JP5421567B2 - Waste treatment facilities and methods of using recovered heat in waste treatment facilities - Google Patents

Waste treatment facilities and methods of using recovered heat in waste treatment facilities Download PDF

Info

Publication number
JP5421567B2
JP5421567B2 JP2008258526A JP2008258526A JP5421567B2 JP 5421567 B2 JP5421567 B2 JP 5421567B2 JP 2008258526 A JP2008258526 A JP 2008258526A JP 2008258526 A JP2008258526 A JP 2008258526A JP 5421567 B2 JP5421567 B2 JP 5421567B2
Authority
JP
Japan
Prior art keywords
air preheater
waste
pressure steam
furnace
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008258526A
Other languages
Japanese (ja)
Other versions
JP2010091133A (en
Inventor
成生 山形
友伸 西村
薫雅 秩父
恵美 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2008258526A priority Critical patent/JP5421567B2/en
Publication of JP2010091133A publication Critical patent/JP2010091133A/en
Application granted granted Critical
Publication of JP5421567B2 publication Critical patent/JP5421567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Chimneys And Flues (AREA)

Description

本発明は、下水汚泥、都市ごみ、産業廃棄物等の廃棄物を焼却、熱分解ガス化、溶融等により減容化処理する廃棄物処理設備および廃棄物処理設備における回収熱の利用方法に係り、特に、メンテナンスコストの低減、稼働率の向上、並びに発電量の向上を可能ならしめるようにした廃棄物処理設備および廃棄物処理設備における回収熱の利用方法に関するものである。   The present invention relates to a waste treatment facility for reducing the volume of waste, such as sewage sludge, municipal waste, and industrial waste, by incineration, pyrolysis gasification, melting, and the like, and a method of using recovered heat in the waste treatment facility. In particular, the present invention relates to a waste treatment facility capable of reducing maintenance costs, improving an operating rate, and improving power generation, and a method of using recovered heat in the waste treatment facility.

近年、下水汚泥、都市ごみ、産業廃棄物等の廃棄物の減容化と灰の無害化を同時に実現することを可能ならしめると共に、廃棄物の処理性能の向上、一酸化炭素の排出量の削減のために、排ガスの熱を回収して、ガス化炉や溶融炉に供給する燃焼用空気や溶融用空気を予熱するようにした廃棄物処理設備がある。このような廃棄物処理設備としては、例えば後述するものが公知である。   In recent years, it has become possible to simultaneously reduce the volume of waste, such as sewage sludge, municipal waste, and industrial waste, and to make ash harmless, improve waste treatment performance, and reduce carbon monoxide emissions. For the reduction, there is a waste treatment facility that recovers heat of exhaust gas and preheats combustion air and melting air supplied to a gasification furnace and a melting furnace. As such a waste treatment facility, for example, those described later are known.

先ず、従来例1に係る技術は、廃棄物焼却炉の排ガス処理設備であって、この排ガス処理設備は、その配列を示す図の図5に示すように構成されている。即ち、焼却炉50から排出された排ガスの流路に高温用酸性ガス除去剤を投入する高温用酸性ガス除去剤投入装置52と、高温用酸性ガス除去剤が投入された排ガスを導入して集塵処理を行う高温集塵装置51と、この高温集塵装置51から排出された排ガスを導入して熱回収する廃熱ボイラ54と、この廃熱ボイラ54から排出された排ガスを導入して有機塩化化合物を分解する触媒反応器55と、この触媒反応器55から排出された排ガスから熱回収する熱回収装置56と、熱回収後の排ガスから有害成分を除去する活性炭吸着塔57とから構成されている(例えば、特許文献1参照。)。   First, the technology according to Conventional Example 1 is an exhaust gas treatment facility for a waste incinerator, and this exhaust gas treatment facility is configured as shown in FIG. That is, the high-temperature acidic gas removing agent charging device 52 for introducing the high-temperature acidic gas removing agent into the flow path of the exhaust gas discharged from the incinerator 50 and the exhaust gas into which the high-temperature acidic gas removing agent has been introduced are introduced and collected. A high temperature dust collector 51 that performs dust treatment, a waste heat boiler 54 that recovers heat by introducing exhaust gas discharged from the high temperature dust collector 51, and an organic gas that introduces exhaust gas discharged from the waste heat boiler 54 It comprises a catalytic reactor 55 for decomposing chlorinated compounds, a heat recovery device 56 for recovering heat from the exhaust gas discharged from the catalyst reactor 55, and an activated carbon adsorption tower 57 for removing harmful components from the exhaust gas after heat recovery. (For example, refer to Patent Document 1).

従来例2に係る技術は、煙突を利用したごみ焼却炉用空気の予熱方法であって、このごみ焼却炉用空気の予熱方法は、煙突の排ガス放出用内筒を流れるごみ焼却炉排ガスと空気との熱交換により、排ガスの熱を利用して空気の余熱を行い、予熱された空気を焼却炉に供給するものである。より詳しくは、空気の予熱方法を示すフロー図の図6(a)と、煙突の断面図の図6(b)に示すように構成されている。即ち、煙突67内の排ガス放出用内筒68の外側にロックウール等の保温材69が被覆され、そして空気室70が排ガス放出用内筒68と外意匠壁71との間に形成されており、焼却炉72に供給する燃焼用空気を煙突67の空気室70を利用して予熱するものである。   The technology according to Conventional Example 2 is a method for preheating waste incinerator air using a chimney, and this method for preheating waste incinerator air includes waste incinerator exhaust gas and air flowing through an exhaust gas discharge inner cylinder of the chimney. By exchanging heat with air, the heat of the exhaust gas is used to preheat the air, and the preheated air is supplied to the incinerator. More specifically, FIG. 6A is a flowchart showing a method for preheating air, and FIG. 6B is a sectional view of a chimney. That is, a heat insulating material 69 such as rock wool is coated on the outside of the exhaust gas discharge inner cylinder 68 in the chimney 67, and an air chamber 70 is formed between the exhaust gas discharge inner cylinder 68 and the outer design wall 71. The combustion air supplied to the incinerator 72 is preheated using the air chamber 70 of the chimney 67.

予熱する空気は、煙突67の下方にある開閉できるベント62から空気室70に供給され、誘引送風機66で排ガス放出用内筒68に送込まれた排ガスの熱で徐々に暖められながら上昇し、暖められた空気は、上部出口74から送風機73により焼却炉72に供給されるように構成されている。前記排ガス放出用内筒68の外面は低温腐食を防ぐために、この排ガス放出用内筒68の内壁の壁温度が酸露点温度(約140〜150℃)以上になるようになっている(例えば、特許文献2参照。)。   The preheated air is supplied to the air chamber 70 from an openable / closable vent 62 below the chimney 67 and rises while being gradually warmed by the heat of the exhaust gas sent to the exhaust gas discharge inner cylinder 68 by the induction fan 66. The warmed air is configured to be supplied from the upper outlet 74 to the incinerator 72 by the blower 73. In order to prevent low temperature corrosion, the outer surface of the exhaust gas discharge inner cylinder 68 is configured such that the wall temperature of the inner wall of the exhaust gas discharge inner cylinder 68 is equal to or higher than the acid dew point temperature (about 140 to 150 ° C.) (for example, (See Patent Document 2).

従来例3に係る技術は、ダイオキシン類の発生を防止しながら、ごみ焼却時の排ガスから排熱を回収する「ごみ焼却時の排ガス処理方法」である。より詳しくは、排ガス処理方法の工程図の図7に示すように、焼却炉81から排出される800〜950℃の高温の排ガスがガス急冷塔82に導入され、大量の水を噴射してダイオキシン類生成温度域以下の150〜200℃まで一挙に冷却される。次いで、大量の水蒸気を含有する低温の排ガスが集塵機83に導かれて煤塵が除去された後、低温の排ガスから排ガス冷却用冷却水への貫流熱を直接電力に変換する熱電素子が組込まれている熱交換管を備えた排熱回収塔85に送られる。   The technology according to Conventional Example 3 is a “exhaust gas treatment method during waste incineration” that recovers exhaust heat from exhaust gas during waste incineration while preventing generation of dioxins. More specifically, as shown in FIG. 7 of the process chart of the exhaust gas treatment method, high-temperature exhaust gas at 800 to 950 ° C. discharged from the incinerator 81 is introduced into the gas quench tower 82, and a large amount of water is injected to dioxin. It is cooled at once to 150-200 ° C. below the production temperature range. Next, after a low-temperature exhaust gas containing a large amount of water vapor is guided to the dust collector 83 and dust is removed, a thermoelectric element that directly converts the through-flow heat from the low-temperature exhaust gas to the cooling water for exhaust gas cooling into electric power is incorporated. It is sent to a waste heat recovery tower 85 equipped with a heat exchange pipe.

