JP2001313422A - Light-emitting element and manufacturing method for the light-emitting element - Google Patents

Light-emitting element and manufacturing method for the light-emitting element

Info

Publication number
JP2001313422A
JP2001313422A JP2000153499A JP2000153499A JP2001313422A JP 2001313422 A JP2001313422 A JP 2001313422A JP 2000153499 A JP2000153499 A JP 2000153499A JP 2000153499 A JP2000153499 A JP 2000153499A JP 2001313422 A JP2001313422 A JP 2001313422A
Authority
JP
Japan
Prior art keywords
layer
electrode
nitride semiconductor
semiconductor layer
type nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000153499A
Other languages
Japanese (ja)
Other versions
JP4501225B2 (en
JP2001313422A5 (en
Inventor
Tatsunori Toyoda
達憲 豊田
Hirobumi Shono
博文 庄野
Kazuhiro Nagamine
和浩 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2000153499A priority Critical patent/JP4501225B2/en
Publication of JP2001313422A publication Critical patent/JP2001313422A/en
Publication of JP2001313422A5 publication Critical patent/JP2001313422A5/ja
Application granted granted Critical
Publication of JP4501225B2 publication Critical patent/JP4501225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting element, on both faces of which electrodes are formed and which comprises a nitride semiconductor layer, and to provide a manufacturing method for the light-emitting element. SOLUTION: In the manufacturing method, a wafer on which an n-type nitride semiconductor layer and a p-type nitride semiconductor layer are laminated on a substrate is divided into light-emitting elements. The manufacturing method contains a p-electrode forming process, where a first metal layer which comes into ohmic contact with the p-type nitride semiconductor layer is formed nearly over the whole face of the p-type nitride semiconductor layer and a warpage preventing layer, which prevents the warpage of the wafer, is formed in the upper part from the metal layer. The manufacturing method contains a substrate removal process, where after the p-electrode formation process, the substrate is removed from the face on the opposite side of a substrate face on which the nitride semiconductor layer is laminated, in such a way that at least a part of the n-type nitride semiconductor layer is exposed in the respective regions of the light-emitting elements to be divided. The manufacturing method contains an n-electrode formation process where an n-electrode is formed, so as to come into contact with at least a part of the exposed n-type nitride semiconductor layer. The manufacturing method contains a division process, where the wafer on which the p-electrode and the n-electrode are formed is divided to form the light-emitting elements.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、LED(発光ダイオー
ド)、LD(レーザダイオード)等の発光素子に利用さ
れる電極、特に窒化物半導体層(たとえばInxAly
1-x-yN、0≦x、0≦y、x+y≦1)を有する発
光素子および発光素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode used for a light emitting device such as an LED (light emitting diode) and an LD (laser diode), particularly a nitride semiconductor layer (for example, In x Al y G).
a 1-xy N, 0 ≦ x, 0 ≦ y, x + y ≦ 1) and a method for manufacturing a light-emitting element.

【0002】[0002]

【従来の技術】近年、青色LED、LD等に代表される
ように窒化物半導体層を有する発光素子が注目を集めて
いる。この窒化物半導体層は概略的にはp型窒化物半導
体層から注入されたキャリアと、n型窒化物半導体層か
ら注入されたキャリアとのキャリア結合により発光が行
われ、これら窒化物半導体層は特にサファイア基板上に
形成することによって、良好な結晶性が得られる。しか
しながら、サファイアは絶縁性物質であり、サファイア
基板表面に電極を形成することができない。このため、
サファイア基板等の絶縁性物質からなる基板を発光素子
に用いた場合、半導体層をエッチング等によって除去し
て露出したコンタクト層上に電極を形成する必要があっ
た。
2. Description of the Related Art In recent years, light-emitting elements having a nitride semiconductor layer, such as blue LEDs and LDs, have attracted attention. This nitride semiconductor layer emits light by carrier coupling between the carrier injected from the p-type nitride semiconductor layer and the carrier injected from the n-type nitride semiconductor layer. In particular, when formed on a sapphire substrate, good crystallinity can be obtained. However, sapphire is an insulating material, and an electrode cannot be formed on a sapphire substrate surface. For this reason,
When a substrate made of an insulating material such as a sapphire substrate is used for a light emitting element, it is necessary to form an electrode on the exposed contact layer by removing the semiconductor layer by etching or the like.

【0003】[0003]

【発明が解決しようとする課題】上記のように、半導体
層を除去して電極を形成する場合、ウェハーの単位面積
当たりから得られる発光素子の数は少なくなり製造コス
トが高くなるという問題点があった。また、電極部分が
接近するため、ボンディング時に高精度の位置制御を行
う必要があった。
As described above, when an electrode is formed by removing a semiconductor layer, the number of light emitting elements obtained per unit area of a wafer is reduced, and the manufacturing cost is increased. there were. In addition, since the electrode portions approach each other, it is necessary to perform high-precision position control during bonding.

【0004】またこれに対し、ウェハー状のサファイア
基板上に窒化物半導体層を形成した後、サファイア基板
を研磨等によって除去し、半導体層を挟んで対向した位
置に正負それぞれの電極を形成する技術があった。しか
し、サファイア基板を研磨するに従い、窒化物半導体層
とサファイアとの格子定数の不整合からウェハーに反り
が生じ半導体層の割れ等が発生するため、製造歩留まり
が悪くなり製造コストが高くなるという問題点があっ
た。特に、サファイア基板と窒化物半導体との格子定数
の不整合は大きいため、窒化物半導体からなる発光素子
においてはこの反りは大きな問題となる。
On the other hand, after forming a nitride semiconductor layer on a wafer-like sapphire substrate, the sapphire substrate is removed by polishing or the like, and positive and negative electrodes are formed at positions facing each other with the semiconductor layer interposed therebetween. was there. However, as the sapphire substrate is polished, the wafer is warped due to the mismatch between the lattice constants of the nitride semiconductor layer and sapphire, and the semiconductor layer is cracked, thereby lowering the production yield and increasing the production cost. There was a point. In particular, since the lattice constant mismatch between the sapphire substrate and the nitride semiconductor is large, this warping becomes a serious problem in a light-emitting element made of a nitride semiconductor.

【0005】そこで、本発明は、良好な結晶性を得なが
ら、かつ発光素子の両面に電極を形成した窒化物半導体
層を有する発光素子および発光素子の製造方法を製造歩
留まりの低下を招くことなく低コストで提供することを
目的とする。
Therefore, the present invention provides a light emitting device having a nitride semiconductor layer in which electrodes are formed on both sides of a light emitting device and a method of manufacturing the light emitting device while obtaining good crystallinity without lowering the manufacturing yield. The purpose is to provide at low cost.

【0006】[0006]

【課題を解決するための手段】本発明の発光素子の製造
方法は、基板上に少なくともn型窒化物半導体層とおよ
びp型窒化物半導体層が積層されたウェハーを発光素子
毎に分割する発光素子の製造方法において、前記p型窒
化物半導体層のほぼ全面にp型窒化物半導体層とオーミ
ック接触を得るための第1金属層を形成し、前記金属層
よりも上に前記ウェハーの反りを防止するための反り防
止層を形成するp電極形成工程と、前記p電極形成工程
後、分割すべき発光素子の各領域に前記n型窒化物半導
体層の少なくとも一部が露出するように、前記窒化物半
導体層が積層された基板面と反対側の面から前記基板を
除去する基板除去工程と、前記露出したn型窒化物半導
体層上の少なくとも一部に接するようにn電極を形成す
るn電極形成工程と、前記p電極および前記n電極が形
成されたウェハーを分割すべき領域毎に分割し発光素子
とする分割工程とを含む。これによって、良好な結晶性
を得ながら、かつ発光素子の両面に電極を形成した窒化
物半導体層を有する発光素子を製造歩留まりの低下を招
くことなく低コストで提供することができる。
According to a method of manufacturing a light emitting device of the present invention, a light emitting device for dividing a wafer having at least an n-type nitride semiconductor layer and a p-type nitride semiconductor layer laminated on a substrate for each light-emitting device is provided. In the device manufacturing method, a first metal layer for obtaining ohmic contact with the p-type nitride semiconductor layer is formed on substantially the entire surface of the p-type nitride semiconductor layer, and the warpage of the wafer is formed above the metal layer. A p-electrode forming step of forming a warp preventing layer for preventing, and after the p-electrode forming step, at least a part of the n-type nitride semiconductor layer is exposed in each region of the light emitting element to be divided. A substrate removing step of removing the substrate from a surface opposite to a substrate surface on which the nitride semiconductor layer is laminated; and forming an n-electrode so as to contact at least a part of the exposed n-type nitride semiconductor layer. Electrode formation process , And a dividing step to the p electrode and the n electrode is divided for each region to be divided and formed wafer emitting element. This makes it possible to provide a light-emitting element having a nitride semiconductor layer in which electrodes are formed on both surfaces of the light-emitting element while obtaining good crystallinity and at a low cost without lowering the production yield.

【0007】また、本発明の発光素子の製造方法は、前
記反り防止層は厚さが10μm以上の第2金属層を少な
くとも含む構成とすることができる。
Further, in the method for manufacturing a light emitting device of the present invention, the warpage preventing layer may have a structure including at least a second metal layer having a thickness of 10 μm or more.

【0008】また、本発明の発光素子の製造方法は、前
記第2金属層は少なくともNiを含む金属から構成され
る。
In the method for manufacturing a light emitting device according to the present invention, the second metal layer is made of a metal containing at least Ni.

【0009】また、本発明の発光素子の製造方法は、前
記第2金属層は無電界めっきによって形成される。
Further, in the method for manufacturing a light emitting device according to the present invention, the second metal layer is formed by electroless plating.

【0010】また、本発明の発光素子の製造方法は、前
記反り防止層は前記第1金属層上に形成された1つ以上
の金属バンプと、前記金属バンプが形成された部分を除
いた前記第1金属層上に形成された樹脂層から少なくと
も構成されてもよい。
Further, in the method for manufacturing a light emitting device according to the present invention, the warpage preventing layer may be formed by removing at least one metal bump formed on the first metal layer and a portion where the metal bump is formed. It may be at least composed of a resin layer formed on the first metal layer.

【0011】また、本発明の発光素子の製造方法は、前
記反り防止層よりも上にAuを少なくとも含むAu層を
形成するAu層形成工程とさらに含む。
Further, the method for manufacturing a light emitting device of the present invention further includes an Au layer forming step of forming an Au layer containing at least Au above the warpage preventing layer.

【0012】また、本発明の発光素子の製造方法におい
て、前記基板はサファイアを用いる。
In the method for manufacturing a light emitting device according to the present invention, the substrate uses sapphire.

【0013】また、本発明の発光素子の製造方法におい
て、前記n電極は透明電極である。
In the method for manufacturing a light emitting device according to the present invention, the n-electrode is a transparent electrode.

