielding cylinder 60, and a plurality of high magnetic permeability sheets 23 are attached to the outer peripheral surface of the high magnetic permeability sheet supporting cylinder 80 using an adhesive or the like. A layer 82 is formed. The high-permeability sheet supporting cylinder 80 is an aluminum hollow cylinder having an inner radius r and a thickness of 0.5 mm.

【0059】高透磁率シート23の貼付は次ぎの何れか
の方法による。(1)複数の高透磁率シート23が相互
に重なり部分を持つように貼付する。(2)下層の高透
磁率シート23の重ね部分を覆うように上層の高透磁率
シー23を貼付する。(3)(1)の方法と(2)の方
法とを組合せて貼付する。何れの貼付方法に於いても,
高透磁率シート23の相互の重なりにより,磁性材リボ
ン25の部分が相互に重なるように,複数の高透磁率シ
ート23を重ねて貼付する。
The high magnetic permeability sheet 23 is attached by any of the following methods. (1) A plurality of high-permeability sheets 23 are attached so as to have overlapping portions. (2) The upper high permeability sheet 23 is attached so as to cover the overlapping portion of the lower high permeability sheet 23. (3) The method (1) and the method (2) are combined and affixed. Regardless of the method of attachment,
A plurality of high-permeability sheets 23 are laminated and attached so that the magnetic material ribbons 25 overlap each other due to the mutual overlap of the high-permeability sheets 23.

【0060】各高透磁率シート23は,各磁性材リボン
25の短辺が高透磁率シート支持円筒80の中心軸にほ
ぼ平行になるように,各磁性材リボン25の長辺が保持
円筒21の中心軸を内側に取り囲み,高透磁率シート支
持円筒80の中心軸に垂直な面にほぼ平行になるよう
に,高透磁率シート支持円筒80に接着剤などを用いて
貼付して,高透磁率シート23の複数層を形成する。
Each high magnetic permeability sheet 23 has a long side of each magnetic material ribbon 25 such that the short side of each magnetic material ribbon 25 is substantially parallel to the center axis of the high magnetic permeability sheet support cylinder 80. Is adhered to the high-permeability sheet support cylinder 80 using an adhesive or the like so as to be substantially parallel to a plane perpendicular to the center axis of the high-permeability sheet support cylinder 80. A plurality of layers of the magnetic susceptibility sheet 23 are formed.

【0061】図3は2層の高透磁率シート23により形
成された高透磁率シート層82を示す。図3では第1
層,第2層の各層での高透磁率シート23の重なりは省
略している。
FIG. 3 shows a high magnetic permeability sheet layer 82 formed by two layers of the high magnetic permeability sheet 23. In FIG. 3, the first
The overlap of the high magnetic permeability sheet 23 in each of the layers and the second layer is omitted.

【0062】本発明の各実施例に於ける磁場遮蔽装置
は,同軸に配置される複数の磁場遮蔽円筒60のそれぞ
れを構成する高透磁率シート支持円筒80は異なる内半
径を持つ。隣接する高透磁率シート支持円筒80の間隔
は,1cmから20cmである。 以上説明した磁場遮
蔽装置の構成により,外来磁場の複数の磁場遮蔽円筒6
0の中心軸に垂直方向の成分を,最も内側の磁場遮蔽円
筒の内部で外来磁場を高い磁場遮蔽率で遮蔽する。以下
の各実施例では,図面を単純化するために2個の磁場遮
蔽円筒を持つ磁場遮蔽装置の構成を例示するが,2個か
ら5個の磁場遮蔽円筒を持つ磁場遮蔽装置の構成として
も良い。
In the magnetic field shielding device according to each embodiment of the present invention, the high magnetic permeability sheet supporting cylinders 80 constituting each of the plurality of magnetic field shielding cylinders 60 arranged coaxially have different inner radii. The interval between the adjacent high-permeability sheet supporting cylinders 80 is 1 cm to 20 cm. According to the configuration of the magnetic field shielding device described above, a plurality of magnetic field shielding cylinders 6 for the external magnetic field are provided.
The component in the direction perpendicular to the central axis of 0 is shielded from the external magnetic field at a high magnetic field shielding rate inside the innermost magnetic field shielding cylinder. In each of the following embodiments, the configuration of a magnetic field shielding device having two magnetic field shielding cylinders is illustrated for simplification of the drawing. However, the configuration of a magnetic field shielding device having two to five magnetic field shielding cylinders may be used. good.

【0063】以下の各実施例の説明では,同軸に配置さ
れる複数の磁場遮蔽円筒60の中心軸を,簡単のために
「磁場遮蔽装置の中心軸」と呼ぶ。更に,以下の各実施
例の説明では,複数の磁場遮蔽円筒60の各円筒が,そ
の中心軸の垂直方向で2個の部分に分割されて構成さ
れ,又は,その周方向で2個の部分に分割されて構成さ
れ,これら2個の部分を相互に重複させて,複数の磁場
遮蔽円筒60の各円筒が構成される場合にも,重複させ
て構成され,共軸に配置される複数の磁場遮蔽円筒の中
心軸を,同様に,「磁場遮蔽装置の中心軸」と呼ぶ。 (実施例1)図4は本発明の実施例1の生体磁場計測装
置の構成例を示す斜視図である。図5は図4に示す磁場
遮蔽装置40の斜視図である。図6は図4に示す生体磁
場計測装置の計測視野の中心を通る面での断面図であ
る。
In the following description of each embodiment, the central axis of the plurality of magnetic field shielding cylinders 60 arranged coaxially is referred to as “the central axis of the magnetic field shielding device” for simplicity. Further, in the following description of each embodiment, each of the plurality of magnetic field shielding cylinders 60 is configured to be divided into two portions in the direction perpendicular to the center axis, or to be divided into two portions in the circumferential direction. In the case where these two parts are overlapped with each other and each of the plurality of magnetic field shielding cylinders 60 is formed, a plurality of the magnetic field shielding cylinders 60 are configured to be overlapped and arranged coaxially. The central axis of the magnetic field shielding cylinder is similarly referred to as “the central axis of the magnetic field shielding device”. (Embodiment 1) FIG. 4 is a perspective view showing a configuration example of a biomagnetic field measuring apparatus according to Embodiment 1 of the present invention. FIG. 5 is a perspective view of the magnetic field shielding device 40 shown in FIG. FIG. 6 is a cross-sectional view of a plane passing through the center of the measurement field of view of the biomagnetic field measurement device shown in FIG.

【0064】生体磁場計測装置は,磁場遮蔽装置40,
検査対象(生体)から発生する磁場(生体磁場)を検出
する複数のSQUID磁束計57を低温に保持するクラ
イオスタット50と,クライオスタット50を支持する
ガントリ30−2と,磁場遮蔽装置40及びガントリ3
0−2を支持する磁場遮蔽装置・ガントリ支持台30−
1と,クライオスタット50の内部を冷却するための冷
媒供給装置又は冷却装置55及び冷媒供給線又は冷却伝
達線54,データ収集・センサ制御線51を介してSQ
UID磁束計57を駆動制御し検出された生体磁場を収
集しデータ処理を行なうデータ収集処理・センサ制御装
置52と,データ処理の結果を表示する単数又は複数の
表示装置53から構成される。
The biomagnetic field measuring device includes a magnetic field shielding device 40,
A cryostat 50 for holding a plurality of SQUID magnetometers 57 for detecting a magnetic field (biomagnetic field) generated from an inspection target (living body) at a low temperature, a gantry 30-2 supporting the cryostat 50, a magnetic field shielding device 40 and a gantry 3
Magnetic field shielding device that supports 0-2, gantry support 30-
1 and a coolant supply device or a cooling device 55 for cooling the inside of the cryostat 50, and a SQ through a coolant supply line or a cooling transmission line 54 and a data collection / sensor control line 51.
The UID magnetometer 57 includes a data collection / sensor control device 52 for controlling the drive of the UID magnetometer 57 and collecting and detecting the detected biomagnetic field, and a single or a plurality of display devices 53 for displaying the result of the data processing.

【0065】クライオスタット50の内部は,冷媒供給
線54を介して冷媒供給装置55から供給される液体H
eにより冷却されるか,又は,冷却装置55として冷凍
機を使用してコンプレッサにより冷却伝達線54を介し
て冷却されたHeガスをクライオスタット50の内部に
配置されるコールドヘッドに供給して冷却される。
The inside of the cryostat 50 contains liquid H supplied from a refrigerant supply device 55 through a refrigerant supply line 54.
e, or cooled by supplying a He gas cooled by a compressor via a cooling transmission line 54 using a refrigerator as a cooling device 55 to a cold head disposed inside the cryostat 50. You.

【0066】磁場遮蔽装置40は,図2,図3で説明し
た複数の磁場遮蔽円筒60から構成され,複数の磁場遮
蔽円筒の中心軸(y方向)の正方向に第1の開口41
を,y方向の負方向に第2の開口42を,中心軸に垂直
方向(z方向)の上部にクライオスタット50を挿入す
るための,複数の磁場遮蔽円筒を貫通する第3の開口4
3を,ベッド20に横たわる検査対象を観察するため
の,複数の磁場遮蔽円筒を貫通する第4の開口44をそ
れぞれ有する。複数の磁場遮蔽円筒の中心軸(y方向)
(磁場遮蔽装置40の中心軸)は床面に水平である。
The magnetic field shielding device 40 is composed of a plurality of magnetic field shielding cylinders 60 described with reference to FIGS. 2 and 3, and has a first opening 41 in the positive direction of the central axis (y direction) of the plurality of magnetic field shielding cylinders.
And a third opening 4 penetrating a plurality of magnetic shielding cylinders for inserting the second opening 42 in the negative direction of the y direction and the cryostat 50 in the upper part in the direction perpendicular to the central axis (z direction).
3 has a fourth opening 44 penetrating a plurality of magnetic field shielding cylinders for observing an inspection object lying on the bed 20. Central axis of multiple magnetic shielding cylinders (y direction)
(The central axis of the magnetic field shielding device 40) is horizontal to the floor surface.

【0067】磁場遮蔽装置40は,外来磁場の磁場遮蔽
装置40の中心軸に垂直方向の成分を,最も内側の磁場
遮蔽円筒60−1の内部で,高い磁場遮蔽率で遮蔽す
る。この結果,SQUID磁束計57は,磁場遮蔽装置
2の内部で発生する生体磁場のz方向の成分を高感度で
検出できる。
The magnetic field shielding device 40 shields a component of the external magnetic field in the direction perpendicular to the central axis of the magnetic field shielding device 40 with a high magnetic field shielding ratio inside the innermost magnetic field shielding cylinder 60-1. As a result, the SQUID magnetometer 57 can detect the z-direction component of the biomagnetic field generated inside the magnetic field shielding device 2 with high sensitivity.

【0068】ガントリ30−2の高さはガントリの高さ
制御装置31により制御固定され,検査者(医師)35
は,第4の開口44からベッド20に横たわる検査対象
(患者)36の検査部位とクライオスタット50の底面
との位置関係を観察しながら,ガントリの高さ制御ボッ
クス32を操作する。ガントリの高さ制御ボックス32
からの信号により,ガントリの高さ制御装置31が制御
され,クライオスタット50の底面のz方向の位置が固
定される。x方向はy方向及びz方向に直交する方向に
設定される。
The height of the gantry 30-2 is controlled and fixed by the gantry height control device 31, and the inspector (doctor) 35
Operates the gantry height control box 32 while observing the positional relationship between the inspection site of the inspection object (patient) 36 lying on the bed 20 from the fourth opening 44 and the bottom surface of the cryostat 50. Gantry height control box 32
, The gantry height control device 31 is controlled, and the position of the bottom surface of the cryostat 50 in the z direction is fixed. The x direction is set to a direction orthogonal to the y direction and the z direction.

【0069】クライオスタット102の内部の底部近傍
にxy面に平行な面(計測面)に配置される複数のSQ
UID磁束計57は,データ収集処理・センサ制御装置
52のFLL回路によって駆動される。FLL回路は,
SQUID磁束計57で検出された生体磁場信号を出力
する。FLL回路の出力は,フィルタリング,増幅さ
れ,AD変換器によってデジタルデータに変換され,デ
ータ収集処理・センサ制御装置52の記憶装置に保存さ
れる。データ収集処理・センサ制御装置52によりデー
タ処理された結果,例えば,磁場波形St(x,y,
t)((数3)),V(x,y,t)((数5))によ
る等磁場線図,等積分図等が,表示装置53の表示画面
に表示される。
A plurality of SQs arranged in a plane (measurement plane) parallel to the xy plane near the bottom inside the cryostat 102
The UID magnetometer 57 is driven by the FLL circuit of the data collection / sensor control device 52. The FLL circuit is
A biomagnetic signal detected by the SQUID magnetometer 57 is output. The output of the FLL circuit is filtered, amplified, converted into digital data by an AD converter, and stored in the storage device of the data collection processing / sensor control device 52. As a result of the data processing by the data collection processing / sensor control device 52, for example, the magnetic field waveform St (x, y,
An isomagnetic field diagram, an equal integration diagram, and the like based on t) ((Equation 3)) and V (x, y, t) ((Equation 5)) are displayed on the display screen of the display device 53.