そして、前記排熱回収塔85の熱交換管を流れる排ガス冷却用冷却水との熱交換による低温の排ガスの顕熱、潜熱の回収によって排ガスの温度が60℃前後まで下げられて煙突86から大気中に放出される。一方、前記熱電素子により低温の排ガスから排ガス冷却用冷却水への貫流熱が電力に変換されると共に、電力負荷93でごみ焼却プラントの運転に利用される。また、前記排ガス冷却用冷却水を冷却塔87でさらに冷却した後、冷却水槽88に貯水すると共に、この冷却水槽88内の冷却水を冷却水ポンプ89で再び排熱回収塔85に送って冷却水温度を30℃で保持する。そして、排熱回収塔85の下部に溜まる凝縮水、および前記冷却水槽88内の冷却水を、冷却水槽90を介して前記ガス急冷塔82に導入して高温の排ガスの急冷に活用する(例えば、特許文献3参照。)。
特開2001−212430号公報 特開平8−110037号公報 特開平6−129212号公報
Then, the temperature of the exhaust gas is lowered to around 60 ° C. by recovering the sensible heat and latent heat of the low temperature exhaust gas through heat exchange with the cooling water for exhaust gas cooling flowing through the heat exchange pipe of the exhaust heat recovery tower 85, and the atmosphere from the chimney 86 is reduced to the atmosphere. Released into. On the other hand, the thermoelectric element converts the through heat from the low temperature exhaust gas to the cooling water for cooling the exhaust gas into electric power, and the electric power load 93 is used for operation of the waste incineration plant. The exhaust gas cooling water is further cooled by the cooling tower 87 and then stored in the cooling water tank 88. The cooling water in the cooling water tank 88 is sent again to the exhaust heat recovery tower 85 by the cooling water pump 89 and cooled. The water temperature is kept at 30 ° C. Then, the condensed water accumulated in the lower part of the exhaust heat recovery tower 85 and the cooling water in the cooling water tank 88 are introduced into the gas quenching tower 82 via the cooling water tank 90 and used for rapid cooling of high-temperature exhaust gas (for example, , See Patent Document 3).
JP 2001-212430 A JP-A-8-110037 JP-A-6-129212

上記従来例1に係る廃棄物処理炉の排ガス処理設備では、高温集塵装置51でダストと酸性ガスを捕捉した高温用酸性ガス除去剤とが除去された排ガスの熱を熱回収装置56で回収するが、高温集塵装置51が焼却炉50の直後に配設されていて、排ガスの温度が850℃以上であり、高温集塵装置51内のクリンカ(半溶融状態の灰)の付着により目詰まりを起こす可能性があるので現実的ではない。また、熱回収装置56に導入される排ガスの温度が350℃で、高温であり、廃熱ボイラ54による熱回収が不十分であると考えられる。なお、熱回収装置56により回収された回収熱の利用については説明されていない。   In the waste gas treatment facility of the waste treatment furnace according to the above-described conventional example 1, the heat recovery device 56 recovers the heat of the exhaust gas from which the high temperature dust collector 51 has removed the high temperature acidic gas removing agent that has captured the dust and acid gas. However, the high temperature dust collector 51 is disposed immediately after the incinerator 50, the temperature of the exhaust gas is 850 ° C. or higher, and the clinker (semi-molten ash) in the high temperature dust collector 51 is attached. It is not realistic because it may cause clogging. Further, the temperature of the exhaust gas introduced into the heat recovery device 56 is 350 ° C., which is high, and it is considered that heat recovery by the waste heat boiler 54 is insufficient. Note that use of the recovered heat recovered by the heat recovery device 56 is not described.

上記従来例2に係るものは、煙突67の排ガス放出用内筒68と外意匠壁71との間に形成されている空気室70を利用して、焼却炉72に供給する燃焼用空気を予熱するものである。従って、メンテナンスは高所作業となるため、メンテナンスコストが嵩むだけでなく、火傷防止のための保温材69が巻かれていて空気を高温に予熱することができないので、通常の熱交換器に比較して熱の回収効率も劣るという問題がある。もし、熱回収効率を上げるための保温材69を巻かない場合は、筒身表面温度が200℃程度と高くなり、安全上問題があると共に、予熱温度によっては排ガス放出用内筒68内に入ることができない場合が想定される。   The conventional example 2 preheats the combustion air supplied to the incinerator 72 using the air chamber 70 formed between the exhaust gas discharge inner cylinder 68 of the chimney 67 and the outer design wall 71. To do. Therefore, since maintenance is performed at a high place, not only the maintenance cost is increased, but also a heat insulating material 69 for preventing burns is wound and the air cannot be preheated to a high temperature, so that it is compared with a normal heat exchanger. Therefore, there is a problem that heat recovery efficiency is also poor. If the heat insulating material 69 for increasing the heat recovery efficiency is not wound, the cylinder surface temperature becomes as high as about 200 ° C., which is a safety problem and, depending on the preheating temperature, enters the exhaust gas discharge inner cylinder 68. The case where it is not possible is assumed.

上記従来例3に係るものは、排ガスが過冷却(140〜150℃→60℃)されてしまうため低温の排ガスからの熱回収となり、排ガスからの熱回収率が極めて低いという問題がある。また、熱回収塔の熱交換管に多数の熱電素子を組込む必要があるのに加えて、個々の熱電素子のそれぞれから発電された電力を取出さなければならず、構造が複雑で設備のメンテナンスコストが嵩むという問題がある。さらに、通常、高温空気燃焼、高温溶融の達成のために、例えば炉用空気を200℃まで加熱するが、加熱するための熱源は廃熱ボイラから発生する高圧蒸気であった。このように、高圧蒸気が炉用空気の昇温に使用される関係上、発電機を駆動する蒸気タービンに使用される高圧蒸気の量が減少し、発電量の低下を招いているため、近年の温室効果ガスと呼ばれるCO排出量の削減のために、さらなる発電量の向上が求められている。 The conventional example 3 has a problem that the exhaust gas is supercooled (140 to 150 ° C. → 60 ° C.), so that heat is recovered from the low temperature exhaust gas, and the heat recovery rate from the exhaust gas is extremely low. Moreover, in addition to the necessity to incorporate a large number of thermoelectric elements in the heat exchange tubes of the heat recovery tower, the power generated from each individual thermoelectric element must be taken out, and the structure is complicated and maintenance of the equipment is required. There is a problem that the cost increases. Furthermore, for example, to achieve high-temperature air combustion and high-temperature melting, for example, furnace air is heated to 200 ° C., and the heat source for heating is high-pressure steam generated from a waste heat boiler. As described above, since the amount of high-pressure steam used in the steam turbine that drives the generator is reduced due to the use of high-pressure steam to raise the temperature of the furnace air, the amount of power generation has been reduced in recent years. In order to reduce CO 2 emissions, which are called greenhouse gases, there is a need for further improvements in power generation.

従って、本発明の目的は、メンテナンスコストの低減、稼働率の向上、並びに発電量の向上を可能ならしめるようにした廃棄物処理設備および廃棄物処理設備における回収熱の利用方法を提供することである。   Accordingly, an object of the present invention is to provide a waste treatment facility capable of reducing maintenance costs, improving an operating rate, and improving power generation, and a method of using recovered heat in the waste treatment facility. is there.

本発明は、上記実情に鑑みてなされたものであって、従って上記課題を解決するために、本発明の請求項1に係る廃棄物処理設備が採用した手段の要旨は、都市ごみ、産業廃棄物等の廃棄物を減容化処理する廃棄物処理炉と、この廃棄物処理炉から排出される排ガスの熱を利用して高圧蒸気を生成させる廃熱ボイラと、この廃熱ボイラから流出する排ガス中の飛灰等のダストを捕捉して除去するダスト除去手段と、このダスト除去手段によりダストが除去されたダスト除去ガスを煙突に送る誘引送風機と、前記廃熱ボイラで生成された高圧蒸気を利用して発電機を駆動する蒸気タービンを備えてなる廃棄物処理設備において、前記ダスト除去手段と前記煙突との間に、前記ダスト除去ガスの熱を回収して前記廃棄物処理炉に供給する炉用空気を予熱するガス式空気予熱器を配設し、前記ガス式空気予熱器と前記廃棄物処理炉との間に、前記廃熱ボイラで生成された高圧蒸気を利用して、前記ガス式空気予熱器で予熱された炉用空気を予熱する高圧蒸気式空気予熱器を配設し、前記ガス式空気予熱器と炉用空気の供給源との間に、前記ガス式空気予熱器に供給する炉用空気を、前記蒸気タービンから排出される低圧蒸気の熱を回収して予熱する低圧蒸気式空気予熱器を配設し、前記ガス式空気予熱器と前記高圧蒸気式空気予熱器との間と、前記ガス式空気予熱器と前記低圧蒸気式空気予熱器との間とを、前記ガス式空気予熱器で予熱された炉用空気の一部を還流させる還流路で連通させ、前記高圧蒸気式空気予熱器と前記廃棄物処理炉との間と、前記還流路とを、前記還流路を介して前記高圧蒸気式空気予熱器で予熱された炉用空気の一部を還流させる第2還流路で連通させたことを特徴とするものである。 The present invention has been made in view of the above circumstances, and therefore, in order to solve the above problems, the gist of the means adopted by the waste treatment facility according to claim 1 of the present invention is as follows: municipal waste, industrial waste Waste treatment furnace that reduces the volume of waste such as waste, waste heat boiler that generates high-pressure steam using the heat of exhaust gas discharged from this waste treatment furnace, and outflow from this waste heat boiler Dust removal means that captures and removes dust such as fly ash in exhaust gas, an induction blower that sends dust removal gas from which dust has been removed by the dust removal means to the chimney, and high-pressure steam generated by the waste heat boiler In a waste treatment facility comprising a steam turbine that drives a generator using a power source, the heat of the dust removal gas is recovered and supplied to the waste treatment furnace between the dust removal means and the chimney. Furnace air A gas air preheater for preheating is disposed, and the gas air preheater is used between the gas air preheater and the waste treatment furnace using high-pressure steam generated in the waste heat boiler. A high-pressure steam air preheater that preheats the furnace air preheated in the furnace is provided, and the furnace air supply to the gas air preheater is provided between the gas air preheater and the supply source of the furnace air. A low-pressure steam air preheater that recovers and preheats the heat of the low-pressure steam exhausted from the steam turbine; and between the gas air preheater and the high-pressure steam air preheater, The high pressure steam air is communicated between the gas air preheater and the low pressure steam air preheater via a reflux path for recirculating a part of the furnace air preheated by the gas air preheater. and between the preheater and the waste incinerator, and said return path, via the return passage Serial is characterized in that communicated with the second return pipe for recirculating part of preheated oven air at high pressure steam type air preheater.

本発明の請求項に係る廃棄物処理設備における回収熱の利用方法が採用した方法の要旨は、都市ごみ、産業廃棄物等の廃棄物を減容化処理する廃棄物処理炉と、この廃棄物処理炉から排出される排ガスの熱を利用して高圧蒸気を生成させる廃熱ボイラと、この廃熱ボイラから流出する排ガス中の飛灰等のダストを捕捉して除去するダスト除去手段と、このダスト除去手段によりダストが除去されたダスト除去ガスを煙突に送る誘引送風機と、前記廃熱ボイラで生成された高圧蒸気を利用して発電機を駆動する蒸気タービンを備えてなる廃棄物処理設備における回収熱の利用方法において、前記ダスト除去ガスの熱をガス式空気予熱器により回収して前記廃棄物処理炉に供給する炉用空気を予熱し、前記ガス式空気予熱器で予熱された炉用空気を前記廃棄物処理炉に供給するに際して、前記廃熱ボイラで生成された高圧蒸気の熱を利用する高圧蒸気式空気予熱器で予熱し、前記ガス式空気予熱器に供給する炉用空気を、前記蒸気タービンから排出される低圧蒸気の熱を低圧蒸気式空気予熱器により回収して予熱し、前記ガス式空気予熱器で予熱された炉用空気の一部を、還流路を介して前記ガス式空気予熱器と前記低圧蒸気式空気予熱器との間に還流させ、前記低圧蒸気式空気予熱器により予熱された炉用空気に合流させ、前記高圧蒸気式空気予熱器で予熱された炉用空気の一部を、第2還流路および前記還流路を介して前記ガス式空気予熱器と前記低圧蒸気式空気予熱器との間に還流させ、前記低圧蒸気式空気予熱器により予熱された炉用空気に合流させることを特徴とするものである。 The summary of the method adopted by the method of using recovered heat in the waste treatment facility according to claim 2 of the present invention is a waste treatment furnace for reducing the volume of waste such as municipal waste and industrial waste, and this disposal A waste heat boiler that generates high-pressure steam using the heat of the exhaust gas discharged from the waste treatment furnace, and a dust removal means that captures and removes dust such as fly ash in the exhaust gas flowing out of the waste heat boiler, Waste treatment equipment comprising an induction blower for sending dust removal gas from which dust has been removed by the dust removal means to a chimney, and a steam turbine for driving a generator using high-pressure steam generated by the waste heat boiler In the method of using recovered heat in the furnace, the heat of the dust removal gas is recovered by a gas air preheater, and the furnace air supplied to the waste treatment furnace is preheated, and the furnace is preheated by the gas air preheater Sky In the supplied to the waste treatment furnace was preheated with high-pressure steam type air preheater utilizing heat of the high-pressure steam generated in the waste heat boiler, the air furnace is supplied to the gas type air preheater, The heat of the low-pressure steam discharged from the steam turbine is recovered and preheated by a low-pressure steam air preheater, and a part of the furnace air preheated by the gas air preheater is passed through the reflux path to the gas. For a furnace pre-heated by the high-pressure steam air preheater , recirculated between the air preheater and the low-pressure steam air preheater, merged with the furnace air preheated by the low-pressure steam air preheater A furnace in which a part of air is recirculated between the gas air preheater and the low pressure steam air preheater via the second reflux path and the reflux path, and is preheated by the low pressure steam air preheater. Characterized by merging with commercial air A.

本発明の請求項1に係る廃棄物処理設備、または本発明の請求項に係る廃棄物処理設備における回収熱の利用方法では、廃棄物処理炉に対して、ダスト除去手段でダストが除去されたダスト除去ガスの熱を回収するガス式空気予熱器によって予熱された炉用空気が供給される。 In the waste processing facility according to claim 1 of the present invention or the method of using recovered heat in the waste processing facility according to claim 2 of the present invention, dust is removed by the dust removing means with respect to the waste processing furnace. Furnace air preheated by a gas air preheater that recovers the heat of the dust removal gas is supplied.

従って、本発明の請求項1に係る廃棄物処理設備、または本発明の請求項に係る廃棄物処理設備における回収熱の利用方法によれば、ガス式空気予熱器が腐食したり、ダストで目詰まりしたりするようなことがないから、廃棄物処理設備のメンテナンスコストの低減、および稼働率の向上が可能になる。そして、従来未利用であったダスト除去ガスの熱で炉用空気を予熱することにより、廃熱ボイラから発電機を駆動する蒸気タービンに対して多くの高圧蒸気を供給することができる。従って、発電量の増大に大いに寄与することができ、結果的にCO排出量削減に寄与することができる。 Therefore, according to the method for using recovered heat in the waste treatment facility according to claim 1 of the present invention or the waste treatment facility according to claim 2 of the present invention, the gas air preheater is corroded or dusted. Since there is no clogging, the maintenance cost of the waste treatment facility can be reduced and the operating rate can be improved. Then, by preheating the furnace air with the heat of dust removal gas that has not been used conventionally, a large amount of high-pressure steam can be supplied from the waste heat boiler to the steam turbine that drives the generator. Therefore, it can greatly contribute to an increase in the amount of power generation, and as a result, it can contribute to a reduction in CO 2 emissions.

本発明の請求項1に係る廃棄物処理設備、または本発明の請求項に係る廃棄物処理設備における回収熱の利用方法では、ガス式空気予熱器で予熱された炉用空気は、廃熱ボイラで生成された高圧蒸気の熱を高圧蒸気式空気予熱器で回収して予熱する。 In the waste treatment facility according to claim 1 of the present invention or the method of using recovered heat in the waste treatment facility according to claim 2 of the present invention, the furnace air preheated by the gas air preheater is waste heat. The high-pressure steam heat generated in the boiler is recovered and preheated with a high-pressure steam air preheater.

従って、本発明の請求項1に係る廃棄物処理設備、または本発明の請求項に係る廃棄物処理設備における回収熱の利用方法によれば、高圧蒸気式空気予熱器による炉用空気を予熱するための熱量を少なくすることができ、廃熱ボイラから高圧蒸気式空気予熱器に供給する高圧蒸気の供給量を少なくすることができる。そのため、多くの高圧蒸気を、発電機を駆動する蒸気タービンに供給することができるから、発電量がそれほど減少するようなことがない。一方、廃棄物処理炉に対して供給する炉用空気をより高温にすることができるので、廃棄物処理炉への補助燃料の減少に寄与することができる。 Therefore, according to the method for using recovered heat in the waste treatment facility according to claim 1 of the present invention or the waste treatment facility according to claim 2 of the present invention, the furnace air is preheated by the high-pressure steam air preheater. Therefore, the amount of high pressure steam supplied from the waste heat boiler to the high pressure steam air preheater can be reduced. Therefore, since a lot of high-pressure steam can be supplied to the steam turbine that drives the generator, the amount of power generation does not decrease so much. On the other hand, since the furnace air supplied to the waste treatment furnace can be heated to a higher temperature, it is possible to contribute to the reduction of auxiliary fuel to the waste treatment furnace.

本発明の請求項に係る廃棄物処理設備、または本発明の請求項に係る廃棄物処理設備における回収熱の利用方法では、炉用空気は蒸気タービンから排出される低圧蒸気の熱を回収する低圧蒸気式空気予熱器で予熱されて、ダスト除去手段によってダストが除去されたダスト除去ガスの熱を回収するガス式空気予熱器に供給される。次いで、このガス式空気予熱器で予熱されて高圧蒸気式空気予熱器に供給される。 The usage of recovered heat in waste treatment facilities according to claim 2 of the waste treatment facility, or the present invention according to a first aspect of the present invention, the furnace air recovers heat of the low pressure steam discharged from the steam turbine The gas-type air preheater recovers the heat of the dust removal gas that has been preheated by the low pressure steam air preheater and from which the dust has been removed by the dust removal means. Next, it is preheated by this gas air preheater and supplied to the high pressure steam air preheater.

従って、本発明の請求項に係る廃棄物処理設備、または本発明の請求項に係る廃棄物処理設備における回収熱の利用方法によれば、ガス式空気予熱器が腐食したり、ダストで目詰まりしたりするようなことがないから、廃棄物処理設備のメンテナンスコストの低減、および稼働率の向上が可能になる。そして、ガス式空気予熱器から上記請求項2、または請求項6の場合よりも高温の炉用空気を高圧蒸気式空気予熱器に供給することができ、廃熱ボイラから高圧蒸気式空気予熱器に供給する高圧蒸気の供給量をより少なくすることができる。そのため、より多くの高圧蒸気を、発電機を駆動する蒸気タービンに供給することができる。さらに、今まで殆ど利用されなかった蒸気タービンから排出される低圧蒸気の熱を回収するので、廃棄物処理設備全体の熱効率が一層向上する。 Therefore, according to the waste treatment facility or usage of recovered heat in waste treatment facilities according to claim 2 of the present invention, according to a first aspect of the present invention, or a gas type air preheater corrosion, in dust Since there is no clogging, the maintenance cost of the waste treatment facility can be reduced and the operating rate can be improved. Then, the furnace air having a temperature higher than that in the case of claim 2 or 6 can be supplied from the gas air preheater to the high pressure steam air preheater, and the high pressure steam air preheater can be supplied from the waste heat boiler. The amount of high-pressure steam supplied to can be reduced. Therefore, more high-pressure steam can be supplied to the steam turbine that drives the generator. Furthermore, since the heat of the low-pressure steam discharged from the steam turbine that has been hardly used until now is recovered, the thermal efficiency of the entire waste treatment facility is further improved.

本発明の請求項に係る廃棄物処理設備、または本発明の請求項に係る廃棄物処理設備における回収熱の利用方法では、ダスト除去手段でダストが除去されたダスト除去ガスの熱を回収するガス式空気予熱器によって予熱された空気の一部が、還流路を介してガス式空気予熱器と低圧蒸気式空気予熱器の間に還流され、空気供給源から供給される炉用空気に合流する。そして、合流した炉用空気はガス式空気予熱器によって予熱されて高圧蒸気式空気予熱器に供給される。 The usage of recovered heat in waste treatment facilities according to claim 2 according wastes according to claim 1 treatment facility, or the invention of the present invention, recovering the heat of the dust removal gas dust has been removed by the dust removing means A portion of the air preheated by the gas air preheater is recirculated between the gas air preheater and the low-pressure steam air preheater via the reflux path to the furnace air supplied from the air supply source. Join. The combined furnace air is preheated by the gas air preheater and supplied to the high pressure steam air preheater.

従って、本発明の請求項に係る廃棄物処理設備、または本発明の請求項に係る廃棄物処理設備における回収熱の利用方法によれば、ガス式空気予熱器が腐食したり、ダストで目詰まりしたりするようなことがないから、廃棄物処理設備のメンテナンスコストの低減、および稼働率の向上が可能になる。そして、ガス式空気予熱器から上記請求項3、または請求項7の場合よりも高温の炉用空気を高圧蒸気式空気予熱器に供給することができ、廃熱ボイラから高圧蒸気式空気予熱器に供給する高圧蒸気の供給量をよりより一層少なくすることができる。そのため、より一層多くの高圧蒸気を、発電機を駆動する蒸気タービンに供給することができる。 Therefore, according to the waste treatment facility or usage of recovered heat in waste treatment facilities according to claim 2 of the present invention, according to a first aspect of the present invention, or a gas type air preheater corrosion, in dust Since there is no clogging, the maintenance cost of the waste treatment facility can be reduced and the operating rate can be improved. The furnace air having a temperature higher than that in the case of claim 3 or 7 can be supplied from the gas air preheater to the high pressure steam air preheater, and the high pressure steam air preheater can be supplied from the waste heat boiler. The amount of high-pressure steam supplied to can be further reduced. Therefore, much more high-pressure steam can be supplied to the steam turbine that drives the generator.

以下、本発明の廃棄物処理設備における回収熱の利用方法を実施する、本発明の実施の形態1に係る廃棄物処理設備を、添付図面を参照しながら説明する。図1は本発明の実施の形態1に係る廃棄物処理設備の装置類配設状態を示すブロック図である。   Hereinafter, a waste treatment facility according to Embodiment 1 of the present invention that implements a method of using recovered heat in a waste treatment facility of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing an apparatus arrangement state of a waste treatment facility according to Embodiment 1 of the present invention.

図1に示す符号1は、本発明の実施の形態1に係る廃棄物処理設備で、この廃棄物処理設備1は、後述するように構成されている。即ち、都市ごみ、産業廃棄物等の廃棄物を減容化処理する、後述する廃棄物処理炉2が配設されている。この廃棄物処理炉2は、廃棄物を加熱してガス化するガス化炉2aと,このガス化炉2aの下流側に配設され、このガス化炉2aから排出される排ガス中の灰等のダストを溶融する溶融炉2bとから構成されている。そして、前記溶融炉2bの下流側に、この溶融炉2bから排出されるガスの熱を利用して、300℃以上の高圧蒸気を生成させる廃熱ボイラ3が配設されている。この実施の形態1の場合は、図1に示されているように、前記溶融炉2bと前記廃熱ボイラ3とは離れた位置に配設されているが、例えば前記廃熱ボイラ3が前記溶融炉2bの炉頂に設けられてなる一体構成であってもよく、特に分離構成でなければならないわけではない。   Reference numeral 1 shown in FIG. 1 is a waste treatment facility according to Embodiment 1 of the present invention, and the waste treatment facility 1 is configured as described later. That is, a waste treatment furnace 2 to be described later for reducing the volume of waste such as municipal waste and industrial waste is disposed. The waste treatment furnace 2 includes a gasification furnace 2a that heats and gasifies waste, and an ash in exhaust gas that is disposed on the downstream side of the gasification furnace 2a and is discharged from the gasification furnace 2a. And a melting furnace 2b for melting the dust. A waste heat boiler 3 that generates high-pressure steam at 300 ° C. or higher is disposed on the downstream side of the melting furnace 2b using the heat of the gas discharged from the melting furnace 2b. In the case of the first embodiment, as shown in FIG. 1, the melting furnace 2b and the waste heat boiler 3 are disposed at positions separated from each other. For example, the waste heat boiler 3 is An integral configuration provided on the top of the melting furnace 2b may be used, and the separation configuration is not particularly required.

前記廃熱ボイラ3の下流側に、この廃熱ボイラ3から排出される排ガスの温度を、例えば170℃まで低下させる減温塔4が設けられている。そして、この減温塔4の下流側に、この減温塔4から排出される減温後の排ガス中のHCl、SOx、ダイオキシン類を除去しながら、排ガス中の飛灰等のダストを捕捉し、捕捉した飛灰等のダストを分離して、系外に排出するバグフィルタ(ダスト除去手段)5が設けられている。さらに、前記バグフィルタ5の下流側に、廃熱ボイラ3にて発生する蒸気によりダスト除去排ガスを再加熱する再加熱装置6、再加熱されたダスト除去排ガス中のNOx、ダイオキシン類を分解・除去する触媒反応塔7、および後述するガス式空気予熱器10を介して誘引送風機8が設けられると共に、この誘引送風機8の下流側に、この誘引送風機8により誘引されたダスト除去後のダスト除去排ガスを大気中に放出する煙突9が設けられている。   On the downstream side of the waste heat boiler 3, a temperature reduction tower 4 is provided for reducing the temperature of the exhaust gas discharged from the waste heat boiler 3 to, for example, 170 ° C. And, dust such as fly ash in the exhaust gas is captured on the downstream side of the temperature reduction tower 4 while removing HCl, SOx, dioxins in the exhaust gas after temperature reduction discharged from the temperature reduction tower 4. A bag filter (dust removing means) 5 is provided for separating the captured dust such as fly ash and discharging it out of the system. Further, on the downstream side of the bag filter 5, a reheating device 6 for reheating the dust removal exhaust gas with the steam generated in the waste heat boiler 3, decomposes and removes NOx and dioxins in the reheated dust removal exhaust gas. An induction blower 8 is provided via a catalytic reaction tower 7 and a gas air preheater 10 described later, and dust removal exhaust gas after dust removal attracted by the induction blower 8 is provided downstream of the induction blower 8. A chimney 9 is provided for releasing the air into the atmosphere.

前記ガス式空気予熱器10は、図示しない空気供給源から供給され、前記ガス化炉2aに供給するための燃焼用空気、および前記溶融炉2bに供給する溶融用空気、つまり燃焼、溶融用空気(炉用空気)Arを、前記バグフィルタ5、再加熱装置6、触媒反応塔7を介して排出されるダスト除去ガスの熱を回収して予熱する熱交換器から構成されている。このガス式空気予熱器10によって予熱された燃焼、溶融用空気Arは、前記廃棄物処理炉2のガス化炉2aと、溶融炉2bに供給されるように構成されている。そして、前記廃熱ボイラ3から排出される高圧蒸気は、図示しない発電機を駆動するための図示しない蒸気タービンに供給され、発電のために消費されるように構成されている。   The gas-type air preheater 10 is supplied from an air supply source (not shown), combustion air for supplying to the gasification furnace 2a, and melting air supplied to the melting furnace 2b, that is, combustion and melting air (Furnace air) Ar is composed of a heat exchanger that recovers and preheats the heat of the dust removal gas discharged through the bag filter 5, the reheating device 6, and the catalytic reaction tower 7. Combustion and melting air Ar preheated by the gas air preheater 10 is configured to be supplied to the gasification furnace 2a and the melting furnace 2b of the waste treatment furnace 2. The high-pressure steam discharged from the waste heat boiler 3 is supplied to a steam turbine (not shown) for driving a generator (not shown) and is consumed for power generation.

以下、本発明の実施の形態1に係る廃棄物処理設備1の作用態様を説明する。即ち、図示しないピット内に貯留されている都市ごみ、産業廃棄物等の廃棄物が図示しない廃棄物供給装置から所定量ずつ切出されてガス化炉2aに供給される。このガス化炉2aに供給された廃棄物は、このガス化炉2a内における加熱によってガス化され、一酸化炭素等の可燃ガス、チャー、灰分等のダストと共に、このガス化炉2aから下流側の溶融炉2bに供給される。この溶融炉2bに供給された灰分は、この溶融炉2bで溶融されて溶融スラグとなり、この溶融炉2bの下部に設けられた図示しないスラグ排出口から図示しないスラグ冷却槽内に排出されて冷却される。   Hereinafter, the operation mode of the waste treatment facility 1 according to Embodiment 1 of the present invention will be described. That is, waste such as municipal waste and industrial waste stored in a pit (not shown) is cut out by a predetermined amount from a waste supply device (not shown) and supplied to the gasifier 2a. The waste supplied to the gasification furnace 2a is gasified by heating in the gasification furnace 2a, and together with combustible gas such as carbon monoxide, dust such as char and ash, the downstream side from the gasification furnace 2a. To the melting furnace 2b. The ash supplied to the melting furnace 2b is melted in the melting furnace 2b to become molten slag, and is discharged into a slag cooling tank (not shown) from a slag discharge port (not shown) provided in the lower part of the melting furnace 2b to be cooled. Is done.

前記溶融炉2bから排出され、飛灰等のダストを含む高温の排ガスは前記廃熱ボイラ3、および前記減温塔4を経て、排ガス中のHCl、SOxを除去するための消石灰等のアルカリ系薬剤、およびダイオキシン類を除去するための活性炭等の吸着剤がガス入口に供給されているバグフィルタ5に供給される。そして、このバグフィルタ5に供給された排ガス中のHCl、SOx、ダイオキシン類が消石灰等のアルカリ系薬剤、活性炭等の吸着剤により除去されると共に、灰分等のダストが捕捉される。次いで、HCl、SOx、ダイオキシン類、ダストが除去されたダスト除去ガスが再加熱装置6で再加熱される。そして、再加熱されたダスト除去ガスが触媒反応塔7に導入され、ここにおいてダスト除去ガス中のNOx、ダイオキシン類が分解・除去された後、前記ガス式空気予熱器10、前記誘引送風機8を経て煙突9から大気中に放出される。   High-temperature exhaust gas discharged from the melting furnace 2b and containing dust such as fly ash passes through the waste heat boiler 3 and the temperature-decreasing tower 4, and is alkaline such as slaked lime for removing HCl and SOx in the exhaust gas. An adsorbent such as activated carbon for removing chemicals and dioxins is supplied to the bag filter 5 supplied to the gas inlet. Then, HCl, SOx, and dioxins in the exhaust gas supplied to the bag filter 5 are removed by an alkaline agent such as slaked lime and an adsorbent such as activated carbon, and dust such as ash is captured. Next, the dust removal gas from which HCl, SOx, dioxins and dust have been removed is reheated by the reheating device 6. Then, the reheated dust removal gas is introduced into the catalytic reaction tower 7, where NOx and dioxins in the dust removal gas are decomposed and removed, and then the gas air preheater 10 and the induction blower 8 are connected. After that, it is emitted from the chimney 9 into the atmosphere.

本発明の実施の形態1に係る廃棄物処理設備1では、都市ごみ、産業廃棄物等の廃棄物は上記のような経緯を経て減容化され、然るべき処置が講じられることにより無害化されて処理される。このような廃棄物処理設備1による廃棄物の処理工程中において、前記廃棄物処理炉2のガス化炉2aと、溶融炉2bに、前記バグフィルタ5で腐食成分であるHCl、SOx、ダストが除去されると共に、触媒反応塔7によりNOx、ダイオキシン類が除去されたダスト除去ガスの熱を回収するガス式空気予熱器10により予熱された燃焼、溶融用空気Arが供給される。   In the waste treatment facility 1 according to the first embodiment of the present invention, waste such as municipal waste and industrial waste is reduced in volume through the above-described process, and detoxified by taking appropriate measures. It is processed. During the waste treatment process by the waste treatment facility 1, HCl, SOx, and dust, which are corrosive components in the bag filter 5, are contained in the gasification furnace 2 a and the melting furnace 2 b of the waste treatment furnace 2. The combustion and melting air Ar preheated by the gas air preheater 10 that recovers the heat of the dust removal gas from which NOx and dioxins have been removed by the catalytic reaction tower 7 is supplied.

従って、本発明の実施の形態1に係る廃棄物処理設備1によれば、前記ガス式空気予熱器10がプレート式の熱交換器であっても、腐食成分で腐食するようなことがなく、また排ガス中の飛灰等のダストにより目詰まりするようなことがないから、廃棄物処理設備1のメンテナンスコストの低減と稼働率の向上が可能になる。これに加えて、高い熱伝導率を長期間維持し続けることができ、ガス式空気予熱器10を小型化することができるから、廃棄物の処理コストの低減に対しても大いに寄与することができる。   Therefore, according to the waste treatment facility 1 according to Embodiment 1 of the present invention, even if the gas-type air preheater 10 is a plate-type heat exchanger, it does not corrode with corrosive components, Further, since there is no clogging due to dust such as fly ash in the exhaust gas, the maintenance cost of the waste treatment facility 1 can be reduced and the operating rate can be improved. In addition to this, high thermal conductivity can be maintained for a long period of time, and the gas air preheater 10 can be miniaturized, which can greatly contribute to the reduction of waste disposal costs. it can.

さらに、前記廃熱ボイラ3で生成した高圧蒸気を、図示しない発電機を駆動する図示しない蒸気タービンに供給することができる。従って、廃棄物処理設備1全体の熱効率が向上し、発電量の増大に対して大いに寄与することができるという優れた効果を得ることができる。換言すれば、CO排出量削減に寄与することができ、地球温暖化の改善に対して大いに貢献することができる。 Furthermore, the high-pressure steam generated by the waste heat boiler 3 can be supplied to a steam turbine (not shown) that drives a generator (not shown). Therefore, the thermal efficiency of the waste treatment facility 1 as a whole can be improved, and an excellent effect that it can greatly contribute to an increase in the amount of power generation can be obtained. In other words, it can contribute to CO 2 emission reduction and can greatly contribute to the improvement of global warming.

本発明の廃棄物処理設備における回収熱の利用方法を実施する、本発明の実施の形態2に係る廃棄物処理設備を、添付図面を参照しながら説明する。図2は本発明の実施の形態2に係る廃棄物処理設備の装置類配設状態を示すブロック図である。なお、本発明の実施の形態2に係る廃棄物処理設備は、図1と図2との比較において良く理解されるように、高圧蒸気式空気予熱器が付加されたところにあり、これ以外は上記実施の形態1に係る廃棄物処理設備と同構成であるから、同一のものには同一の符号を付して、主として相違する点について、同一のものは同一名称を以って説明する。   A waste treatment facility according to a second embodiment of the present invention that implements a method of using recovered heat in the waste treatment facility of the present invention will be described with reference to the accompanying drawings. FIG. 2 is a block diagram showing a device arrangement state of the waste treatment facility according to Embodiment 2 of the present invention. Note that the waste treatment facility according to Embodiment 2 of the present invention has a high-pressure steam air preheater added thereto, as is well understood in the comparison between FIG. 1 and FIG. Since the configuration is the same as that of the waste treatment facility according to the first embodiment, the same components are denoted by the same reference numerals, and different points are mainly described with the same names.

即ち、本実施の形態2に係る廃棄物処理設備1aでは、ガス式空気予熱器10によって予熱された燃焼、溶融用空気Arは、後述する高圧蒸気式空気予熱器11に供給されるように構成されている。前記高圧蒸気式空気予熱器11は、前記廃熱ボイラ3から供給される300℃以上の温度の高圧蒸気の一部の熱を回収して、前記廃棄物処理炉2のガス化炉2aと溶融炉2bとに供給する燃焼、溶融用空気を、予め設定された温度になるまで予熱する熱交換器から構成されている。なお、前記廃熱ボイラ3から排出される高圧蒸気の殆どは、図示しない発電機を駆動するための図示しない蒸気タービンに供給され、発電のために消費されるように構成されている。   That is, the waste treatment facility 1a according to the second embodiment is configured such that the combustion and melting air Ar preheated by the gas air preheater 10 is supplied to the high pressure steam air preheater 11 described later. Has been. The high-pressure steam air preheater 11 recovers a part of heat of high-pressure steam having a temperature of 300 ° C. or more supplied from the waste heat boiler 3 and melts it with the gasification furnace 2 a of the waste treatment furnace 2. Combustion and melting air supplied to the furnace 2b is constituted by a heat exchanger that preheats until reaching a preset temperature. Note that most of the high-pressure steam discharged from the waste heat boiler 3 is supplied to a steam turbine (not shown) for driving a generator (not shown) and consumed for power generation.

本実施の形態2に係る廃棄物処理設備1aによれば、ガス式空気予熱器10により予熱された燃焼、溶融用空気Arは、廃熱ボイラ3で生成された高圧蒸気の熱を回収する高圧蒸気式空気予熱器11により熱された後に、前記廃棄物処理炉2のガス化炉2aと溶融炉2bとに供給される。従って、高圧蒸気式空気予熱器11による燃焼、溶融用空気Arを予熱するための熱量を少なくすることができ、廃熱ボイラ3から高圧蒸気式空気予熱器11に供給する高圧蒸気の供給量を少なくすることができる。そのため、多くの高圧蒸気を、発電機を駆動する蒸気タービンに供給することができるから、発電量がそれほど減少するようなことがない。一方、廃棄物処理炉2に対して供給する燃焼、溶融用空気Arをより高温にすることができるので、廃棄物処理炉2への補助燃料の減少に寄与することができる。   According to the waste treatment facility 1 a according to the second embodiment, the combustion and melting air Ar preheated by the gas air preheater 10 is a high pressure that recovers the heat of the high-pressure steam generated in the waste heat boiler 3. After being heated by the steam air preheater 11, it is supplied to the gasification furnace 2 a and the melting furnace 2 b of the waste treatment furnace 2. Therefore, the amount of heat for preheating the combustion and melting air Ar by the high pressure steam air preheater 11 can be reduced, and the amount of high pressure steam supplied from the waste heat boiler 3 to the high pressure steam air preheater 11 can be reduced. Can be reduced. Therefore, since a lot of high-pressure steam can be supplied to the steam turbine that drives the generator, the amount of power generation does not decrease so much. On the other hand, since the combustion and melting air Ar supplied to the waste treatment furnace 2 can be heated to a higher temperature, it is possible to contribute to a reduction in auxiliary fuel to the waste treatment furnace 2.

勿論、本発明の実施の形態2に係る廃棄物処理設備1aによれば、上記実施の形態1に係る廃棄物処理設備1と同様に、前記ガス式空気予熱器10がプレート式の熱交換器であっても、腐食成分で腐食するようなことがなく、また排ガス中の飛灰等のダストにより目詰まりするようなことがないから、廃棄物処理設備1aのメンテナンスコストの低減と稼働率の向上が可能になる。これに加えて、高い熱伝導率を長期間維持し続けることができ、ガス式空気予熱器10を小型化することができるから、廃棄物の処理コストの低減に対しても大いに寄与することができる。   Of course, according to the waste treatment facility 1a according to the second embodiment of the present invention, the gas air preheater 10 is a plate-type heat exchanger as in the waste treatment facility 1 according to the first embodiment. However, since it does not corrode with corrosive components and is not clogged with dust such as fly ash in the exhaust gas, the maintenance cost of the waste treatment facility 1a can be reduced and the operation rate can be reduced. Improvement is possible. In addition to this, high thermal conductivity can be maintained for a long period of time, and the gas air preheater 10 can be miniaturized, which can greatly contribute to the reduction of waste disposal costs. it can.

本発明の廃棄物処理設備における回収熱の利用方法を実施する、本発明の実施の形態3に係る廃棄物処理設備を、添付図面を参照しながら説明する。図3は本発明の実施の形態3に係る廃棄物処理設備の装置類配設状態を示すブロック図である。なお、本発明の実施の形態3に係る廃棄物処理設備が上記実施の形態2に係る廃棄物処理設備と相違するところは、低圧蒸気式空気予熱器が付加されたところにあり、これ以外は上記実施の形態2に係る廃棄物処理設備と同構成であるから、同一のものには同一の符号を付して、主として相違する点について、同一のものは同一名称を以って説明する。   A waste treatment facility according to a third embodiment of the present invention that implements a method of using recovered heat in the waste treatment facility of the present invention will be described with reference to the accompanying drawings. FIG. 3 is a block diagram showing a device arrangement state of the waste treatment facility according to Embodiment 3 of the present invention. The difference between the waste treatment facility according to Embodiment 3 of the present invention and the waste treatment facility according to Embodiment 2 is that a low-pressure steam air preheater is added. Since the configuration is the same as that of the waste treatment facility according to the second embodiment, the same components are denoted by the same reference numerals, and different points are mainly described with the same names.

即ち、本発明の実施の形態3に係る廃棄物処理設備1bは、上記実施の形態2に係る廃棄物処理設備1aと、この廃棄物処理設備1aの前記ガス式空気予熱器10の上流側、つまりこのガス式空気予熱器10と、図示しない燃焼、溶融用空気供給源との間に、後述する低圧蒸気式空気予熱器12が配設されている。この低圧蒸気式空気予熱器12は、図示しない発電機を駆動する図示しない蒸気タービンから排出される低圧蒸気の熱を回収することにより、前記ガス式空気予熱器10に供給する燃焼、溶融用空気Arを予熱する熱交換器から構成されている。   That is, the waste treatment facility 1b according to the third embodiment of the present invention includes a waste treatment facility 1a according to the second embodiment and an upstream side of the gas air preheater 10 of the waste treatment facility 1a. That is, a low-pressure steam air preheater 12 described later is disposed between the gas air preheater 10 and an unillustrated combustion / melting air supply source. The low-pressure steam air preheater 12 collects heat of low-pressure steam discharged from a steam turbine (not shown) that drives a generator (not shown), thereby supplying combustion and melting air to the gas air preheater 10. It consists of a heat exchanger that preheats Ar.

本発明の実施の形態3に係る廃棄物処理設備1bの場合においては、燃焼、溶融用空気Arは図示しない蒸気タービンから排出される低圧蒸気の熱を回収する低圧蒸気式空気予熱器12と、ダスト除去ガスの熱を回収するガス式空気予熱器10とにより予熱される。
即ち、燃焼、溶融用空気Arが図示しない蒸気タービンから排出される低圧蒸気の熱を回収する低圧蒸気式空気予熱器12により予熱されてガス式空気予熱器10に供給されると共に、このガス式空気予熱器10により、さらに予熱されて高圧蒸気式空気予熱器11に供給される。
In the case of the waste treatment facility 1b according to Embodiment 3 of the present invention, the combustion and melting air Ar is a low pressure steam air preheater 12 that recovers heat of low pressure steam discharged from a steam turbine (not shown); Preheated by a gas air preheater 10 that recovers the heat of the dust removal gas.
That is, the combustion and melting air Ar is preheated by the low pressure steam air preheater 12 that recovers the heat of the low pressure steam discharged from a steam turbine (not shown) and supplied to the gas air preheater 10. It is further preheated by the air preheater 10 and supplied to the high-pressure steam air preheater 11.

従って、本発明の実施の形態3に係る廃棄物処理設備1bによれば、上記実施の形態1に係る廃棄物処理設備1の場合と同様に、前記ガス式空気予熱器10が腐食成分で腐食するようなことがなく、また排ガス中の飛灰等のダストにより目詰まりするようなことがないから、廃棄物処理設備1bのメンテナンスコストの低減、稼働率の向上が可能になる。そして、ガス式空気予熱器10からより高温の燃焼、溶融用空気を高圧蒸気式空気予熱器11に供給することができ、廃熱ボイラ3から高圧蒸気式空気予熱器11に供給する高圧蒸気の供給量をより少なくすることができるから、より多くの高圧蒸気を、発電機を駆動する蒸気タービンに供給することができる。さらに、今まで殆ど利用されなかった蒸気タービンから排出される低圧蒸気の熱を回収するので、廃棄物処理設備全体の熱効率が一層向上し、CO排出量削減に対してより一層寄与することができるから、地球温暖化の改善に対して大いに貢献することができる。 Therefore, according to the waste treatment facility 1b according to the third embodiment of the present invention, as in the case of the waste treatment facility 1 according to the first embodiment, the gas air preheater 10 corrodes with a corrosive component. Therefore, it is possible to reduce the maintenance cost and improve the operation rate of the waste treatment facility 1b. Then, higher temperature combustion and melting air can be supplied from the gas air preheater 10 to the high pressure steam air preheater 11, and the high pressure steam supplied from the waste heat boiler 3 to the high pressure steam air preheater 11 can be supplied. Since the supply amount can be reduced, more high-pressure steam can be supplied to the steam turbine that drives the generator. Furthermore, since the heat of the low-pressure steam exhausted from the steam turbine that has been rarely used until now is recovered, the thermal efficiency of the entire waste treatment facility can be further improved and further contribute to CO 2 emission reduction. It can make a great contribution to the improvement of global warming.

本発明の廃棄物処理設備における回収熱の利用方法を実施する、本発明の実施の形態4に係る廃棄物処理設備を、添付図面を参照しながら説明する。図4は本発明の実施の形態4に係る廃棄物処理設備の装置類配設状態を示すブロック図である。なお、本発明の実施の形態4に係る廃棄物処理設備が上記実施の形態3に係る廃棄物処理設備と相違するところは、ガス式空気予熱器から流出する、予熱後の燃焼、溶融用空気の一部を、このガス式空気予熱器の燃焼、溶融用空気の入口側に還流させる構成にしたところにあり、これ以外は上記実施の形態3に係る廃棄物処理設備と同構成であるから、同一のものには同一の符号を付して、主として相違する点について、同一のものは同一名称を以って説明する。   A waste treatment facility according to a fourth embodiment of the present invention that implements a method of using recovered heat in the waste treatment facility of the present invention will be described with reference to the accompanying drawings. FIG. 4 is a block diagram showing an apparatus arrangement state of the waste treatment facility according to Embodiment 4 of the present invention. Note that the waste treatment facility according to the fourth embodiment of the present invention differs from the waste treatment facility according to the third embodiment in that the preheated combustion and melting air flows out from the gas air preheater. Is partly configured to be recirculated to the combustion and melting air inlet side of the gas-type air preheater, and the rest is the same as the waste treatment facility according to the third embodiment. The same components are denoted by the same reference numerals, and different points will be described with the same names.

即ち、本発明の実施の形態4に係る廃棄物処理設備1cは前記ガス式空気予熱器10と前記高圧蒸気式空気予熱器11の間と、前記ガス式空気予熱器10と前記低圧蒸気式空気予熱器12の間とが、前記ガス式空気予熱器10によって予熱された燃焼、溶融用空気の一部を還流させる還流路13を介して接続されている。なお、この還流路13の途中には図示しない誘引送風機が介装されており、この誘引送風機は図示しないスイッチの操作により駆動されるように構成されている。   That is, the waste treatment facility 1c according to Embodiment 4 of the present invention includes the gas air preheater 10 and the high pressure steam air preheater 11, and the gas air preheater 10 and the low pressure steam air. The preheaters 12 are connected to each other via a reflux path 13 that recirculates a part of combustion and melting air preheated by the gas air preheater 10. An induction fan (not shown) is interposed in the middle of the reflux path 13, and the induction fan is configured to be driven by operating a switch (not shown).

本発明の実施の形態4に係る廃棄物処理設備1cの場合、前記バグフィルタ5によりダストが除去されたダスト除去ガスの熱を回収する前記ガス式空気予熱器10により予熱された燃焼、溶融用空気Arの一部が前記還流路13を介して、前記ガス式空気予熱器10と前記低圧蒸気式空気予熱器12の間に還流され、還流された燃焼、溶融用空気Arの一部は、前記ガス式空気予熱器10により再び予熱されて高圧蒸気式空気予熱器11に供給される。   In the case of the waste treatment facility 1c according to Embodiment 4 of the present invention, for combustion and melting preheated by the gas air preheater 10 that recovers the heat of the dust removal gas from which dust has been removed by the bag filter 5. A part of the air Ar for recirculation, which is partly recirculated between the gas-type air preheater 10 and the low-pressure steam air preheater 12 via the recirculation path 13 and recirculated, It is preheated again by the gas air preheater 10 and supplied to the high pressure steam air preheater 11.

従って、本発明の実施の形態4に係る廃棄物処理設備1cによれば、上記実施の形態1乃至3に係る廃棄物処理設備1,1a,1bの場合と同様、前記ガス式空気予熱器10がダストにより目詰まりするようなことがないから、廃棄物処理設備1cのメンテナンスコストの低減、稼働率の向上が可能になる。そして、ガス式空気予熱器10からより一層高温の燃焼、溶融用空気を高圧蒸気式空気予熱器11に供給することができ、廃熱ボイラ3から高圧蒸気式空気予熱器11に供給する高圧蒸気の供給量をより一層少なくすることができるから、より一層多くの高圧蒸気を、図示しない発電機を駆動する図示しない蒸気タービンに供給することができる。   Therefore, according to the waste treatment facility 1c according to the fourth embodiment of the present invention, as in the case of the waste treatment facilities 1, 1a, 1b according to the first to third embodiments, the gas air preheater 10 described above. Therefore, the maintenance cost of the waste treatment facility 1c can be reduced and the operating rate can be improved. Further, higher temperature combustion and melting air can be supplied from the gas air preheater 10 to the high pressure steam air preheater 11, and the high pressure steam supplied from the waste heat boiler 3 to the high pressure steam air preheater 11. Therefore, a larger amount of high-pressure steam can be supplied to a steam turbine (not shown) that drives a generator (not shown).

ところで、前記高圧蒸気式空気予熱器11の出口側と前記還流路13とを第2還流路14により連通させ、高圧蒸気式空気予熱器11から流出する燃焼、溶融用空気の一部を前記還流路13を介して前記ガス式空気予熱器10に還流させる構成にすることができる。このような構成にすると、前記ガス式空気予熱器10の入口の空気温度を上げることで、前記ガス式空気予熱器10の伝熱管の表面温度を上げることができるため、酸性ガスによる低温腐食を軽減できるという優れた効果を得ることができる。   By the way, the outlet side of the high-pressure steam air preheater 11 and the reflux path 13 are communicated with each other by a second reflux path 14, and a part of combustion and melting air flowing out from the high-pressure steam air preheater 11 is refluxed. A configuration may be adopted in which the gas-type air preheater 10 is refluxed through the passage 13. With such a configuration, the surface temperature of the heat transfer tube of the gas air preheater 10 can be increased by increasing the air temperature at the inlet of the gas air preheater 10, so that low temperature corrosion due to acid gas is prevented. An excellent effect that it can be reduced can be obtained.

以下、本発明の廃棄物処理設備に係る実施例を説明する。この場合は、ガス化炉2aと溶融炉2bとに供給する燃焼、溶融用空気の予熱に、高圧蒸気式空気予熱器11のみを用いた廃棄物処理設備の場合(以下、比較例という)と、ガス式空気予熱器10で予熱した燃焼、溶融用空気を高圧蒸気式空気予熱器11に供給する実施の形態2に係る廃棄物処理設備1aの場合(以下、本例という)との発電機による発電量を計算により求めて比較したものである。   Examples according to the waste treatment facility of the present invention will be described below. In this case, a waste treatment facility using only the high pressure steam air preheater 11 for preheating the combustion and melting air supplied to the gasification furnace 2a and the melting furnace 2b (hereinafter referred to as a comparative example) The generator in the case of the waste treatment facility 1a according to the second embodiment for supplying combustion and melting air preheated by the gas air preheater 10 to the high pressure steam air preheater 11 (hereinafter referred to as this example) This is a comparison of the amount of power generated by the calculation.

計算結果によると、高圧蒸気式空気予熱器11に供給する高圧蒸気の供給量が少なくて済み、供給量が少なくなった分だけ余分の高圧蒸気を蒸気タービンに供給することができるため、発電機による発電量は、1%程度増加することが判った。この場合、ガス式空気予熱器10の燃焼、溶融用空気の入口、出口温度、および条件は、高圧蒸気式空気予熱器11の出口温度は、下記のとおりである。
(1)ガス式空気予熱器
入口温度: 20℃
出口温度: 80℃(+ 60℃)
(2)高圧蒸気式空気予熱器
出口温度:200℃(+120℃)
According to the calculation result, since the supply amount of the high-pressure steam supplied to the high-pressure steam air preheater 11 is small, and the excess high-pressure steam can be supplied to the steam turbine by the reduced supply amount, the generator It has been found that the amount of power generated by increases by about 1%. In this case, the combustion of the gas air preheater 10, the inlet temperature of the melting air, the outlet temperature, and the conditions are as follows. The outlet temperature of the high pressure steam air preheater 11 is as follows.
(1) Gas air preheater Inlet temperature: 20 ° C
Outlet temperature: 80 ° C (+ 60 ° C)
(2) High-pressure steam air preheater Outlet temperature: 200 ° C (+ 120 ° C)

なお、以上の実施の形態1乃至4に係る廃棄物処理設備においては、廃棄物処理炉がガス化炉と溶融炉とから構成されてなる場合を例として説明した。しかしながら、これに限らず、本発明の技術的思想を廃棄物処理炉として廃棄物を焼却処理する焼却炉のみ、焼却炉で焼却された焼却灰を溶融処理する溶融炉のみを備えた廃棄物処理設備に対しても適用することができる。また、以上の実施の形態1乃至4に係る廃棄物処理設備においては、ガス式空気予熱器10を、バグフィルタ5により排ガス中のHCl、SOxが除去されると共に、飛灰等のダストが除去された排ガス中のNOx、ダイオキシン類を分解・除去する触媒反応塔7の下流側に配設した場合を例として説明した。しかしながら、ガス式空気予熱器10を前記バグフィルタ5の下流側に配設しても、以上の実施の形態1乃至4に係る廃棄物処理設備と同等の効果を得ることができる。   In the waste treatment facility according to Embodiments 1 to 4 described above, the case where the waste treatment furnace is configured by a gasification furnace and a melting furnace has been described as an example. However, the present invention is not limited thereto, and only the incinerator that incinerates the waste using the technical idea of the present invention as the waste treatment furnace, and the waste treatment that includes only the melting furnace that melts the incinerated ash incinerated in the incinerator. It can also be applied to equipment. In the waste treatment facility according to the first to fourth embodiments, the gas air preheater 10 removes HCl and SOx in the exhaust gas by the bag filter 5 and dust such as fly ash. As an example, the case where the exhaust gas is disposed downstream of the catalytic reaction tower 7 that decomposes and removes NOx and dioxins in the exhaust gas has been described. However, even if the gas-type air preheater 10 is disposed on the downstream side of the bag filter 5, the same effect as the waste treatment facility according to the first to fourth embodiments can be obtained.

従って、上記実施の形態1乃至4に係る廃棄物処理設備は、本発明の具体例に過ぎず、本発明の技術的思想を逸脱しない範囲内における設計変更等は自由自在であるから、本発明の技術的思想の適用範囲は、上記実施の形態1乃至4に係る廃棄物処理設備の形態に限定されるものではない。   Therefore, the waste treatment facility according to the first to fourth embodiments is merely a specific example of the present invention, and design changes and the like can be freely made without departing from the technical idea of the present invention. The scope of application of the technical idea is not limited to the form of the waste treatment facility according to the first to fourth embodiments.

本発明の実施の形態1に係る廃棄物処理設備の装置類配設状態を示すブロック図である。It is a block diagram which shows the apparatus arrangement | positioning state of the waste disposal facility which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る廃棄物処理設備の装置類配設状態を示すブロック図である。It is a block diagram which shows the apparatus arrangement | positioning state of the waste disposal facility which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る廃棄物処理設備の装置類配設状態を示すブロック図である。It is a block diagram which shows the apparatus arrangement | positioning state of the waste disposal facility which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る廃棄物処理設備の装置類配設状態を示すブロック図である。It is a block diagram which shows the apparatus arrangement | positioning state of the waste disposal facility which concerns on Embodiment 4 of this invention. 従来例1に係り、廃棄物焼却炉の排ガス処理設備の配列を示す図である。It is a figure which concerns on the prior art example 1 and shows the arrangement | sequence of the waste gas treatment equipment of a waste incinerator. 従来例2に係り、図6(a)は空気の予熱方法を示すフロー図であり、また図6(b)は煙突の断面図である。FIG. 6A is a flowchart showing a method for preheating air, and FIG. 6B is a cross-sectional view of a chimney according to Conventional Example 2. 従来例3に係り、排ガス処理方法の工程図である。FIG. 6 is a process diagram of an exhaust gas treatment method according to Conventional Example 3;

符号の説明Explanation of symbols

1,1a,1b,1c…廃棄物処理設備
2…廃棄物処理炉,2a…ガス化炉,2b…溶融炉
3…廃熱ボイラ
4…減温塔
5…バグフィルタ
6…再加熱装置
7…触媒反応塔
8…誘引送風機
9…煙突
10…ガス式空気予熱器
11…高圧蒸気式空気予熱器
12…低圧蒸気式空気予熱器
13…還流路
14…第2還流路
Ar…燃焼、溶融用空気
DESCRIPTION OF SYMBOLS 1, 1a, 1b, 1c ... Waste processing equipment 2 ... Waste processing furnace, 2a ... Gasification furnace, 2b ... Melting furnace 3 ... Waste heat boiler 4 ... Temperature-reduction tower 5 ... Bag filter 6 ... Reheating apparatus 7 ... Catalytic reaction tower 8 ... Induction fan 9 ... Chimney 10 ... Gas air preheater 11 ... High pressure steam air preheater 12 ... Low pressure steam air preheater 13 ... Recirculation path 14 ... Second recirculation path Ar ... Air for combustion and melting

Claims (2)

都市ごみ、産業廃棄物等の廃棄物を減容化処理する廃棄物処理炉と、この廃棄物処理炉から排出される排ガスの熱を利用して高圧蒸気を生成させる廃熱ボイラと、この廃熱ボイラから流出する排ガス中の飛灰等のダストを捕捉して除去するダスト除去手段と、このダスト除去手段によりダストが除去されたダスト除去ガスを煙突に送る誘引送風機と、前記廃熱ボイラで生成された高圧蒸気を利用して発電機を駆動する蒸気タービンを備えてなる廃棄物処理設備において、前記ダスト除去手段と前記煙突との間に、前記ダスト除去ガスの熱を回収して前記廃棄物処理炉に供給する炉用空気を予熱するガス式空気予熱器を配設し、
前記ガス式空気予熱器と前記廃棄物処理炉との間に、前記廃熱ボイラで生成された高圧蒸気を利用して、前記ガス式空気予熱器で予熱された炉用空気を予熱する高圧蒸気式空気予熱器を配設し、
前記ガス式空気予熱器と炉用空気の供給源との間に、前記ガス式空気予熱器に供給する炉用空気を、前記蒸気タービンから排出される低圧蒸気の熱を回収して予熱する低圧蒸気式空気予熱器を配設し、
前記ガス式空気予熱器と前記高圧蒸気式空気予熱器との間と、前記ガス式空気予熱器と前記低圧蒸気式空気予熱器との間とを、前記ガス式空気予熱器で予熱された炉用空気の一部を還流させる還流路で連通させ、
前記高圧蒸気式空気予熱器と前記廃棄物処理炉との間と、前記還流路とを、前記還流路を介して前記高圧蒸気式空気予熱器で予熱された炉用空気の一部を還流させる第2還流路で連通させたことを特徴とする廃棄物処理設備。
A waste treatment furnace that reduces the volume of waste such as municipal waste and industrial waste, a waste heat boiler that generates high-pressure steam using the heat of the exhaust gas discharged from the waste treatment furnace, and this waste A dust removing unit that captures and removes dust such as fly ash in the exhaust gas flowing out of the heat boiler, an induction blower that sends the dust removal gas from which dust is removed by the dust removing unit to the chimney, and the waste heat boiler In a waste treatment facility comprising a steam turbine that drives a generator using the generated high-pressure steam, the heat of the dust removal gas is recovered between the dust removal means and the chimney to dispose of the waste. A gas-type air preheater that preheats the furnace air supplied to the material processing furnace is installed,
High pressure steam that preheats the furnace air preheated by the gas air preheater using the high pressure steam generated by the waste heat boiler between the gas air preheater and the waste treatment furnace. Type air preheater,
A low pressure for recovering and preheating the furnace air supplied to the gas air preheater by recovering the heat of the low pressure steam discharged from the steam turbine between the gas air preheater and the supply source of the furnace air. A steam air preheater is installed,
A furnace preheated by the gas air preheater between the gas air preheater and the high pressure steam air preheater and between the gas air preheater and the low pressure steam air preheater. Communicating with a reflux path that circulates part of the working air,
A part of the furnace air preheated by the high pressure steam air preheater is recirculated between the high pressure steam air preheater and the waste treatment furnace and the reflux path through the reflux path . A waste treatment facility characterized in that it communicates with the second reflux path.
都市ごみ、産業廃棄物等の廃棄物を減容化処理する廃棄物処理炉と、この廃棄物処理炉から排出される排ガスの熱を利用して高圧蒸気を生成させる廃熱ボイラと、この廃熱ボイラから流出する排ガス中の飛灰等のダストを捕捉して除去するダスト除去手段と、このダスト除去手段によりダストが除去されたダスト除去ガスを煙突に送る誘引送風機と、前記廃熱ボイラで生成された高圧蒸気を利用して発電機を駆動する蒸気タービンを備えてなる廃棄物処理設備における回収熱の利用方法において、前記ダスト除去ガスの熱をガス式空気予熱器により回収して前記廃棄物処理炉に供給する炉用空気を予熱し、
前記ガス式空気予熱器で予熱された炉用空気を前記廃棄物処理炉に供給するに際して、前記廃熱ボイラで生成された高圧蒸気の熱を利用する高圧蒸気式空気予熱器で予熱し、
前記ガス式空気予熱器に供給する炉用空気を、前記蒸気タービンから排出される低圧蒸気の熱を低圧蒸気式空気予熱器により回収して予熱し、
前記ガス式空気予熱器で予熱された炉用空気の一部を、還流路を介して前記ガス式空気予熱器と前記低圧蒸気式空気予熱器との間に還流させ、前記低圧蒸気式空気予熱器により予熱された炉用空気に合流させ、
前記高圧蒸気式空気予熱器で予熱された炉用空気の一部を、第2還流路および前記還流路を介して前記ガス式空気予熱器と前記低圧蒸気式空気予熱器との間に還流させ、前記低圧蒸気式空気予熱器により予熱された炉用空気に合流させることを特徴とする廃棄物処理設備における回収熱の利用方法。
A waste treatment furnace that reduces the volume of waste such as municipal waste and industrial waste, a waste heat boiler that generates high-pressure steam using the heat of the exhaust gas discharged from the waste treatment furnace, and this waste A dust removing unit that captures and removes dust such as fly ash in the exhaust gas flowing out of the heat boiler, an induction blower that sends the dust removal gas from which dust is removed by the dust removing unit to the chimney, and the waste heat boiler In a method for using recovered heat in a waste treatment facility including a steam turbine that drives a generator using generated high-pressure steam, the heat of the dust removal gas is recovered by a gas-type air preheater and the discarded Preheat furnace air to be supplied to the material processing furnace,
When supplying the furnace air preheated by the gas air preheater to the waste treatment furnace, preheat by a high pressure steam air preheater using heat of high pressure steam generated by the waste heat boiler,
The furnace air to be supplied to the gas air preheater is recovered by the low pressure steam air preheater and preheated from the low pressure steam discharged from the steam turbine,
A part of the furnace air preheated by the gas air preheater is recirculated between the gas air preheater and the low pressure steam air preheater via a reflux path, and the low pressure steam air preheat is performed. Combined with the furnace air preheated by the vessel,
Part of the furnace air preheated by the high pressure steam air preheater is recirculated between the gas air preheater and the low pressure steam air preheater via the second recirculation path and the recirculation path. A method for using recovered heat in a waste treatment facility, wherein the furnace air is preheated by the low-pressure steam air preheater .
JP2008258526A 2008-10-03 2008-10-03 Waste treatment facilities and methods of using recovered heat in waste treatment facilities Active JP5421567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258526A JP5421567B2 (en) 2008-10-03 2008-10-03 Waste treatment facilities and methods of using recovered heat in waste treatment facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258526A JP5421567B2 (en) 2008-10-03 2008-10-03 Waste treatment facilities and methods of using recovered heat in waste treatment facilities

Publications (2)

Publication Number Publication Date
JP2010091133A JP2010091133A (en) 2010-04-22
JP5421567B2 true JP5421567B2 (en) 2014-02-19

Family

ID=42254037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258526A Active JP5421567B2 (en) 2008-10-03 2008-10-03 Waste treatment facilities and methods of using recovered heat in waste treatment facilities

Country Status (1)

Country Link
JP (1) JP5421567B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102605298B1 (en) * 2022-10-28 2023-11-27 주식회사 새롬 Organic waste recycling system using clean room

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393149B (en) * 2011-11-15 2013-10-30 东方希望重庆水泥有限公司 Thermotechnical linkage power system utilizing waste heat of cement production system and using method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122637U (en) * 1983-09-09 1985-08-19 株式会社日立製作所 Condenser heated wastewater heat recovery device
DE4342156C1 (en) * 1993-12-10 1995-04-20 Balcke Duerr Ag Arrangement for improving the efficiency of a power station (generating station) or the like
JP3773302B2 (en) * 1995-10-03 2006-05-10 株式会社荏原製作所 Heat recovery system and power generation system
JP2001280863A (en) * 2000-03-29 2001-10-10 Ebara Corp Heat exchanger and electric power generator comprising it
JP2003004211A (en) * 2001-04-19 2003-01-08 Ebara Corp Equipment and method for treating waste
JP3851813B2 (en) * 2001-12-27 2006-11-29 株式会社クボタ Incinerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102605298B1 (en) * 2022-10-28 2023-11-27 주식회사 새롬 Organic waste recycling system using clean room

Also Published As

Publication number Publication date
JP2010091133A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP3773302B2 (en) Heat recovery system and power generation system
WO1999019667A1 (en) Method and apparatus for generating electric power by combusting wastes
CN103292339B (en) Comprehensive processing recycling process and device of bromine-contained high temperature flue gas
KR20090045574A (en) Process and apparatus for refining synthetic gas from waste using plasma pyrolysis
JP3782334B2 (en) Exhaust gas treatment equipment for gasifier
JPH06129212A (en) Exhaust gas disposal system during burning of garbage
JP4377292B2 (en) Waste treatment apparatus and exhaust gas treatment method
JP5421567B2 (en) Waste treatment facilities and methods of using recovered heat in waste treatment facilities
JP4422702B2 (en) Heat storage method for heat storage device
CN111895424A (en) Garbage disposal and generator set coupling power generation system
JP2001280863A (en) Heat exchanger and electric power generator comprising it
WO2013146384A1 (en) Waste treatment facility
JP4295653B2 (en) High temperature exhaust gas treatment method and cooling device used in high temperature exhaust gas treatment process
JP2578210B2 (en) Integrated coal gasification combined cycle power plant
JP2004002552A (en) Waste gasification method, waste gasification device, and waste treatment apparatus using the same
EP1284389A1 (en) Wastes treating method and device
JP2004270962A (en) Waste treatment device
JP2010235915A (en) Gas refining facilities and power generation system
JP3419292B2 (en) Waste treatment system
JPH10103640A (en) Waste thermal decomposition disposal facility
CN216498514U (en) Burn burning furnace afterbody dust removal SOx/NOx control waste heat utilization equipment
CN212362044U (en) Garbage disposal and generator set coupling power generation system
JP2011212516A (en) Activated carbon regeneration apparatus
JP5339937B2 (en) Tar decomposition facility and its startup method
JP4121645B2 (en) Method and apparatus for recovering heat from waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R150 Certificate of patent or registration of utility model

Ref document number: 5421567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250