【0014】また、本発明の発光素子は、少なくともn
型窒化物半導体層およびp型窒化物半導体層が積層され
た半導体層が形成され、n電極およびp電極を有する発
光素子において、前記n電極および前記p電極は、それ
ぞれ前記半導体層を挟んで対向して形成され、前記p電
極は、前記p型窒化物半導体層のほぼ全面にp型窒化物
半導体層とオーミック接触を得るための第1金属層と、
前記金属層よりも上に前記ウェハーの反りを防止するた
めの反り防止層から少なくとも構成される。
The light emitting device of the present invention has at least n
A light emitting element having an n-electrode and a p-electrode, wherein the n-electrode and the p-electrode face each other with the semiconductor layer interposed therebetween; A first metal layer for obtaining ohmic contact with the p-type nitride semiconductor layer over substantially the entire surface of the p-type nitride semiconductor layer;
At least an anti-warp layer is provided above the metal layer to prevent the wafer from warping.

【0015】また、本発明の発光素子は、 少なくとも
n型窒化物半導体層およびp型窒化物半導体層が積層さ
れた半導体層が形成され、n電極およびp電極を有する
発光素子において、前記p電極は、前記p型窒化物半導
体層のほぼ全面にp型窒化物半導体層とオーミック接触
を得るための第1金属層と、前記金属層よりも上に前記
ウェハーの反りを防止するための反り防止層から少なく
とも構成され、前記n型窒化物半導体層は前記基板の少
なくとも一部が除去されて露出しており、前記n電極は
前記露出したn型窒化物半導体層上の少なくとも一部に
接するように形成される構成とすることができる。
In a light emitting device according to the present invention, there is provided a light emitting device having at least an n-type nitride semiconductor layer and a p-type nitride semiconductor layer laminated thereon and having an n-electrode and a p-electrode. A first metal layer for obtaining ohmic contact with the p-type nitride semiconductor layer over substantially the entire surface of the p-type nitride semiconductor layer, and a warp prevention for preventing warpage of the wafer above the metal layer At least a portion of the substrate is removed to expose the n-type nitride semiconductor layer, and the n-electrode is in contact with at least a portion on the exposed n-type nitride semiconductor layer. May be formed.

【0016】また、本発明の発光素子は、前記反り防止
層は厚さが10μm以上の第2金属層を少なくとも含む
構成とすることができる。
In the light-emitting device according to the present invention, the warpage prevention layer may include at least a second metal layer having a thickness of 10 μm or more.

【0017】また、本発明の発光素子は、前記第2金属
層は少なくともNiを含む金属から構成される。
Further, in the light emitting device of the present invention, the second metal layer is made of a metal containing at least Ni.

【0018】また、本発明の発光素子は、前記第2金属
層は無電界めっきによって形成される。
In the light-emitting device according to the present invention, the second metal layer is formed by electroless plating.

【0019】また、本発明の発光素子は、前記反り防止
層は前記第1金属層上に形成された1つ以上の金属バン
プと、前記金属バンプが形成された部分を除いた前記第
1金属層上に形成された樹脂層から少なくとも構成され
てもよい。
Further, in the light emitting device according to the present invention, the warpage prevention layer is formed of one or more metal bumps formed on the first metal layer, and the first metal layer excluding a portion where the metal bump is formed. It may be constituted at least by a resin layer formed on the layer.

【0020】また、本発明の発光素子は、前記樹脂層は
膜厚が20μm以上である。
In the light emitting device of the present invention, the resin layer has a thickness of 20 μm or more.

【0021】また、本発明の発光素子は、前記p電極
は、前記反り防止層よりも上にAuを少なくとも含むA
u層を有する。
Further, in the light emitting device according to the present invention, the p-electrode includes at least Au containing Au above the warpage preventing layer.
u layer.

【0022】また、本発明の発光素子は、前記基板はサ
ファイアを用いる。
Further, in the light emitting device of the present invention, the substrate uses sapphire.

【0023】また、本発明の発光素子は、前記n電極は
透明電極である。
In the light-emitting device according to the present invention, the n-electrode is a transparent electrode.

【0024】[0024]

【発明の実施の形態】(実施の形態1)以下に本発明の
発光素子および発光素子の電極形成方法を説明する。
(Embodiment 1) A light emitting element and a method for forming an electrode of the light emitting element according to the present invention will be described below.

【0025】図1(a)に示すように、ウェハー状の基
板1上に半導体層2が形成される。基板1としては、た
とえばサファイア、スピネル等の絶縁性基板が用いられ
る。半導体層2は、窒化物半導体層によって形成され、
Si等のn型不純物をドープした窒化物半導体Inx
yGa1-x-yN(0≦x、0≦y、x+y≦1)からな
るn型窒化物半導体層21と、Mg等のp型不純物をド
ープした窒化物半導体からなるp型窒化物半導体層23
とから少なくとも構成される。
As shown in FIG. 1A, a semiconductor layer 2 is formed on a wafer-like substrate 1. As the substrate 1, for example, an insulating substrate such as sapphire or spinel is used. The semiconductor layer 2 is formed by a nitride semiconductor layer,
Nitride semiconductor In x A doped with n-type impurities such as Si
l y Ga 1-xy N ( 0 ≦ x, 0 ≦ y, x + y ≦ 1) and the n-type nitride semiconductor layer 21 made of, p-type nitride semiconductor formed of a nitride semiconductor doped with p-type impurities such as Mg Layer 23
At least.

【0026】そして、半導体層2を形成後、図1(b)
に示すようにp型窒化物半導体層23上にp型窒化物半
導体層23とオーミック接触が得られるたとえばNi/
Pt層上にPtを形成した第1金属層である第1p電極
31、反り防止層32が順次形成される。ここでは反り
防止層32は厚さが10μm以上の金属層から形成され
る。このように、ウェハーのほぼ全面に少なくとも厚さ
が10μm以上の第2金属層を含むp電極3が形成され
ることで、ウェハー全体に十分な強度で、基板1の除去
のためのウェハーの支持部材を得ることができる。この
支持金属層32は無電界めっきによって形成されること
が好ましい。基板1にサファイア等の絶縁性物質を用い
た場合、ウェハー全体に均一に電界を印加し、均一な金
属層を形成することが困難なためである。このとき、反
り防止層32の厚さが不均一となると、ウェハーに歪み
が生じ、半導体層2が割れやすくなる。
After the formation of the semiconductor layer 2, FIG.
As shown in FIG. 3, an ohmic contact with the p-type nitride semiconductor layer 23 is obtained on the p-type nitride semiconductor layer 23, for example, Ni /
A first p-electrode 31, which is a first metal layer having Pt formed thereon, and a warp prevention layer 32 are sequentially formed on the Pt layer. Here, the warp prevention layer 32 is formed from a metal layer having a thickness of 10 μm or more. As described above, since the p-electrode 3 including the second metal layer having a thickness of at least 10 μm is formed on almost the entire surface of the wafer, the supporting of the wafer for removing the substrate 1 is performed with sufficient strength over the entire wafer. A member can be obtained. This support metal layer 32 is preferably formed by electroless plating. This is because, when an insulating material such as sapphire is used for the substrate 1, it is difficult to apply an electric field uniformly to the entire wafer and to form a uniform metal layer. At this time, if the thickness of the warp prevention layer 32 is not uniform, the wafer is distorted, and the semiconductor layer 2 is easily broken.

【0027】その後、図1(c)に示すように、支持台
5に支持金属層32を有するp電極3が形成されたウェ
ハーをp電極3側が支持台5に対向するように載置し、
研磨部材6を用いることによって基板1をn型窒化物半
導体層21が露出するように研磨し、除去する。あるい
は、基板を10〜100μm残した後、エッチングまた
はダイシングソーによって、基板1の少なくとも一部を
除去する構成としてもよい。このようにしてn型窒化物
半導体層21の少なくとも一部を露出させる。このよう
に、p型窒化物半導体層23上に厚さが10μm以上の
第2金属層を少なくとも有するp電極を形成することに
よって、基板1の研磨時に生じるウェハーの反りを低減
でき、半導体層2の割れを防止することげできる。また
歪みを低減させ平行度を精度良く保ちながら、基板1の
研磨を行うことができる。
Thereafter, as shown in FIG. 1C, the wafer on which the p-electrode 3 having the supporting metal layer 32 is formed on the support 5 is placed so that the p-electrode 3 side faces the support 5.
The substrate 1 is polished and removed so that the n-type nitride semiconductor layer 21 is exposed by using the polishing member 6. Alternatively, after leaving the substrate at 10 to 100 μm, at least a part of the substrate 1 may be removed by etching or a dicing saw. Thus, at least a part of n-type nitride semiconductor layer 21 is exposed. As described above, by forming the p-electrode having at least the second metal layer having a thickness of 10 μm or more on the p-type nitride semiconductor layer 23, it is possible to reduce the warpage of the wafer caused during the polishing of the substrate 1, Cracks can be prevented. In addition, the substrate 1 can be polished while reducing distortion and maintaining parallelism with high accuracy.

【0028】そして、露出したn型窒化物半導体層21
にたとえばW/AlあるいはITO等からなるn電極4
を形成する。この場合、露出したn型窒化物半導体層上
の少なくとも一部に接するようにn電極を形成する構成
としてもよい。特に、n電極4を透明電極として形成す
ることによって、十分な厚みで形成され高い反射率が得
られたp電極3を反射面として利用し、半導体層2にお
いて発生した光を高効率で取り出すことができる。W/
Alの場合はWを10〜30Å、Alを20〜40Å程
度、ITOの場合は1000〜5000Åの厚さで形成
することによって、透明電極とすることができる。
Then, the exposed n-type nitride semiconductor layer 21
N electrode 4 made of, for example, W / Al or ITO
To form In this case, an n-electrode may be formed so as to contact at least a part of the exposed n-type nitride semiconductor layer. In particular, by forming the n-electrode 4 as a transparent electrode, the p-electrode 3 formed with a sufficient thickness and having a high reflectance is used as a reflection surface, and light generated in the semiconductor layer 2 is extracted with high efficiency. Can be. W /
In the case of Al, W is formed in a thickness of 10 to 30 °, Al is formed in a thickness of about 20 to 40 °, and in the case of ITO, the thickness is set to 1000 to 5000 °, whereby a transparent electrode can be obtained.

【0029】このように電極を形成したウェハーを、適
当な大きさに分割し、発光素子を得ることができる。本
発明の発光素子の電極形成方法によって、ウェハーの割
れを防止できることから歩留まりが向上し、かつウェハ
ーの単位面積当たりから得られる発光素子の数を向上さ
せることができる。また、本発明の発光素子は、p電極
3、n電極4を半導体層2を挟んで対向して形成できる
ことから、均一な発光が得られる。さらに、基板1とし
てサファイアを用いた場合は、結晶性のよい窒化物半導
体層2が形成できることから、発光効率の高い発光が得
られる。 (実施の形態2)以下に本発明の発光素子および発光素
子の電極形成方法を説明する。
The light emitting element can be obtained by dividing the wafer on which the electrodes are formed as described above into an appropriate size. According to the method for forming an electrode of a light emitting element of the present invention, the yield can be improved because the wafer can be prevented from cracking, and the number of light emitting elements obtained per unit area of the wafer can be improved. Further, in the light emitting device of the present invention, since the p electrode 3 and the n electrode 4 can be formed to face each other with the semiconductor layer 2 interposed therebetween, uniform light emission can be obtained. Further, when sapphire is used as the substrate 1, a nitride semiconductor layer 2 having good crystallinity can be formed, so that light emission with high luminous efficiency can be obtained. (Embodiment 2) A light emitting device and a method for forming an electrode of the light emitting device of the present invention will be described below.

【0030】図7(a)に示すように、ウェハー状の基
板1上に半導体層2が形成される。基板1としては、た
とえばサファイア、スピネル等の絶縁性基板が用いられ
る。半導体層2は、窒化物半導体層によって形成され、
Si等のn型不純物をドープした窒化物半導体Inx
yGa1-x-yN(0≦x、0≦y、x+y≦1)からな
るn型窒化物半導体層21と、Mg等のp型不純物をド
ープした窒化物半導体からなるp型窒化物半導体層23
とから少なくとも構成される。
As shown in FIG. 7A, a semiconductor layer 2 is formed on a wafer-like substrate 1. As the substrate 1, for example, an insulating substrate such as sapphire or spinel is used. The semiconductor layer 2 is formed by a nitride semiconductor layer,
Nitride semiconductor In x A doped with n-type impurities such as Si
l y Ga 1-xy N ( 0 ≦ x, 0 ≦ y, x + y ≦ 1) and the n-type nitride semiconductor layer 21 made of, p-type nitride semiconductor formed of a nitride semiconductor doped with p-type impurities such as Mg Layer 23
At least.

【0031】そして、半導体層2を形成後、図7(b)
に示すようにp型窒化物半導体層23上のほぼ全面にp
型窒化物半導体層23とオーミック接触が得られる金属
たとえばNi/Pt層を形成した金属層である第1p電
極31が形成される。この第1p電極31はNi/Pt
層上にさらにPt層を積層した構成としてもよい。
After the formation of the semiconductor layer 2, FIG.
As shown in FIG.
A first p-electrode 31, which is a metal layer formed with a metal capable of obtaining ohmic contact with the type nitride semiconductor layer 23, for example, a Ni / Pt layer, is formed. This first p electrode 31 is made of Ni / Pt
A configuration in which a Pt layer is further stacked on the layer may be adopted.

【0032】第1p電極形成後、図7(c)に示すよう
に第1p電極31上に複数の金属バンプ32aが形成さ
れる。次に、図7(d)に示すように金属バンプ32a
が形成された部分を除いて第1p電極31上に樹脂層3
2bが形成される。そして、研削等によって表面を均一
にするための面出し処理を行う。これら金属バンプ32
aおよび樹脂層31bによって、基板1研磨時にウェハ
ーの反りを防止する反り防止層32が形成される。この
反り防止層32は、40〜80μm程度とすることが好
ましい。このように、ウェハーのほぼ全面に反り防止層
が形成されることで、ウェハー全体に十分な強度で、基
板1の除去のためのウェハーの支持部材を得ることがで
きる。
After the formation of the first p-electrode, a plurality of metal bumps 32a are formed on the first p-electrode 31, as shown in FIG. Next, as shown in FIG.
The resin layer 3 is formed on the first p-electrode 31 except for the portion where
2b is formed. Then, a surface treatment for making the surface uniform by grinding or the like is performed. These metal bumps 32
The warp preventing layer 32 for preventing the warpage of the wafer during polishing of the substrate 1 is formed by the resin layer 31a and the resin layer 31b. It is preferable that the warp prevention layer 32 has a thickness of about 40 to 80 μm. Since the warp prevention layer is formed on almost the entire surface of the wafer in this manner, a wafer supporting member for removing the substrate 1 can be obtained with sufficient strength over the entire wafer.

【0033】その後、図7(e)に示すように、支持台
5に反り防止層32を有するp電極3が形成されたウェ
ハーをp電極3側が支持台5に対向するように載置し、
研磨部材6を用いることによって基板1をn型窒化物半
導体層21が露出するように研磨し、除去する。あるい
は、基板を10〜100μm残した後、エッチングまた
はダイシングソーによって、基板1の少なくとも一部を
除去する構成としてもよい。このようにしてn型窒化物
半導体層21の少なくとも一部を露出させる。このよう
に、p型窒化物半導体層23上に厚さが10μm以上の
反り防止層32を少なくとも有するp電極を形成するこ
とによって、基板1の研磨時に生じるウェハーの反りを
低減でき、半導体層2の割れを防止することができる。
また歪みを低減させ平行度を精度良く保ちながら、基板
1の研磨を行うことができる。
Thereafter, as shown in FIG. 7E, the wafer on which the p-electrode 3 having the warp preventing layer 32 is formed on the support 5 is placed so that the p-electrode 3 side faces the support 5.
The substrate 1 is polished and removed so that the n-type nitride semiconductor layer 21 is exposed by using the polishing member 6. Alternatively, after leaving the substrate at 10 to 100 μm, at least a part of the substrate 1 may be removed by etching or a dicing saw. Thus, at least a part of n-type nitride semiconductor layer 21 is exposed. As described above, by forming the p-electrode having at least the warpage prevention layer 32 having a thickness of 10 μm or more on the p-type nitride semiconductor layer 23, the warpage of the wafer generated during polishing of the substrate 1 can be reduced, and the semiconductor layer 2 can be reduced. Cracks can be prevented.
In addition, the substrate 1 can be polished while reducing distortion and maintaining parallelism with high accuracy.

【0034】そして、露出したn型窒化物半導体層21
にたとえばW/AlあるいはITO等からなるn電極4
を形成する。この場合、露出したn型窒化物半導体層上
の少なくとも一部に接するようにn電極を形成する構成
としてもよい。
Then, the exposed n-type nitride semiconductor layer 21
N electrode 4 made of, for example, W / Al or ITO
To form In this case, an n-electrode may be formed so as to contact at least a part of the exposed n-type nitride semiconductor layer.

【0035】このように電極を形成したウェハーを、少
なくとも1つの金属バンプ32aを含む適当な大きさに
分割し、発光素子を得ることができる。本発明の発光素
子の電極形成方法によって、ウェハーの割れを防止でき
ることから歩留まりが向上し、かつウェハーの単位面積
当たりから得られる発光素子の数を向上させることがで
きる。また、本発明の発光素子は、p電極3、n電極4
を半導体層2を挟んで対向して形成できることから、均
一な発光が得られる。さらに、基板1としてサファイア
を用いた場合は、結晶性のよい窒化物半導体層2が形成
できることから、発光効率の高い発光が得られる。 (実施例1)本発明における発光素子の電極の形成方法
をLEDに適用した場合の一例を説明する。
The wafer on which the electrodes are formed as described above is divided into a suitable size including at least one metal bump 32a to obtain a light emitting device. According to the method for forming an electrode of a light emitting element of the present invention, the yield can be improved because the wafer can be prevented from cracking, and the number of light emitting elements obtained per unit area of the wafer can be improved. Further, the light emitting device of the present invention has a p-electrode 3, an n-electrode 4
Can be formed facing each other with the semiconductor layer 2 interposed therebetween, so that uniform light emission can be obtained. Further, when sapphire is used as the substrate 1, a nitride semiconductor layer 2 having good crystallinity can be formed, so that light emission with high luminous efficiency can be obtained. (Example 1) An example in which the method for forming an electrode of a light emitting element according to the present invention is applied to an LED will be described.

【0036】たとえば、サファイアC面を基板1として
用い、各層は有機金属気相成長方法(MOCVD法)に
より形成される。図2(a)に示す通り、基板1上に基
板1と窒化物半導体層2との格子定数の不整合を緩和さ
せるバッファ層(図示せず)、n電極とオーミック接触
を得るためのn型窒化物半導体層21であるn型コンタ
クト層,キャリア結合により光を発生させる活性層2
2、キャリアを活性層に閉じ込めるためのp型クラッド
層およびp電極とオーミック接触を得るためのp型コン
タクト層から構成されるp型窒化物半導体層23が順次
形成される。
For example, a sapphire C-plane is used as the substrate 1 and each layer is formed by a metal organic chemical vapor deposition method (MOCVD method). As shown in FIG. 2A, a buffer layer (not shown) for relaxing the lattice constant mismatch between the substrate 1 and the nitride semiconductor layer 2 on the substrate 1 and an n-type for obtaining ohmic contact with the n-electrode. An n-type contact layer which is a nitride semiconductor layer 21, an active layer 2 which generates light by carrier coupling
2. A p-type nitride semiconductor layer 23 composed of a p-type cladding layer for confining carriers in the active layer and a p-type contact layer for obtaining ohmic contact with the p-electrode is sequentially formed.

【0037】バッファ層は低温によって結晶成長を行っ
た膜厚10Å〜500ÅのGaNから構成される。n型
コンタクト層は膜厚1〜20μm、好ましくは2〜6μ
mのSiドープGaNから構成される。また、n型コン
タクト層上にたとえばSiがドープされたAlGaNか
ら構成されるn型クラッド層を形成してもよい。活性層
22はInGaNから構成してもよいし、GaN/In
GaN/GaNの単一井戸層あるいは多重量子井戸層と
して構成してもよい。p型クラッド層は膜厚100〜5
00ÅのMgドープAlGaNから構成される。また、
このp型クラッド層も活性層へのキャリアの閉じ込めが
十分であれば省略可能である。p型コンタクト層は膜厚
0.001〜0.5μm、好ましくは0.05〜0.2
μmのMgドープGaNから構成される。
The buffer layer is made of GaN having a film thickness of 10 to 500.degree. The n-type contact layer has a thickness of 1 to 20 μm, preferably 2 to 6 μm.
m of Si-doped GaN. Further, an n-type cladding layer made of, for example, AlGaN doped with Si may be formed on the n-type contact layer. The active layer 22 may be composed of InGaN or GaN / In
It may be configured as a GaN / GaN single well layer or a multiple quantum well layer. The p-type cladding layer has a thickness of 100 to 5
It is made of Mg-doped AlGaN of 00 °. Also,
This p-type cladding layer can be omitted if the confinement of carriers in the active layer is sufficient. The p-type contact layer has a thickness of 0.001 to 0.5 μm, preferably 0.05 to 0.2 μm.
It is composed of μm Mg-doped GaN.

【0038】図2(b)に示す通り、上記のように形成
されたウェハーのp型窒化物半導体層23上に、Niを
100Åの厚さで形成し、その上にPtを500Åの厚
さでスパッタリング等によって形成した後、アニ−リン
グを行う。このNi/Ptの組み合わせは、Ni/A
u、Co/AuおよびPd/Ptとしてもp型窒化物半
導体層23と良好なオーミック接触が得られる。さら
に、Ni/Pt層を形成後、Ptを5000Åの厚さで
形成し、アニーリングを行い第1p電極31する。
As shown in FIG. 2B, Ni is formed to a thickness of 100 ° on the p-type nitride semiconductor layer 23 of the wafer formed as described above, and Pt is formed thereon to a thickness of 500 °. After forming by sputtering or the like, annealing is performed. This combination of Ni / Pt is Ni / A
Good ohmic contact with p-type nitride semiconductor layer 23 can be obtained also for u, Co / Au and Pd / Pt. Further, after forming the Ni / Pt layer, Pt is formed to a thickness of 5000 °, and annealing is performed to form the first p-electrode 31.

【0039】第1p電極31形成後、さらに、パラジウ
ムPdを数Å〜1000Åの厚さでスパッタリングある
いは、あるいはエッチングによって表面を粗化し吸着さ
せて下地層32aを形成する。このPdは反応触媒とし
て作用する。そして下地層32a上に、P−Niを10
μm以上、好ましくは50〜300μmの厚さで無電界
メッキによって形成し、第2金属層32bとする。リン
含有率は5〜10%が好ましい。最期にAuを1000
Åの厚さで無電界メッキまたは蒸着法によって形成す
る。窒化物半導体層2の基板1にサファイア等の絶縁体
を用いた場合、ウェハー全体に均一な電界を印可するこ
とが困難であるため、無電界めっきによって十分な厚さ
を有する金属層を形成することが好ましい。Niの他の
無電界めっきの例としてはCu、Au、Agが挙げられ
る。特にNiは形成速度が速く、十分な厚さを得ること
が容易となるためより好ましい。
After the formation of the first p-electrode 31, palladium Pd is roughened by sputtering or etching to a thickness of several to 1,000 to roughen the surface to be absorbed, thereby forming an underlayer 32a. This Pd acts as a reaction catalyst. Then, on the underlayer 32a, 10-
The second metal layer 32b is formed by electroless plating with a thickness of at least μm, preferably 50 to 300 μm. The phosphorus content is preferably 5 to 10%. 1000 at the end
It is formed by electroless plating or vapor deposition with a thickness of Å. When an insulator such as sapphire is used for the substrate 1 of the nitride semiconductor layer 2, it is difficult to apply a uniform electric field to the entire wafer. Therefore, a metal layer having a sufficient thickness is formed by electroless plating. Is preferred. Examples of other electroless plating of Ni include Cu, Au, and Ag. In particular, Ni is more preferable because the formation rate is high and it is easy to obtain a sufficient thickness.

【0040】その後、図2(c)に示す通り、p電極3
が形成されたウェハーを定盤等の支持台5に載置し、基
板1面を砥石等の研磨部材6によって研磨する。このよ
うに、第1p電極31と比較して十分な厚さを有する第
2金属層32bを形成することによって基板研磨時にウ
ェハーが歪むことを防止でき、ウェハーが割れることな
く、かつ平行に基板1の研磨を行うことができる。
Thereafter, as shown in FIG.
The wafer on which is formed is placed on a support table 5 such as a surface plate, and the surface of the substrate 1 is polished by a polishing member 6 such as a grindstone. As described above, by forming the second metal layer 32b having a sufficient thickness as compared with the first p-electrode 31, it is possible to prevent the wafer from being distorted at the time of polishing the substrate. Can be polished.

【0041】この基板1の研磨は、図3(a)に示すよ
うに、n型窒化物半導体層21が露出するまで行う。基
板1の研磨後は、n型コンタクト層21の研磨によりダ
メージを受けた領域をRIEにて1〜2μm程度エッチ
ングを行う。その後、露出したn型コンタクト層21に
タングステンを20Åの厚さで、次にアルミニウムを3
0Åの厚さでスパッタリングにより形成し、アニーリン
グを行い、図3(b)に示すようにn電極4を形成す
る。また、このn電極4はITOから形成してもよい。
このように形成したウェハーをダイシングソーによって
分割して、図3(c)に示すように発光素子とする。
The polishing of the substrate 1 is performed until the n-type nitride semiconductor layer 21 is exposed, as shown in FIG. After the substrate 1 is polished, the region damaged by the polishing of the n-type contact layer 21 is etched by about 1 to 2 μm by RIE. After that, the exposed n-type contact layer 21 is made of tungsten with a thickness of
An n-electrode 4 is formed by sputtering with a thickness of 0 °, annealing is performed, and an n-electrode 4 is formed as shown in FIG. Further, this n-electrode 4 may be formed from ITO.
The wafer thus formed is divided by a dicing saw to obtain light emitting elements as shown in FIG.

【0042】また、ここではウェハーの全面にn電極を
形成する例を示したが、パターニングにより部分的にn
電極4を形成することによって、発光素子からの光の取
り出し効率を向上することができる。 (実施例2)p電極3形成までの工程は実施例1と同様
に行われる。p電極形成後、発光素子を支持台5に載置
して、図4(a)に示すように、基板1を10μm〜1
00μm程度n型窒化物半導体層21側に残すように研
磨部材6によって研磨する。この残すべき基板1の厚み
は研磨の制御精度に応じて適宜設定すればよい。その
後、図4(b)に示すように、ダイシングソーによっ
て、基板1をn型コンタクト層の0.5〜2.0μm程
度の深さまで削り、溝を形成する。溝の形成後はサファ
イア基板1およびn型窒化物半導体層21に対し、RI
Eにてn型窒化物半導体層21が1〜2μm程度削れる
ようエッチングを行う。
Although the example in which the n-electrode is formed on the entire surface of the wafer is shown here, the n-electrode is partially formed by patterning.
By forming the electrode 4, the light extraction efficiency from the light emitting element can be improved. (Example 2) The steps up to the formation of the p-electrode 3 are performed in the same manner as in Example 1. After the formation of the p-electrode, the light-emitting element is placed on the support base 5 and the substrate 1 is set to 10 μm to 1 μm as shown in FIG.
Polishing is performed by the polishing member 6 so as to leave about 00 μm on the n-type nitride semiconductor layer 21 side. The thickness of the substrate 1 to be left may be appropriately set according to the control accuracy of polishing. Thereafter, as shown in FIG. 4B, the substrate 1 is shaved by a dicing saw to a depth of about 0.5 to 2.0 μm of the n-type contact layer to form a groove. After the formation of the groove, the sapphire substrate 1 and the n-type nitride semiconductor layer 21 are subjected to RI
Etching is performed in E to remove the n-type nitride semiconductor layer 21 by about 1 to 2 μm.

【0043】そして、基板1およびn型窒化物半導体層
21に対し、タングステンWを20Åの厚さで、その後
アルミニウムAlを30Åの厚さでスパッタリングによ
り形成し、アニーリングを行い、図4(c)に示すよう
にn電極4を形成する。このように形成したウェハーを
ダイシングソーによって、図4(d)に示すように、発
光素子毎に分割する。
Then, the substrate 1 and the n-type nitride semiconductor layer 21 are formed by sputtering tungsten W to a thickness of 20 ° and then aluminum Al to a thickness of 30 ° by sputtering, and annealing is performed, as shown in FIG. The n-electrode 4 is formed as shown in FIG. The wafer thus formed is divided for each light emitting element by a dicing saw as shown in FIG.

【0044】この実施例2は、n型窒化物半導体層21
への研磨によるダメージを最小限に抑えることができ
る。また、研磨深さの制御ばらつきによってn型窒化物
半導体層21を研磨し過ぎることが防止できる。
In the second embodiment, the n-type nitride semiconductor layer 21
Damage due to polishing can be minimized. Further, it is possible to prevent the n-type nitride semiconductor layer 21 from being excessively polished due to variation in control of the polishing depth.

【0045】また、n電極4は必ずしもn型窒化物半導
体層21の全面に形成する必要はなく、図5(a)に示
した発光素子の斜視図のように、部分的にn電極4を形
成してもよい。ここで図5(b)は、図5(a)に示し
たn電極4の例を、n電極4の真上から見た平面図であ
る。n型窒化物半導体層21に形成する溝も1つである
必要はなく、複数形成してもよい。もちろん、溝の全域
にn電極4を形成する必要はなく、キャリア注入に必要
な領域にのみn電極4を形成すればよい。
The n-electrode 4 does not necessarily need to be formed on the entire surface of the n-type nitride semiconductor layer 21. As shown in the perspective view of the light-emitting element shown in FIG. It may be formed. Here, FIG. 5B is a plan view of the example of the n-electrode 4 shown in FIG. The number of grooves formed in the n-type nitride semiconductor layer 21 does not need to be one, and a plurality of grooves may be formed. Of course, it is not necessary to form the n-electrode 4 in the whole area of the groove, and it is sufficient to form the n-electrode 4 only in the area necessary for carrier injection.

【0046】さらに、n型窒化物半導体層21に形成す
る溝を、図6に示すように発光素子の中心から発光素子
の各角へと形成してもよい。ただし、図6は図5(b)
と同様、n電極4を真上から見た平面図である。この例
では、発光素子の中心からn型窒化物半導体層21の平
面内の互いに平行でない2方向にn電極4が形成される
ため、キャリアが発光素子の全面にわたって比較的均一
に注入され、発光素子における発光を均一にすることが
できる。
Further, grooves formed in the n-type nitride semiconductor layer 21 may be formed from the center of the light emitting device to each corner of the light emitting device as shown in FIG. However, FIG. 6 shows FIG.
FIG. 4 is a plan view of the n-electrode 4 as viewed from directly above, similarly to FIG. In this example, since the n-electrodes 4 are formed in two directions that are not parallel to each other in the plane of the n-type nitride semiconductor layer 21 from the center of the light-emitting element, carriers are relatively uniformly injected over the entire surface of the light-emitting element, and light emission is performed. Light emission in the element can be made uniform.

【0047】さらに、ダイシングソーを用いることによ
って溝を形成することが、発光素子の製造装置に新たな
構成を追加する必要がないことから好ましいが、n型窒
化物半導体層21を露出させる形状は溝状である必要は
なく、形状に関わらずキャリア注入を行うために必要な
少なくとも一部の基板を除去し、n型窒化物半導体層2
1を露出させればよい。 (実施例3)本発明における発光素子の電極の形成方法
をLEDに適用した場合の一例を説明する。
Further, it is preferable to form a groove by using a dicing saw because it is not necessary to add a new configuration to a light emitting device manufacturing apparatus. However, the shape for exposing the n-type nitride semiconductor layer 21 is as follows. The n-type nitride semiconductor layer 2 need not be formed in a groove shape, and at least a part of the substrate necessary for performing carrier injection is removed regardless of the shape.
1 may be exposed. (Embodiment 3) An example in which the method for forming an electrode of a light emitting element according to the present invention is applied to an LED will be described.

【0048】たとえば、サファイアC面を基板1として
用い、各層は有機金属気相成長方法(MOCVD法)に
より形成される。図8(a)に示す通り、基板1上に基
板1と窒化物半導体層2との格子定数の不整合を緩和さ
せるバッファ層(図示せず)、n電極とオーミック接触
を得るためのn型窒化物半導体層21であるn型コンタ
クト層,キャリア結合により光を発生させる活性層2
2、キャリアを活性層に閉じ込めるためのp型クラッド
層およびp電極とオーミック接触を得るためのp型コン
タクト層から構成されるp型窒化物半導体層23が順次
形成される。
For example, each layer is formed by a metal organic chemical vapor deposition method (MOCVD method) using the sapphire C plane as the substrate 1. As shown in FIG. 8A, a buffer layer (not shown) for reducing the lattice constant mismatch between the substrate 1 and the nitride semiconductor layer 2 on the substrate 1 and an n-type for obtaining ohmic contact with the n-electrode. An n-type contact layer which is a nitride semiconductor layer 21, an active layer 2 which generates light by carrier coupling
2. A p-type nitride semiconductor layer 23 composed of a p-type cladding layer for confining carriers in the active layer and a p-type contact layer for obtaining ohmic contact with the p-electrode is sequentially formed.

【0049】バッファ層は低温によって結晶成長を行っ
た膜厚10Å〜500ÅのGaNから構成される。n型
コンタクト層は膜厚1〜20μm、好ましくは2〜6μ
mのSiドープGaNから構成される。また、n型コン
タクト層上にたとえばSiがドープされたAlGaNか
ら構成されるn型クラッド層を形成してもよい。活性層
22はInGaNから構成してもよいし、GaN/In
GaN/GaNの単一井戸層あるいは多重量子井戸層と
して構成してもよい。p型クラッド層は膜厚100〜5
00ÅのMgドープAlGaNから構成される。また、
このp型クラッド層も活性層へのキャリアの閉じ込めが
十分であれば省略可能である。p型コンタクト層は膜厚
0.001〜0.5μm、好ましくは0.05〜0.2
μmのMgドープGaNから構成される。
The buffer layer is made of GaN having a film thickness of 10 ° to 500 ° grown at a low temperature. The n-type contact layer has a thickness of 1 to 20 μm, preferably 2 to 6 μm.
m of Si-doped GaN. Further, an n-type cladding layer made of, for example, AlGaN doped with Si may be formed on the n-type contact layer. The active layer 22 may be composed of InGaN or GaN / In
It may be configured as a GaN / GaN single well layer or a multiple quantum well layer. The p-type cladding layer has a thickness of 100 to 5
It is made of Mg-doped AlGaN of 00 °. Also,
This p-type cladding layer can be omitted if the confinement of carriers in the active layer is sufficient. The p-type contact layer has a thickness of 0.001 to 0.5 μm, preferably 0.05 to 0.2 μm.
It is composed of μm Mg-doped GaN.

【0050】図8(b)に示す通り、上記のように形成
されたウェハーのp型窒化物半導体層23上に、Niを
100Åの厚さで形成し、その上にPtを500Åの厚
さでスパッタリング等によって形成した後、アニ−リン
グを行う。このNi/Ptの組み合わせは、Ni/A
u、Co/AuおよびPd/Ptとしてもp型窒化物半
導体層23と良好なオーミック接触が得られる。さら
に、Ni/Pt層を形成後、Ptを5000Åの厚さで
形成し、アニーリングを行い第1p電極31とする。
As shown in FIG. 8B, Ni is formed to a thickness of 100 ° on the p-type nitride semiconductor layer 23 of the wafer formed as described above, and Pt is formed thereon to a thickness of 500 °. After forming by sputtering or the like, annealing is performed. This combination of Ni / Pt is Ni / A
Good ohmic contact with p-type nitride semiconductor layer 23 can be obtained also for u, Co / Au and Pd / Pt. Further, after forming the Ni / Pt layer, Pt is formed to a thickness of 5000 °, and is annealed to form the first p-electrode 31.

【0051】第1p電極31形成後、第1p電極31上
に複数の金属バンプ32aが形成され、次に、金属バン
プ32aが形成された部分を除いた第1p電極31上に
樹脂層32bが形成される。金属バンプ32aは、金バ
ンプ、銅バンプ、はんだバンプ等から構成される。ま
た、樹脂層32bは、エポキシ樹脂等から構成される。
これら金属バンプ32aおよび樹脂層31bによって、
基板1研磨時にウェハーの反りを防止する反り防止層3
2が形成される。この反り防止層32は、20μm以上
とすることが好ましく、40〜80μm程度とすること
がより好ましい。このように、ウェハーのほぼ全面に反
り防止層が形成されることで、ウェハー全体に十分な強
度で、基板1の除去のためのウェハーの支持部材を得る
ことができる。また、この金属バンプ32aおよび樹脂
層32bからなる反り防止層32を形成後、面出し処理
を行い厚みを均一にすることによって基板研磨時のウェ
ハーの歪みが発生することを防止することが好ましい。
After the formation of the first p-electrode 31, a plurality of metal bumps 32a are formed on the first p-electrode 31, and then a resin layer 32b is formed on the first p-electrode 31 excluding the portion where the metal bump 32a is formed. Is done. The metal bump 32a is composed of a gold bump, a copper bump, a solder bump, or the like. The resin layer 32b is made of an epoxy resin or the like.
By these metal bumps 32a and resin layer 31b,
Warpage prevention layer 3 for preventing wafer warpage during polishing of substrate 1
2 are formed. The thickness of the warpage prevention layer 32 is preferably 20 μm or more, and more preferably about 40 to 80 μm. Since the warp prevention layer is formed on almost the entire surface of the wafer in this manner, a wafer supporting member for removing the substrate 1 can be obtained with sufficient strength over the entire wafer. Further, after forming the warpage prevention layer 32 composed of the metal bumps 32a and the resin layer 32b, it is preferable to perform a surface treatment to make the thickness uniform, thereby preventing the wafer from being distorted during substrate polishing.

【0052】また、最期にメッキまたは蒸着法によって
Auを1000Åの厚さで形成し、Au層34とする。
これによって、p電極3とリード部材あるいはワイヤ等
との接着を良好にすることができる。このAu層34
は、反り防止層32とリード部材あるいはワイヤ等との
接着が良好であれば省略可能である。
At the end, Au is formed to a thickness of 1000 ° by plating or vapor deposition to form an Au layer 34.
Thereby, the adhesion between the p-electrode 3 and the lead member or the wire can be improved. This Au layer 34
Can be omitted if the adhesion between the warp prevention layer 32 and the lead member or wire is good.

【0053】その後、図8(c)に示す通り、p電極3
が形成されたウェハーを定盤等の支持台5に載置し、基
板1面を砥石等の研磨部材6によって研磨する。このよ
うに、第1p電極31と比較して十分な厚さを有する反
り防止層32を形成することによって基板研磨時にウェ
ハーが歪むことを防止でき、ウェハーが割れることな
く、かつ平行に基板1の研磨を行うことができる。
Thereafter, as shown in FIG.
The wafer on which is formed is placed on a support table 5 such as a surface plate, and the surface of the substrate 1 is polished by a polishing member 6 such as a grindstone. As described above, by forming the warp prevention layer 32 having a sufficient thickness as compared with the first p-electrode 31, it is possible to prevent the wafer from being distorted at the time of polishing the substrate. Polishing can be performed.

【0054】この基板1の研磨は、図9(a)に示すよ
うに、n型窒化物半導体層21が露出するまで行う。基
板1の研磨後は、n型コンタクト層21の研磨によりダ
メージを受けた領域をRIEにて1〜2μm程度エッチ
ングを行う。その後、露出したn型コンタクト層21に
タングステンを20Åの厚さで、次にアルミニウムを3
0Åの厚さでスパッタリングにより形成し、アニーリン
グを行い、図9(b)に示すようにn電極4を形成す
る。また、このn電極4はITOから形成してもよい。
このように形成したウェハーをダイシングソーによって
分割して、図9(c)に示すように発光素子とする。図
9に示した例では、各発光素子は2つの金属バンプ32
aを有する構成としたが、発光素子1つ当たりの1つ金
属バンプ32aとしてもよく、少なくとも1つの金属バ
ンプ32aを有していればよい。
The polishing of the substrate 1 is performed until the n-type nitride semiconductor layer 21 is exposed, as shown in FIG. After the substrate 1 is polished, the region damaged by the polishing of the n-type contact layer 21 is etched by about 1 to 2 μm by RIE. After that, the exposed n-type contact layer 21 is made of tungsten with a thickness of
An n-electrode 4 is formed at a thickness of 0 ° by sputtering, annealing is performed, and an n-electrode 4 is formed as shown in FIG. Further, this n-electrode 4 may be formed from ITO.
The wafer thus formed is divided by a dicing saw to obtain light emitting elements as shown in FIG. In the example shown in FIG. 9, each light emitting element has two metal bumps 32.
Although a configuration is provided having a, a single metal bump 32a may be provided for each light emitting element, as long as at least one metal bump 32a is provided.

【0055】また、ここではウェハーの全面にn電極を
形成する例を示したが、パターニングにより部分的にn
電極4を形成することによって、発光素子からの光の取
り出し効率を向上することができる。 (実施例4)p電極3形成までの工程は実施例1と同様
に行われる。p電極3形成後、発光素子を支持台5に載
置して、図10(a)に示すように、基板1を10μm
〜100μm程度n型窒化物半導体層21側に残すよう
に研磨部材6によって研磨する。この残すべき基板1の
厚みは研磨の制御精度に応じて適宜設定すればよい。そ
の後、図10(b)に示すように、ダイシングソーによ
って、基板1をn型コンタクト層の0.5〜2.0μm
程度の深さまで削り、溝を形成する。溝の形成後はサフ
ァイア基板1およびn型窒化物半導体層21に対し、R
IEにてn型窒化物半導体層21が1〜2μm程度削れ
るようエッチングを行う。
Although the example in which the n-electrode is formed on the entire surface of the wafer is shown here, the n-electrode is partially formed by patterning.
By forming the electrode 4, the light extraction efficiency from the light emitting element can be improved. (Example 4) The steps up to the formation of the p-electrode 3 are performed in the same manner as in Example 1. After the formation of the p-electrode 3, the light-emitting element is placed on the support 5 and the substrate 1 is set to 10 μm as shown in FIG.
Polishing is performed by the polishing member 6 so as to leave about 100 μm on the n-type nitride semiconductor layer 21 side. The thickness of the substrate 1 to be left may be appropriately set according to the control accuracy of polishing. Thereafter, as shown in FIG. 10 (b), the substrate 1 is made to have an n-type contact layer of 0.5 to 2.0 μm using a dicing saw.
It is cut to a certain depth to form a groove. After the formation of the groove, the sapphire substrate 1 and the n-type nitride
Etching is performed by the IE so that the n-type nitride semiconductor layer 21 is shaved by about 1 to 2 μm.

【0056】そして、基板1およびn型窒化物半導体層
21に対し、タングステンWを20Åの厚さで、その後
アルミニウムAlを30Åの厚さでスパッタリングによ
り形成し、アニーリングを行い、図10(c)に示すよ
うにn電極4を形成する。このように形成したウェハー
をダイシングソーによって、図10(d)に示すよう
に、発光素子毎に分割する。
Then, the substrate 1 and the n-type nitride semiconductor layer 21 are formed by sputtering tungsten W to a thickness of 20 ° and then aluminum Al to a thickness of 30 ° by sputtering, and annealing is performed, as shown in FIG. The n-electrode 4 is formed as shown in FIG. The wafer thus formed is divided for each light emitting element by a dicing saw as shown in FIG.

【0057】この実施例2は、n型窒化物半導体層21
への研磨によるダメージを最小限に抑えることができ
る。また、研磨深さの制御ばらつきによってn型窒化物
半導体層21を研磨し過ぎることが防止できる。
In the second embodiment, the n-type nitride semiconductor layer 21
Damage due to polishing can be minimized. Further, it is possible to prevent the n-type nitride semiconductor layer 21 from being excessively polished due to variation in control of the polishing depth.

【0058】また、n電極4は必ずしもn型窒化物半導
体層21の全面に形成する必要はなく、実施例2と同
様、図5(a)に示した発光素子の斜視図のように、部
分的にn電極4を形成してもよい。ここで図5(b)
は、図5(a)に示したn電極4の例を、n電極4の真
上から見た平面図である。n型窒化物半導体層21に形
成する溝も1つである必要はなく、複数形成してもよ
い。もちろん、溝の全域にn電極4を形成する必要はな
く、キャリア注入に必要な領域にのみn電極4を形成す
ればよい。
The n-electrode 4 does not necessarily need to be formed on the entire surface of the n-type nitride semiconductor layer 21. Like the second embodiment, the n-electrode 4 is partially formed as shown in the perspective view of the light-emitting element shown in FIG. Alternatively, the n-electrode 4 may be formed. Here, FIG.
FIG. 6 is a plan view of the example of the n-electrode 4 shown in FIG. The number of grooves formed in the n-type nitride semiconductor layer 21 does not need to be one, and a plurality of grooves may be formed. Of course, it is not necessary to form the n-electrode 4 in the whole area of the groove, and it is sufficient to form the n-electrode 4 only in the area necessary for carrier injection.

【0059】さらに、n型窒化物半導体層21に形成す
る溝を、実施例2と同様、図6に示すように発光素子の
中心から発光素子の各角へと形成してもよい。ただし、
図6は図5(b)と同様、n電極4を真上から見た平面
図である。この例では、発光素子の中心からn型窒化物
半導体層21の平面内の互いに平行でない2方向にn電
極4が形成されるため、キャリアが発光素子の全面にわ
たって比較的均一に注入され、発光素子における発光を
均一にすることができる。
Further, the groove formed in the n-type nitride semiconductor layer 21 may be formed from the center of the light emitting element to each corner of the light emitting element as shown in FIG. However,
FIG. 6 is a plan view of the n-electrode 4 as viewed from directly above, similarly to FIG. 5B. In this example, since the n-electrodes 4 are formed in two directions that are not parallel to each other in the plane of the n-type nitride semiconductor layer 21 from the center of the light-emitting element, carriers are relatively uniformly injected over the entire surface of the light-emitting element, and light emission is performed. Light emission in the element can be made uniform.

【0060】さらに、ダイシングソーを用いることによ
って溝を形成することが、発光素子の製造装置に新たな
構成を追加する必要がないことから好ましいが、n型窒
化物半導体層21を露出させる形状は溝状である必要は
なく、形状に関わらずキャリア注入を行うために必要な
少なくとも一部の基板を除去し、n型窒化物半導体層2
1を露出させればよい。
Further, it is preferable to form a groove by using a dicing saw because it is not necessary to add a new structure to a light emitting device manufacturing apparatus. However, the shape for exposing the n-type nitride semiconductor layer 21 is as follows. The n-type nitride semiconductor layer 2 need not be formed in a groove shape, and at least a part of the substrate necessary for performing carrier injection is removed regardless of the shape.
1 may be exposed.

【0061】[0061]

【発明の効果】本発明の発光素子および発光素子の電極
形成方法によって、良好な結晶性を得ながら、かつ発光
素子の両面に電極を形成した窒化物半導体層を有する発
光素子を提供することができる。
According to the light emitting device and the method for forming an electrode of the light emitting device of the present invention, it is possible to provide a light emitting device having a nitride semiconductor layer having electrodes formed on both sides of the light emitting device while obtaining good crystallinity. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1におけるp電極の形成
から基板の研磨までの工程を概略的に示す図である。
FIG. 1 is a view schematically showing steps from formation of a p-electrode to polishing of a substrate in Embodiment 1 of the present invention.

【図2】 本発明の実施例1におけるp電極の形成から
基板の研磨までの工程を概略的に示す図である。
FIG. 2 is a diagram schematically showing steps from formation of a p-electrode to polishing of a substrate in Example 1 of the present invention.

【図3】 本発明の実施例1における基板の除去からn
電極の形成および発光素子への分割までの工程を概略的
に示す図である。
FIG. 3 is a diagram illustrating a case where a substrate is removed according to the first embodiment of the present invention;
It is a figure which shows roughly the process until formation of an electrode and division | segmentation into a light emitting element.

【図4】 本発明の実施例2における基板の除去からn
電極の形成および発光素子への分割までの工程を概略的
に示す図である。
FIG. 4 is a diagram illustrating a state in which the substrate is removed according to the second embodiment of the present invention;
It is a figure which shows roughly the process until formation of an electrode and division | segmentation into a light emitting element.

【図5】 本発明の実施例2における変形例に関する発
光素子の概略図である。
FIG. 5 is a schematic view of a light emitting device according to a modification of the second embodiment of the present invention.

【図6】 本発明の実施例2における他の変形例に関す
る発光素子をn電極側から見た概略的な平面図である。
FIG. 6 is a schematic plan view of a light emitting device according to another modification of the second embodiment of the present invention, as viewed from an n-electrode side.

【図7】 本発明の実施の形態2におけるp電極の形成
から基板の研磨までの工程を概略的に示す図である。
FIG. 7 is a drawing schematically showing steps from formation of a p-electrode to polishing of a substrate in Embodiment 2 of the present invention.

【図8】 本発明の実施例3におけるp電極の形成から
基板の研磨までの工程を概略的に示す図である。
FIG. 8 is a view schematically showing steps from formation of a p-electrode to polishing of a substrate in a third embodiment of the present invention.

【図9】 本発明の実施例3における基板の除去からn
電極の形成および発光素子への分割までの工程を概略的
に示す図である。
FIG. 9 is a diagram illustrating a state where n is removed from the substrate according to the third embodiment of the present invention;
It is a figure which shows roughly the process until formation of an electrode and division | segmentation into a light emitting element.

【図10】 本発明の実施例4における基板の除去から
n電極の形成および発光素子への分割までの工程を概略
的に示す図である。
FIG. 10 is a drawing schematically showing steps from removal of a substrate to formation of an n-electrode and division into light-emitting elements in Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1・・・サファイア基板 2・・・窒化物半導体層 21・・・n型窒化物半導体層 22・・・活性層 23・・・p型窒化物半導体層 3・・・p電極 31・・・第1金属層 32・・・反り防止層 32a・・・下地層 32b・・・第2金属層 32c・・・金属バンプ 32d・・・樹脂層 34・・・Au層 4・・・n電極 5・・・支持台 6・・・研磨部材 DESCRIPTION OF SYMBOLS 1 ... Sapphire substrate 2 ... Nitride semiconductor layer 21 ... N-type nitride semiconductor layer 22 ... Active layer 23 ... P-type nitride semiconductor layer 3 ... P electrode 31 ... 1st metal layer 32 ... Warp prevention layer 32a ... Underlayer 32b ... 2nd metal layer 32c ... Metal bump 32d ... Resin layer 34 ... Au layer 4 ... n electrode 5 ... Support table 6 ... Polishing member

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4M104 AA04 AA07 AA09 BB04 BB05 BB07 BB18 BB36 CC01 DD34 DD37 DD53 DD78 EE05 EE09 EE18 FF13 GG04 HH20 5F041 CA40 CA46 CA77 CA82 CA85 CA92 CA93 CA98 CA99 5F073 CA07 CB05 CB07 CB10 CB22 EA29  ──────────────────────────────────────────────────続 き Continued from the front page F term (reference) 4M104 AA04 AA07 AA09 BB04 BB05 BB07 BB18 BB36 CC01 DD34 DD37 DD53 DD78 EE05 EE09 EE18 FF13 GG04 HH20 5F041 CA40 CA46 CA77 CA82 CA85 CA92 CA93 CA98 CA99 5F07 CB CB CB CB CB

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】基板上に少なくともn型窒化物半導体層と
およびp型窒化物半導体層が積層されたウェハーを発光
素子毎に分割する発光素子の製造方法において、 前記p型窒化物半導体層のほぼ全面にp型窒化物半導体
層とオーミック接触を得るための第1金属層を形成し、
前記金属層よりも上に前記ウェハーの反りを防止するた
めの反り防止層を形成するp電極形成工程と、 前記p電極形成工程後、分割すべき発光素子の各領域に
前記n型窒化物半導体層の少なくとも一部が露出するよ
うに、前記窒化物半導体層が積層された基板面と反対側
の面から前記基板を除去する基板除去工程と、 前記露出したn型窒化物半導体層上の少なくとも一部に
接するようにn電極を形成するn電極形成工程と、 前記p電極および前記n電極が形成されたウェハーを分
割すべき領域毎に分割し発光素子とする分割工程とを含
むことを特徴とする発光素子の製造方法。
1. A method for manufacturing a light-emitting device, comprising: dividing a wafer on which at least an n-type nitride semiconductor layer and a p-type nitride semiconductor layer are laminated on a substrate for each light-emitting device; Forming a first metal layer for obtaining ohmic contact with the p-type nitride semiconductor layer over substantially the entire surface;
A p-electrode forming step of forming a warp preventing layer for preventing warping of the wafer above the metal layer; and after the p-electrode forming step, the n-type nitride semiconductor is formed in each region of the light emitting element to be divided. A substrate removing step of removing the substrate from a surface opposite to a substrate surface on which the nitride semiconductor layer is laminated so that at least a part of the layer is exposed; and at least a portion on the exposed n-type nitride semiconductor layer. An n-electrode forming step of forming an n-electrode so as to be in contact with a part thereof; and a dividing step of dividing the wafer on which the p-electrode and the n-electrode are formed for each region to be divided into light emitting elements. A method for manufacturing a light emitting element.
【請求項2】前記反り防止層は厚さが10μm以上の第
2金属層を少なくとも含むことを特徴とする請求項1に
記載の発光素子の製造方法。
2. The method according to claim 1, wherein the warp prevention layer includes at least a second metal layer having a thickness of 10 μm or more.
【請求項3】前記第2金属層は少なくともNiを含む金
属から構成されることを特徴とする請求項2に記載の発
光素子の製造方法。
3. The method according to claim 2, wherein the second metal layer is made of a metal containing at least Ni.
【請求項4】前記第2金属層は無電界めっきによって形
成されることを特徴とする請求項2乃至3に記載の発光
素子の製造方法。
4. The method according to claim 2, wherein the second metal layer is formed by electroless plating.
【請求項5】前記反り防止層は前記第1金属層上に形成
された1つ以上の金属バンプと、前記金属バンプが形成
された部分を除いた前記第1金属層上に形成された樹脂
層から少なくとも構成されることを特徴とする請求項1
に記載の発光素子の製造方法。
5. The anti-warp layer comprises at least one metal bump formed on the first metal layer and a resin formed on the first metal layer excluding a portion where the metal bump is formed. 2. The method of claim 1, wherein the at least one layer comprises at least one layer.
3. The method for manufacturing a light emitting device according to item 1.
【請求項6】前記反り防止層よりも上にAuを少なくと
も含むAu層を形成するAu層形成工程とさらに含むこ
とを特徴とする請求項1乃至5に記載の発光素子の製造
方法。
6. The method for manufacturing a light emitting device according to claim 1, further comprising an Au layer forming step of forming an Au layer containing at least Au above the warp prevention layer.
【請求項7】前記基板はサファイアを用いることを特徴
とする請求項1乃至6に記載の発光素子の製造方法。
7. The method according to claim 1, wherein the substrate uses sapphire.
【請求項8】前記n電極は透明電極であることを特徴と
する請求項1乃至7に記載の発光素子の製造方法。
8. The method according to claim 1, wherein the n-electrode is a transparent electrode.
【請求項9】少なくともn型窒化物半導体層およびp型
窒化物半導体層が積層された半導体層が形成され、n電
極およびp電極を有する発光素子において、 前記n電極および前記p電極は、それぞれ前記半導体層
を挟んで対向して形成され、 前記p電極は、前記p型窒化物半導体層のほぼ全面にp
型窒化物半導体層とオーミック接触を得るための第1金
属層と、前記金属層よりも上に前記ウェハーの反りを防
止するための反り防止層から少なくとも構成されること
を特徴とする発光素子。
9. A light emitting device having a semiconductor layer in which at least an n-type nitride semiconductor layer and a p-type nitride semiconductor layer are laminated and having an n-electrode and a p-electrode, wherein the n-electrode and the p-electrode are The p-electrode is formed so as to face the semiconductor layer, and the p-electrode is formed on almost the entire surface of the p-type nitride semiconductor layer.
A light emitting device comprising at least a first metal layer for obtaining ohmic contact with a type nitride semiconductor layer and a warp preventing layer for preventing warping of the wafer above the metal layer.
【請求項10】少なくともn型窒化物半導体層およびp
型窒化物半導体層が積層された半導体層が形成され、n
電極およびp電極を有する発光素子において、 前記p電極は、前記p型窒化物半導体層のほぼ全面にp
型窒化物半導体層とオーミック接触を得るための第1金
属層と、前記金属層よりも上に前記ウェハーの反りを防
止するための反り防止層から少なくとも構成され、 前記n型窒化物半導体層は前記基板の少なくとも一部が
除去されて露出しており、 前記n電極は前記露出したn型窒化物半導体層上の少な
くとも一部に接するように形成されることを特徴とする
発光素子。
10. At least an n-type nitride semiconductor layer and a p-type nitride semiconductor layer.
A semiconductor layer in which a nitride semiconductor layer is stacked, and n
In a light emitting device having an electrode and a p-electrode, the p-electrode is formed on almost the entire surface of the p-type nitride semiconductor layer.
A first metal layer for obtaining ohmic contact with the n-type nitride semiconductor layer, and a warp preventing layer for preventing the warpage of the wafer above the metal layer, wherein the n-type nitride semiconductor layer is A light emitting device, wherein at least a part of the substrate is removed and exposed, and the n-electrode is formed so as to be in contact with at least a part of the exposed n-type nitride semiconductor layer.
【請求項11】前記反り防止層は厚さが10μm以上の
第2金属層を少なくとも含むことを特徴とする請求項9
または10に記載の発光素子。
11. The warp prevention layer includes at least a second metal layer having a thickness of 10 μm or more.
Or the light-emitting element according to 10.
【請求項12】前記第2金属層は少なくともNiを含む
金属から構成されることを特徴とする請求項11に記載
の発光素子。
12. The light emitting device according to claim 11, wherein said second metal layer is made of a metal containing at least Ni.
【請求項13】前記第2金属層は無電界めっきによって
形成されることを特徴とする請求項11乃至12に記載
の発光素子。
13. The light emitting device according to claim 11, wherein said second metal layer is formed by electroless plating.
【請求項14】前記反り防止層は前記第1金属層上に形
成された1つ以上の金属バンプと、前記金属バンプが形
成された部分を除いた前記第1金属層上に形成された樹
脂層から少なくとも構成されることを特徴とする請求項
9または10に記載の発光素子。
14. The anti-warp layer includes at least one metal bump formed on the first metal layer and a resin formed on the first metal layer excluding a portion where the metal bump is formed. The light-emitting device according to claim 9, wherein the light-emitting device comprises at least a layer.
【請求項15】前記樹脂層は膜厚が20μm以上である
ことを特徴とする請求項14に記載の発光素子。
15. The light emitting device according to claim 14, wherein said resin layer has a thickness of 20 μm or more.
【請求項16】前記p電極は、前記反り防止層よりも上
にAuを少なくとも含むAu層を有することを特徴とす
る請求項9乃至15に記載の発光素子。
16. The light emitting device according to claim 9, wherein the p-electrode has an Au layer containing at least Au above the warp prevention layer.
【請求項17】前記基板はサファイアを用いることを特
徴とする請求項9乃至16に記載の発光素子。
17. The light emitting device according to claim 9, wherein the substrate uses sapphire.
【請求項18】前記n電極は透明電極であることを特徴
とする請求9乃至17に記載の発光素子。
18. The light emitting device according to claim 9, wherein said n-electrode is a transparent electrode.
JP2000153499A 2000-02-21 2000-05-24 Light emitting device and method for manufacturing light emitting device Expired - Fee Related JP4501225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153499A JP4501225B2 (en) 2000-02-21 2000-05-24 Light emitting device and method for manufacturing light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000048878 2000-02-21
JP2000-48878 2000-02-21
JP2000153499A JP4501225B2 (en) 2000-02-21 2000-05-24 Light emitting device and method for manufacturing light emitting device

Publications (3)

Publication Number Publication Date
JP2001313422A true JP2001313422A (en) 2001-11-09
JP2001313422A5 JP2001313422A5 (en) 2007-07-12
JP4501225B2 JP4501225B2 (en) 2010-07-14

Family

ID=26586079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153499A Expired - Fee Related JP4501225B2 (en) 2000-02-21 2000-05-24 Light emitting device and method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP4501225B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065464A1 (en) * 2002-01-28 2003-08-07 Nichia Corporation Nitride semiconductor device having support substrate and its manufacturing method
US7105857B2 (en) 2002-07-08 2006-09-12 Nichia Corporation Nitride semiconductor device comprising bonded substrate and fabrication method of the same
JP2007036297A (en) * 2006-11-08 2007-02-08 Sharp Corp Nitride based compound semiconductor light emitting device and manufacturing method therefor
WO2007032546A1 (en) * 2005-09-16 2007-03-22 Showa Denko K.K. Production method for nitride semiconductor light emitting device
JP2007081360A (en) * 2005-09-15 2007-03-29 Epitech Technology Corp Vertical type light emitting diode and its manufacture
KR100707955B1 (en) * 2005-02-07 2007-04-16 (주) 비앤피 사이언스 Light emitting diode and manufacturing method for the same
JP2007227980A (en) * 2007-06-08 2007-09-06 Nichia Chem Ind Ltd Nitride semiconductor light emitting element and method of manufacturing light emitting element
JP2007305999A (en) * 2006-05-10 2007-11-22 Samsung Electro Mech Co Ltd MANUFACTURING METHOD FOR VERTICAL-STRUCTURE GaN-BASED LED DEVICE
US7301175B2 (en) 2001-10-12 2007-11-27 Nichia Corporation Light emitting apparatus and method of manufacturing the same
JP2007335879A (en) * 2006-06-09 2007-12-27 Philips Lumileds Lightng Co Llc Semiconductor light-emitting device including porous layer
JP2008187204A (en) * 2008-04-25 2008-08-14 Sharp Corp Nitride based compound semiconductor light emitting element and its production method
US7511311B2 (en) 2002-08-01 2009-03-31 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US7538360B2 (en) 2002-04-17 2009-05-26 Sharp Kabushiki Kaisha Nitride-based semiconductor light-emitting device and manufacturing method thereof
JP2009302589A (en) * 2001-10-26 2009-12-24 Lg Electronics Inc Diode having vertical structure, and method of manufacturing the same
JP2010114182A (en) * 2008-11-05 2010-05-20 Konica Minolta Holdings Inc Method of manufacturing thin-film transistor, and thin-film transistor
US7763477B2 (en) 2004-03-15 2010-07-27 Tinggi Technologies Pte Limited Fabrication of semiconductor devices
JP2010529696A (en) * 2007-06-12 2010-08-26 セミエルイーディーズ オプトエレクトロニクス カンパニー リミテッド Method for forming low resistance contact
KR101024330B1 (en) * 2004-09-22 2011-03-23 크리 인코포레이티드 High efficiency group iii nitride led with lenticular surface
US7939349B2 (en) 2002-04-23 2011-05-10 Sharp Kabushiki Kaisha Nitride-based semiconductor light emitting device and manufacturing method thereof
US8004001B2 (en) 2005-09-29 2011-08-23 Tinggi Technologies Private Limited Fabrication of semiconductor devices for light emission
US8067269B2 (en) 2005-10-19 2011-11-29 Tinggi Technologies Private Limted Method for fabricating at least one transistor
US8124994B2 (en) 2006-09-04 2012-02-28 Tinggi Technologies Private Limited Electrical current distribution in light emitting devices
US8207552B2 (en) 2002-06-26 2012-06-26 Lg Electronics Inc. Thin film light emitting diode
US8294172B2 (en) 2002-04-09 2012-10-23 Lg Electronics Inc. Method of fabricating vertical devices using a metal support film
US8309377B2 (en) 2004-04-07 2012-11-13 Tinggi Technologies Private Limited Fabrication of reflective layer on semiconductor light emitting devices
JP2012243823A (en) * 2011-05-16 2012-12-10 Toshiba Corp Semiconductor light-emitting device
US8329556B2 (en) 2005-12-20 2012-12-11 Tinggi Technologies Private Limited Localized annealing during semiconductor device fabrication
US8395167B2 (en) 2006-08-16 2013-03-12 Tinggi Technologies Private Limited External light efficiency of light emitting diodes
CN103515488A (en) * 2012-06-25 2014-01-15 杭州华普永明光电股份有限公司 Making process of LED chip and LED chip
US8999019B2 (en) 2005-10-21 2015-04-07 Taylor Biomass Energy, Llc Process and system for gasification with in-situ tar removal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295848A (en) * 1993-04-08 1994-10-21 Mitsubishi Electric Corp Fabrication of semiconductor device
JPH098403A (en) * 1995-06-15 1997-01-10 Nichia Chem Ind Ltd Nitride semiconductor element and manufacture thereof
JPH1168157A (en) * 1997-08-19 1999-03-09 Sumitomo Electric Ind Ltd Semiconductor light-emitting element and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295848A (en) * 1993-04-08 1994-10-21 Mitsubishi Electric Corp Fabrication of semiconductor device
JPH098403A (en) * 1995-06-15 1997-01-10 Nichia Chem Ind Ltd Nitride semiconductor element and manufacture thereof
JPH1168157A (en) * 1997-08-19 1999-03-09 Sumitomo Electric Ind Ltd Semiconductor light-emitting element and manufacture thereof