【0070】検査対象36が搭載されるベッド20はx
及びy方向移動装置21に搭載されており,x及びy方
向移動装置21はx及びy方向移動装置の支持台22に
固定されている。ベッド20は磁場遮蔽装置40の最も
内側の磁場遮蔽円筒の内部に配置される。
The bed 20 on which the inspection object 36 is mounted is x
The x and y direction moving devices 21 are mounted on a support 22 of the x and y direction moving devices. The bed 20 is disposed inside the innermost magnetic field shielding cylinder of the magnetic field shielding device 40.

【0071】なお,クライオスタット50の底面の高さ
を固定された位置として,x及びy方向移動装置21の
代りに,x,y,z方向移動装置を使用することもでき
る。この場合には,ガントリ30−2と磁場遮蔽装置4
0との位置関係が,複数のSQUID磁束計57の検出
コイルが配列される計測面がもっとも内側の磁場遮蔽円
筒60−1の中心軸にほぼ一致するように,ガントリ3
0−2の位置が固定される,又は,ガントリ30−2と
磁場遮蔽装置・ガントリ支持台30−1とが一体で構成
される。勿論,ガントリの高さ制御装置31,ガントリ
の高さ制御ボックス32は不要となる。
It is to be noted that an x, y, and z direction moving device can be used instead of the x and y direction moving device 21 with the height of the bottom surface of the cryostat 50 being a fixed position. In this case, the gantry 30-2 and the magnetic shielding device 4
The gantry 3 is positioned such that the measurement surface on which the detection coils of the plurality of SQUID magnetometers 57 are arranged substantially coincides with the central axis of the innermost magnetic field shielding cylinder 60-1.
The position of 0-2 is fixed, or the gantry 30-2 and the magnetic field shielding device / gantry support 30-1 are integrally formed. Of course, the gantry height control device 31 and the gantry height control box 32 are not required.

【0072】検査者(医師)35は,第4の開口44か
らベッド20の上の検査対象(患者)36の検査部位と
クライオスタット50の底面との位置関係を観察しなが
ら,ガントリの高さ制御ボックス32に代えて,ベッド
20のx,y,z方向移動制御ボックス(図示せず)を
操作する。x,y,z方向移動制御ボックスからの信号
により,ベッド20のx,y,z方向移動装置が制御さ
れ,ベッド20のx方向,y方向及びz方向の位置が固
定される。
The inspector (physician) 35 controls the height of the gantry while observing the positional relationship between the inspection site (the patient) 36 on the bed 20 and the bottom surface of the cryostat 50 from the fourth opening 44. Instead of the box 32, an x, y, z movement control box (not shown) of the bed 20 is operated. The x, y, and z direction moving devices of the bed 20 are controlled by signals from the x, y, and z direction movement control boxes, and the positions of the bed 20 in the x, y, and z directions are fixed.

【0073】以上の説明では,検査者(医師)35が,
第4の開口44を通して患者36を観察したが,第4の
開口44を設けない構成として,第1の開口41又は第
2の開口42を通して患者36を観察しても良いことは
言うまでもない。
In the above explanation, the inspector (doctor) 35
Although the patient 36 is observed through the fourth opening 44, it goes without saying that the patient 36 may be observed through the first opening 41 or the second opening 42 as a configuration without the fourth opening 44.

【0074】患者36の視野内に設けられる第4の開口
44は,患者36に開放感を与えるとともに,検査者
(医師)35は,第4の開口44を通して患者36と近
いで対話ができ,正確に患者の状態を観察できる。検査
者(医師)35は,患者36への指示を容易に伝達でき
る。患者36は第4の開口44を通して磁場遮蔽装置4
0の外部を見ることができ,心理的な不安感等を低減す
る効果がある。
The fourth opening 44 provided in the field of view of the patient 36 gives the patient 36 a sense of openness, and the examiner (physician) 35 can interact with the patient 36 through the fourth opening 44 in close proximity. The patient's condition can be accurately observed. The examiner (physician) 35 can easily transmit instructions to the patient 36. The patient 36 passes through the fourth opening 44 through the magnetic shielding device 4.
0 can be seen outside, which has the effect of reducing psychological anxiety and the like.

【0075】図5に示すように,複数の磁場遮蔽円筒を
貫通する第3の開口43の中心軸と,複数の磁場遮蔽円
筒を貫通する第4の開口44の中心軸とは,約45度の
角度をなしている。図6に示すように,クライオスタッ
ト50の内部の底部には,SQUID磁束計57が2次
元に配列され,クライオスタット50の内部は冷媒56
が満たされている。
As shown in FIG. 5, the center axis of the third opening 43 passing through the plurality of magnetic field shielding cylinders and the center axis of the fourth opening 44 passing through the plurality of magnetic field shielding cylinders are approximately 45 degrees. At an angle. As shown in FIG. 6, SQUID magnetometers 57 are two-dimensionally arranged at the bottom inside the cryostat 50.
Is satisfied.

【0076】磁場遮蔽円筒60は,第1の磁場遮蔽円筒
60−1,第2の磁場遮蔽円筒60−2から構成され
る。第1の磁場遮蔽円筒60−1と第2の磁場遮蔽円筒
60−2との間には,充填剤70が充填され,第1の磁
場遮蔽円筒60−1,第2の磁場遮蔽円筒60−2の形
状を安定に保持している。図6に示す例では,充填剤7
0を下半分に充填しているが,更に,第3の開口43,
第4の開口44を除く上半分の部位にも充填しても良
い。充填剤70としては,発泡剤を含む硬質ポリウレタ
ン等が使用できる。発泡剤を含む硬質ポリウレタンは,
軽量なので第3の開口43,第4の開口44を除く上半
分の部位にも充填しても,第1の磁場遮蔽円筒60−
1,第2の磁場遮蔽円筒60−2の形状を変形させるこ
とはない。 (実施例2)図7は本発明の実施例2の生体磁場計測装
置の構成例を示す斜視図である。図8は図7に示す磁場
遮蔽装置の斜視図である。図9は図7に示す生体磁場計
測装置の計測視野の中心を通る面での断面図であり,一
部拡大断面を含む。
The magnetic field shielding cylinder 60 is composed of a first magnetic field shielding cylinder 60-1 and a second magnetic field shielding cylinder 60-2. The space between the first magnetic field shielding cylinder 60-1 and the second magnetic field shielding cylinder 60-2 is filled with a filler 70, and the first magnetic field shielding cylinder 60-1 and the second magnetic field shielding cylinder 60- 2 is stably maintained. In the example shown in FIG.
0 is filled in the lower half, but the third opening 43,
The upper half portion excluding the fourth opening 44 may be filled. As the filler 70, hard polyurethane containing a foaming agent or the like can be used. Rigid polyurethane containing a foaming agent
Because of its light weight, the first magnetic field shielding cylinder 60- can be filled even in the upper half except for the third opening 43 and the fourth opening 44.
First, the shape of the second magnetic field shielding cylinder 60-2 is not deformed. (Embodiment 2) FIG. 7 is a perspective view showing a configuration example of a biomagnetic field measuring apparatus according to Embodiment 2 of the present invention. FIG. 8 is a perspective view of the magnetic field shielding device shown in FIG. FIG. 9 is a cross-sectional view taken along a plane passing through the center of the measurement field of view of the biomagnetic field measuring apparatus shown in FIG. 7, and includes a partially enlarged cross section.

【0077】以下,実施例1との相違点を中心に説明す
る。実施例2の生体磁場計測装置の構成では,実施例1
で説明した磁場遮蔽装置40を,y方向で2分割して,
磁場遮蔽装置の第1の部分40−1,磁場遮蔽装置の第
2の部分40−2により構成する。磁場遮蔽装置の第1
の部分40−1は,磁場遮蔽装置の第2の部分40−2
に対して,y方向に移動可能な構成とする。実施例1と
同様に,ガントリ30−2,磁場遮蔽装置の第2の部分
40−2は,磁場遮蔽装置・ガントリ支持台30−1に
支持される。
The following description focuses on differences from the first embodiment. In the configuration of the biomagnetic field measuring apparatus according to the second embodiment,
Is divided into two in the y direction,
It is composed of a first portion 40-1 of the magnetic field shielding device and a second portion 40-2 of the magnetic field shielding device. The first of magnetic field shielding device
Is a second part 40-2 of the magnetic shielding apparatus.
Is configured to be movable in the y direction. As in the first embodiment, the gantry 30-2 and the second part 40-2 of the magnetic field shield device are supported by the magnetic field shield device / gantry support 30-1.

【0078】磁場遮蔽装置の第1の部分40−1は,磁
場遮蔽装置支持台92に支持固定され,磁場遮蔽装置支
持台92の下部に配置される複数の車輪91は,床11
7の面に配置されたレール90−1,90−2の上に搭
載されている。磁場遮蔽装置の第1の部分40−1は,
レール90−1,90−2の上でy方向に移動できる。
この移動により磁場遮蔽装置の第1の部分40−1と磁
場遮蔽装置の第2の部分40−2とを分離できる。
The first part 40-1 of the magnetic field shielding device is supported and fixed on the magnetic field shielding device support 92, and a plurality of wheels 91 arranged below the magnetic field shielding device support 92 are mounted on the floor 11.
7 are mounted on rails 90-1 and 90-2 arranged on the surface of No. 7. The first part 40-1 of the magnetic shielding apparatus is
It can move in the y direction on the rails 90-1 and 90-2.
By this movement, the first portion 40-1 of the magnetic field shielding device can be separated from the second portion 40-2 of the magnetic field shielding device.

【0079】この結果,開放された空間で,医師35は
楽な姿勢で患者36をベッド20に搭載でき,又は,患
者36は楽にベッド20横たわることができる。患者
は,足部が先にクライオスタットの下部を通過し,最終
的に胸部がクライオスタットの下部に到達するように搭
載される。医師35は,患者36の検査部位とクライオ
スタット50の底面との位置関係を,効率良く調整でき
る。調整後,分離された磁場遮蔽装置の第1の部分40
−1を移動させて,磁場遮蔽装置の第1の部分40−1
と磁場遮蔽装置の第2の部分40−2とをy方向で重複
させて,第3の開口43,第4の開口44を形成でき
る。
As a result, in the open space, the doctor 35 can mount the patient 36 on the bed 20 in a comfortable posture, or the patient 36 can lie down on the bed 20 easily. The patient is mounted so that the foot first passes under the cryostat and eventually the chest reaches the bottom of the cryostat. The doctor 35 can efficiently adjust the positional relationship between the examination site of the patient 36 and the bottom surface of the cryostat 50. After adjustment, the first part 40 of the separated magnetic shielding apparatus
-1 to move the first part 40-1 of the magnetic shielding apparatus.
The third opening 43 and the fourth opening 44 can be formed by overlapping the magnetic field shielding device with the second portion 40-2 in the y direction.

【0080】この結果,外来磁場の磁場遮蔽装置40の
中心軸に垂直方向の成分を,最も内側の磁場遮蔽円筒4
0−1−1,40−2−1の内部で,高い磁場遮蔽率で
遮蔽できる。高い磁場遮蔽率で外来磁場が遮蔽された空
間で,検査部位からの生体磁場のz方向の成分を高感度
で検出できる。
As a result, the component of the extraneous magnetic field in the direction perpendicular to the central axis of the magnetic field shielding device 40 is converted to the innermost magnetic field shielding cylinder 4.
0-1-1 and 40-2-1 can be shielded with a high magnetic field shielding ratio. In a space where an extraneous magnetic field is shielded with a high magnetic field shielding ratio, a component in the z direction of the biomagnetic field from the examination site can be detected with high sensitivity.

【0081】図8に示すように,磁場遮蔽装置の第1の
部分40−1を構成する磁場遮蔽円筒,磁場遮蔽装置の
第2の部分40−2を構成する磁場遮蔽円筒はそれぞ
れ,重複させた時に第3の開口43,第4の開口44を
形成するように,円周の一部をもつ切欠き部分を持って
いる。
As shown in FIG. 8, the magnetic field shielding cylinder constituting the first portion 40-1 of the magnetic field shielding device and the magnetic field shielding cylinder constituting the second portion 40-2 of the magnetic field shielding device are respectively overlapped. It has a notch having a part of the circumference so that the third opening 43 and the fourth opening 44 are formed at the time.

【0082】図9に示すように,磁場遮蔽装置40は,
磁場遮蔽装置の第1の部分40−1,磁場遮蔽装置の第
2の部分40−2とから構成される。磁場遮蔽装置の第
1の部分40−1は,第1の磁場遮蔽内側円筒40−1
−1,第1の磁場遮蔽外側円筒40−1−2とから構成
される。磁場遮蔽装置の第2の部分40−2は,第2の
磁場遮蔽内側円筒40−2−1,第2の磁場遮蔽外側円
筒40−2−2とから構成される。
As shown in FIG. 9, the magnetic field shielding device 40
It comprises a first portion 40-1 of the magnetic field shielding device and a second portion 40-2 of the magnetic field shielding device. The first part 40-1 of the magnetic field shielding device is a first magnetic field shielding inner cylinder 40-1.
-1, the first magnetic field shielding outer cylinder 40-1-2. The second part 40-2 of the magnetic field shielding device is composed of a second magnetic field shielding inner cylinder 40-2-1 and a second magnetic field shielding outer cylinder 40-2-2.

【0083】第2の磁場遮蔽外側円筒40−2−2の内
側に,第1の磁場遮蔽外側円筒40−1−2が重複して
配置され,第2の磁場遮蔽内側円筒40−2−1の内側
に,第1の磁場遮蔽内側円筒40−1−1が重複して配
置される。図9にはこの重複部分に第3の開口が示され
ている。
The first magnetic field shielding outer cylinder 40-1-2 is overlapped inside the second magnetic field shielding outer cylinder 40-2-2, and the second magnetic field shielding inner cylinder 40-2-1 is provided. , A first magnetic field shielding inner cylinder 40-1-1 is arranged in an overlapping manner. FIG. 9 shows a third opening at this overlapping portion.

【0084】拡大断面に示すように,第2の磁場遮蔽内
側円筒40−2−1,第2の磁場遮蔽外側円筒40−2
−2の各高透磁率シート支持円筒80の内側に,高透磁
率シート23により高透磁率シート層82が形成されて
いる。第1の磁場遮蔽内側円筒40−1−1,第1の磁
場遮蔽外側円筒40−1−2の各高透磁率シート支持円
筒80の外側に,高透磁率シート23により高透磁率シ
ート層82が形成されている。この結果,重複部分で,
高透磁率シート層82を近接させる構成として,漏れ磁
束を減少させて磁場遮蔽効果を高めている。
As shown in the enlarged cross section, the second magnetic field shielding inner cylinder 40-2-1 and the second magnetic field shielding outer cylinder 40-2
The high permeability sheet layer 82 is formed by the high permeability sheet 23 inside each high permeability sheet supporting cylinder 80 of -2. A high magnetic permeability sheet 23 and a high magnetic permeability sheet layer 82 are provided outside the high magnetic permeability sheet support cylinders 80 of the first magnetic field shielding inner cylinder 40-1-1 and the first magnetic field shielding outer cylinder 40-1-2. Are formed. As a result, at the overlap,
The configuration in which the high magnetic permeability sheet layer 82 is brought close to the structure reduces the leakage magnetic flux to enhance the magnetic field shielding effect.

【0085】また,磁場遮蔽装置40の中心軸に平行な
方向で第3の開口の外側に於ける,第2の磁場遮蔽外側
円筒40−2−2と第1の磁場遮蔽外側円筒40−1−
2とが重複する距離,第2の磁場遮蔽内側円筒40−2
−1と第1の磁場遮蔽内側円筒40−1−1とが重複す
る距離は,第3の開口の直径の約1/2から約1/4と
する。重複部分を充分大きくして磁場遮蔽効果を高めて
いる。
Further, the second magnetic field shielding outer cylinder 40-2-2 and the first magnetic field shielding outer cylinder 40-1 outside the third opening in a direction parallel to the central axis of the magnetic field shielding device 40. −
2, the second magnetic field shield inner cylinder 40-2
The distance at which -1 and the first magnetic field shielding inner cylinder 40-1-1 overlap is about 1/2 to about 1/4 of the diameter of the third opening. The overlapping portion is made sufficiently large to enhance the magnetic field shielding effect.

【0086】ベッド20,x及びy方向移動装置21を
搭載するベッド及び移動装置の支持台22は,スペーサ
140−1を介して第2の磁場遮蔽内側円筒40−2−
1の内部に配置される。実施例1と同様の目的で,第2
の磁場遮蔽内側円筒40−2−1と第2の磁場遮蔽外側
円筒40−2−2との間の下半分に,充填剤70−1が
充填され,第1の磁場遮蔽内側円筒40−1−1と第1
の磁場遮蔽外側円筒40−1−2間の下半分に,充填剤
70−2が充填されている。図9示す例では,充填剤7
0−1,70−2を下半分に充填しているが,更に,第
3の開口43,第4の開口44を除く上半分の部位にも
充填しても良いことは言うまでもない。
The bed 20 on which the bed 20, the x- and y-direction moving devices 21 are mounted, and the support base 22 of the moving device are connected via a spacer 140-1 to the second magnetic field shielding inner cylinder 40-2-.
1. For the same purpose as in the first embodiment, the second
The filler 70-1 is filled in the lower half between the magnetic field shielding inner cylinder 40-2-1 and the second magnetic field shielding outer cylinder 40-2-2, and the first magnetic field shielding inner cylinder 40-1 is filled. -1 and first
The lower half between the magnetic field shielding outer cylinders 40-1-2 is filled with a filler 70-2. In the example shown in FIG.
Although 0-1 and 70-2 are filled in the lower half, it goes without saying that the upper half excluding the third opening 43 and the fourth opening 44 may also be filled.

【0087】なお,実施例1と同様に,クライオスタッ
ト50の底面の高さを固定された位置として,x及びy
方向移動装置21の代りに,ベッド20のx,y,z方
向移動装置を使用できるとは言うまでもない。更に,実
施例1と同様に,第4の開口がない構成としても良いこ
とは言うまでもない。 (実施例3)図10は本発明の実施例3の生体磁場計測
装置の構成例を示す斜視図である。図11は図10に示
す磁場遮蔽装置の斜視図であり,一部拡大断面を含む。
図12は図7に示す生体磁場計測装置への検査対象(患
者)の出し入れを説明する断面図であり,一部拡大断面
を含む。
As in the first embodiment, the height of the bottom surface of the cryostat 50 is set to a fixed position, and x and y are set.
It goes without saying that the x, y, z direction moving device of the bed 20 can be used instead of the direction moving device 21. Further, as in the first embodiment, it is needless to say that the fourth opening may be omitted. (Embodiment 3) FIG. 10 is a perspective view showing a configuration example of a biomagnetic field measuring apparatus according to Embodiment 3 of the present invention. FIG. 11 is a perspective view of the magnetic field shielding device shown in FIG. 10 and includes a partially enlarged cross section.
FIG. 12 is a cross-sectional view for explaining how a test object (patient) is taken in and out of the biomagnetic field measuring apparatus shown in FIG. 7, and includes a partially enlarged cross section.

【0088】以下,実施例1との相違点を中心に説明す
る。実施例1で説明した磁場遮蔽装置40を,周方向で
2分割して,磁場遮蔽装置の第1の部分40−3,磁場
遮蔽装置の第2の部分40−4により構成する。磁場遮
蔽装置の第1の部分40−3は,磁場遮蔽装置の第2の
部分40−4に対して,周方向に移動可能な構成とす
る。実施例1と同様に,ガントリ30−2,磁場遮蔽装
置の第2の部分40−4は,磁場遮蔽装置・ガントリ支
持台30−1に支持される。
The following description focuses on differences from the first embodiment. The magnetic field shielding device 40 described in the first embodiment is divided into two parts in the circumferential direction, and is configured by a first portion 40-3 of the magnetic field shielding device and a second portion 40-4 of the magnetic field shielding device. The first portion 40-3 of the magnetic field shielding device is configured to be movable in the circumferential direction with respect to the second portion 40-4 of the magnetic field shielding device. As in the first embodiment, the gantry 30-2 and the second portion 40-4 of the magnetic field shield device are supported by the magnetic field shield device / gantry support 30-1.

【0089】図11,図12に示すように,磁場遮蔽装
置の第1の部分40−3は,y方向の正方向及び負方向
の端部で結合板150−1により結合された,第1の磁
場遮蔽内側円筒40−3−1,第2の磁場遮蔽外側円筒
40−3−2から構成される。同様に,磁場遮蔽装置の
磁場遮蔽装置の第2の部分40−4は,y方向の正方向
及び負方向の端部で結合板150−2(図示せず)によ
り結合された,第2の磁場遮蔽内側円筒40−4−1,
第2の磁場遮蔽外側円筒40−4−2から構成される。
図10,図11,図12に示すように,第1の磁場遮蔽
内側円筒40−3−1,第2の磁場遮蔽外側円筒40−
3−2を貫通する第4の開口40が形成されている。
As shown in FIGS. 11 and 12, the first portion 40-3 of the magnetic field shielding device is connected by a connecting plate 150-1 at the positive and negative ends in the y direction. , And a second magnetic field shielding outer cylinder 40-3-2. Similarly, the second part 40-4 of the magnetic field shielding device of the magnetic field shielding device is joined by a coupling plate 150-2 (not shown) at the positive and negative ends in the y direction. Magnetic field shielding inner cylinder 40-4-1,
It comprises a second magnetic field shielding outer cylinder 40-4-2.
As shown in FIGS. 10, 11, and 12, a first magnetic field shielding inner cylinder 40-3-1 and a second magnetic field shielding outer cylinder 40-3-1.
A fourth opening 40 penetrating 3-2 is formed.

【0090】第4の開口40の第1の磁場遮蔽内側円筒
40−3−1の内側,及び,第2の磁場遮蔽外側円筒4
0−3−2の外側はそれぞれ,透明な曲面板でカバーが
されており,磁場遮蔽装置の第1の部分40−3の,磁
場遮蔽装置の第2の部分40−4に対する周方向の移動
の時,手,着衣等を挟み込まないようにしている。
The inside of the first magnetic field shielding inner cylinder 40-3-1 of the fourth opening 40 and the second magnetic field shielding outer cylinder 4
The outer sides of 0-3-2 are each covered with a transparent curved plate, and the circumferential movement of the first part 40-3 of the magnetic shielding apparatus with respect to the second part 40-4 of the magnetic shielding apparatus. At the time of, do not pinch your hands, clothes, etc.

【0091】磁場遮蔽装置の第1の部分40−3は約1
10度の円周部を持ち,磁場遮蔽装置の第2の部分40
−4は約270度の円周部を持ち,相互に両端部でそれ
ぞれ約10度の範囲で重複する構成とする。即ち,第1
の磁場遮蔽内側円筒40−3−1と第2の磁場遮蔽内側
円筒40−4−1,及び,第2の磁場遮蔽外側円筒40
−3−2と第2の磁場遮蔽外側円筒40−4−2はそれ
ぞれ,磁場遮蔽装置の中心軸に平行な両端部で約10度
の範囲で重複する時,閉じた状態の磁場遮蔽装置を形成
し,約110度の範囲で重複する時,開口部を有し,開
放された状態の磁場遮蔽装置を形成する。閉じた状態で
重複部分を充分大きくして磁場遮蔽効果を高めている。
The first part 40-3 of the magnetic field shield device is approximately 1
The second part 40 of the magnetic shielding apparatus has a circumference of 10 degrees.
-4 has a circumference of about 270 degrees, and is mutually overlapped at both ends in a range of about 10 degrees. That is, the first
Magnetic field shielding inner cylinder 40-3-1, second magnetic field shielding inner cylinder 40-4-1 and second magnetic field shielding outer cylinder 40
-3-2 and the second magnetic field shielding outer cylinder 40-4-2 respectively close the magnetic field shielding device in a closed state when overlapping at about 10 degrees at both ends parallel to the central axis of the magnetic field shielding device. When it is formed and overlaps in a range of about 110 degrees, it has an opening and forms an open magnetic field shielding device. In the closed state, the overlapping portion is made sufficiently large to enhance the magnetic field shielding effect.

【0092】第2の磁場遮蔽外側円筒40−3−2の高
透磁率シート支持円筒80の外面の周面には,拡大断面
に示すようにTの字型の細長い板がガイド105−2と
して配置されており,第2の磁場遮蔽外側円筒40−4
−2の高透磁率シート支持円筒80の内面の周面にガイ
ド105−2を受け入れるTの字型の細長い溝が形成さ
れている。
On the outer peripheral surface of the high magnetic permeability sheet supporting cylinder 80 of the second magnetic field shielding outer cylinder 40-3-2, a T-shaped elongated plate as a guide 105-2 is shown as an enlarged cross section. And a second magnetic field shielding outer cylinder 40-4
A T-shaped elongated groove for receiving the guide 105-2 is formed on the inner peripheral surface of the high-permeability sheet supporting cylinder 80-2.

【0093】同様に,第1の磁場遮蔽内側円筒40−3
−1の高透磁率シート支持円筒の外面の周面には,Tの
字型の細長い板がガイド105−1として配置されてお
り,第2の磁場遮蔽内側円筒40−4−1の高透磁率シ
ート支持円筒の内面の周面にガイド105−1を受け入
れるTの字型の細長い溝(図示せず)が形成されてい
る。
Similarly, the first magnetic field shielding inner cylinder 40-3
A T-shaped elongated plate is arranged as a guide 105-1 on the outer peripheral surface of the high-permeability sheet supporting cylinder of No. -1, and the high magnetic permeability of the second magnetic field shielding inner cylinder 40-4-1. A T-shaped elongated groove (not shown) for receiving the guide 105-1 is formed on the inner peripheral surface of the magnetic susceptibility sheet support cylinder.

【0094】なお,高透磁率シート23により高透磁率
シート層82は,第2の磁場遮蔽内側円筒40−4−
1,第2の磁場遮蔽外側円筒40−4−2の各高透磁率
シート支持円筒の外面に,第1の磁場遮蔽内側円筒40
−3−1,第2の磁場遮蔽外側円筒40−3−2の各高
透磁率シート支持円筒の内面に,それぞれ形成されてい
る。
The high-permeability sheet layer 82 is formed by the high-permeability sheet 23 so that the second magnetic-field-shield inner cylinder 40-4- is formed.
1. The first magnetic field shielding inner cylinder 40 is provided on the outer surface of each high magnetic permeability sheet supporting cylinder of the second magnetic field shielding outer cylinder 40-4-2.
3-1 and the second magnetic field shielding outer cylinder 40-3-2 are formed on the inner surface of each high magnetic permeability sheet supporting cylinder.

【0095】図11に示すように,磁場遮蔽装置の第1
の部分40−3を構成する磁場遮蔽円筒,磁場遮蔽装置
の第2の部分40−4を構成する磁場遮蔽円筒はそれぞ
れ,重複させた時に第3の開口43を形成するように,
円周の一部をもつ切欠き部分を持っている。
As shown in FIG. 11, the first magnetic field shielding device
The magnetic field shielding cylinder constituting the portion 40-3 of the above and the magnetic field shielding cylinder constituting the second portion 40-4 of the magnetic field shielding device respectively form a third opening 43 when overlapped.
It has a notch with a part of the circumference.

【0096】図12(a)は,ベッド20に患者36が
横たわり,検査部位からの生体磁場が計測される時の状
態を示す。磁場遮蔽装置の第1の部分40−3を構成す
る磁場遮蔽円筒,磁場遮蔽装置の第2の部分40−4を
構成する磁場遮蔽円筒はそれぞれ重複している。第1の
部分40−3と第2の部分40−4の位置関係はロック
により固定されている。この状態で,外来磁場の磁場遮
蔽装置40の中心軸に垂直方向の成分を,最も内側の磁
場遮蔽円筒40−3−1,40−4−1の内部で,高い
磁場遮蔽率で遮蔽できる。高い磁場遮蔽率で外来磁場が
遮蔽された空間で,検査部位からの生体磁場のz方向の
成分を高感度で検出できる。
FIG. 12A shows a state where the patient 36 lies on the bed 20 and the biomagnetic field from the examination site is measured. The magnetic field shielding cylinder constituting the first portion 40-3 of the magnetic field shielding device and the magnetic field shielding cylinder constituting the second portion 40-4 of the magnetic field shielding device are respectively overlapped. The positional relationship between the first part 40-3 and the second part 40-4 is fixed by a lock. In this state, the component of the external magnetic field in the direction perpendicular to the central axis of the magnetic field shielding device 40 can be shielded at a high magnetic field shielding rate inside the innermost magnetic field shielding cylinders 40-3-1 and 40-4-1. In a space where an extraneous magnetic field is shielded with a high magnetic field shielding ratio, a component in the z direction of the biomagnetic field from the examination site can be detected with high sensitivity.

【0097】図12(b)は,磁場遮蔽装置の第1の部
分40−3が,第1の部分40−3に取り付けた取っ手
(図示せず)を用いて手動で,又は自動で,周方向に移
動され,第1の部分40−3の位置がロックされ,開口
部が形成され,約90度の角度範囲で開放空間が形成さ
れた状態を示す。この結果,開放空間で,医師35は楽
な姿勢で,ベッド移動台103から患者36をベッド2
0に搭載でき,もしくは,患者36は楽にベッド20横
たわることができ,医師35は,患者36の検査部位と
クライオスタット50の底面との位置関係を,効率良く
調整できる。
FIG. 12 (b) shows that the first portion 40-3 of the magnetic field shielding device is rotated manually or automatically using a handle (not shown) attached to the first portion 40-3. Direction, the position of the first portion 40-3 is locked, an opening is formed, and an open space is formed in an angle range of about 90 degrees. As a result, in the open space, the doctor 35 moves the patient 36 from the bed moving table 103 to the bed 2 in a comfortable posture.
0 or the patient 36 can easily lie on the bed 20, and the doctor 35 can efficiently adjust the positional relationship between the examination site of the patient 36 and the bottom surface of the cryostat 50.

【0098】なお,実施例1と同様に,クライオスタッ
ト50の底面の高さを固定された位置として,x及びy
方向移動装置21の代りに,ベッド20のx,y,z方
向移動装置を使用できるとは言うまでもない。更に,実
施例1と同様に,第4の開口がない構成としても良いこ
とは言うまでもない。 (実施例4)本発明の実施例4の生体磁場計測装置は,
実施例3の生体磁場計測装置の構成の一部を変更した,
病室のベッドの近傍まで移動可能な構成としたベッドサ
イド用生体磁場計測装置である。
As in the first embodiment, the height of the bottom surface of the cryostat 50 is set to a fixed position, and x and y are set.
It goes without saying that the x, y, z direction moving device of the bed 20 can be used instead of the direction moving device 21. Further, as in the first embodiment, it is needless to say that the fourth opening may be omitted. (Embodiment 4) A biomagnetic field measuring apparatus according to Embodiment 4 of the present invention
A part of the configuration of the biomagnetic field measuring apparatus according to the third embodiment is changed.
This is a bedside biomagnetic field measurement device configured to be movable to the vicinity of a bed in a hospital room.

【0099】磁場遮蔽装置・ガントリ支持台30−1に
は,移動可能なように複数個の車輪100が配置されて
おり,また,ベッド及び移動装置の支持台22にも移動
可能なように複数個の車輪29−1,29−2,29−
3,29−4(図示せず)が配置されている。複数個の
100−1を持つ台車に,データ収集処理・センサ制御
装置52,表示装置53,冷媒供給装置又は冷却装置5
5が搭載される。
A plurality of wheels 100 are movably arranged on the magnetic field shielding device / gantry support 30-1. A plurality of wheels 100 are also movably mounted on the bed and the support 22 of the moving device. Wheels 29-1, 29-2, 29-
3, 29-4 (not shown) are arranged. A data collection processing / sensor control device 52, a display device 53, a refrigerant supply device or a cooling device 5
5 is mounted.

【0100】実施例4のベッドサイド用生体磁場計測装
置では,クライオスタット50の底面の高さを固定され
た位置として,x及びy方向移動装置21の代りに,ベ
ッド20のx,y,z方向移動装置21’を使用する。
In the bedside biomagnetic field measuring apparatus according to the fourth embodiment, the height of the bottom surface of the cryostat 50 is set to a fixed position, and the x, y, and z directions of the bed 20 are used instead of the x and y direction moving devices 21. The moving device 21 'is used.

【0101】図12(c)に示すように,車輪29’−
1,29’−2,29’−3(図示せず),29’−4
(図示せず)を持ち,搭載するベッド移動台103の近
傍に,ベッドサイド用生体磁場計測装置を移動させた
後,図12(b)に示すように,磁場遮蔽装置の第1の
部分40−3が周方向に移動されその位置がロックさ
れ,約90度の角度範囲で,開放空間が形成された状態
とする。
As shown in FIG. 12C, the wheels 29'-
1, 29'-2, 29'-3 (not shown), 29'-4
(Not shown), and after moving the bedside biomagnetism measuring device to the vicinity of the bed moving table 103 to be mounted, as shown in FIG. -3 is moved in the circumferential direction, the position is locked, and an open space is formed in an angle range of about 90 degrees.

【0102】ベッドサイド用生体磁場計測装置のベッド
20のx,y,z方向移動装置21’と,ベッド移動台
10のベッド20−1,x,y,z方向移動装置21’
とを使用して,x,y,z方向の各方向での,ベッド2
0及びベッド20−1の位置を調整して,容易に患者3
6をベッド20−1からベッド20に移動させることが
できる。
The x, y, z direction moving device 21 ′ of the bed 20 of the bedside biomagnetic field measuring device and the bed 20-1, x, y, z direction moving device 21 ′ of the bed moving table 10.
And the bed 2 in each of the x, y, and z directions.
0 and the position of the bed 20-1 are adjusted so that the patient 3
6 can be moved from the bed 20-1 to the bed 20.

【0103】ベッド20−1,x,y,z方向移動装置
21’を使用して,医師35は,患者36の検査部位と
クライオスタット50の底面との位置関係を調整する。
その後,図12(a)に示す状態で,患者36の検査部
位からの生体磁場が計測される。生体磁場の計測終了
後,図12(b)に示す状態として,ベッド20のx,
y,z方向移動装置21’と,ベッド移動台10のベッ
ド20−1,x,y,z方向移動装置21’とを使用し
て,x,y,z方向の各方向での,ベッド20及びベッ
ド20−1の位置を調整して,容易に患者36をベッド
20からベッド20−1に移動させることができる。
Using the bed 20-1, x, y, z direction moving device 21 ', the doctor 35 adjusts the positional relationship between the examination site of the patient 36 and the bottom surface of the cryostat 50.
Thereafter, in the state shown in FIG. 12A, the biomagnetic field from the examination site of the patient 36 is measured. After the measurement of the biomagnetic field, x and x of the bed 20 are set as shown in FIG.
The bed 20 in each of the x, y, and z directions using the y, z direction moving device 21 'and the bed 20-1, x, y, z direction moving device 21' of the bed moving table 10. The patient 36 can be easily moved from the bed 20 to the bed 20-1 by adjusting the position of the bed 20-1.

【0104】実施例4のベッドサイド用生体磁場計測装
置は,自由に移動でき,病院内を移動して入院患者のベ
ッドサイドでの検査が可能となる。従って,救急患者,
ベッドに寝たきりの患者を測定する際,患者は,生体磁
場計測装置が設置された検査室へ移動する必要がなく,
患者の負担が軽減される。 (実施例5)図13は本発明の実施例5の実施例であ
り,実施例3又は実施例4で説明した生体磁場計測装置
を自動車に搭載した検診車(移動式生体磁場計測装置)
の例を示す一部破断部を含む斜視図である。生体磁場計
測装置の全体が,車内の床110に置かれた除振台11
1の上に配置固定され,外部の振動を遮断している。自
動車は,固定用のアンカー112を備えており,生体磁
場の計測の時にはアンカー112を地面に下ろして自動
車を地面に固定する。この検診車は,学校,保健所等の
地域コミュニティーへ移動して定期的な集団検診等に利
用される。 (実施例6)図14は本発明の実施例6の生体磁場計測
装置に使用される磁場遮蔽装置の構成例を示す斜視図で
あり,一部拡大を含む。図15は,図14に示す磁場遮
蔽装置を使用する生体磁場計測装置の計測視野の中心を
通る面での断面図である。
The biomagnetic field measuring device for a bedside according to the fourth embodiment can be freely moved, and can be moved in a hospital to perform an examination of a hospitalized patient at the bedside. Therefore, emergency patients,
When measuring a bedridden patient, the patient does not need to move to the laboratory where the biomagnetic measurement device is installed,
The burden on the patient is reduced. (Embodiment 5) FIG. 13 shows an embodiment of Embodiment 5 of the present invention, and a medical examination vehicle (mobile biomagnetic field measuring apparatus) in which the biomagnetic field measuring apparatus described in Embodiment 3 or 4 is mounted on an automobile.
It is a perspective view including the partially broken part which shows the example of FIG. The entire biomagnetic field measuring device is mounted on a vibration isolation table 11 placed on a floor 110 in the vehicle.
It is arranged and fixed on 1 to block external vibration. The vehicle has an anchor 112 for fixing, and when measuring the biomagnetic field, the anchor 112 is lowered to the ground to fix the vehicle to the ground. This medical checkup car is moved to local communities such as schools and public health centers and used for periodic group checkups. (Embodiment 6) FIG. 14 is a perspective view showing a configuration example of a magnetic field shielding device used in a biomagnetic field measuring apparatus according to Embodiment 6 of the present invention, and includes a partly enlarged view. FIG. 15 is a cross-sectional view taken along a plane passing through the center of the measurement field of view of the biomagnetic field measurement device using the magnetic field shielding device shown in FIG.

【0105】図14に示す磁場遮蔽装置は,実施例1で
説明した磁場遮蔽装置40を周方向で2分割して,磁場
遮蔽装置の第1の部分40−5,磁場遮蔽装置の第2の
部分40−6により構成する。磁場遮蔽装置の第1の部
分40−5は,磁場遮蔽装置の第2の部分40−6に対
して周方向に移動可能な構成とする。
In the magnetic field shielding device shown in FIG. 14, the magnetic field shielding device 40 described in the first embodiment is divided into two parts in the circumferential direction, and the first part 40-5 of the magnetic field shielding device and the second part of the magnetic field shielding device It is constituted by the portion 40-6. The first portion 40-5 of the magnetic field shielding device is configured to be movable in the circumferential direction with respect to the second portion 40-6 of the magnetic field shielding device.

【0106】第2の磁場遮蔽内側円筒40−6−1,第
2の磁場遮蔽外側円筒40−6−2の下部には複数の車
輪118が固定されており,図14の拡大断面の示すよ
うに,車輪118は,床117に形成された移動ガイド
溝119の内部に配置されている。第2の磁場遮蔽内側
円筒40−6−1,第2の磁場遮蔽外側円筒40−6−
2の上部は結合板115により結合されている。結合板
115にには,天井に配置される円形のガイドレールに
連結させるための移動のための上部結合部116が固定
されている。
A plurality of wheels 118 are fixed to the lower portion of the second magnetic field shielding inner cylinder 40-6-1 and the second magnetic field shielding outer cylinder 40-6-2, as shown in the enlarged cross section of FIG. In addition, the wheels 118 are arranged inside moving guide grooves 119 formed on the floor 117. Second magnetic field shielding inner cylinder 40-6-1, second magnetic field shielding outer cylinder 40-6-1
The upper portions of 2 are connected by a connecting plate 115. An upper connecting portion 116 for movement for connection to a circular guide rail arranged on the ceiling is fixed to the connecting plate 115.

【0107】図14の拡大断面に示すように,第2の磁
場遮蔽内側円筒40−6−1,第2の磁場遮蔽外側円筒
40−6−2の各高透磁率シート支持円筒80の内側
に,高透磁率シート23により高透磁率シート層82が
形成されている。第1の磁場遮蔽内側円筒40−5−
1,第1の磁場遮蔽外側円筒40−5−2の各高透磁率
シート支持円筒80の外側に,高透磁率シート23によ
り高透磁率シート層82が形成されている。この結果,
重複部分で,高透磁率シート層82を近接させる構成と
して,漏れ磁束を減少させて磁場遮蔽効果を高めてい
る。
As shown in the enlarged cross section of FIG. 14, the inside of each high magnetic permeability sheet supporting cylinder 80 of the second magnetic field shielding inner cylinder 40-6-1 and the second magnetic field shielding outer cylinder 40-6-2. The high permeability sheet layer 82 is formed of the high permeability sheet 23. First magnetic field shield inner cylinder 40-5
1. A high-permeability sheet layer 82 is formed by a high-permeability sheet 23 outside each high-permeability sheet supporting cylinder 80 of the first magnetic field shielding outer cylinder 40-5-2. As a result,
The high magnetic permeability sheet layer 82 is arranged close to the overlapping portion to reduce the leakage magnetic flux and enhance the magnetic field shielding effect.

【0108】図15に示すように,第1の磁場遮蔽内側
円筒40−5−1は磁場遮蔽円筒支持体128により,
第2の磁場遮蔽外側円筒40−5−2は磁場遮蔽円筒支
持体120により,それぞれ床117に固定される。S
QUID磁束計57が2次元に配列される側のクライオ
スタット50−1は,ガントリ124に移動可能に固定
される。x,y方向にそれぞに移動可能な椅子122に
座った患者36の検査部位と,SQUID磁束計57が
配列される側のクライオスタット50−1の面との位置
関係,クライオスタット50−1の高さ位置が調整され
た後に,クライオスタット50−1は,クライオスタッ
ト位置固定ロック126により固定される。
As shown in FIG. 15, the first magnetic field shielding inner cylinder 40-5-1 is formed by the magnetic field shielding cylindrical support 128.
The second magnetic field shielding outer cylinders 40-5-2 are fixed to the floor 117 by the magnetic field shielding cylindrical supports 120, respectively. S
The cryostat 50-1 on the side where the QUID magnetometers 57 are two-dimensionally arranged is movably fixed to the gantry 124. The positional relationship between the examination site of the patient 36 sitting on the chair 122 movable in the x and y directions and the surface of the cryostat 50-1 on which the SQUID magnetometer 57 is arranged, and the height of the cryostat 50-1 After the position is adjusted, the cryostat 50-1 is fixed by the cryostat position fixing lock 126.

【0109】磁場遮蔽装置の第2の部分40−6の高さ
は,磁場遮蔽装置の第1の部分40−5の高さよりも高
くして,磁場遮蔽装置の第2の部分40−6を回転させ
るための構造を単純にする。磁場遮蔽装置の第2の部分
40−6は約200度の円周部を持ち,磁場遮蔽装置の
第1の部分40−5は180度の円周部を持ち,相互に
両端部でそれぞれ約10度の範囲で重複する構成とす
る。即ち,第1の磁場遮蔽内側円筒40−5−1と第2
の磁場遮蔽内側円筒40−6−1,及び,第2の磁場遮
蔽外側円筒40−5−2と第2の磁場遮蔽外側円筒40
−6−2はそれぞれ,磁場遮蔽装置の中心軸に平行な両
端部で約10度の範囲で重複する時,閉じた状態の磁場
遮蔽装置を形成し,約180度の範囲で重複する時,開
放された状態の磁場遮蔽装置を形成する。
The height of the second part 40-6 of the magnetic shielding apparatus is higher than the height of the first part 40-5 of the magnetic shielding apparatus, and the height of the second part 40-6 of the magnetic shielding apparatus is increased. The structure for rotating is simplified. The second part 40-6 of the magnetic shielding apparatus has a circumference of about 200 degrees, and the first part 40-5 of the magnetic shielding apparatus has a circumference of 180 degrees, and each has a circumference of about 180 degrees. It is configured to overlap in the range of 10 degrees. That is, the first magnetic field shielding inner cylinder 40-5-1 and the second
Magnetic field shielding inner cylinder 40-6-1, the second magnetic field shielding outer cylinder 40-5-2, and the second magnetic field shielding outer cylinder 40
-6-2 respectively form a closed magnetic field shielding device when overlapping at about 10 degrees at both ends parallel to the central axis of the magnetic field shielding apparatus, and when overlapping at about 180 degrees, An open magnetic field shielding device is formed.

【0110】閉じた状態で重複部分を充分大きくして磁
場遮蔽効果を高めて,外来磁場の磁場遮蔽装置40の中
心軸に垂直方向の成分を,最も内側の磁場遮蔽円筒40
−5−1,40−6−1の内部で,高い磁場遮蔽率で遮
蔽できる。高い磁場遮蔽率で外来磁場が遮蔽された空間
で,検査部位からの生体磁場のx方向の成分を高感度で
検出できる。
In the closed state, the overlapping portion is made sufficiently large to enhance the magnetic field shielding effect, and the component of the external magnetic field in the direction perpendicular to the central axis of the magnetic field shielding device 40 is reduced to the innermost magnetic field shielding cylinder 40.
Inside of -5-1 and 40-6-1 can be shielded with a high magnetic field shielding ratio. In a space where an extraneous magnetic field is shielded with a high magnetic field shielding ratio, a component in the x direction of the biomagnetic field from the examination site can be detected with high sensitivity.

【0111】磁場遮蔽装置の第2の部分40−6を回転
させて開放空間を作り,患者36が椅子122に座った
状態で,医師は,患者36の検査部位とクライオスタッ
ト50−1の外面との位置関係を調整する。
When the second part 40-6 of the magnetic field shielding device is rotated to create an open space, and the patient 36 is sitting on the chair 122, the physician checks the examination site of the patient 36 and the outer surface of the cryostat 50-1. Adjust the positional relationship of.

【0112】実施例6で使用する磁場遮蔽装置を構成す
る各磁場遮蔽円筒60の中心軸は共軸に配置され,各磁
場遮蔽円筒は中心軸に対して平行な面で分割されてい
る。各磁場遮蔽円筒は垂直に配置される。実施例6で使
用する磁場遮蔽装置では,患者36は,容易に磁場遮蔽
装置の内部に入ることができ,検査部位の位置合わせ効
率よくできる。実施例6で使用する磁場遮蔽装置は小型
であり,生体磁場計測装置の設置面積が小さくてすむ。
The center axis of each magnetic field shielding cylinder 60 constituting the magnetic field shielding device used in the sixth embodiment is arranged coaxially, and each magnetic field shielding cylinder is divided by a plane parallel to the central axis. Each magnetic field shielding cylinder is arranged vertically. In the magnetic field shielding device used in the sixth embodiment, the patient 36 can easily enter the inside of the magnetic field shielding device, and the positioning of the examination site can be performed efficiently. The magnetic field shielding device used in the sixth embodiment is small, and the installation area of the biomagnetic field measuring device can be small.

【0113】なお,クライオスタット50−1の高さを
固定された位置として,x及びy方向移動装置の代り
に,検査対象36が座る椅子122のx,y,z方向移
動を制御するx,y,z方向移動装置を使用して,SQ
UID磁束計57が配列される側のクライオスタット5
0−1の面と検査対象36の検査部位の面との位置合わ
せを行なうことができるとは言うまでもない。 (実施例7)図16は本発明の実施例7であり,図1
4,図15に示す磁場遮蔽装置を使用する生体磁場計測
装置の計測視野の中心を通る面での断面図である。実施
例7の生体磁場計測装置では,図14,図15に示す磁
場遮蔽装置を,床117に対して20度以上30度以下
で傾斜している床117−1に配置する。その他の構成
は,実施例6と同じである。 (実施例8)図17は本発明の実施例8の生体磁場計測
装置の構成例を示す斜視図である。図18は図17に示
す生体磁場計測装置の計測視野の中心を通る面での断面
図である。
Note that, assuming that the height of the cryostat 50-1 is a fixed position, instead of the x- and y-direction moving devices, x, y for controlling the x, y, and z directions of the chair 122 on which the inspection target 36 sits. , SQ using the
Cryostat 5 on the side where UID magnetometer 57 is arranged
It goes without saying that the alignment between the plane 0-1 and the plane of the inspection site of the inspection target 36 can be performed. (Embodiment 7) FIG. 16 shows a seventh embodiment of the present invention.
FIG. 16 is a cross-sectional view of a biomagnetic field measuring apparatus using the magnetic field shielding apparatus shown in FIG. In the biomagnetic field measuring apparatus according to the seventh embodiment, the magnetic field shielding apparatus shown in FIGS. 14 and 15 is disposed on a floor 117-1 that is inclined at an angle of 20 degrees or more and 30 degrees or less with respect to the floor 117. Other configurations are the same as those of the sixth embodiment. (Eighth Embodiment) FIG. 17 is a perspective view showing a configuration example of a biomagnetic field measuring apparatus according to an eighth embodiment of the present invention. FIG. 18 is a cross-sectional view taken along a plane passing through the center of the measurement field of view of the biomagnetic field measurement apparatus shown in FIG.

【0114】以下,実施例1との相違点を中心に説明す
る。磁場遮蔽装置40−7は,磁場遮蔽内側円筒40−
7−1,磁場遮蔽外側円筒40−7−2から構成され,
磁場遮蔽装置40−7は,床117に固定される磁場遮
蔽装置支持体130により保持されている。
The following description focuses on the differences from the first embodiment. The magnetic field shield device 40-7 is a magnetic field shield inner cylinder 40-.
7-1, composed of a magnetic field shielding outer cylinder 40-7-2,
The magnetic shielding apparatus 40-7 is held by a magnetic shielding apparatus support 130 fixed to the floor 117.

【0115】実施例8では,磁場を検出する検出コイル
が薄膜で掲載される平面型のSQUID磁束計を使用す
るので小型のクライオスタットを使用できる。実施例8
では,実施例1で説明した磁場遮蔽装置40の構成で,
クライオスタット50を挿入する第3の開口43を形成
せず,SQUID磁束計が底部に2次元に配置されるク
ライオスタット50−2を磁場遮蔽内側円筒40−7−
1の内部に配置する。クライオスタット50−2は,ク
ライオスタット保持板132により保持され,クライオ
スタット保持板132は,床117に固定されるクライ
オスタット保持板の固定台131に保持される。
In the eighth embodiment, a small-sized cryostat can be used because a flat type SQUID magnetometer in which a detection coil for detecting a magnetic field is a thin film is used. Example 8
In the configuration of the magnetic field shielding device 40 described in the first embodiment,
The third opening 43 for inserting the cryostat 50 is not formed, and the cryostat 50-2 in which the SQUID magnetometer is arranged two-dimensionally at the bottom is attached to the magnetic field shielding inner cylinder 40-7-.
1 inside. The cryostat 50-2 is held by a cryostat holding plate 132, and the cryostat holding plate 132 is held by a fixed base 131 of the cryostat holding plate fixed to the floor 117.

【0116】ベッド20,x及びy方向移動装置21を
搭載するベッド及び移動装置の支持台22は,スペーサ
140−2を介して磁場遮蔽内側円筒40−7−1の内
部に配置される。図18示す例では,充填剤70−3を
下半分に充填しているが,更に,上半分の部位にも充填
しても良いことは言うまでもない。
The bed 20 on which the bed 20, the x and y direction moving devices 21 are mounted, and the support 22 of the moving device are disposed inside the magnetic field shielding inner cylinder 40-7-1 via the spacer 140-2. In the example shown in FIG. 18, the filler 70-3 is filled in the lower half, but it goes without saying that the filler in the upper half may be further filled.

【0117】実施例8では,実施例1で説明した第3の
開口を形成しないので,外来磁場の磁場遮蔽装置40の
中心軸に垂直方向の成分を,最も内側の磁場遮蔽円筒4
0−7−1の内部で,実施例1に示す磁場遮蔽装置より
も高い磁場遮蔽率で遮蔽できる。より高い磁場遮蔽率で
外来磁場が遮蔽された空間で,検査部位からの生体磁場
のz方向の成分を高感度で検出できる。
In the eighth embodiment, since the third opening described in the first embodiment is not formed, the component of the extraneous magnetic field in the direction perpendicular to the central axis of the magnetic field shielding device 40 is removed.
Inside 0-7-1, it is possible to shield with a higher magnetic field shielding ratio than the magnetic field shielding device shown in the first embodiment. In a space where an extraneous magnetic field is shielded with a higher magnetic field shielding ratio, a component in the z direction of the biomagnetic field from the inspection site can be detected with high sensitivity.

【0118】ベッド20に載せられた患者は,第2の開
口42から磁場遮蔽内側円筒40−7−1の内部に,よ
り好ましくは,足部が先にクライオスタット50−2の
下部を通過するようにし,その後,胸部がクライオスタ
ットの下部に到達するようにして,圧迫感をできるだけ
少なくするようにして,挿入される。勿論,図18に示
すように,頭部から先に,磁場遮蔽内側円筒40−7−
1の内部に搬入しても良い。医師は,患者36の検査部
位とクライオスタット50−2の底面との位置関係を,
ベッド20のx及びy方向移動装置21と,クライオス
タット保持板の固定台131に組み込まれた高さ方向移
動装置(位置調整装置)とを使用して調整した後に,検
査部位からの生体磁場を計測する。
The patient placed on the bed 20 is moved from the second opening 42 to the inside of the magnetic field shielding inner cylinder 40-7-1, more preferably, so that the foot first passes under the cryostat 50-2. The chest is then inserted with the chest reaching the lower part of the cryostat, with a minimum of pressure. Of course, as shown in FIG. 18, the magnetic field shielding inner cylinder 40-7-
1 may be carried inside. The doctor describes the positional relationship between the examination site of the patient 36 and the bottom surface of the cryostat 50-2.
After adjusting using the x and y direction moving device 21 of the bed 20 and the height direction moving device (position adjusting device) incorporated in the fixed base 131 of the cryostat holding plate, the biomagnetic field from the examination site is measured. I do.

【0119】実施例1と同様にして,クライオスタット
50−2の高さを固定された位置として,x及びy方向
移動装置21の代りに,ベッド20のx,y,z方向移
動装置を使用できるとは言うまでもない。更に,実施例
1と同様に,第4の開口がない構成としても良いことは
言うまでもない。 (実施例9)図19は本発明の実施例1に示す生体磁場
計測装置によって計測された磁場波形の例を示す図であ
る。図19はクライオスタットの内部の底部で正方形の
各頂点に配置された合計4チャンネルのSQUID磁束
計を用いて検出した健常者の心臓から発生する磁場を示
し,1チャンネルの磁場波形を示す。図19の横軸は時
間(sec),縦軸は検出された磁場の微分値(pT/
m)を示す。
As in the first embodiment, the x, y, z direction moving device of the bed 20 can be used in place of the x, y direction moving device 21 with the height of the cryostat 50-2 being a fixed position. Needless to say. Further, as in the first embodiment, it is needless to say that the fourth opening may be omitted. (Embodiment 9) FIG. 19 is a view showing an example of a magnetic field waveform measured by the biomagnetic field measuring apparatus shown in Embodiment 1 of the present invention. FIG. 19 shows a magnetic field generated from a healthy person's heart detected using a total of four channels of SQUID magnetometers arranged at the vertices of a square at the bottom inside the cryostat, and shows a magnetic field waveform of one channel. The horizontal axis in FIG. 19 is time (sec), and the vertical axis is the differential value (pT /
m).

【0120】実施例8の計測結果を得る時に使用した磁
場遮蔽装置40の構成は以下の通りである。使用した磁
場遮蔽装置は,内側から外側に向け,共軸に配置された
第1,第2,第3の磁場遮蔽円筒60から構成され,高
透磁率シート支持円筒80の外側に,高透磁率シート2
3により高透磁率シート層82を形成した。使用した磁
場遮蔽装置では,第4の開口は設けていない。第3の開
口は,4チャンネルのSQUID磁束計が配置される断
面が円形のクライオスタットを挿入するため,半径30
cmの円形とした。
The configuration of the magnetic field shielding device 40 used for obtaining the measurement result of the eighth embodiment is as follows. The magnetic field shielding device used is composed of first, second and third magnetic field shielding cylinders 60 arranged coaxially from the inside to the outside, and the high magnetic permeability sheet supporting cylinder 80 is provided with a high magnetic permeability outside. Sheet 2
3, a high permeability sheet layer 82 was formed. The magnetic field shielding device used did not have the fourth opening. The third opening has a radius of 30 in order to insert a circular cryostat in which a 4-channel SQUID magnetometer is arranged.
cm round.

【0121】第1の磁場遮蔽円筒,第2の磁場遮蔽円
筒,第3の磁場遮蔽円筒としてそれぞれ内半径80c
m,90cm,100cmを持ち,厚さ0.5mm,長
さ200cmのアルミニウムの中空円筒を使用した。第
3の開口は,各中空円筒の長さ方向の中心部に設けた。
Each of the first magnetic field shielding cylinder, the second magnetic field shielding cylinder, and the third magnetic field shielding cylinder has an inner radius of 80c.
An aluminum hollow cylinder having a thickness of 0.5 mm and a length of 200 cm having a m, 90 cm and 100 cm was used. The third opening was provided at the center in the longitudinal direction of each hollow cylinder.

【0122】使用した高透磁率シート23は市販品(日
立金属株式会社,商品名ファインメット)を使用した。
この高透磁率シート23は,高透磁率材料として,結晶
粒界の大きさが100nm以下の超微結晶組織をもち,
最大比透磁率が50000以上のFe−Cu−Nb−S
i−B系(Fe:73.5%,Cu:1%,Nb:3
%,Si:13.5%,B:9%)の軟磁性アモルファ
ス合金を使用している。
As the high magnetic permeability sheet 23 used, a commercial product (Hitachi Metals Co., Ltd., trade name: Finemet) was used.
The high magnetic permeability sheet 23 has, as a high magnetic permeability material, an ultrafine crystal structure in which the size of a crystal grain boundary is 100 nm or less.
Fe-Cu-Nb-S having a maximum relative permeability of 50,000 or more
i-B type (Fe: 73.5%, Cu: 1%, Nb: 3
%, Si: 13.5%, B: 9%).

【0123】使用した高透磁率シートの構成は,磁性材
リボン(高透磁率材料)25の厚み約20μm,保持シ
ート26−1,26−2の厚さ30μm,高透磁率シー
ト23の全厚100μmである。面積610cm×24
0cmの高透磁率シート23を重複させて各アルミニウ
ムの中空円筒の外周面に貼付し,厚さ約1mmの高透磁
率シート層82を形成した。
The structure of the high magnetic permeability sheet used was such that the thickness of the magnetic material ribbon (high magnetic permeability material) 25 was about 20 μm, the thickness of the holding sheets 26-1 and 26-2 was 30 μm, and the total thickness of the high magnetic permeability sheet 23. 100 μm. Area 610cm × 24
The high-permeability sheet 23 of 0 cm was overlapped and attached to the outer peripheral surface of each aluminum hollow cylinder to form a high-permeability sheet layer 82 having a thickness of about 1 mm.

【0124】フレキシブルな高透磁率シート23は,図
2に示すように,磁性材リボン25の短辺が各中空円筒
の中心軸にほぼ平行になるように,各磁性材リボン25
の長辺が各中空円筒の中心軸を内側に取り囲み,各中空
円筒の中心軸に垂直な面にほぼ平行になるように,各中
空円筒の周面に接着剤を用いて貼付して高透磁率シート
23の複数層を形成した。
As shown in FIG. 2, the flexible high magnetic permeability sheet 23 is provided so that the short side of the magnetic material ribbon 25 is substantially parallel to the central axis of each hollow cylinder.
Adhering to the peripheral surface of each hollow cylinder using an adhesive so that the long side surrounds the central axis of each hollow cylinder inside and is almost parallel to the plane perpendicular to the central axis of each hollow cylinder, it is highly transparent. A plurality of layers of the magnetic susceptibility sheet 23 were formed.

【0125】簡単な構成の磁場遮蔽装置を使用すること
により,外来磁場の磁場遮蔽装置の中心軸(第1,第
2,第3の磁場遮蔽円筒の中心軸)に垂直方向の成分
を,最も内側の第1の磁場遮蔽円筒の中心軸の位置で,
−35dBに減衰することができた。即ち,最も内側の
第1の磁場遮蔽円筒の中心軸の位置で,外来磁場の,磁
場遮蔽装置の中心軸の垂直方向の成分を,−35dBに
減衰させることができる。この結果,SQUID磁束計
は,磁場遮蔽装置の内部に置かれた生体の検査部位から
発生する生体磁場のz方向の成分を高感度で検出でき
る。
By using a magnetic field shield device having a simple configuration, the component in the direction perpendicular to the central axis of the magnetic field shield device for the external magnetic field (the central axis of the first, second, and third magnetic field shield cylinders) can be minimized. At the position of the center axis of the inner first magnetic field shielding cylinder,
It was able to attenuate to -35 dB. That is, at the position of the central axis of the innermost first magnetic field shielding cylinder, the component of the external magnetic field in the direction perpendicular to the central axis of the magnetic field shielding device can be attenuated to -35 dB. As a result, the SQUID magnetometer can detect, with high sensitivity, the component in the z direction of the biomagnetic field generated from the examination site of the living body placed inside the magnetic field shielding device.

【0126】使用した磁場遮蔽装置の磁場遮蔽率は,磁
場遮蔽装置の中心軸の位置で1/56であり,成人健常
者の心臓から発生する磁場をR波の出現時点でSN比1
0以上で計測できることが判明した。
The magnetic field shielding ratio of the magnetic field shielding device used was 1/56 at the position of the center axis of the magnetic field shielding device.
It turned out that measurement was possible at 0 or more.

【0127】なお,磁性材リボン25の長辺が各中空円
筒の中心軸に平行となるように,高透磁率シート23を
各中空円筒の周面に貼付して高透磁率シート23の複数
層を形成して各磁場遮蔽円筒を形成した場合には,外来
磁場の,磁場遮蔽装置の中心軸に垂直方向の成分を,最
も内側の第1の磁場遮蔽円筒の中心軸の位置で,約−3
1dBに減衰できた。
The high-permeability sheet 23 is adhered to the peripheral surface of each hollow cylinder so that the long side of the magnetic material ribbon 25 is parallel to the center axis of each hollow cylinder, and a plurality of layers of the high-permeability sheet 23 are formed. When each magnetic field shielding cylinder is formed by forming the magnetic field shielding component, the component of the extraneous magnetic field in the direction perpendicular to the central axis of the magnetic field shielding device is reduced by about-at the position of the central axis of the innermost first magnetic field shielding cylinder. 3
It could be attenuated to 1 dB.

【0128】以上説明した,実施例1,実施例2,実施
例3,実施例4,実施例5,実施例8の構成に於いて,
第4の開口を設ける場合,最も内側の磁場遮蔽円筒の内
直径が約1mの時,第4の開口の直径は約30cmとす
ることができる。
In the configurations of Embodiment 1, Embodiment 2, Embodiment 3, Embodiment 4, Embodiment 5, and Embodiment 8 described above,
When the fourth opening is provided, when the inner diameter of the innermost magnetic field shielding cylinder is about 1 m, the diameter of the fourth opening can be about 30 cm.

【0129】また,実施例1,実施例2,実施例8の構
成に於いて,磁場遮蔽装置の最も内側の磁場遮蔽円筒の
内部空間への検査対象(患者)の搬入は,足部が先にク
ライオスタットの下部を通過するようにし,最終的に胸
部がクライオスタットの下部に到達するようにして,圧
迫感をできるだけ少なくするように行なう。
In the configuration of the first, second and eighth embodiments, the inspection target (patient) is loaded into the inner space of the innermost magnetic field shielding cylinder of the magnetic field shielding device with the foot first. First, pass the lower part of the cryostat so that the chest finally reaches the lower part of the cryostat so that the feeling of oppression is as small as possible.

【0130】[0130]

【発明の効果】本発明によれば,高透磁率を持つ高透磁
率シートを用いて,軽量,小型,低コストで高性能な高
い磁場遮蔽率を持つ磁場遮蔽装置を実現できる。本発明
の磁場遮蔽装置は軽量,小型であるため,設置する場所
に耐加重性が特に要求されず,小さい面積があれば設置
が可能であり,磁場遮蔽装置,即ち,磁場計測装置を設
置する場所に制限がなくなる。
According to the present invention, it is possible to realize a light-weight, small-sized, low-cost, high-performance, high-magnetic-field shielding device having a high magnetic-field shielding ratio by using a high-permeability sheet having a high magnetic permeability. Since the magnetic field shield device of the present invention is lightweight and small, it does not particularly require load resistance at the place where it is installed, and can be installed if the area is small, and a magnetic field shield device, that is, a magnetic field measurement device is installed. There are no restrictions on locations.

【0131】本発明の磁場計測装置では,磁場の2方向
の接線成分を計測することなく,磁場の法線成分の計測
のみから,電流源の直上にピークパターンが出現する磁
場分布図を得ることができる。この結果,検査対象,特
に,生体内の複数の電流源の位置を直読できるので,検
査対象を生体とする場合,成人,胎児の心臓に関する疾
患の診断に有用なデータを得ることができる。本発明の
磁場計測装置は,短時間で検査対象からの磁場を計測し
て表示できる。
In the magnetic field measuring apparatus according to the present invention, a magnetic field distribution map in which a peak pattern appears immediately above a current source can be obtained only by measuring the normal component of the magnetic field without measuring the tangential components in two directions of the magnetic field. Can be. As a result, it is possible to directly read the position of a plurality of current sources in the test object, particularly in the living body, and thus, when the test object is a living body, it is possible to obtain useful data for diagnosing diseases relating to the heart of adults and fetuses. The magnetic field measuring device of the present invention can measure and display a magnetic field from an inspection target in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の各実施例で使用される高透磁率を有す
る高透磁率シートの構成例を説明する図。
FIG. 1 is a diagram illustrating a configuration example of a high magnetic permeability sheet having a high magnetic permeability used in each embodiment of the present invention.

【図2】本発明の各実施例に於ける磁場遮蔽装置を構成
する中空円筒への高透磁率シートの配置例を説明する斜
視図。
FIG. 2 is a perspective view illustrating an arrangement example of a high magnetic permeability sheet on a hollow cylinder constituting a magnetic field shielding device in each embodiment of the present invention.

【図3】本発明の各実施例に於ける磁場遮蔽装置を構成
する中空円筒への高透磁率シートの配置例を説明する断
面図。
FIG. 3 is a cross-sectional view illustrating an arrangement example of a high magnetic permeability sheet on a hollow cylinder constituting a magnetic field shielding device in each embodiment of the present invention.

【図4】本発明の実施例1の生体磁場計測装置の構成例
を示す斜視図。
FIG. 4 is a perspective view showing a configuration example of a biomagnetic field measuring apparatus according to the first embodiment of the present invention.

【図5】図4に示す磁場遮蔽装置の斜視図。5 is a perspective view of the magnetic field shielding device shown in FIG.

【図6】図4に示す生体磁場計測装置の計測視野の中心
を通る面での断面図。
FIG. 6 is a cross-sectional view of the biomagnetic field measuring apparatus shown in FIG.

【図7】本発明の実施例2の生体磁場計測装置の構成例
を示す斜視図。
FIG. 7 is a perspective view illustrating a configuration example of a biomagnetic field measurement apparatus according to a second embodiment of the present invention.

【図8】図7に示す磁場遮蔽装置の斜視図。FIG. 8 is a perspective view of the magnetic field shielding device shown in FIG. 7;

【図9】図7に示す生体磁場計測装置の計測視野の中心
を通る面での断面図。
9 is a cross-sectional view of the biomagnetic field measuring apparatus shown in FIG.

【図10】本発明の実施例3の生体磁場計測装置の構成
例を示す斜視図。
FIG. 10 is a perspective view illustrating a configuration example of a biomagnetic field measurement apparatus according to a third embodiment of the present invention.

【図11】図10に示す磁場遮蔽装置の斜視図。11 is a perspective view of the magnetic field shielding device shown in FIG.

【図12】図7に示す生体磁場計測装置への検査対象
(患者)の出し入れを説明する断面図。
FIG. 12 is a cross-sectional view for explaining how a test object (patient) is taken in and out of the biomagnetic field measuring apparatus shown in FIG.

【図13】本発明の実施例5の実施例であり,実施例3
又は実施例4の生体磁場計測装置を自動車に搭載した検
診車の例を示す一部破断部を含む斜視図。
FIG. 13 is an embodiment of the fifth embodiment of the present invention, and is a third embodiment.
Alternatively, a perspective view including a partially broken portion showing an example of a medical examination car in which the biomagnetic field measurement device of the fourth embodiment is mounted on an automobile.

【図14】本発明の実施例6の生体磁場計測装置に使用
される磁場遮蔽装置の構成例を示す斜視図。
FIG. 14 is a perspective view showing a configuration example of a magnetic field shielding device used in a biomagnetic field measuring device according to a sixth embodiment of the present invention.

【図15】図14に示す磁場遮蔽装置を使用する生体磁
場計測装置の計測視野の中心を通る面での断面図。
FIG. 15 is a cross-sectional view of a biomagnetic field measuring apparatus using the magnetic field shielding apparatus shown in FIG. 14 taken along a plane passing through the center of a measurement visual field.

【図16】本発明の実施例7であり,図14に示す磁場
遮蔽装置を使用する生体磁場計測装置の計測視野の中心
を通る面での断面図。
FIG. 16 is a cross-sectional view of a biomagnetic field measuring apparatus using the magnetic field shielding apparatus shown in FIG.

【図17】本発明の実施例8の生体磁場計測装置の構成
例を示す斜視図。
FIG. 17 is a perspective view illustrating a configuration example of a biomagnetic field measurement apparatus according to an eighth embodiment of the present invention.

【図18】図17に示す生体磁場計測装置の計測視野の
中心を通る面での断面図。
FIG. 18 is a cross-sectional view of the biomagnetic field measuring apparatus shown in FIG.

【図19】本発明の実施例1の生体磁場計測装置によっ
て計測された磁場波形の例を示す図。
FIG. 19 is a diagram illustrating an example of a magnetic field waveform measured by the biomagnetic field measuring apparatus according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20,20−1…ベッド,21…x及びy方向移動装
置,又はx,y,z方向移動装置,21’…x,y,z
方向移動装置,22…ベッド及び移動装置の支持台,2
3…高透磁率シート,24…可撓性の樹脂又は接着剤,
25…磁性材リボン,26−1,26−2…保持シー
ト,29−1,29−2,29−3,29−4…車輪,
29’−1,29’−2,29’−3,29’−4…車
輪,30−1…磁場遮蔽装置・ガントリ支持台,30−
2…ガントリ,31…ガントリの高さ制御装置,32…
ガントリの高さ制御ボックス,35…検査者(医師),
36…検査対象(患者),40…磁場遮蔽装置,40−
1…磁場遮蔽装置の第1の部分,40−1−1…第1の
磁場遮蔽内側円筒,40−1−2…第1の磁場遮蔽外側
円筒,40−2…磁場遮蔽装置の第2の部分,40−2
−1…第2の磁場遮蔽内側円筒,40−2−2…第2の
磁場遮蔽外側円筒,40−3…磁場遮蔽装置の第1の部
分,40−3−1…第1の磁場遮蔽内側円筒,40−3
−2…第2の磁場遮蔽外側円筒,40−4…磁場遮蔽装
置の第2の部分,40−4−1…第2の磁場遮蔽内側円
筒,40−4−2…第2の磁場遮蔽外側円筒,40−5
…磁場遮蔽装置の第1の部分,40−5−1…第1の磁
場遮蔽内側円筒,40−5−2…第2の磁場遮蔽外側円
筒,40−6…磁場遮蔽装置の第2の部分,40−6−
1…第2の磁場遮蔽内側円筒,40−6−2…第2の磁
場遮蔽外側円筒,40−7…磁場遮蔽装置,40−7−
1…磁場遮蔽内側円筒,40−7−2…磁場遮蔽外側円
筒,41…第1の開口,42…第2の開口,43…第3
の開口,44…第4の開口,50,50−1,50−2
…クライオスタット,51…データ収集・センサ制御
線,52…データ収集処理・センサ制御装置,53…表
示装置,54…冷媒供給線又は冷却伝達線,55…冷媒
供給装置又は冷却装置,56…冷媒,57…SQUID
磁束計,60…磁場遮蔽円筒,60−1…第1の磁場遮
蔽円筒,60−2…第2の磁場遮蔽円筒,70,70−
1,70−2,70−3…充填剤,80…高透磁率シー
ト支持円筒,82…高透磁率シート層,90−1,90
−2…レール,91…車輪,92…磁場遮蔽装置支持
台,100,100−1…車輪,101…結合部,10
3…ベッド移動台,105…ガイド,110…車内の
床,111…除振台,112…アンカー,115…結合
板,116…移動のための上部結合部,117…床,1
17−1…傾斜した床,118…車輪,119…移動ガ
イド溝,120,128…磁場遮蔽円筒支持体,122
…椅子,124…ガントリ,126…クライオスタット
位置固定ロック,130…磁場遮蔽装置支持体,131
…クライオスタット保持板の固定台,132…クライオ
スタット保持板,140−1,140−2…スペーサ,
150−1,150−2…結合板。
20, 20-1 ... bed, 21 ... x and y direction moving device, or x, y, z direction moving device, 21 '... x, y, z
Direction moving device, 22 ... bed and support for moving device, 2
3: high permeability sheet, 24: flexible resin or adhesive,
25 ... magnetic material ribbon, 26-1, 26-2 ... holding sheet, 29-1, 29-2, 29-3, 29-4 ... wheels,
29'-1, 29'-2, 29'-3, 29'-4: wheels, 30-1: magnetic field shielding device / gantry support, 30-
2 ... Gantry, 31 ... Gantry height control device, 32 ...
Gantry height control box, 35 ... Examiner (doctor),
36 ... test object (patient), 40 ... magnetic field shield device, 40-
1. First part of magnetic field shielding device, 40-1-1 ... first magnetic field shielding inner cylinder, 40-1-2 ... first magnetic field shielding outer cylinder, 40-2 ... second of magnetic field shielding device Part, 40-2
-1 ... second magnetic field shielding inner cylinder, 40-2-2 ... second magnetic field shielding outer cylinder, 40-3 ... first portion of the magnetic field shielding device, 40-3-1 ... first magnetic field shielding inner Cylinder, 40-3
-2: second magnetic field shielding outer cylinder, 40-4: second part of magnetic field shielding device, 40-4-1: second magnetic field shielding inner cylinder, 40-4-2: second magnetic field shielding outer Cylinder, 40-5
... First part of magnetic field shielding device, 40-5-1 ... First magnetic field shielding inner cylinder, 40-5-2 ... Second magnetic field shielding outer cylinder, 40-6 ... Second part of magnetic field shielding device , 40-6-
DESCRIPTION OF SYMBOLS 1 ... 2nd magnetic field shielding inner cylinder, 40-6-2 ... 2nd magnetic field shielding outer cylinder, 40-7 ... Magnetic field shielding apparatus, 40-7-
DESCRIPTION OF SYMBOLS 1 ... Magnetic field shielding inner cylinder, 40-7-2 ... Magnetic field shielding outer cylinder, 41 ... 1st opening, 42 ... 2nd opening, 43 ... 3rd
Opening, 44... Fourth opening, 50, 50-1, 50-2
... cryostat, 51 ... data collection and sensor control line, 52 ... data collection processing and sensor control device, 53 ... display device, 54 ... refrigerant supply line or cooling transmission line, 55 ... refrigerant supply device or cooling device, 56 ... refrigerant, 57 ... SQUID
Magnetic flux meter, 60: magnetic field shielding cylinder, 60-1: first magnetic field shielding cylinder, 60-2: second magnetic field shielding cylinder, 70, 70-
1, 70-2, 70-3: filler, 80: high magnetic permeability sheet support cylinder, 82: high magnetic permeability sheet layer, 90-1, 90
-2 ... rail, 91 ... wheels, 92 ... magnetic shielding apparatus support base, 100, 100-1 ... wheels, 101 ... coupling part, 10
DESCRIPTION OF SYMBOLS 3 ... Bed moving stand, 105 ... Guide, 110 ... Car floor, 111 ... Anti-vibration stand, 112 ... Anchor, 115 ... Connection plate, 116 ... Upper connection part for movement, 117 ... Floor, 1
17-1: inclined floor, 118: wheels, 119: moving guide groove, 120, 128 ... magnetic field shielding cylindrical support, 122
... chair, 124 ... gantry, 126 ... cryostat position fixing lock, 130 ... magnetic field shielding device support, 131
... Cryostat holding plate fixing stand, 132 ... Cryostat holding plate, 140-1, 140-2 ... Spacer,
150-1, 150-2 ... connecting plates.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮下 豪 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 神鳥 明彦 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 塚田 啓二 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 横澤 宏一 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 2G017 AA04 AB01 AC01 AD32 4C027 AA10 CC00 KK00 KK01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Go Miyashita 1-280 Higashi Koikekubo, Kokubunji City, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. Central Research Laboratory (72) Inventor Keiji Tsukada 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Hitachi, Ltd.Central Research Laboratories Term (reference) 2G017 AA04 AB01 AC01 AD32 4C027 AA10 CC00 KK00 KK01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】高透磁率を有する複数の高透磁率シートの
一部分が重複して配置され,第1の方向の軸を同心状に
囲み配置され,中空部をもつ非磁性の複数の筒形部材を
具備し,最も内側に配置される前記筒形部材は,前記第
1の方向の一端に第1の開口部を,前記第1の方向の他
端に第2の開口部を有し,前記第1の方向の軸に垂直な
方向で複数の前記筒形部材を貫通する第3の開口部を具
備し,複数の前記筒形部材が前記第1の方向で,第1の
部分と第2の部分との2つに分割され,前記第1の部分
は前記第2の部分に対して前記第1の方向に移動して分
離可能であり,前記第1の部分の複数の前記筒形部材
は,端部に開口する半円状の部分をもつ第1の切欠き部
をもち,前記第2の部分の複数の前記筒形部材は,端部
に開口する半円状の部分をもつ第2の切欠き部をもち,
前記第1の部分の前記第2の部分に対する前記第1の方
向での移動により,前記第1の切欠き部と前記第2の切
欠き部とにより,前記第1の方向の軸に垂直な方向で複
数の前記筒形部材を貫通して前記第3の開口が形成さ
れ,最も内側に配置される前記筒形部材の内側の空間
で,外来磁場の前記第1の方向に垂直な方向の成分が遮
蔽される磁場遮蔽装置の,前記第1の部分を前記第2の
部分に対して前記第1の方向で移動させて開放部を形成
する工程と,生体が搭載された生体搭載装置が,前記第
1の方向の軸に沿って前記開放部を通して前記内側の空
間に搬入される工程と,前記第1の部分の前記第2の部
分に対する前記第1の方向での移動により前記開放部を
閉鎖する工程と,前記開放部の閉鎖により形成された前
記第3の開口部に挿入されその底面が前記内側の空間配
置される,複数のSQUID磁束計を低温に保持するク
ライオスタットの底面と,前記生体の表面との位置関係
を前記第1の方向に垂直な方向で調整する工程と,複数
の前記SQUID磁束計により,前記生体から発生する
磁場の前記第1の方向に垂直な方向の成分を検出する工
程とを有することを特徴とする磁場計測方法。
1. A plurality of non-magnetic cylindrical members having a plurality of high-permeability sheets each having a high magnetic permeability, wherein a part of the plurality of high-permeability sheets is overlapped and arranged so as to concentrically surround an axis in a first direction. A cylindrical member having a member and having a first opening at one end in the first direction and a second opening at the other end in the first direction; A third opening penetrating the plurality of tubular members in a direction perpendicular to the axis of the first direction, wherein the plurality of tubular members are connected to the first portion and the first portion in the first direction; And the first part is movable in the first direction with respect to the second part and is separable, and the plurality of cylindrical parts of the first part are separated from each other. The member has a first notch having a semicircular portion opening at an end, and the plurality of cylindrical members of the second portion have a semicircular shape opening at an end. Has a second notch portion having a minute,
The movement of the first portion relative to the second portion in the first direction causes the first notch and the second notch to move perpendicularly to the axis in the first direction. The third opening is formed penetrating the plurality of cylindrical members in a direction, and a space inside the cylindrical member disposed at the innermost side is formed in a direction perpendicular to the first direction of the external magnetic field. A step of moving the first portion in the first direction with respect to the second portion to form an open portion of the magnetic field shielding device in which the component is shielded; Moving the first part into the inner space along the axis in the first direction through the opening, and moving the first part with respect to the second part in the first direction. Closing the opening and inserting it into the third opening formed by closing the opening. Adjusting the positional relationship between the bottom surface of the cryostat holding the plurality of SQUID magnetometers at low temperature and the surface of the living body in a direction perpendicular to the first direction. Detecting a component of a magnetic field generated from the living body in a direction perpendicular to the first direction using a plurality of the SQUID magnetometers.
【請求項2】高透磁率を有する複数の高透磁率シートの
一部分が重複して配置され,第1の方向の軸を同心状に
囲み配置され,中空部をもつ非磁性の複数の筒形部材を
具備し,最も内側に配置される前記筒形部材は,前記第
1の方向の一端に第1の開口を,前記第1の方向の他端
に第2の開口を有し,最も内側に配置される前記筒形部
材の内側の空間で,外来磁場の前記第1の方向に垂直な
方向の成分が遮蔽される磁場遮蔽装置の,前記各筒形部
材の一部分の,前記第1の方向の軸を囲む周方向,前記
第1の方向に交叉する方向の何れかの方向での移動によ
り,開放部を形成する工程と,生体が生体搭載装置に搭
載されるか,又は,前記生体が搭載される生体搭載装置
が前記開放部を通して前記磁場遮蔽装置の内側に搬入さ
れる工程と,前記各筒形部材の一部分を,前記第1の方
向,前記第1の方向の軸を囲む周方向,前記第1の方向
に交叉する方向の何れかの方向の移動により,前記開放
部を閉鎖する工程と,前記開放部の閉鎖により形成され
た第3の開口部に挿入されその底面が前記内側の空間配
置される,複数のSQUID磁束計を低温に保持するク
ライオスタットの底面と,前記生体の表面との位置関係
を前記第1の方向に垂直な方向で調整する工程と,複数
の前記SQUID磁束計により,前記生体から発生する
磁場の前記第1の方向に垂直な方向の成分を検出する工
程とを有することを特徴とする磁場計測方法。
2. A plurality of non-magnetic cylindrical members having a plurality of high-permeability sheets having a high magnetic permeability, wherein a plurality of the high-permeability sheets are arranged so as to overlap each other, are arranged so as to concentrically surround an axis in a first direction, and have a hollow portion. The cylindrical member provided with a member and having the first opening at one end in the first direction and the second opening at the other end in the first direction. A part of each of the cylindrical members of the magnetic field shielding device, in which a component of a foreign magnetic field in a direction perpendicular to the first direction is shielded in a space inside the cylindrical member disposed at the first position; Forming an open portion by moving in either the circumferential direction surrounding the axis of the direction or the direction intersecting the first direction; and mounting the living body on the living body mounting apparatus, or Loading a living body mounted device into which the magnetic shielding apparatus is carried through the opening, Closing the open portion by moving a part of the cylindrical member in any one of the first direction, a circumferential direction surrounding the axis in the first direction, and a direction intersecting the first direction. And a bottom surface of a cryostat that is inserted into a third opening formed by closing the opening and whose bottom surface is spatially arranged on the inner side and that holds a plurality of SQUID magnetometers at a low temperature; Adjusting the positional relationship in a direction perpendicular to the first direction, and detecting a component of a magnetic field generated from the living body in a direction perpendicular to the first direction by a plurality of SQUID magnetometers. A magnetic field measurement method comprising:
【請求項3】請求項2に記載の磁場計測方法に於いて,
前記第1の方向の軸に交叉する方向から前記開放部を通
して,前記生体が前記生体搭載装置に搭載されることを
特徴とする磁場計測方法。
3. The magnetic field measuring method according to claim 2, wherein
The magnetic field measurement method, wherein the living body is mounted on the living body mounting device through the opening from a direction crossing the axis of the first direction.
【請求項4】請求項2に記載の磁場計測方法に於いて,
前記生体が搭載される前記生体搭載装置が,前記第1の
方向にほぼ平行な方向,又は,前記第1の方向の軸に交
叉する方向から,前記開放部を通して前記内側の空間に
搬入されることを特徴とする磁場計測方法。
4. A magnetic field measuring method according to claim 2,
The living body mounting device on which the living body is mounted is carried into the inner space through the opening from a direction substantially parallel to the first direction or a direction crossing an axis of the first direction. A method for measuring a magnetic field, comprising:
【請求項5】高透磁率を有する複数の高透磁率シートの
一部分が重複して配置され,第1の方向の軸を同心状に
囲み配置され,中空部をもつ非磁性の複数の筒形部材を
具備し,最も内側に配置される前記筒形部材は,前記第
1の方向の一端に第1の開口を,前記第1の方向の他端
に第2の開口を,前記第1の方向の軸に垂直な方向で複
数の前記筒形部材を貫通する第3の開口を有し,最も内
側に配置される前記筒形部材の内側の空間で,外来磁場
の前記第1の方向に垂直な方向の成分が遮蔽される磁場
遮蔽装置の,前記内側の空間で,生体が生体搭載装置に
搭載されるか,又は,前記生体が搭載される生体搭載装
置が前記内側の空間に搬入される工程と,複数のSQU
ID磁束計を低温に保持するクライオスタットの底面を
前記生体の表面に対向させて配置する工程と,複数の前
記SQUID磁束計により,前記生体から発生する磁場
の前記第1の方向に垂直な方向の成分を検出する工程と
を有することを特徴とする磁場計測方法。
5. A plurality of non-magnetic cylindrical members having a plurality of high-permeability sheets each having a high magnetic permeability and arranged so as to overlap each other, concentrically surrounding an axis in a first direction, and having a hollow portion. The cylindrical member, which is provided on the innermost side, has a first opening at one end in the first direction, a second opening at the other end in the first direction, and a first opening. A third opening penetrating through the plurality of cylindrical members in a direction perpendicular to the axis of the direction, and in the space inside the cylindrical member arranged at the innermost position in the first direction of the external magnetic field. In the space inside the magnetic field shielding device in which the component in the vertical direction is shielded, the living body is mounted on the living body mounted device, or the living body mounted device on which the living body is mounted is carried into the inner space. Process and multiple SKUs
Arranging the bottom surface of the cryostat that holds the ID magnetometer at a low temperature so as to face the surface of the living body, and using the plurality of SQUID magnetometers in a direction perpendicular to the first direction of the magnetic field generated from the living body. Detecting a component.
【請求項6】高透磁率を有する複数の高透磁率シートの
一部分が重複して配置され,第1の方向の軸を同心状に
囲み配置され,中空部をもつ非磁性の複数の筒形部材を
具備し,前記高透磁率シートは,高透磁率を有する磁性
材料が非磁性の保持シートの間に挟まれて短冊の形状に
形成され,複数の前記短冊は隣接する前記短冊の長辺で
重複し,複数の前記短冊の長辺がほぼ平行に配列され,
前記各高透磁率シートの複数の前記短冊の短辺が前記第
1の方向の軸にほぼ平行に配置され,前記高透磁率シー
トが複数の前記各筒形部材の面に,各高透磁率シートの
複数の前記短冊の長辺が前記第1の方向の軸を内側に取
り囲むように保持され,最も内側に配置される前記筒形
部材は,前記第1の方向の一端に第1の開口を,前記第
1の方向の他端に第2の開口を有し,最も内側に配置さ
れる前記筒形部材の内側の空間で,外来磁場の前記第1
の方向に垂直な方向の成分が遮蔽される磁場遮蔽装置
の,前記内側の空間で,生体が生体搭載装置に搭載され
るか,又は,前記生体が搭載される前記生体搭載装置が
前記内側の空間に搬入される工程と,複数のSQUID
磁束計を低温に保持するクライオスタットの底面が配置
される前記内側の空間で,前記クライオスタットの底面
を前記生体の表面に対向させて配置する工程と,複数の
前記SQUID磁束計により,前記生体から発生する磁
場の前記第1の方向に垂直な方向の成分を検出する工程
とを有することを特徴とする磁場計測方法。
6. A plurality of non-magnetic cylindrical members having a plurality of high-permeability sheets each having a high magnetic permeability and arranged in an overlapping manner, concentrically surrounding an axis in a first direction, and having a hollow portion. The high-permeability sheet is formed of a magnetic material having a high magnetic permeability in the form of a strip sandwiched between non-magnetic holding sheets, and a plurality of the strips are adjacent to a long side of the strip. And the long sides of the strips are arranged substantially in parallel,
The short sides of the plurality of strips of each of the high magnetic permeability sheets are arranged substantially parallel to the axis in the first direction, and the high magnetic permeability sheet is attached to the surface of each of the plurality of cylindrical members by the high magnetic permeability. The long sides of the plurality of strips of the sheet are held so as to surround the axis in the first direction inward, and the innermost cylindrical member has a first opening at one end in the first direction. Is provided with a second opening at the other end in the first direction, and in the space inside the cylindrical member disposed at the innermost position, the first
A living body is mounted on a living body mounted device in the space inside the magnetic field shielding device in which a component in a direction perpendicular to the direction is shielded, or the living body mounted device on which the living body is mounted is mounted on the inner side. Process to be brought into space and multiple SQUIDs
Arranging the bottom surface of the cryostat so as to face the surface of the living body in the inner space where the bottom surface of the cryostat holding the magnetometer at a low temperature is arranged, and generating the plurality of SQUID magnetometers from the living body. Detecting a component of the magnetic field to be applied in a direction perpendicular to the first direction.
JP2001086628A 2001-03-26 2001-03-26 Magnetic field shielding device and biomagnetic field measuring device using the same Expired - Fee Related JP4013492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001086628A JP4013492B2 (en) 2001-03-26 2001-03-26 Magnetic field shielding device and biomagnetic field measuring device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001086628A JP4013492B2 (en) 2001-03-26 2001-03-26 Magnetic field shielding device and biomagnetic field measuring device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000334921A Division JP3454246B2 (en) 2000-10-30 2000-10-30 Magnetic field measurement device

Publications (3)

Publication Number Publication Date
JP2002136494A true JP2002136494A (en) 2002-05-14
JP2002136494A5 JP2002136494A5 (en) 2005-07-14
JP4013492B2 JP4013492B2 (en) 2007-11-28

Family

ID=18941978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001086628A Expired - Fee Related JP4013492B2 (en) 2001-03-26 2001-03-26 Magnetic field shielding device and biomagnetic field measuring device using the same

Country Status (1)

Country Link
JP (1) JP4013492B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112254573A (en) * 2020-10-09 2021-01-22 中国人民解放军91404部队 Grading method for air electromagnetic threat training scene
US10918293B2 (en) 2016-03-03 2021-02-16 Ricoh Company, Ltd. Magnetic measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10918293B2 (en) 2016-03-03 2021-02-16 Ricoh Company, Ltd. Magnetic measuring apparatus
CN112254573A (en) * 2020-10-09 2021-01-22 中国人民解放军91404部队 Grading method for air electromagnetic threat training scene

Also Published As

Publication number Publication date
JP4013492B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
JP3454246B2 (en) Magnetic field measurement device
Körber et al. SQUIDs in biomagnetism: a roadmap towards improved healthcare
US5265611A (en) Apparatus for measuring weak, location-dependent and time-dependent magnetic field
Okada et al. BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research
US5152288A (en) Apparatus and method for measuring weak, location-dependent and time-dependent magnetic fields
Zotev et al. Microtesla MRI of the human brain combined with MEG
JPS62117541A (en) Magnetic resonance imaging apparatus
Okada et al. BabySQUID: a mobile, high-resolution multichannel magnetoencephalography system for neonatal brain assessment
Paulson et al. Biomagnetic susceptometer with SQUID instrumentation
Schneider et al. Multichannel biomagnetic system for study of electrical activity in the brain and heart.
Clarke et al. Focus on SQUIDs in biomagnetism
Uehara et al. Multi-channel SQUID systems for biomagnetic measurement
CN113160975A (en) High-precision multichannel magnetoencephalogram system based on atomic magnetometer
JP2005270422A (en) Magnetic resonance imaging apparatus
JP7048949B2 (en) Biomagnetic measuring device
JP3454256B2 (en) Magnetic field shielding device
JP3454254B2 (en) Magnetic field measurement device
JP4013492B2 (en) Magnetic field shielding device and biomagnetic field measuring device using the same
JP3454255B2 (en) Magnetic field shielding device
Adachi 足立 善昭 et al. Multichannel SQUID magnetoneurograph system for functional imaging of spinal cords and peripheral nerves
Abrahams et al. Diagnostic radiology of the cranial base
Maslennikov et al. Magnetometric systems and precise magnetic measurements for biomedical applications
Mapps Remote magnetic sensing of people
Fagaly et al. Superconducting quantum interference (SQUIDs)
Yokosawa Overview of Magnetoencephalography—Brief History of its Sensors and Hardware

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees