JP2001520360A - Waste combustion power generation method and apparatus - Google Patents

Waste combustion power generation method and apparatus

Info

Publication number
JP2001520360A
JP2001520360A JP2000516185A JP2000516185A JP2001520360A JP 2001520360 A JP2001520360 A JP 2001520360A JP 2000516185 A JP2000516185 A JP 2000516185A JP 2000516185 A JP2000516185 A JP 2000516185A JP 2001520360 A JP2001520360 A JP 2001520360A
Authority
JP
Japan
Prior art keywords
heat
waste
gas
temperature
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000516185A
Other languages
Japanese (ja)
Inventor
孝裕 大下
哲久 廣勢
信夫 中田
孝一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority claimed from PCT/JP1998/004641 external-priority patent/WO1999019667A1/en
Publication of JP2001520360A publication Critical patent/JP2001520360A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)

Abstract

(57)【要約】 各種の廃棄物が燃焼されるときに発生する燃焼排ガスの熱を利用することによって生成される高温高圧の蒸気から高効率で電力を発生させる。廃棄物は、焼却炉又はガス化溶融炉(11)で燃焼され燃焼排ガスを発生する。発生した燃焼排ガスは熱交換器(12)に導入され、熱交換によって空気等の気体を加熱する。過熱蒸気は、熱源として加熱された気体を利用することによって過熱蒸気加熱器(14)で加熱され、加熱された過熱蒸気は発電機に連結された蒸気タービン(15)に供給され発電する。 (57) [Summary] Electric power is generated with high efficiency from high-temperature and high-pressure steam generated by utilizing the heat of flue gas generated when various kinds of waste are burned. The waste is burned in an incinerator or a gasification and melting furnace (11) to generate flue gas. The generated combustion exhaust gas is introduced into the heat exchanger (12), and heats a gas such as air by heat exchange. The superheated steam is heated by a superheated steam heater (14) by using the heated gas as a heat source, and the heated superheated steam is supplied to a steam turbine (15) connected to a generator to generate power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】 技術分野 本発明は、廃棄物を燃焼することによって発電する方法及び装置に係り、特に
各種のごみ(廃棄物)を燃焼した後の燃焼排ガスの熱を利用して、高温溶融塩腐
食による熱交換器のトラブルを避けて高温高圧の蒸気を得て、発電効率を高くす
る廃棄物燃焼発電方法及び装置に関するものである。
TECHNICAL FIELD [0001] The present invention relates to a method and an apparatus for generating electricity by burning waste, and more particularly to high-temperature molten salt corrosion utilizing heat of combustion exhaust gas after burning various kinds of waste (waste). The present invention relates to a waste-combustion power generation method and apparatus for obtaining high-temperature and high-pressure steam while avoiding troubles caused by a heat exchanger, thereby improving power generation efficiency.

【0002】 技術背景 21世紀のごみ(廃棄物)処理は、大きく変化し、単純な焼却処理からダイオ
キシン排出がゼロで、かつ高効率でエネルギーを回収する循環型システムへ変革
していくと考えられる。まず、ごみの分別収集が徹底されることから、廃棄物の
種類に応じた循環型技術が求められる。一般的な廃棄物は、ダイオキシン対策と
灰溶融を自己の燃焼熱で同時に達成できるガス化溶融燃焼技術が主流になり、プ
ラスチック系混合ごみは、化学原料へ転換するケミカルリサイクル技術が主流に
なると考えられる。そして、高効率ごみ発電は発電効率30%以上の技術が必要
になってくると考えられる。
Technical Background Waste (waste) treatment in the 21st century is expected to change drastically, changing from a simple incineration treatment to a circulation type system that recovers energy with zero dioxin emissions and high efficiency. . First of all, since garbage is collected and sorted, recycling technology is required depending on the type of waste. For general waste, gasification melting combustion technology that can simultaneously achieve dioxin countermeasures and ash melting with its own combustion heat will be the mainstream, and for plastic mixed garbage, chemical recycling technology that converts to chemical raw materials will be the mainstream. Can be It is considered that high-efficiency waste power generation requires a technology with a power generation efficiency of 30% or more.

【0003】 ごみの燃焼による熱エネルギーを発電に利用するサーマルリサイクル方式には
、ごみの燃焼熱を廃熱ボイラで蒸気回収し、蒸気タービン・発電機で発電する方
式が一般的である。係る従来のごみ焼却を利用した発電方式の一例を図4に示す
。図4に示すように、焼却炉又はガス化溶融炉11で廃棄物を燃焼し、燃焼排ガ
スを廃熱ボイラ13で熱回収し、過熱蒸気を生成する。そして、過熱蒸気を蒸気
タービン15に供給して、蒸気タービンに直結した発電機により発電する。発電
された電力はごみ焼却場内で消費される他、電力会社に売電される。廃熱ボイラ
13を通過した燃焼排ガスは、エコノマイザ等の予熱器16、バグフィルタ17
等を通り、低温のクリーンガスとして煙突から大気に放出される。
[0003] As a thermal recycling method that uses thermal energy generated by burning refuse for power generation, a method is generally used in which the heat of refuse combustion is recovered by steam in a waste heat boiler, and power is generated by a steam turbine and a generator. FIG. 4 shows an example of such a conventional power generation system using refuse incineration. As shown in FIG. 4, the waste is burned in an incinerator or a gasification and melting furnace 11, and the combustion exhaust gas is recovered in a waste heat boiler 13 to generate superheated steam. Then, the superheated steam is supplied to the steam turbine 15, and power is generated by a generator directly connected to the steam turbine. The generated power is consumed in the incineration plant and sold to a power company. The combustion exhaust gas that has passed through the waste heat boiler 13 is supplied to a preheater 16 such as an economizer, a bag filter 17.
Etc., and is released to the atmosphere from the chimney as a low-temperature clean gas.

【0004】 ところで、このような蒸気タービン発電においては、その発電効率は蒸気ター
ビンに供給される過熱蒸気の蒸気温度に大きく依存する。そして、蒸気温度は高
い方が効率が格段に上がるが、従来、実用的なごみ焼却発電システムにおいては
、次の原因で蒸気温度は400℃程度が限界とされ、その結果、発電効率は20
%程度にとどまっていた。
[0004] In such steam turbine power generation, the power generation efficiency greatly depends on the steam temperature of superheated steam supplied to the steam turbine. The higher the steam temperature is, the higher the efficiency is. However, in a conventional practical waste incineration power generation system, the steam temperature is limited to about 400 ° C. due to the following reasons.
%.

【0005】 蒸気温度を400℃程度以上に実用的に上げられない原因は、ごみの燃焼によ
って生じる塩化水素などの腐食性ガス成分による腐食及び高温溶融塩腐食の問題
があるためである。廃熱ボイラの場合、100kg/cm程度の圧力でも310℃
程度の比較的低温の飽和蒸気が流れるため、金属伝熱管を使用しても腐食は避け
られる。しかしながら、過熱蒸気の場合、蒸気温度が400℃以上の高温となる
ため、金属伝熱管表面が高温溶融塩などの腐食性成分に腐食され損傷してしまう
The reason why the steam temperature cannot be practically raised to about 400 ° C. or higher is that there are problems of corrosion by corrosive gas components such as hydrogen chloride generated by combustion of refuse and high-temperature molten salt corrosion. In the case of a waste heat boiler, even at a pressure of about 100 kg / cm 2 , 310 ° C.
Corrosion can be avoided even when a metal heat transfer tube is used because saturated steam of relatively low temperature flows. However, in the case of superheated steam, since the steam temperature is as high as 400 ° C. or more, the surface of the metal heat transfer tube is corroded and damaged by corrosive components such as high-temperature molten salt.

【0006】 その腐食の機構は複雑で、いろいろな要因が重なり合って反応が生じる。腐食
の最大のポイントは、HCl濃度よりも、NaCl、KClの溶融塩の環境下に
、伝熱管がさらされるか否かである。この環境下の場合、塩類は溶融して伝熱管
に付着し、これが加速度的に伝熱管の腐食を進める。
[0006] The mechanism of the corrosion is complicated, and various factors overlap to cause a reaction. The greatest point of corrosion is whether or not the heat transfer tube is exposed to the environment of the molten salt of NaCl and KCl, rather than the HCl concentration. In this environment, the salts melt and adhere to the heat transfer tubes, which accelerates the corrosion of the heat transfer tubes at an accelerated rate.

【0007】 本発明者らの長年の経験と、都市ごみ焼却炉を用いた腐食試験から推定した、
燃焼排ガス温度(横軸)と伝熱管表面温度(縦軸)をパラメータにとった、伝熱
管表面の腐食形態を図5に示す。図5に示すように、燃焼排ガス温度と伝熱管表
面温度によって定まる「激しい腐食領域」、「腐食進行領域」、「腐食軽減領域
」及び「腐食しない領域」の4つの腐食形態が存在する。過熱蒸気温度が400
℃である場合、伝熱管表面温度はその蒸気温度より約30℃高い430℃程度と
なり、図5から排ガス温度600℃近辺が、「腐食進行領域」と「腐食しない領
域」との温度境界になる。このことは、都市ごみ用焼却炉の廃熱ボイラにおいて
、ボイラバンク部(蒸発水管が密集している部分)へ入る排ガス温度を600℃
以上とすると、塩類が伝熱管に付着して排ガス流路を閉塞することと一致する。
すなわち、塩類が溶融している状態か固化している状態かの境界が600℃近辺
にあると考えられる。これは、複合塩の固化温度と一致する。すなわち塩類の融
点は、NaClは800℃、KClは776℃であるが、塩類は溶融後複合塩と
なるため、固化温度は550〜650℃と低くなり、また、この固化温度はごみ
質(地域差)によっても異なる。この境界温度は、海岸際の地方都市では600
℃以下になる場合もある。これは塩類の濃度が高いためと考えられる。また、図
5から排ガス温度が500℃以上600℃以下であっても、伝熱管表面温度が約
430℃以上になると、「腐食軽減領域」に入り、溶融塩腐食よりは軽微な腐食
が進行する。従って、この領域で使用する場合、過熱器管の材料選定は重要とな
る。尚、通常、伝熱管表面温度は過熱蒸気温度より約30℃高いので、過熱蒸気
温度の腐食許容限界(腐食しない領域での蒸気温度上限)は約400℃とみてよ
い。しかしながら、過熱蒸気温度が400℃の場合は、タービンのドレンアタッ
クの問題から、蒸気圧力は3.9MPa程度に抑えられ、ごみ焼却発電の場合、
発電端効率は20%程度にしか上げられない。
[0007] Estimated from our many years of experience and corrosion tests using municipal solid waste incinerators,
FIG. 5 shows the form of corrosion on the surface of the heat transfer tube using the combustion exhaust gas temperature (horizontal axis) and the surface temperature of the heat transfer tube (vertical axis) as parameters. As shown in FIG. 5, there are four types of corrosion: “a severe corrosion area”, “a corrosion progress area”, “a corrosion reduction area”, and “a non-corrosion area” determined by the combustion exhaust gas temperature and the heat transfer tube surface temperature. Superheated steam temperature 400
In the case of 0 ° C., the surface temperature of the heat transfer tube is about 430 ° C., which is about 30 ° C. higher than the steam temperature, and FIG. . This means that in a waste heat boiler of an incinerator for municipal solid waste, the temperature of exhaust gas entering a boiler bank (a portion where evaporating water pipes are densely packed) is raised to 600 ° C.
This is consistent with the fact that salts adhere to the heat transfer tube and block the exhaust gas flow path.
That is, it is considered that the boundary between the molten state and the solidified state of the salt is around 600 ° C. This is consistent with the solidification temperature of the composite salt. That is, the melting points of the salts are 800 ° C. for NaCl and 776 ° C. for KCl. However, since the salts become complex salts after melting, the solidification temperature is as low as 550 to 650 ° C. Difference). This boundary temperature is 600
In some cases, the temperature may be lower than ° C. This is thought to be due to the high salt concentration. Also, as shown in FIG. 5, even when the exhaust gas temperature is 500 ° C. or more and 600 ° C. or less, when the heat transfer tube surface temperature becomes about 430 ° C. or more, it enters the “corrosion reduction region”, and the corrosion slightly proceeds from the molten salt corrosion. . Therefore, when used in this region, the material selection of the superheater tube is important. Since the surface temperature of the heat transfer tube is usually about 30 ° C. higher than the superheated steam temperature, the allowable corrosion limit of the superheated steam temperature (the upper limit of the steam temperature in a non-corrosive region) may be considered to be about 400 ° C. However, when the superheated steam temperature is 400 ° C., the steam pressure is suppressed to about 3.9 MPa due to the problem of the drain attack of the turbine.
The power generation efficiency can only be increased to about 20%.

【0008】 従って、「腐食進行領域」を避けて、400℃以上の過熱蒸気を得るためには
、図5から燃焼排ガスの温度が500〜600℃の温度領域に、過熱蒸気管を設
置しなければならない。しかしながら、この場合燃焼排ガス(500〜600℃
)と過熱蒸気(400℃以上)との温度差が小さくなるため、所望の熱伝達を行
うためには熱交換器の伝熱面を大きくする必要が生じて効率が悪く、設備が大型
化するという問題があった。
Accordingly, in order to obtain a superheated steam of 400 ° C. or more while avoiding the “corrosion progressing region”, it is necessary to install a superheated steam pipe in a temperature range of 500 to 600 ° C. of the combustion exhaust gas from FIG. Must. However, in this case, the combustion exhaust gas (500 to 600 ° C.)
) And superheated steam (400 ° C. or more) become smaller, so that it is necessary to increase the heat transfer surface of the heat exchanger in order to perform desired heat transfer, resulting in inefficiency and an increase in equipment size. There was a problem.

【0009】 一方、腐食に耐える金属材料を開発して伝熱管の腐食なしに高い蒸気温度を用
いて発電効率を高めようとする、材料開発による高効率発電の実用化が試みられ
てきた。しかしながら材料開発は、技術的にも経済的にも難しく、未だ実用的な
目途は立っていない。また、ごみに石灰等を添加して固形燃料化することで、脱
塩素、脱硫を図るRDF発電方式が試みられている。しかしながら、この方式で
はHCl成分は少なくできても、溶融塩腐食は従来とほぼ同等である。従って、
温度500℃の過熱蒸気を、温度800℃以上の排ガスで得ようとすると、伝熱
管表面温度は530℃程度となり、図5で見ると、「激しい腐食領域」に伝熱管
がさらされてしまうことになる。
On the other hand, practical use of high-efficiency power generation by material development has been attempted, in which a metal material that resists corrosion is developed to increase power generation efficiency using a high steam temperature without corrosion of a heat transfer tube. However, material development is technically and economically difficult, and there is no practical prospect yet. In addition, an RDF power generation system for dechlorination and desulfurization by adding lime or the like to refuse and converting it into a solid fuel has been attempted. However, in this method, even if the HCl component can be reduced, the molten salt corrosion is almost equal to the conventional one. Therefore,
When attempting to obtain superheated steam at a temperature of 500 ° C. with exhaust gas at a temperature of 800 ° C. or more, the surface temperature of the heat transfer tube becomes about 530 ° C. As shown in FIG. 5, the heat transfer tube is exposed to a “severely corroded area”. become.

【0010】 また、ガスタービンで発電すると共に、ガスタービンの廃熱でごみ廃熱ボイラ
の蒸気を再加熱し、蒸気タービン・発電機の発電効率を高めるスーパーごみ発電
が試みられている。しかしながら、この方式は廃棄物以外に他の良質燃料を多量
に使う必要があること、及び経済性に問題がある。更にまた、ごみ廃熱ボイラの
蒸気を別途燃料で追い焚きして再加熱し、蒸気タービンの発電効率を高める燃料
追い焚き方式が検討されている。しかしながら、この方式も廃棄物以外に他の良
質燃料を多量に使うので、経済性に問題がある。
[0010] Furthermore, super garbage power generation has been attempted in which power is generated by a gas turbine and steam in a refuse waste heat boiler is reheated by waste heat of the gas turbine to increase the power generation efficiency of a steam turbine / generator. However, this method has a problem in that it requires a large amount of other high-quality fuels besides wastes, and is economical. Still further, a fuel reheating method for increasing the power generation efficiency of a steam turbine by reheating and reheating the steam of the waste heat boiler separately with fuel has been studied. However, this method also has a problem in economy because a large amount of other high-quality fuel is used in addition to waste.

【0011】 発明の開示 本発明は上述した事情に鑑みて為されたもので、廃棄物の燃焼排ガスに含まれ
る高温溶融塩などの腐食性成分により、熱交換器が腐食するという問題を引きお
こすことなく、過熱蒸気温度を上げて発電効率を高める、廃棄物を燃焼させて発
電する廃棄物燃焼発電方法及び装置を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and causes a problem that a heat exchanger corrodes due to corrosive components such as high-temperature molten salt contained in combustion exhaust gas of waste. It is another object of the present invention to provide a waste combustion power generation method and apparatus for generating power by burning waste and increasing power generation efficiency by increasing superheated steam temperature.

【0012】 本発明の廃棄物燃焼発電方法は、廃棄物を燃焼して高温の燃焼排ガスを発生さ
せ、該燃焼排ガスを熱交換器に導入し、熱交換により、気体を加熱し、該加熱さ
れた気体を熱源として、過熱蒸気を昇温し、昇温した過熱蒸気を発電機に連結さ
れた蒸気タービンに供給し、発電することを特徴とするものである。
In the waste combustion power generation method of the present invention, the waste is burned to generate high-temperature flue gas, the flue gas is introduced into a heat exchanger, and the gas is heated by heat exchange, and the heated gas is heated. With the use of the heated gas as a heat source, the temperature of the superheated steam is raised, and the heated superheated steam is supplied to a steam turbine connected to a generator to generate power.

【0013】 また本発明の廃棄物燃焼発電装置は、廃棄物を燃焼し高温の燃焼排ガスを発生
させる燃焼器と、前記燃焼器から排出される燃焼排ガスと気体との間で熱交換を
行い前記気体を加熱する熱交換器と、前記加熱された気体と前記過熱蒸気との間
で熱交換を行い前記過熱蒸気を昇温する加熱器と、前記昇温された過熱蒸気が供
給されるとともに発電機に連結され電力を発生する蒸気タービンとを備えたこと
を特徴とするものである。
Further, the waste combustion power generation device of the present invention performs heat exchange between a combustor that burns waste to generate high-temperature combustion exhaust gas and a combustion exhaust gas and gas discharged from the combustor. A heat exchanger for heating a gas, a heater for exchanging heat between the heated gas and the superheated steam to raise the temperature of the superheated steam, And a steam turbine connected to the machine for generating electric power.

【0014】 本発明は、廃棄物の燃焼によって得られた燃焼排ガスを熱交換器に導き、熱交
換器の伝熱管内を流れる空気等の気体を加熱し、この加熱された気体を熱源とし
て、廃熱ボイラ等によって得られた過熱蒸気を昇温し、昇温した過熱蒸気を発電
機に連結された蒸気タービンに供給し、発電をするものである。即ち、燃焼排ガ
スを直接に廃熱ボイラに導入して過熱蒸気を昇温するのではなく、燃焼排ガスを
熱交換器に導き、空気等の流体を加熱し、この加熱された流体によって過熱蒸気
を昇温するようにしたものである。燃焼排ガスによって空気等の気体を加熱する
熱交換器は、蒸気の場合のように高圧にする必要がないため、ボイラ構造規格や
発電用火力設備の技術基準等の法規に定められた材料を使う必要がない。そのた
めに、熱交換器にセラミックス材料を使用でき、この場合には、伝熱管の溶融塩
腐食の問題が生じにくい。また耐熱鋳鋼や金属製の熱交換器を使用した場合でも
、燃焼排ガスにさらされる伝熱管を図5で示す腐食軽減領域の環境で使用するこ
とができるため、伝熱管の溶融塩腐食の問題が生じにくい。特に耐熱鋳鋼は腐食
に強いことが知られていたが、従来の方法では法規上過熱蒸気管に使えなかった
。本発明では、耐熱鋳鋼は蒸気管としてではなく、排ガスと空気等の気体との伝
熱管として使用されるので、本発明では使えるようになる。
According to the present invention, the flue gas obtained by combustion of waste is guided to a heat exchanger, and a gas such as air flowing in a heat transfer tube of the heat exchanger is heated. The heated gas is used as a heat source. The superheated steam obtained by a waste heat boiler or the like is heated, and the heated superheated steam is supplied to a steam turbine connected to a generator to generate power. In other words, instead of directly introducing the flue gas into the waste heat boiler to raise the temperature of the superheated steam, the flue gas is guided to a heat exchanger, and a fluid such as air is heated. The temperature was raised. Since heat exchangers that heat air and other gases with flue gas do not need to be pressurized as in the case of steam, use materials specified in regulations such as boiler structure standards and technical standards for power generation thermal power equipment. No need. Therefore, a ceramic material can be used for the heat exchanger, and in this case, the problem of molten salt corrosion of the heat transfer tube hardly occurs. In addition, even when a heat exchanger made of heat-resistant cast steel or metal is used, the heat transfer tube exposed to the combustion exhaust gas can be used in the environment of the corrosion reduction region shown in FIG. It is unlikely to occur. In particular, heat-resistant cast steel was known to be resistant to corrosion, but it could not be used for a superheated steam pipe due to regulations in the conventional method. In the present invention, since the heat-resistant cast steel is used not as a steam tube but as a heat transfer tube between exhaust gas and a gas such as air, it can be used in the present invention.

【0015】 上述した本発明によれば、高温の燃焼排ガスは高温熱交換器の管路に接触して
、管路中を流れる空気等の気体を加熱する。伝熱管表面温度が700℃以上の場
合、燃焼排ガス中に含まれる腐食性成分は伝熱管に対して高温溶融塩腐食作用が
少なくなる。伝熱管の管路表面温度が700℃以上ならば、図5の「腐食軽減領
域」に入り、管路の腐食は低減する。従って、高温熱交換器では、金属製の伝熱
管を使用しても腐食を軽減して、管路中を流れる空気等の気体を例えば700℃
程度の高温に加熱することができる。次に、廃熱ボイラで得られた400℃程度
の過熱蒸気をこの700℃程度の空気などの気体で再加熱することにより、50
0℃程度の過熱蒸気を容易に生成することができる。この過熱蒸気の再加熱に使
用される熱媒体は、燃焼排ガスではなく、空気等の高温の気体なので、ここでも
高温溶融塩腐食の問題は生じない。更に、燃焼排ガスではなくて空気が加熱源で
あるため、ダストの管表面への付着による熱伝達係数の低下がなく、過熱蒸気加
熱器はコンパクトなものとすることができる。そして、この500℃以上の高温
の過熱蒸気を発電機に連結された蒸気タービンに供給することで、腐食の問題な
しに発電効率30%以上の高効率発電が達成可能となる。
According to the present invention described above, the high-temperature flue gas comes into contact with the pipe of the high-temperature heat exchanger and heats a gas such as air flowing through the pipe. When the surface temperature of the heat transfer tube is 700 ° C. or higher, corrosive components contained in the combustion exhaust gas have a low high-temperature molten salt corrosion action on the heat transfer tube. If the pipe surface temperature of the heat transfer tube is 700 ° C. or higher, the corrosion enters the “corrosion reduction area” of FIG. 5 and the pipe corrosion is reduced. Therefore, in a high-temperature heat exchanger, even if a metal heat transfer tube is used, corrosion is reduced, and a gas such as air flowing through the tube is heated to, for example, 700 ° C.
It can be heated to a high temperature. Next, the superheated steam of about 400 ° C. obtained in the waste heat boiler is reheated with the gas such as air of about 700 ° C.
Superheated steam of about 0 ° C. can be easily generated. Since the heat medium used for reheating the superheated steam is not a flue gas but a high-temperature gas such as air, the problem of high-temperature molten salt corrosion does not occur here. Furthermore, since air is a heating source instead of flue gas, the heat transfer coefficient does not decrease due to dust adhering to the pipe surface, and the superheated steam heater can be made compact. Then, by supplying the superheated steam having a high temperature of 500 ° C. or more to the steam turbine connected to the generator, high-efficiency power generation with a power generation efficiency of 30% or more can be achieved without a problem of corrosion.

【0016】 図6に過熱蒸気を排ガスで直接に加熱する従来技術と過熱蒸気を排ガスで間接
的に加熱する本発明の燃焼排ガスによる伝熱配管の腐食速度の違いを示す。過熱
蒸気を直接燃焼排ガスにより加熱する従来の方法(曲線Aで示す)は、蒸気側の
境膜伝熱係数が大きいため、管表面温度は高温の排気ガス側ではなく低温の蒸気
側に寄せられ、図5の「激しい腐食領域」にさらされる。一方、本発明の方法(
曲線Bで示す)では、燃焼排ガスにより蒸気ではなく空気などの気体が加熱され
る。空気の場合には、空気側の境膜伝熱係数が蒸気の場合のものと比べて小さい
ため、管表面温度は排ガス側に寄せられる。このため、図5の「腐食軽減領域」
に入るのである。このような過熱蒸気の間接加熱方式によれば、溶融塩腐食を避
けられるので、既存金属材料で充分対応が可能である。ここで、流体の境膜伝熱
係数の違いによる管表面温度の差について説明する。管表面温度Twは下式によ
って算出される。 Tw=T−{hio/(hio+ho)}×(T−t) ここで T:排ガス温度 t:受熱側流体温度 ho:排ガスの境膜伝熱係数 hio:受熱側流体の境膜伝熱係数
FIG. 6 shows the difference in the corrosion rate of the heat transfer pipe due to the combustion exhaust gas of the present invention in which the superheated steam is directly heated with the exhaust gas and the conventional technology in which the superheated steam is heated indirectly with the exhaust gas. In the conventional method of heating the superheated steam by the flue gas directly (shown by curve A), the pipe surface temperature is shifted to the low-temperature steam side instead of the high-temperature exhaust gas side because the heat transfer coefficient of the film on the steam side is large. , Are exposed to the "severely corroded area" of FIG. On the other hand, the method of the present invention (
In curve B), the flue gas heats not the steam but the gas such as air. In the case of air, since the film heat transfer coefficient on the air side is smaller than that in the case of steam, the pipe surface temperature is shifted to the exhaust gas side. For this reason, the "corrosion reduction area" of FIG.
Enter. According to such an indirect heating method of superheated steam, molten salt corrosion can be avoided, so that existing metal materials can sufficiently cope with the problem. Here, a difference in tube surface temperature due to a difference in film heat transfer coefficient of the fluid will be described. The tube surface temperature Tw is calculated by the following equation. Tw = T− {hio / (hio + ho)} × (T−t) where T: exhaust gas temperature t: heat receiving fluid temperature ho: film heat transfer coefficient of exhaust gas hio: film heat transfer coefficient of heat receiving fluid

【0017】 1)受熱側が過熱蒸気の場合、 T=1200℃、t=500℃、ho≒100kcal/mh℃、hio≒200
0kcal/mh℃(過熱蒸気の場合非常に高い値となる)とすると、 Tw=1200−{2000/(2000+100)}×(1200−500) =533℃ となり、図5の「激しい腐食領域」にさらされる。 2)受熱側が空気の場合、 T=1200℃、t=500℃、ho≒100kcal/mh℃、hio≒200
kcal/mh℃(空気のような気体の場合低い値となる)とすると、 Tw=1200−{200/(200+100)}×(1200−500) =733℃ となり、激しい腐食が避けられる。 また、熱交換媒体に低圧空気を使用できるので、セラミックス材料も使用でき
る。材質を金属にするか、セラミックス等にするかは、使用条件により決められ
る。例えば管表面温度が800℃以上になると、金属では強度が低下するので、
セラミックスや耐熱鋳鋼等が望ましい。
1) When the heat receiving side is superheated steam, T = 1200 ° C., t = 500 ° C., ho @ 100 kcal / m 2 h ° C., hio @ 200
Assuming 0 kcal / m 2 h ° C. (it becomes a very high value in the case of superheated steam), Tw = 1200− {2000 / (2000 + 100)} × (1200−500) = 533 ° C. Exposed. 2) When the heat receiving side is air, T = 1200 ° C., t = 500 ° C., ho @ 100 kcal / m 2 h ° C., hio @ 200
If kcal / m 2 h ° C. (a low value in the case of a gas such as air), Tw = 1200− {200 / (200 + 100)} × (1200−500) = 733 ° C., so that severe corrosion can be avoided. Since low-pressure air can be used as the heat exchange medium, ceramic materials can also be used. Whether the material is metal or ceramics or the like is determined according to use conditions. For example, when the tube surface temperature is 800 ° C. or higher, the strength decreases with metal,
Ceramics and heat-resistant cast steel are desirable.

【0018】 発明を実施するための最良の形態 本発明の目的、特徴および利点は、本発明の好ましい実施例を例示する添付の
図面と次の説明から明らかになる。 図1は、本発明の廃棄物燃焼発電方式の基本フローを示す。図1に示すように
、焼却炉又はガス化溶融炉11では、ごみ(廃棄物)を燃焼して、燃焼排ガスを
生成する。燃焼排ガスは、耐熱金属又はセラミックス等を使用した高温熱交換器
12を通され、空気等の気体を好ましくは700℃程度に加熱する。高温熱交換
器12を通過した燃焼排ガスは、廃熱ボイラ13に供給されて、廃熱ボイラ13
により、給水された水から蒸気を生成し、更にこれらを加熱して蒸気圧力100
kg/cm程度、蒸気温度400℃程度の過熱蒸気を生成する。過熱蒸気は、高温
熱交換器12により加熱された700℃程度の空気等の気体と過熱蒸気加熱器1
4で熱交換され、500℃程度に加熱される。この過熱蒸気が発電機に連結され
た蒸気タービン15に供給され、発電する。廃熱ボイラ13を出た燃焼排ガスは
、空気予熱器16で空気等の流体を予熱して、高温熱交換器12に入る空気等の
気体の温度を高める。また排ガスは、エコノマイザで給水を加熱し、加熱された
給水は廃熱ボイラ13に供給される。空気予熱器16を通り低温となった燃焼排
ガスは、バグフィルタ等17により集塵されてクリーンガスとして、煙突から排
出される。
BEST MODE FOR CARRYING OUT THE INVENTION The objects, features and advantages of the present invention will be apparent from the accompanying drawings and the following description which illustrate preferred embodiments of the present invention. FIG. 1 shows a basic flow of the waste combustion power generation system of the present invention. As shown in FIG. 1, in an incinerator or a gasification and melting furnace 11, waste (waste) is burned to generate combustion exhaust gas. The combustion exhaust gas is passed through a high-temperature heat exchanger 12 using a heat-resistant metal or ceramics, and heats a gas such as air, preferably to about 700 ° C. The combustion exhaust gas that has passed through the high-temperature heat exchanger 12 is supplied to a waste heat boiler
Produces steam from the supplied water, and further heats them to produce a steam pressure of 100
Generate superheated steam of about kg / cm 2 and steam temperature of about 400 ° C. The superheated steam is a gas such as air at about 700 ° C. heated by the high-temperature heat exchanger 12 and the superheated steam heater 1.
The heat is exchanged in Step 4 and heated to about 500 ° C. This superheated steam is supplied to a steam turbine 15 connected to a generator to generate power. The flue gas discharged from the waste heat boiler 13 preheats a fluid such as air by an air preheater 16 to increase the temperature of gas such as air entering the high-temperature heat exchanger 12. The exhaust gas heats the feedwater with an economizer, and the heated feedwater is supplied to the waste heat boiler 13. The combustion exhaust gas that has passed through the air preheater 16 and has become low temperature is collected by a bag filter 17 and the like, and is discharged as a clean gas from a chimney.

【0019】 このように、焼却炉又はガス化溶融炉11から出る高温排ガスラインに高温熱
交換器12を設置し、ここで空気等の気体を500℃以上、好ましくは700℃
程度に昇温し、該昇温空気により過熱蒸気加熱器14にて、400℃程度の過熱
蒸気を500℃程度に昇温する。過熱蒸気加熱器14により加熱された過熱蒸気
は発電機に連結された蒸気タービン15に供給され、発電する。過熱蒸気加熱器
14で熱交換した空気等の気体は焼却炉又はガス化溶融炉11の燃焼用空気とし
て使用する。
As described above, the high-temperature heat exchanger 12 is installed in the high-temperature exhaust gas line exiting from the incinerator or the gasification-melting furnace 11, and the gas such as air is heated to 500 ° C. or more, preferably 700 ° C.
The superheated steam of about 400 ° C. is heated to about 500 ° C. by the superheated steam heater 14 using the heated air. The superheated steam heated by the superheated steam heater 14 is supplied to a steam turbine 15 connected to a generator to generate power. Gases such as air exchanged by the superheated steam heater 14 are used as combustion air for the incinerator or the gasification and melting furnace 11.

【0020】 なお、焼却炉11の場合は、排ガス温度が850℃程度のため、高温熱交換器
12において排ガスと空気との温度差が小さくなるため、伝熱面積が大きくなる
が、ガス化溶融炉11の場合には、燃焼排ガスの温度が1200℃以上となるた
め、温度差が大きくなり、高温熱交換器12の伝熱面積は小さくて済む。空気等
の気体としては、空気、窒素等の不活性ガスが好ましい。
In the case of the incinerator 11, since the temperature of the exhaust gas is about 850 ° C., and the temperature difference between the exhaust gas and the air in the high-temperature heat exchanger 12 is small, the heat transfer area is large. In the case of the furnace 11, since the temperature of the combustion exhaust gas is 1200 ° C. or higher, the temperature difference is large, and the heat transfer area of the high-temperature heat exchanger 12 can be small. As a gas such as air, an inert gas such as air or nitrogen is preferable.

【0021】 図2は、熱交換器の一例であるバヨネット式熱交換器の構造例を示す。バヨネ
ット式熱交換器は、多数の二重管構造の熱交換部31を具備している。図2では
一個の二重管構造の熱交換部のみを示す。二重管構造の熱交換部31は、一端が
開口し他端が閉塞した略円筒容器状の外筒32と、両端が開口した円筒状の内筒
33とからなっている。高温の燃焼排ガスは、外筒32の外面に接触する。低温
の空気等の気体は、内筒33の一端から流入し、他端の開口から外筒32と内筒
33の間の環状空間に流入し、外筒32の一端の開口より流出する。この間に、
空気等の気体は燃焼排ガスと熱交換を行い加熱される。バヨネット式熱交換器は
、二重管構造の熱交換部31を具備しているため、燃焼排ガスと気体との熱交換
が二段階にわたって行われる。即ち、内筒33内を流れる気体と外筒32と内筒
33との間の空間を流れる気体との間で行われる熱交換と、外筒32の外部の燃
焼排ガスと、外筒32と内筒33との間の空間を流れる気体との間で行われる熱
交換とからなる2段階の熱交換である。1段目の熱交換によって低温気体が加熱
されるため、排ガスに接する2段目の熱交換の管表面温度が高めになり、「激し
い腐食領域」を避けられる。また、材料が高温のため熱膨張量が多いので、伝熱
管を両端固定すると、熱膨張対策が大変であるので、本方式のような片持ちの方
が構造が簡単で有利である。
FIG. 2 shows a structural example of a bayonet type heat exchanger which is an example of the heat exchanger. The bayonet-type heat exchanger includes a large number of double-tube heat exchange units 31. FIG. 2 shows only one heat exchange section having a double tube structure. The heat exchange section 31 having a double-pipe structure includes an outer cylinder 32 having a substantially cylindrical container shape with one end opened and the other end closed, and a cylindrical inner cylinder 33 having both ends opened. The high-temperature combustion exhaust gas contacts the outer surface of the outer cylinder 32. Gas such as low-temperature air flows in from one end of the inner cylinder 33, flows into the annular space between the outer cylinder 32 and the inner cylinder 33 from the opening at the other end, and flows out from the opening at one end of the outer cylinder 32. During this time,
A gas such as air is heated by exchanging heat with the combustion exhaust gas. Since the bayonet heat exchanger includes the heat exchange section 31 having a double pipe structure, heat exchange between the combustion exhaust gas and the gas is performed in two stages. That is, heat exchange is performed between the gas flowing in the inner cylinder 33 and the gas flowing in the space between the outer cylinder 32 and the inner cylinder 33, the combustion exhaust gas outside the outer cylinder 32, This is a two-stage heat exchange consisting of heat exchange performed with a gas flowing through the space between the cylinder 33. Since the low-temperature gas is heated by the first-stage heat exchange, the pipe surface temperature of the second-stage heat exchange in contact with the exhaust gas is increased, thereby avoiding a “severely corrosive region”. In addition, since the material has a high temperature and therefore has a large amount of thermal expansion, fixing both ends of the heat transfer tube makes it difficult to take measures against thermal expansion. Therefore, a cantilever of this type has a simpler structure and is more advantageous.

【0022】 バヨネット式熱交換器に使用される耐熱鋳鋼はJISのSCH材が望ましく、
金属ではニッケル(Ni)、コバルト(Co)、クロム(Cr)の含有率の高い
耐熱合金が望ましい。セラミックスの場合には、SiC(炭化珪素)が好ましい
。ガス化溶融炉の1350℃程度の高温排ガスに、SiC、アルミナ、窒化ケイ
素の素材片を1ヶ月暴露したところ、アルミナ、窒化珪素は完全に溶けてしまっ
たが、SiCは、厚さ10mmから5mmまで減肉したが、原形をとどめていた。ま
た、排ガスの流れ方向での減肉が大きく、流れが弱いところでは減肉は少なかっ
た。排ガス温度とSiCの減肉の関係は、SiC表面温度が1000℃以下なら
ば、排ガスの流れ方向での減肉もほとんど生じていない。 以上のことから、SiCを熱交換器材料として、SiC表面温度を1000℃
以下とすれば、耐用時間を大幅に延ばすことが可能である。もちろん、使用材料
は使用条件により選定されるが、基本的にはいかなる材料を使っても良い。
The heat-resistant cast steel used in the bayonet heat exchanger is preferably JIS SCH material.
As the metal, a heat-resistant alloy having a high content of nickel (Ni), cobalt (Co), and chromium (Cr) is desirable. In the case of ceramics, SiC (silicon carbide) is preferred. When a raw piece of SiC, alumina, and silicon nitride was exposed to high-temperature exhaust gas of about 1350 ° C. in a gasification melting furnace for one month, alumina and silicon nitride were completely melted, but SiC had a thickness of 10 mm to 5 mm. It was reduced in thickness, but it remained in its original form. Further, the wall thickness was largely reduced in the flow direction of the exhaust gas, and the wall thickness was small where the flow was weak. Regarding the relationship between the exhaust gas temperature and the thickness reduction of SiC, if the surface temperature of the SiC is 1000 ° C. or less, almost no wall thickness reduction occurs in the flow direction of the exhaust gas. From the above, using SiC as a heat exchanger material and setting the SiC surface temperature to 1000 ° C.
In the following case, the service life can be greatly extended. Of course, the material used is selected according to the conditions of use, but basically any material may be used.

【0023】 尚、熱交換器はバヨネット式に限定されるものではないが、排ガスに触れる伝
熱面の温度を高くするために、低温側流体を高温側流体で加熱できる本方式が好
ましい。 また、熱交換器は2段以上配置し、中温用と高温用に異なる構造としてもよい
。例えば、中温用を約250℃の空気を500℃程度まで昇温し、高温用を約5
00℃の空気を700℃程度まで昇温するものとした場合、中温用をバヨネット
式、高温用を他の一般的な熱交換器とすることもできる。その理由は、約500
℃の空気温度であれば、伝熱管表面温度は700℃以上となり、図5に示す腐食
軽減領域に入るためである。また、逆に高温用をセラミックスを用いたバヨネッ
ト式としてもよい。
Note that the heat exchanger is not limited to the bayonet type, but it is preferable that the heat exchanger be capable of heating the low-temperature fluid with the high-temperature fluid in order to increase the temperature of the heat transfer surface in contact with the exhaust gas. Further, the heat exchanger may be arranged in two or more stages, and may have different structures for medium temperature and high temperature. For example, the air of about 250 ° C. for medium temperature is heated to about 500 ° C.
When the temperature of the air at 00 ° C. is raised to about 700 ° C., the bayonet type may be used for the medium temperature and another general heat exchanger may be used for the high temperature. The reason is about 500
This is because if the air temperature is 0 ° C., the surface temperature of the heat transfer tube becomes 700 ° C. or more and enters the corrosion reduction region shown in FIG. Conversely, the high temperature type may be a bayonet type using ceramics.

【0024】 図3は、本発明の他の実施例による廃棄物燃焼発電方法及び装置の流れ図であ
る。図3の実施例においては、流動床ガス化炉と旋回溶融炉とを用いて、図3に
示すように、廃棄物をガス化して燃焼させるガス化溶融システムに適用した例を
示す。廃棄物はまず、流動床ガス化炉21に投入され、廃棄物の燃焼に必要な理
論酸素量よりも低い酸素量の酸欠状態で500〜600℃に加熱され、ガス化さ
れる。尚、この流動床ガス化炉21によれば、流動層温度が低く、しかも還元雰
囲気であるため、鉄、銅、アルミニウムなどの金属を未酸化の状態で回収可能で
ある。流動床ガス化炉21で生成された、チャー、タール等を含む熱分解ガスは
旋回溶融炉22に送られ、補助燃料なしで1350℃以上の高温で燃焼する。燃
焼温度は1200〜1500℃でもよい。旋回溶融炉22ではガス燃焼が主体と
なるため、1.3程度の低空気比燃焼が可能であり、これにより旋回溶融炉22
からの排ガス量を低減できる。そして、ガスは1200℃以上で燃焼するため、
ダイオキシンの完全分解が可能である。そして、旋回溶融炉22において、旋回
流を用いることで遠心力効果によりスラグを効率よく分離でき、重金属等の有害
物はスラグ中に封じ込め、これを冷却してガラス状の固体物中に重金属を封じ込
めることができる。
FIG. 3 is a flowchart of a waste combustion power generation method and apparatus according to another embodiment of the present invention. In the embodiment of FIG. 3, as shown in FIG. 3, an example in which the present invention is applied to a gasification and melting system in which waste is gasified and burned using a fluidized bed gasification furnace and a swirling melting furnace is shown. First, the waste is charged into the fluidized-bed gasification furnace 21 and heated to 500 to 600 ° C. in an oxygen-deficient state in which the amount of oxygen is lower than the theoretical amount of oxygen necessary for burning the waste, and gasified. According to the fluidized bed gasifier 21, since the fluidized bed temperature is low and the atmosphere is a reducing atmosphere, metals such as iron, copper, and aluminum can be recovered in an unoxidized state. The pyrolysis gas including char, tar and the like generated in the fluidized bed gasification furnace 21 is sent to the swirling melting furnace 22 and burns at a high temperature of 1350 ° C. or more without auxiliary fuel. The combustion temperature may be 1200-1500C. In the swirling melting furnace 22, gas combustion is mainly performed, so that combustion at a low air ratio of about 1.3 is possible.
The amount of exhaust gas from the plant can be reduced. And because the gas burns at 1200 ° C or higher,
Complete decomposition of dioxin is possible. Then, in the swirling melting furnace 22, the slag can be efficiently separated by the centrifugal force effect by using the swirling flow, harmful substances such as heavy metals are sealed in the slag, and cooled to cool the heavy metals into a glassy solid. Can be contained.

【0025】 過熱蒸気を発生する廃熱ボイラ24は旋回溶融炉22に接続されており、高温
熱交換器23は廃熱ボイラ24の輻射伝熱部に設けられている。高温熱交換器2
3は、管路材として耐熱鋳鋼又は耐熱金属又はSiC(セラミックス)等を使用
した熱交換器であり、管路中を流れる150〜300℃に予熱された空気を50
0〜800℃、好ましくは700℃程度に加熱する。この時の燃焼排ガスの温度
は1000〜1300℃、好ましくは1200℃程度が灰分の付着を避けるため
都合良く、高温熱交換器23を流れる空気と排ガスとの温度差が大きく取れるの
で、高温熱交換器23の熱交換面積を小さくできる。このため、熱交換器をコン
パクトな構造とすることができる。熱交換器23の管路中には、2kg/cm以下
、好ましくは0.05kg/cm程度の低圧の空気が流れるので、耐圧構造とする
必要がなく、セラミックスの管路を用いることもでき、また鋳鋼製のものを用い
てもよい。なお、高温熱交換器23の設置場所は、廃熱ボイラの輻射伝熱部に限
定されるものではなく、溶融炉22と廃熱ボイラ24の間であればよい。例えば
、溶融炉22の下流側にダクトを設け、高温熱交換器23をそのダクト内に設置
してもよい。
The waste heat boiler 24 that generates superheated steam is connected to the swirling melting furnace 22, and the high-temperature heat exchanger 23 is provided in a radiant heat transfer section of the waste heat boiler 24. High temperature heat exchanger 2
Reference numeral 3 denotes a heat exchanger using heat-resistant cast steel, heat-resistant metal, SiC (ceramics), or the like as a pipe material.
Heat to 0-800 ° C, preferably about 700 ° C. At this time, the temperature of the combustion exhaust gas is preferably 1000 to 1300 ° C., preferably about 1200 ° C., which is convenient for avoiding the adhesion of ash, and the temperature difference between the air flowing through the high-temperature heat exchanger 23 and the exhaust gas can be made large. The heat exchange area of the vessel 23 can be reduced. For this reason, the heat exchanger can have a compact structure. Since low-pressure air of 2 kg / cm 2 or less, preferably about 0.05 kg / cm 2 flows in the pipe of the heat exchanger 23, there is no need to have a pressure-resistant structure, and a ceramic pipe may be used. It may be made of cast steel. The installation location of the high-temperature heat exchanger 23 is not limited to the radiant heat transfer section of the waste heat boiler, but may be between the melting furnace 22 and the waste heat boiler 24. For example, a duct may be provided downstream of the melting furnace 22 and the high-temperature heat exchanger 23 may be installed in the duct.

【0026】 500〜800℃、好ましくは700℃程度に加熱された空気は、過熱蒸気加
熱器25で熱交換して400℃程度の過熱蒸気を400〜600℃、好ましくは
500℃程度に加熱する。熱交換により温度が下がった空気は、旋回溶融炉22
に燃焼用空気として供給される。この際、燃焼用空気の温度は350〜550℃
、好ましくは450℃程度と高いので、旋回溶融炉において高温燃焼を効率的に
行わせることができる。過熱蒸気加熱器25で、温度400〜600℃、好まし
くは約500℃に加熱された過熱蒸気は、約100kg/cmの圧力で発電機に直
結された蒸気タービン26に供給され、発電する。これにより、高温溶融塩腐食
という問題を避けつつ、発電端効率約30〜32%が達成される。尚、過熱蒸気
温度を高くするほど発電端効率は高くなる。過熱蒸気加熱器25で過熱蒸気の温
度を500℃以上に高めることができるので、廃棄物を燃焼することにより発電
するシステムは、高効率で発電できる。
The air heated to 500 to 800 ° C., preferably about 700 ° C., exchanges heat with the superheated steam heater 25 to heat superheated steam at about 400 ° C. to 400 to 600 ° C., preferably about 500 ° C. . The air whose temperature has been lowered by the heat exchange is supplied to the swirling melting furnace 22.
Is supplied as combustion air. At this time, the temperature of the combustion air is 350 to 550 ° C.
Since the temperature is preferably as high as about 450 ° C., high-temperature combustion can be efficiently performed in the swirling melting furnace. The superheated steam heated to a temperature of 400 to 600 ° C., preferably about 500 ° C. by the superheated steam heater 25 is supplied to a steam turbine 26 directly connected to a generator at a pressure of about 100 kg / cm 2 to generate power. This achieves a power generation end efficiency of about 30 to 32% while avoiding the problem of high-temperature molten salt corrosion. Note that the power generation end efficiency increases as the superheated steam temperature increases. Since the temperature of the superheated steam can be raised to 500 ° C. or more by the superheated steam heater 25, the system that generates power by burning waste can generate power with high efficiency.

【0027】 廃熱ボイラ24の過熱蒸気管30は、高温熱交換器23で空気との熱交換と、
廃熱ボイラ24の輻射伝熱部による熱吸収とにより、温度が600℃程度に低下
した燃焼排ガスを用いて、400℃程度の過熱蒸気を生成する。燃焼排ガスもそ
の温度が600℃程度に低下すると高温溶融塩腐食の問題が生じないことは、図
5に示す通りである。廃熱ボイラ24の燃焼排ガスの出口温度は350℃程度で
あり、排ガスはエコノマイザ27に供給され、エコノマイザ27で廃熱ボイラ2
4への給水を予熱する。エコノマイザ27から排出された排ガスは空気予熱器2
8に供給され、空気予熱器28は高温熱交換器23に供給する空気を150〜3
00℃に予熱する。そして、空気予熱器28から排出され、160℃程度に温度
が低下した燃焼排ガスをバグフィルタ等の除塵器29を通して除塵してクリーン
ガスとして煙突より排出する。
The superheated steam pipe 30 of the waste heat boiler 24 exchanges heat with air in the high-temperature heat exchanger 23,
The superheated steam of about 400 ° C. is generated by using the combustion exhaust gas whose temperature has been reduced to about 600 ° C. by the heat absorption by the radiant heat transfer section of the waste heat boiler 24. As shown in FIG. 5, the problem of high-temperature molten salt corrosion does not occur when the temperature of the combustion exhaust gas is lowered to about 600 ° C. The outlet temperature of the combustion exhaust gas from the waste heat boiler 24 is about 350 ° C., and the exhaust gas is supplied to the economizer 27 where the waste heat boiler 2
Preheat water supply to 4. The exhaust gas discharged from the economizer 27 is supplied to the air preheater 2
8 and the air preheater 28 supplies air to the high-temperature heat exchanger 23 with 150-3.
Preheat to 00 ° C. Then, the combustion exhaust gas discharged from the air preheater 28 and lowered in temperature to about 160 ° C. is removed through a dust remover 29 such as a bag filter and discharged as a clean gas from a chimney.

【0028】 廃棄物のガス化・溶融燃焼システムは低空気比運転ができるのでボイラ効率が
高く、通風設備の消費電力が大幅に下がり、かつ灰溶融のための電力が不要のた
め、送電端効率は大きく向上する。高効率サーマルリサイクルとは、高効率発電
ではなく、高効率送電である。また、ガス化溶融システムは他の補助燃料を用い
ることなく運転が可能であり、合理的かつ経済的である。表1に各方式による送
電端効率の比較例を示す。
The waste gasification / melting combustion system can operate at a low air ratio, so that the boiler efficiency is high, the power consumption of the ventilation equipment is greatly reduced, and the power for melting the ash is unnecessary, so the power transmission end efficiency Is greatly improved. High-efficiency thermal recycling is not high-efficiency power generation but high-efficiency power transmission. In addition, the gasification and melting system can be operated without using other auxiliary fuels, and is reasonable and economical. Table 1 shows a comparative example of the power transmitting end efficiency in each system.

【0029】[0029]

【表1】 [Table 1]

【0030】 表1において、100ata×540℃,40ata×400℃,100ata×500 ℃は、いずれも各システムにおける過熱蒸気の圧力と温度である。表1より、図
3に示したガス化溶融システムにより高温・高圧(100ata×500℃)の過 熱蒸気を得て発電する方式(ガス化溶融−II)が、送電効率では28.1%と最
も高いことが示される。焼却炉+灰溶融炉の組合せは、本発明の高温過熱蒸気を
得て発電する方法の採用により、発電効率は最も高いものの、灰溶融炉で消費す
る電力量が大きいため、送電効率は26.1%に下がってしまう。また、燃焼排
ガスで直接に加熱して昇温した過熱蒸気(40ata×400℃)を用いて発電す る従来型のシステム(ガス化溶融−I)が発電効率および送電効率ともに最も低
いことが示される。
In Table 1, 100ata × 540 ° C, 40ata × 400 ° C, and 100ata × 500 ° C are the pressure and temperature of the superheated steam in each system. Table 1 shows that the gasification and melting system shown in Fig. 3 generates high temperature and high pressure (100ata x 500 ° C) superheated steam to generate electricity (gasification and melting-II), but the power transmission efficiency is 28.1%. The highest is shown. The combination of the incinerator and the ash melting furnace has the highest power generation efficiency by adopting the method of obtaining high-temperature superheated steam of the present invention to generate power. However, since the amount of power consumed by the ash melting furnace is large, the power transmission efficiency is 26. It drops to 1%. It is also shown that the conventional system (Gasification-I), which generates electricity using heated superheated steam (40ata x 400 ° C) heated directly by the combustion exhaust gas, has the lowest power generation efficiency and transmission efficiency. It is.

【0031】 本発明は高温の燃焼排ガス中に耐熱鋳鋼又は耐熱金属又はセラミックス等の管
路を配置して空気等の気体を加熱し、この高温の空気等の気体と熱交換すること
で、過熱蒸気を再加熱するようにしたものである。これにより、腐食性ガスを含
む廃棄物の燃焼排ガスから、高温溶融塩腐食を避けて、過熱蒸気温度500℃程
度又は500℃以上を得ることができ、発電端効率30%以上を得ることが可能
である。 本発明の好ましい実施例を示し、説明したが、種々の変更および改変は本発明
の範囲を逸脱することなくなし得る。 産業上の利用の可能性 本発明は、各種の廃棄物を燃焼するときに発生する排ガスの熱によって発生す
る高温高圧の蒸気から高効率で発電する廃棄物処理設備に適用される。
According to the present invention, a pipe such as heat-resistant cast steel, a heat-resistant metal, or ceramics is disposed in a high-temperature combustion exhaust gas to heat a gas such as air, and exchange heat with the high-temperature gas such as air to cause overheating. The steam is reheated. Thereby, the superheated steam temperature of about 500 ° C. or more can be obtained from the combustion exhaust gas of the waste containing corrosive gas while avoiding high-temperature molten salt corrosion, and the power generation end efficiency of 30% or more can be obtained. It is. While the preferred embodiment of the invention has been illustrated and described, various changes and modifications can be made without departing from the scope of the invention. INDUSTRIAL APPLICABILITY The present invention is applied to a waste treatment facility that generates electricity with high efficiency from high-temperature and high-pressure steam generated by the heat of exhaust gas generated when various types of waste are burned.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の廃棄物燃焼発電方法及び装置の一実施例を示す流れ図である。FIG. 1 is a flowchart showing one embodiment of a waste combustion power generation method and apparatus according to the present invention.

【図2】 バヨネット式熱交換器の断面図である。FIG. 2 is a sectional view of a bayonet heat exchanger.

【図3】 本発明の廃棄物燃焼発電方法及び装置の他の実施例を示す流れ図である。FIG. 3 is a flowchart showing another embodiment of the waste combustion power generation method and apparatus of the present invention.

【図4】 従来の廃棄物燃焼発電方式を示す図である。FIG. 4 is a diagram showing a conventional waste combustion power generation system.

【図5】 燃焼排ガス温度(横軸)と管路表面温度(縦軸)による腐食の関係を示す図で
ある。
FIG. 5 is a diagram showing a relationship between corrosion by combustion exhaust gas temperature (horizontal axis) and pipe surface temperature (vertical axis).

【図6】 伝熱管表面温度と腐食速度との関係を示す図である。FIG. 6 is a diagram showing a relationship between a heat transfer tube surface temperature and a corrosion rate.

【手続補正書】特許協力条約第34条補正の翻訳文提出書[Procedural Amendment] Submission of translation of Article 34 Amendment of the Patent Cooperation Treaty

【提出日】平成12年4月14日(2000.4.14)[Submission date] April 14, 2000 (2000.4.14)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G081 BA02 BC13 BC30 3K023 QA06 QA12 QA14 QB01 QB03 QC08 QC13 3K065 AA11 AB02 AB03 AC01 BA05 BA06 BA08 JA05 JA15 JA18──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3G081 BA02 BC13 BC30 3K023 QA06 QA12 QA14 QB01 QB03 QC08 QC13 3K065 AA11 AB02 AB03 AC01 BA05 BA06 BA08 JA05 JA15 JA18

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物を燃焼して高温の燃焼排ガスを発生させ、該燃焼排ガ
スを熱交換器に導入し、熱交換により、気体を加熱し、該加熱された気体を熱源
として、過熱蒸気を昇温し、昇温した過熱蒸気を発電機に連結された蒸気タービ
ンに供給し、発電することを特徴とする廃棄物燃焼発電方法。
1. A waste gas is burned to generate high-temperature flue gas, the flue gas is introduced into a heat exchanger, a gas is heated by heat exchange, and the superheated steam is used as a heat source by using the heated gas as a heat source. A waste combustion power generation method characterized by raising the temperature of the fuel, supplying the heated superheated steam to a steam turbine connected to a generator, and generating power.
【請求項2】 燃焼排ガスに接触する前記熱交換器の伝熱管は耐熱鋳鋼また
はセラミックスにより形成されていることを特徴とする請求項1記載の廃棄物燃
焼発電方法。
2. The method according to claim 1, wherein the heat exchanger tubes of the heat exchanger that come into contact with the combustion exhaust gas are made of heat-resistant cast steel or ceramics.
【請求項3】 燃焼排ガスに接触する前記熱交換器の伝熱管は耐熱金属によ
り形成されていることを特徴とする請求項1記載の廃棄物燃焼発電方法。
3. The waste combustion power generation method according to claim 1, wherein the heat transfer tube of the heat exchanger that comes into contact with the combustion exhaust gas is formed of a heat-resistant metal.
【請求項4】 前記熱交換器は、バヨネット式熱交換器であることを特徴と
する請求項1記載の廃棄物燃焼発電方法。
4. The method according to claim 1, wherein the heat exchanger is a bayonet heat exchanger.
【請求項5】 前記熱交換器の伝熱管の表面温度は、700℃以上に維持さ
れることを特徴とする請求項1記載の廃棄物燃焼発電方法。
5. The waste combustion power generation method according to claim 1, wherein the surface temperature of the heat transfer tubes of the heat exchanger is maintained at 700 ° C. or higher.
【請求項6】 前記過熱蒸気は、燃焼排ガスを廃熱ボイラに導くことにより
生成されることを特徴とする請求項1記載の廃棄物燃焼発電方法。
6. The waste combustion power generation method according to claim 1, wherein the superheated steam is generated by guiding combustion exhaust gas to a waste heat boiler.
【請求項7】 前記気体と過熱蒸気との熱交換は、過熱蒸気加熱器により行
うことを特徴とする請求項1記載の廃棄物燃焼発電方法。
7. The waste combustion power generation method according to claim 1, wherein the heat exchange between the gas and the superheated steam is performed by a superheated steam heater.
【請求項8】 前記気体は空気であり、前記空気は前記熱交換器に供給され
る前に、空気予熱器において前記燃焼排ガスにより予熱されることを特徴とする
請求項1記載の廃棄物燃焼発電方法。
8. The waste combustion according to claim 1, wherein the gas is air, and the air is preheated by the combustion exhaust gas in an air preheater before being supplied to the heat exchanger. Power generation method.
【請求項9】 前記過熱蒸気の加熱は過熱蒸気加熱器で行われ、前記過熱蒸
気加熱器から排出された前記空気は焼却炉又はガス化溶融炉に燃焼用空気として
導入されることを特徴とする請求項8記載の廃棄物燃焼発電方法。
9. The heating of the superheated steam is performed by a superheated steam heater, and the air discharged from the superheated steam heater is introduced as combustion air into an incinerator or a gasification and melting furnace. The waste combustion power generation method according to claim 8.
【請求項10】 廃棄物を燃焼し高温の燃焼排ガスを発生させる燃焼器と、
前記燃焼器から排出される燃焼排ガスと気体との間で熱交換を行い前記気体を加
熱する熱交換器と、前記加熱された気体と前記過熱蒸気との間で熱交換を行い前
記過熱蒸気を昇温する加熱器と、前記昇温された過熱蒸気が供給されるとともに
発電機に連結され電力を発生する蒸気タービンとを備えたことを特徴とする廃棄
物燃焼発電装置。
10. A combustor for burning waste and generating high-temperature flue gas,
A heat exchanger for performing heat exchange between the combustion exhaust gas and the gas discharged from the combustor and heating the gas, and performing a heat exchange between the heated gas and the superheated steam to form the superheated steam. A waste combustion power generation device comprising: a heater for raising the temperature; and a steam turbine to which the heated superheated steam is supplied and which is connected to a generator to generate electric power.
【請求項11】 燃焼排ガスに接触する前記熱交換器の伝熱管は耐熱鋳鋼ま
たはセラミックスにより形成されていることを特徴とする請求項10記載の廃棄
物燃焼発電装置。
11. The waste combustion power generation device according to claim 10, wherein the heat transfer tube of the heat exchanger that comes into contact with the combustion exhaust gas is made of heat-resistant cast steel or ceramics.
【請求項12】 燃焼排ガスに接触する前記熱交換器の伝熱管は耐熱金属に
より形成されていることを特徴とする請求項10記載の廃棄物燃焼発電装置。
12. The waste combustion power generation device according to claim 10, wherein the heat transfer tube of the heat exchanger that comes into contact with the combustion exhaust gas is formed of a heat-resistant metal.
【請求項13】 前記熱交換器は、バヨネット式熱交換器であることを特徴
とする請求項10記載の廃棄物燃焼発電装置。
13. The waste combustion power generation device according to claim 10, wherein the heat exchanger is a bayonet type heat exchanger.
【請求項14】 前記熱交換器の伝熱管の表面温度は、700℃以上に維持
されることを特徴とする請求項10記載の廃棄物燃焼発電装置。
14. The waste combustion power generation device according to claim 10, wherein the surface temperature of the heat transfer tubes of the heat exchanger is maintained at 700 ° C. or higher.
【請求項15】 前記燃焼排ガスが供給されるとともに前記過熱蒸気を生成
する廃熱ボイラを備えることを特徴とする請求項10記載の廃棄物燃焼発電装置
15. The waste combustion power generation device according to claim 10, further comprising a waste heat boiler that supplies the combustion exhaust gas and generates the superheated steam.
【請求項16】 前記気体は空気であり、前記空気は前記熱交換器に供給さ
れる前に、空気予熱器において前記燃焼排ガスにより予熱されることを特徴とす
る請求項10記載の廃棄物燃焼発電装置。
16. The waste combustion according to claim 10, wherein the gas is air, and the air is preheated by the combustion exhaust gas in an air preheater before being supplied to the heat exchanger. Power generator.
【請求項17】 前記加熱器から排出された前記空気は焼却炉又はガス化溶
融炉に燃焼用空気として導入されることを特徴とする請求項16記載の廃棄物燃
焼発電装置。
17. The waste combustion power generation device according to claim 16, wherein the air discharged from the heater is introduced as combustion air into an incinerator or a gasification and melting furnace.
JP2000516185A 1998-10-14 1998-10-14 Waste combustion power generation method and apparatus Pending JP2001520360A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/004641 WO1999019667A1 (en) 1997-10-14 1998-10-14 Method and apparatus for generating electric power by combusting wastes

Publications (1)

Publication Number Publication Date
JP2001520360A true JP2001520360A (en) 2001-10-30

Family

ID=14209195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000516185A Pending JP2001520360A (en) 1998-10-14 1998-10-14 Waste combustion power generation method and apparatus

Country Status (1)

Country Link
JP (1) JP2001520360A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144633A (en) * 2004-11-18 2006-06-08 Tokyo Metropolitan Sewerage Service Corp System and method for incinerating disposal objects
JP2006275480A (en) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Heat transfer pipe repairing/withdrawing method for high temperature air heater and heat transfer pipe structure
JP2008516183A (en) * 2004-10-12 2008-05-15 グレイト リバー エナジー How to improve the quality of high moisture content using system heat source
WO2014174789A1 (en) * 2013-04-22 2014-10-30 パナソニックIpマネジメント株式会社 Combined heat and power system
JP2016156545A (en) * 2015-02-24 2016-09-01 株式会社神鋼環境ソリューション Energy recovery device and waste incineration facility
JP2018146137A (en) * 2017-03-02 2018-09-20 三菱重工業株式会社 Corrosion prevention method and corrosion prevention control apparatus
WO2018181325A1 (en) * 2017-03-28 2018-10-04 住友重機械工業株式会社 Air preheater
KR20190116707A (en) * 2018-04-05 2019-10-15 한밭대학교 산학협력단 Power generator by using combustible waste
JP2020204318A (en) * 2019-06-17 2020-12-24 株式会社タクマ Trash power generation system and operation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516183A (en) * 2004-10-12 2008-05-15 グレイト リバー エナジー How to improve the quality of high moisture content using system heat source
JP2006144633A (en) * 2004-11-18 2006-06-08 Tokyo Metropolitan Sewerage Service Corp System and method for incinerating disposal objects
JP4707370B2 (en) * 2004-11-18 2011-06-22 東京都下水道サービス株式会社 Processed object incineration system and processable object incineration method
JP2006275480A (en) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Heat transfer pipe repairing/withdrawing method for high temperature air heater and heat transfer pipe structure
US9863280B2 (en) 2013-04-22 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Combined heat and power system
JPWO2014174789A1 (en) * 2013-04-22 2017-02-23 パナソニックIpマネジメント株式会社 Combined heat and power system
EP2990726B1 (en) 2013-04-22 2017-06-07 Panasonic Intellectual Property Management Co., Ltd. Combined heat and power system
WO2014174789A1 (en) * 2013-04-22 2014-10-30 パナソニックIpマネジメント株式会社 Combined heat and power system
JP2016156545A (en) * 2015-02-24 2016-09-01 株式会社神鋼環境ソリューション Energy recovery device and waste incineration facility
JP2018146137A (en) * 2017-03-02 2018-09-20 三菱重工業株式会社 Corrosion prevention method and corrosion prevention control apparatus
WO2018181325A1 (en) * 2017-03-28 2018-10-04 住友重機械工業株式会社 Air preheater
JPWO2018181325A1 (en) * 2017-03-28 2020-02-06 住友重機械工業株式会社 Air preheater
KR20190116707A (en) * 2018-04-05 2019-10-15 한밭대학교 산학협력단 Power generator by using combustible waste
KR102048144B1 (en) * 2018-04-05 2019-11-22 한밭대학교 산학협력단 Power generator by using combustible waste
JP2020204318A (en) * 2019-06-17 2020-12-24 株式会社タクマ Trash power generation system and operation method thereof
JP7373801B2 (en) 2019-06-17 2023-11-06 株式会社タクマ Waste power generation system and its operation method

Similar Documents

Publication Publication Date Title
US6381962B1 (en) Method and apparatus for generating electric power by combusting wastes
JP3773302B2 (en) Heat recovery system and power generation system
CN101225961A (en) Anticorrosion superheater for refuse incineration exhaust-heating boiler
JP2001520360A (en) Waste combustion power generation method and apparatus
JP2001280863A (en) Heat exchanger and electric power generator comprising it
WO2005040439A1 (en) Incineration apparatus and gasification apparatus
CN201050778Y (en) Garbage combustion residual heat boiler anticorrosion superheater device for outputting high temperature overheated steam
JP3964043B2 (en) Waste disposal method
JP5843391B2 (en) Waste power generation system
JP2001280863A5 (en)
JP4733612B2 (en) Boiler superheater for waste treatment equipment
JP2007002825A (en) Waste power generation method
JPH0849822A (en) Device and method for treating waste
JP2003185123A (en) High temperature dust collecting equipment
JP2000297613A (en) Method and device of power generation by waste combustion
JP2000320817A (en) Waste combustion based power generation method and system
JPH11159719A (en) Incinerating method of waste
JP2016041939A (en) Waste power generation system
JP5421567B2 (en) Waste treatment facilities and methods of using recovered heat in waste treatment facilities
JPH11200818A (en) Energy recovering method from exhaust gas and device
JPWO2002035151A1 (en) Incineration or gasification equipment using high temperature corrosion resistant alloy
JPH109545A (en) Waste-burning boiler
JPH11294737A (en) Heat exchanger
JP2009115046A (en) Refuse power generation method
JPH11182211A (en) Waste disposal and power generation combined device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306