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301175B2 (en) 2001-10-12 2007-11-27 Nichia Corporation Light emitting apparatus and method of manufacturing the same
US7390684B2 (en) 2001-10-12 2008-06-24 Nichia Corporation Light emitting apparatus and method of manufacturing the same
US10326055B2 (en) 2001-10-26 2019-06-18 Lg Innotek Co., Ltd. Diode having vertical structure
US8592846B2 (en) 2001-10-26 2013-11-26 Lg Electronics Inc. Diode having vertical structure and method of manufacturing the same
US9000468B2 (en) 2001-10-26 2015-04-07 Lg Innotek Co., Ltd. Diode having vertical structure
JP2009302589A (en) * 2001-10-26 2009-12-24 Lg Electronics Inc Diode having vertical structure, and method of manufacturing the same
US10032959B2 (en) 2001-10-26 2018-07-24 Lg Innotek Co., Ltd. Diode having vertical structure
US9620677B2 (en) 2001-10-26 2017-04-11 Lg Innotek Co., Ltd. Diode having vertical structure
US6744071B2 (en) 2002-01-28 2004-06-01 Nichia Corporation Nitride semiconductor element with a supporting substrate
WO2003065464A1 (en) * 2002-01-28 2003-08-07 Nichia Corporation Nitride semiconductor device having support substrate and its manufacturing method
EP2105977A1 (en) * 2002-01-28 2009-09-30 Nichia Corporation Nitride semiconductor element with supporting substrate and method for producing nitride semiconductor element
US6946683B2 (en) 2002-01-28 2005-09-20 Nichia Corporation Opposed terminal structure having a nitride semiconductor element
US6916676B2 (en) 2002-01-28 2005-07-12 Nichia Corporation Method for producing a nitride semiconductor element
US10453998B2 (en) 2002-04-09 2019-10-22 Lg Innotek Co. Ltd. Vertical topology light emitting device
US8669587B2 (en) 2002-04-09 2014-03-11 Lg Innotek Co., Ltd. Vertical topology light emitting device
US9478709B2 (en) 2002-04-09 2016-10-25 Lg Innotek Co., Ltd. Vertical topology light emitting device
US8294172B2 (en) 2002-04-09 2012-10-23 Lg Electronics Inc. Method of fabricating vertical devices using a metal support film
US9847455B2 (en) 2002-04-09 2017-12-19 Lg Innotek Co., Ltd. Vertical topology light emitting device
US8368115B2 (en) 2002-04-09 2013-02-05 Lg Electronics Inc. Method of fabricating vertical devices using a metal support film
US10147847B2 (en) 2002-04-09 2018-12-04 Lg Innotek Co., Ltd. Vertical topology light emitting device
US8564016B2 (en) 2002-04-09 2013-10-22 Lg Electronics Inc. Vertical topology light emitting device
US9209360B2 (en) 2002-04-09 2015-12-08 Lg Innotek Co., Ltd. Vertical topology light-emitting device
US10644200B2 (en) 2002-04-09 2020-05-05 Lg Innotek Co., Ltd. Vertical topology light emitting device
US9000477B2 (en) 2002-04-09 2015-04-07 Lg Innotek Co., Ltd. Vertical topology light-emitting device
US8569776B2 (en) 2002-04-17 2013-10-29 Sharp Kabushiki Kaisha Nitride-based semiconductor light-emitting device and manufacturing method thereof
US7538360B2 (en) 2002-04-17 2009-05-26 Sharp Kabushiki Kaisha Nitride-based semiconductor light-emitting device and manufacturing method thereof
US20090212318A1 (en) * 2002-04-17 2009-08-27 Sharp Kabushiki Kaisha Nitride-based semiconductor light-emitting device and manufacturing method thereof
US7939349B2 (en) 2002-04-23 2011-05-10 Sharp Kabushiki Kaisha Nitride-based semiconductor light emitting device and manufacturing method thereof
US8207552B2 (en) 2002-06-26 2012-06-26 Lg Electronics Inc. Thin film light emitting diode
US7378334B2 (en) 2002-07-08 2008-05-27 Nichia Corporation Nitride semiconductor device comprising bonded substrate and fabrication method of the same
US7105857B2 (en) 2002-07-08 2006-09-12 Nichia Corporation Nitride semiconductor device comprising bonded substrate and fabrication method of the same
US7511311B2 (en) 2002-08-01 2009-03-31 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US8035118B2 (en) 2002-08-01 2011-10-11 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US8742438B2 (en) 2002-08-01 2014-06-03 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
EP2290715A1 (en) 2002-08-01 2011-03-02 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US8330179B2 (en) 2002-08-01 2012-12-11 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US7763477B2 (en) 2004-03-15 2010-07-27 Tinggi Technologies Pte Limited Fabrication of semiconductor devices
US8309377B2 (en) 2004-04-07 2012-11-13 Tinggi Technologies Private Limited Fabrication of reflective layer on semiconductor light emitting devices
KR101024330B1 (en) * 2004-09-22 2011-03-23 크리 인코포레이티드 High efficiency group iii nitride led with lenticular surface
KR100707955B1 (en) * 2005-02-07 2007-04-16 (주) 비앤피 사이언스 Light emitting diode and manufacturing method for the same
JP4542508B2 (en) * 2005-09-15 2010-09-15 晶元光電股▲ふん▼有限公司 Vertical light emitting diode and manufacturing method thereof
JP2007081360A (en) * 2005-09-15 2007-03-29 Epitech Technology Corp Vertical type light emitting diode and its manufacture
US7939351B2 (en) 2005-09-16 2011-05-10 Showa Denko K.K. Production method for nitride semiconductor light emitting device
WO2007032546A1 (en) * 2005-09-16 2007-03-22 Showa Denko K.K. Production method for nitride semiconductor light emitting device
US8004001B2 (en) 2005-09-29 2011-08-23 Tinggi Technologies Private Limited Fabrication of semiconductor devices for light emission
US8067269B2 (en) 2005-10-19 2011-11-29 Tinggi Technologies Private Limted Method for fabricating at least one transistor
US8999019B2 (en) 2005-10-21 2015-04-07 Taylor Biomass Energy, Llc Process and system for gasification with in-situ tar removal
US8329556B2 (en) 2005-12-20 2012-12-11 Tinggi Technologies Private Limited Localized annealing during semiconductor device fabrication
JP2007305999A (en) * 2006-05-10 2007-11-22 Samsung Electro Mech Co Ltd MANUFACTURING METHOD FOR VERTICAL-STRUCTURE GaN-BASED LED DEVICE
JP2007335879A (en) * 2006-06-09 2007-12-27 Philips Lumileds Lightng Co Llc Semiconductor light-emitting device including porous layer
US8395167B2 (en) 2006-08-16 2013-03-12 Tinggi Technologies Private Limited External light efficiency of light emitting diodes
US8124994B2 (en) 2006-09-04 2012-02-28 Tinggi Technologies Private Limited Electrical current distribution in light emitting devices
JP2007036297A (en) * 2006-11-08 2007-02-08 Sharp Corp Nitride based compound semiconductor light emitting device and manufacturing method therefor
JP2007227980A (en) * 2007-06-08 2007-09-06 Nichia Chem Ind Ltd Nitride semiconductor light emitting element and method of manufacturing light emitting element
JP2010529696A (en) * 2007-06-12 2010-08-26 セミエルイーディーズ オプトエレクトロニクス カンパニー リミテッド Method for forming low resistance contact
JP2008187204A (en) * 2008-04-25 2008-08-14 Sharp Corp Nitride based compound semiconductor light emitting element and its production method
JP4719244B2 (en) * 2008-04-25 2011-07-06 シャープ株式会社 Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
JP2010114182A (en) * 2008-11-05 2010-05-20 Konica Minolta Holdings Inc Method of manufacturing thin-film transistor, and thin-film transistor
JP2012243823A (en) * 2011-05-16 2012-12-10 Toshiba Corp Semiconductor light-emitting device
US8987026B2 (en) 2011-05-16 2015-03-24 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US8878213B2 (en) 2011-05-16 2014-11-04 Kabushiki Kaisha Toshiba Semiconductor light emitting device
CN103515488A (en) * 2012-06-25 2014-01-15 杭州华普永明光电股份有限公司 Making process of LED chip and LED chip

Also Published As

Publication number Publication date
JP4501225B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4501225B2 (en) Light emitting device and method for manufacturing light emitting device
US9209362B2 (en) Semiconductor light emitting device and method of fabricating semiconductor light emitting device
EP1727218B1 (en) Method of manufacturing light emitting diodes
US8581295B2 (en) Semiconductor light-emitting diode
JP5533675B2 (en) Semiconductor light emitting device
JP3531475B2 (en) Flip chip type optical semiconductor device
KR100691363B1 (en) Method for manufacturing vertical structure light emitting diode
JP2006005369A (en) Light-emitting device with transparent submount having reverse-side via
JP5056799B2 (en) Group III nitride semiconductor light emitting device and method of manufacturing the same
US20070010035A1 (en) Light emitting diode and manufacturing method thereof
JP2004079972A (en) Surface-emitting type light emitting element
KR100504178B1 (en) Light emitting diode and method of manufacturing the same
KR100774196B1 (en) Method of manufacturing light emitting device having vertical structure
JPH10223930A (en) Semiconductor light emitting element
JP2007149983A (en) Manufacture of nitride semiconductor light-emitting element
KR101032987B1 (en) Semiconductor light emitting device
KR20090115902A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
KR101124470B1 (en) Semiconductor light emitting device
JP5207944B2 (en) Manufacturing method of semiconductor light emitting device
KR100710394B1 (en) Method of manufacturing led having vertical structure
US20060243991A1 (en) Light emitting diode and manufacturing method thereof
KR100676061B1 (en) Method of manufacturing light emitting diode
KR101084641B1 (en) Iii-nitride semiconductor light emitting device
KR100832301B1 (en) Semiconductor Light Emitting Device Having Surface Roughness Of Homogeneous Substrates And Method For Manufacturing Thereof
JP2003078168A (en) Nitride semiconductor light emitting element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Ref document number: 4501225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees