JP2001308089A - Low-permittivity film and semiconductor element having the same - Google Patents

Low-permittivity film and semiconductor element having the same

Info

Publication number
JP2001308089A
JP2001308089A JP2000123505A JP2000123505A JP2001308089A JP 2001308089 A JP2001308089 A JP 2001308089A JP 2000123505 A JP2000123505 A JP 2000123505A JP 2000123505 A JP2000123505 A JP 2000123505A JP 2001308089 A JP2001308089 A JP 2001308089A
Authority
JP
Japan
Prior art keywords
film
dielectric constant
low
low dielectric
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000123505A
Other languages
Japanese (ja)
Inventor
Takenori Narita
武憲 成田
Shigeru Nobe
茂 野部
Haruaki Sakurai
治彰 桜井
Nobuko Terada
信子 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2000123505A priority Critical patent/JP2001308089A/en
Publication of JP2001308089A publication Critical patent/JP2001308089A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low-permittivity film which has a high mechanical strength, improves the CMP resistance by applying as a layer insulation film for semiconductor elements, can ensure a wide process margin, and attains a high performance, high reliability and high yield of LSI. SOLUTION: The low-permittivity film of 0.5-0.6 μm, formed on a silicon wafer has a hardness of 0.45 GPa or more in DHT115 as measured at a weight of 10 mg and a specific permittivity of 1.0-2.4 as measured at 1 MHz, and the semiconductor element uses this low-permittivity film as a layer insulation film of a multilayer wiring.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子用の層
間絶縁膜として有用な低誘電率膜及びこの低誘電率を有
する半導体素子に関する。
The present invention relates to a low dielectric constant film useful as an interlayer insulating film for a semiconductor device and a semiconductor device having this low dielectric constant.

【0002】[0002]

【従来の技術】LSIの高集積化による配線の微細化に
ともない、配線間容量の増大による信号遅延時間の増大
が問題となってきている。従来から、比誘電率4.2程
度のCVD法によるSiO2 膜が層間絶縁膜として用い
られてきたが、デバイスの配線間容量を低減し、LSI
の動作速度を向上するため、より低誘電率な膜が求めら
れている。現在実用化されている低誘電率膜としては、
比誘電率が3.5程度のSiOF膜(CVD法)があげ
られる。比誘電率が2.5〜3.0の絶縁膜としては、
有機SOG(Spin On Glass)膜、有機ポ
リマー等が有力と考えられており、LSIの層間絶縁膜
に適用するための検討が盛んに行われている。さらに微
細化したLSIに対応するため、比誘電率2.5未満の
絶縁膜の検討もされている。
2. Description of the Related Art With the miniaturization of wiring due to the high integration of LSIs, an increase in signal delay time due to an increase in capacitance between wirings has become a problem. Conventionally, a SiO 2 film formed by a CVD method having a relative dielectric constant of about 4.2 has been used as an interlayer insulating film.
In order to improve the operation speed of the device, a film having a lower dielectric constant is required. Low dielectric constant films that are currently in practical use include:
An example is an SiOF film (CVD method) having a relative dielectric constant of about 3.5. As an insulating film having a relative dielectric constant of 2.5 to 3.0,
An organic SOG (Spin On Glass) film, an organic polymer, and the like are considered to be promising, and studies for application to an interlayer insulating film of LSI are being actively conducted. In order to cope with further miniaturized LSIs, an insulating film having a relative dielectric constant of less than 2.5 has been studied.

【0003】LSIの層間絶縁膜に適用する低誘電率膜
に要求される特性としては、耐熱性、プラズマ耐性、機
械強度等の特性があげられる。微細化したLSIの多層
配線工程においては、グローバル平坦化のため、CMP
(Chemical Mechanical Poli
shing)が必須であり、機械強度は特に重要な特性
となる。比誘電率が2.5〜3.0の低誘電率膜として
有力と考えられている有機ポリシロキサン、有機ポリマ
ーは、従来のCVDで形成したSiO2 膜やSiOF膜
よりも誘電率は低いが、膜の機械強度が低いことが問題
となっている。
The characteristics required for a low dielectric constant film applied to an interlayer insulating film of an LSI include characteristics such as heat resistance, plasma resistance, and mechanical strength. In a multilayer wiring process of a miniaturized LSI, CMP is used for global flattening.
(Chemical Mechanical Poli
shing) is essential, and mechanical strength is a particularly important property. Organic polysiloxane and organic polymer, which are considered to be effective as low dielectric constant films having a relative dielectric constant of 2.5 to 3.0, have a lower dielectric constant than SiO 2 films and SiOF films formed by conventional CVD. The problem is that the mechanical strength of the membrane is low.

【0004】CMP工程において絶縁膜の機械強度が影
響する特性としては、CMP時の応力による剥がれ、異
物による傷、ダマシンプロセスにおけるメタルCMP時
のエロージョン(絶縁膜の削れ)等があげられる。これ
らについて、膜の機械強度の改善により特性が顕著に改
善することが報告されている。LSIの高性能化に寄与
する低誘電率絶縁膜を用い、高歩留り、高信頼性を達成
するため、低誘電率膜の機械強度の改善が強く望まれて
いる。
[0004] Characteristics that the mechanical strength of the insulating film affects in the CMP process include peeling due to stress during CMP, damage due to foreign matter, erosion during metal CMP in the damascene process (cutting of the insulating film), and the like. Regarding these, it is reported that the characteristics are significantly improved by improving the mechanical strength of the film. In order to achieve high yield and high reliability by using a low-dielectric-constant insulating film that contributes to high performance of LSI, it is strongly desired to improve the mechanical strength of the low-dielectric-constant film.

【0005】比誘電率が2.5未満の低誘電率膜として
は、特公平6−12790号公報及び特開平10−25
359号公報に示されるような、多孔質膜が一般的であ
る。しかし、これらの方法で得られる多孔質膜は、機械
強度の低下が顕著であるため、LSIに適用した場合、
CMP工程における機械強度の不足の問題は一層大きな
問題となることが予想される。LSIの一層の高性能化
のためには、比誘電率が2.5未満の低誘電率膜におい
てもCMP工程に耐えうる機械強度を有する比誘電率膜
が必要と考えられている。
As a low dielectric constant film having a relative dielectric constant of less than 2.5, JP-B-6-12790 and JP-A-10-25
A porous membrane as shown in JP-A-359-359 is generally used. However, the porous membrane obtained by these methods has a remarkable decrease in mechanical strength.
The problem of insufficient mechanical strength in the CMP process is expected to become a more serious problem. In order to further improve the performance of LSI, it is considered that a relative dielectric constant film having a mechanical strength enough to withstand the CMP process is required even for a low dielectric constant film having a relative dielectric constant of less than 2.5.

【0006】[0006]

【発明が解決しようとする課題】本発明は、比誘電率が
1.9〜2.4で、LSIのCMP工程に耐える機械強
度を有する低誘電率膜及びこれを用いたLSIの高性能
化と、高信頼性、高歩留りを達成する半導体素子を提供
するものである。
SUMMARY OF THE INVENTION The present invention relates to a low dielectric constant film having a relative dielectric constant of 1.9 to 2.4 and a mechanical strength enough to withstand the CMP process of an LSI, and an improvement in the performance of an LSI using the same. And a semiconductor device that achieves high reliability and high yield.

【0007】[0007]

【課題を解決するための手段】本発明は、シリコンウエ
ハー上に膜厚0.5〜0.6μmの膜を形成し、荷重1
0mgで測定した時の膜の硬度DHT115 が0.45G
Pa以上で、1MHzで測定した比誘電率が1.9〜
2.4である低誘電率膜及びこの低誘電率膜を多層配線
の層間絶縁膜として用いた半導体素子に関する。
According to the present invention, a film having a thickness of 0.5 to 0.6 μm is formed on a silicon wafer and a load of 1 to 0.5 μm is formed.
The hardness DHT 115 of the film measured at 0 mg is 0.45 G
The relative dielectric constant measured at 1 MHz at Pa or higher is 1.9 to
The present invention relates to a low dielectric constant film having a thickness of 2.4 and a semiconductor device using the low dielectric constant film as an interlayer insulating film of a multilayer wiring.

【0008】薄膜の硬度測定値は基盤の影響をうけるた
め、硬度が同じ膜でも膜厚によって得られる値が異な
る。そのため、薄膜の硬度を比較するためには、膜厚を
揃える必要があり、本発明の検討では、膜厚を0.5〜
0.6μmに揃えて測定を行った。従って、膜厚0.5
〜0.6μmという制限は測定のための条件で、本発明
の低誘電率膜を適用する際の膜厚を制限するものではな
い。
Since the hardness measurement value of a thin film is affected by the substrate, the value obtained depends on the film thickness even if the film has the same hardness. Therefore, in order to compare the hardness of the thin film, it is necessary to make the film thickness uniform.
The measurement was carried out at 0.6 μm. Therefore, a film thickness of 0.5
The limit of 0.6 μm is a condition for measurement, and does not limit the film thickness when the low dielectric constant film of the present invention is applied.

【0009】0.5〜0.6μmの薄膜の硬度測定に
は、ナノ・インデンテーション・テスターと呼ばれる市
販の装置を用いることができる。この方法では、ダイヤ
モンド圧子を微少荷重で薄膜表面に押込んだ時の、荷重
と押込み深さから膜の硬度が計算される。硬度は、「硬
さ=試験荷重/試料と圧子の接触面積」で定義され、稜
間角115°の三角錐圧子を用いた時の硬度DHT115
は、測定によって得られる「押込み荷重」と「押込み深
さ」から以下の式で計算される。 DHT115 =0.0379 F/(h2 ) (Pa) F:押込み荷重 (N) h:押込み深さ (m)
For measuring the hardness of the thin film of 0.5 to 0.6 μm, a commercially available device called a nano indentation tester can be used. In this method, the hardness of the film is calculated from the load and the pressing depth when the diamond indenter is pressed into the surface of the thin film with a small load. The hardness is defined as “hardness = test load / contact area between sample and indenter”, and hardness DHT 115 when using a triangular pyramid indenter with an edge angle of 115 ° is used.
Is calculated from the “indentation load” and “indentation depth” obtained by the measurement according to the following formula. DHT 115 = 0.0379 F / (h 2 ) (Pa) F: Indentation load (N) h: Indentation depth (m)

【0010】比誘電率が2.5未満の低誘電率膜として
は、有機ポリシロキサン膜、有機ポリマー膜を低密度化
した膜が有力と考えられているが、機械強度という点で
は、SiO2 骨格を有する有機ポリシロキサン膜の低密
度膜の方が有利である。有機ポリシロキサン膜の塗布液
としては、アルコキシシランの部分加水分解縮合物の溶
液が用いられる。塗布液の製造法としては、例えば、ア
ルコキシシラン類を、溶剤及び触媒の存在下に水を添加
して加水分解縮合反応させる方法がある。この場合、必
要に応じて加熱を行ってもよい。触媒としては、塩酸、
硝酸、硫酸などの無機酸、ギ酸、シュウ酸、酢酸などの
有機酸等が使用できる。通常、生成物の分子量を、ゲル
パーミエーションクロマトグラフィ(GPC)により求
めた標準ポリスチレン換算重量平均分子量で500〜1
0000の範囲に設定するのが、熱分解性ポリマーとの
相溶性、溶剤への溶解性の観点から好ましい。ついで必
要に応じて系内に存在する水を蒸留などにより除去し、
さらに触媒をイオン交換樹脂などで除去してもよい。
As a low dielectric constant film having a relative dielectric constant of less than 2.5, a film obtained by reducing the density of an organic polysiloxane film or an organic polymer film is considered to be effective, but from the viewpoint of mechanical strength, SiO 2 A low-density organic polysiloxane film having a skeleton is more advantageous. As a coating liquid for the organic polysiloxane film, a solution of a partially hydrolyzed condensate of alkoxysilane is used. As a method for producing a coating liquid, for example, there is a method in which water is added to an alkoxysilane in the presence of a solvent and a catalyst to cause a hydrolytic condensation reaction. In this case, heating may be performed if necessary. As a catalyst, hydrochloric acid,
Inorganic acids such as nitric acid and sulfuric acid, and organic acids such as formic acid, oxalic acid and acetic acid can be used. Usually, the molecular weight of the product is 500 to 1 in terms of standard polystyrene-equivalent weight average molecular weight determined by gel permeation chromatography (GPC).
It is preferable to set in the range of 0000 from the viewpoint of compatibility with the thermally decomposable polymer and solubility in a solvent. Then, if necessary, water present in the system is removed by distillation or the like,
Further, the catalyst may be removed with an ion exchange resin or the like.

【0011】アルコキシシラン類としては例えば以下の
ものが使用可能である。テトラメトキシシラン、テトラ
エトキシシラン、テトラプロポキシシランなどのテトラ
アルコキシシラン類、メチルトリメトキシシラン、メチ
ルトリエトキシシラン、メチルトリプロポキシシラン、
フェニルトリメトキシシランなどのモノアルキルトリア
ルコキシシラン類、ビニルトリメトキシシラン、ビニル
トリエトキシシランなどのモノアルケニルトリアルコキ
シシラン類、トリフルオロメチルトリメトキシシラン、
トリフルオロプロピルトリメトキシシラン、ペンタフル
オロブチルトリメトキシシラン、ノナフルオロヘキシル
トリメトキシシラン、トリデカフルオロオクチルトリメ
トキシシラン、ヘプタデカフルオロデシルトリメトキシ
シラン、ヘプタデカフルオロデシルメチルジメトキシシ
ラン、ヘプタデカフルオロウンデシルトリメトキシシラ
ン、(4−ペルフルオロブチルフェニル)トリメトキシ
シラン、(4−ペルフルオロヘキシルフェニル)トリメ
トキシシラン、(4−ペルフルオロオクチルフェニル)
トリメトキシシランなどの含フッ素アルコキシシラン
類、γ−グリシドキシプロピルトリメトキシシラン、γ
−グリシドキシプロピルトリエトキシシランなどのエポ
キシシラン類、γ−アミノプロピルメチルジエトキシシ
ラン、γ−アミノプロピルトリエトキシシランなどの脂
肪族アミノシラン類、アミノフェニルトリメトキシシラ
ン、アミノフェニルトリエトキシシラン、N−フェニル
−γ−アミノプロピルトリメトキシシランなどの含芳香
環アミノシラン類。
As the alkoxysilanes, for example, the following can be used. Tetramethoxysilane, tetraethoxysilane, tetraalkoxysilanes such as tetrapropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane,
Monoalkyl trialkoxysilanes such as phenyltrimethoxysilane, vinyltrimethoxysilane, monoalkenyl trialkoxysilanes such as vinyltriethoxysilane, trifluoromethyltrimethoxysilane,
Trifluoropropyltrimethoxysilane, pentafluorobutyltrimethoxysilane, nonafluorohexyltrimethoxysilane, tridecafluorooctyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecylmethyldimethoxysilane, heptadecafluoroundecyl Trimethoxysilane, (4-perfluorobutylphenyl) trimethoxysilane, (4-perfluorohexylphenyl) trimethoxysilane, (4-perfluorooctylphenyl)
Fluorine-containing alkoxysilanes such as trimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ
Epoxysilanes such as glycidoxypropyltriethoxysilane, aliphatic aminosilanes such as γ-aminopropylmethyldiethoxysilane, γ-aminopropyltriethoxysilane, aminophenyltrimethoxysilane, aminophenyltriethoxysilane, N -Aromatic-containing aminosilanes such as phenyl-γ-aminopropyltrimethoxysilane.

【0012】加水分解縮合反応及び塗布液に用いる溶剤
としては例えば以下のものが使用可能である。メタノー
ル、エタノール、プロパノール、ブタノール等のアルコ
ール系溶媒、酢酸メチル、酢酸エチル、酢酸プロピル、
酢酸ブチル等の酢酸エステル系溶媒、エチレングリコー
ルモノメチルアセテート、エチレングリコールジアセテ
ート等のグリコールアセテート系溶媒、N,N−メチル
−2ピロリドン等のアミド系溶媒、グリコールエーテル
系溶媒等。
As the solvent used for the hydrolysis-condensation reaction and the coating solution, for example, the following can be used. Methanol, ethanol, propanol, alcoholic solvents such as butanol, methyl acetate, ethyl acetate, propyl acetate,
Acetate solvents such as butyl acetate; glycol acetate solvents such as ethylene glycol monomethyl acetate and ethylene glycol diacetate; amide solvents such as N, N-methyl-2-pyrrolidone; glycol ether solvents;

【0013】有機ポリシロキサン膜の作製方法として
は、有機ポリシロキサン塗布液のスピンコート法を用い
るのが一般的である。例えば、スピンコート後、ホット
プレートでプリベークを行い、最後に炉を用いて最終硬
化を行う。プリベークは通常50〜350℃の温度で、
2〜3枚のホットプレートを用いて低温から段階的に行
う。最終硬化温度は400〜450℃で、雰囲気は、有
機基の分解を防ぐため、通常は窒素雰囲気を用いる。
As a method for producing an organic polysiloxane film, a spin coating method of an organic polysiloxane coating solution is generally used. For example, after spin coating, prebaking is performed on a hot plate, and finally, final curing is performed using a furnace. Prebake is usually at a temperature of 50-350 ° C,
It is carried out stepwise from a low temperature using two or three hot plates. The final curing temperature is 400 to 450 ° C., and the atmosphere is usually a nitrogen atmosphere to prevent decomposition of organic groups.

【0014】有機ポリシロキサンの塗布液に1気圧での
沸点が250℃以上の1価アルコール又は2価アルコー
ルを加えることで、有機ポリシロキサンの低密度膜が得
られることが明らかになった(以下では、1価アルコー
ルをアルコール、2価アルコールをジオールとする)。
この方法では、アルコール又はジオールの、上記の有機
ポリシロキサンに用いられる溶媒に対する溶解性は良好
であるため、塗布性の良い溶媒の選択が可能である。ま
た、分子量が均一であるため、ポリマーを用いて低密度
化した場合に問題となる機械強度の顕著な低下も起こら
ない。
It has been clarified that a low-density organic polysiloxane film can be obtained by adding a monohydric alcohol or a dihydric alcohol having a boiling point of 250 ° C. or more at 1 atm to an organic polysiloxane coating solution (hereinafter referred to as “organic polysiloxane”). In this case, monohydric alcohol is alcohol and dihydric alcohol is diol).
In this method, since the solubility of the alcohol or diol in the solvent used for the organic polysiloxane is good, a solvent having good coatability can be selected. Further, since the molecular weight is uniform, there is no remarkable decrease in mechanical strength, which is a problem when the density is reduced by using a polymer.

【0015】アルコール又はジオールの添加量として
は、有機ポリシロキサンの不揮発分1.0重量部に対
し、0.1〜1.0重量部の範囲が好ましく、目標とす
る比誘電率に合わせて任意に設定可能である。ここで、
有機ポリシロキサンの不揮発分の計算は、シロキサンオ
リゴマーの加水分解性基が全て縮合してSi−O−Si
の結合を形成したと仮定して計算した重量を用いてお
り、以下では全て同じ計算方法を用いる。
The amount of the alcohol or diol to be added is preferably in the range of 0.1 to 1.0 part by weight with respect to 1.0 part by weight of the nonvolatile matter of the organic polysiloxane. Can be set to here,
The calculation of the nonvolatile content of the organic polysiloxane is based on the assumption that all the hydrolyzable groups of the siloxane oligomer are condensed and Si-O-Si
Are used assuming that a bond is formed. In the following, the same calculation method is used.

【0016】1気圧での沸点250℃以上のアルコール
又はジオールとしては以下のものが使用可能である。ド
デカノール、テトラデカノール、ヘキサデカノール、オ
クタデカノール、1,2−デカンジオール、1,2−ド
デカンジオール、1,2−テトラデカンジオール、1,
2−ヘキサデカンジオール、1,8−オクタンジオー
ル、1,10−デカンジオール、1,12−ドデカンジ
オール、1,14−テトラデカンジオール、1,16−
ヘキサデカンジオール。
The following can be used as the alcohol or diol having a boiling point of 250 ° C. or higher at 1 atm. Dodecanol, tetradecanol, hexadecanol, octadecanol, 1,2-decanediol, 1,2-dodecanediol, 1,2-tetradecanediol, 1,
2-hexadecanediol, 1,8-octanediol, 1,10-decanediol, 1,12-dodecanediol, 1,14-tetradecanediol, 1,16-
Hexadecanediol.

【0017】アルコールよりジオールの方が、有機ポリ
シロキサン溶媒への溶解性が良く、良好な塗布膜が得ら
れる。ジオールは1,2−と1,n−の二種類の異性体
があるが、1,2−の方が安価で入手が容易である。ま
た、これらのアルコール、ジオールは単独で用いても、
2種類以上を組み合わせて用いてもよい。
A diol has a higher solubility in an organic polysiloxane solvent than an alcohol, and a good coating film can be obtained. Diols have two types of isomers, 1,2- and 1, n-, but 1,2- is cheaper and easily available. In addition, even if these alcohols and diols are used alone,
Two or more types may be used in combination.

【0018】有機ポリシロキサン塗布液にアルコール又
はジオールを溶解した塗布液を用いて有機ポリシロキサ
ンの低密度膜を作製する方法としては、スピンコート法
を用いることができる。例えば、スピンコート後、ホッ
トプレートでプリベークを行い、最後に炉を用いて最終
硬化を行う。プリベークは通常50〜350℃の温度
で、2〜3枚のホットプレートを用いて低温から段階的
に行う。最終硬化温度は400〜450℃で、雰囲気
は、有機基の分解を防ぐため、通常は窒素雰囲気を用い
る。
As a method for producing a low-density organic polysiloxane film by using a coating solution in which an alcohol or a diol is dissolved in an organic polysiloxane coating solution, a spin coating method can be used. For example, after spin coating, prebaking is performed on a hot plate, and finally, final curing is performed using a furnace. The pre-bake is usually performed at a temperature of 50 to 350 ° C. and stepwise from a low temperature using two or three hot plates. The final curing temperature is 400 to 450 ° C., and the atmosphere is usually a nitrogen atmosphere to prevent decomposition of organic groups.

【0019】有機ポリシロキサンは200℃以上のプリ
ベークを行うことで、膜がそれ以上は大きく収縮しない
程度に架橋が進む。沸点が250℃以上のアルコール又
はジオールを添加した場合、それらが膜中に残った状態
で、有機ポリシロキサンの架橋が進むため、得られる膜
の密度が低下すると考えられる。従って、200〜25
0℃のプリベークを実施するのが低密度膜を得るのに有
効である。また、プリベーク段階では、ジオールは、ア
ルコールより水素結合によって膜中に残存し易いため低
誘電率膜を得るのに適している。
By pre-baking the organic polysiloxane at 200 ° C. or higher, crosslinking proceeds to such an extent that the film does not shrink any more. When an alcohol or diol having a boiling point of 250 ° C. or more is added, the crosslinking of the organic polysiloxane proceeds in a state where the alcohol or diol remains in the film, so that the density of the obtained film is considered to decrease. Therefore, 200 to 25
Performing prebaking at 0 ° C. is effective in obtaining a low-density film. In the prebaking step, the diol is more suitable for obtaining a low dielectric constant film because the diol is more likely to remain in the film by hydrogen bonding than the alcohol.

【0020】以下の検討では、塗布膜の作製はスピンコ
ート法で行い、縦型炉を用いて、窒素雰囲気下に、42
5℃で30分の最終硬化を行った。硬度の測定は、EN
T−1100(エリオニクス社製)を用いて行った。測
定は1サンプルにつき5回行い平均値を求めた。比誘電
率の測定には、0.1Ω・cm以下の低抵抗シリコンウ
エハーに0.5〜0.6μmの硬化膜を作製したウエハ
ーを用いた。硬化膜上にAl電極を形成して、Al電極
とSiウエハーで形成されるコンデンサーの容量を測定
し、膜厚と電極面積から、計算により比誘電率を求め
た。容量測定は1MHzで行った。
In the following study, the coating film is formed by a spin coating method, and is heated in a vertical furnace under a nitrogen atmosphere.
A final cure at 5 ° C. for 30 minutes was performed. Hardness measurement is EN
It performed using T-1100 (made by Elionix). The measurement was performed five times for one sample, and the average value was obtained. For the measurement of the relative dielectric constant, a wafer having a cured film of 0.5 to 0.6 μm formed on a low-resistance silicon wafer of 0.1 Ω · cm or less was used. An Al electrode was formed on the cured film, the capacitance of a capacitor formed of the Al electrode and the Si wafer was measured, and the relative dielectric constant was calculated from the film thickness and the electrode area. The capacity measurement was performed at 1 MHz.

【0021】有機ポリシロキサンを低密度化する場合、
当然のことながら、低密度化する前の有機ポリシロキサ
ンの機械強度が高く、誘電率が低いほど、得られる低密
度膜の機械強度は高く、誘電率は低くなる。また、有機
ポリシロキサン膜の誘電率は一般に有機含有量が多いほ
ど低下するが、逆に有機含有量が多いと膜の強度は低下
する。従って、低誘電率と高い機械強度を両立させるた
めには、組成の最適化が重要となる。
When reducing the density of the organic polysiloxane,
Naturally, the higher the mechanical strength of the organic polysiloxane before the reduction in density and the lower the dielectric constant, the higher the mechanical strength of the resulting low-density film and the lower the dielectric constant. The dielectric constant of the organic polysiloxane film generally decreases as the organic content increases, but when the organic content increases, the strength of the film decreases. Therefore, in order to achieve both low dielectric constant and high mechanical strength, it is important to optimize the composition.

【0022】メチルトリアルコキシシラン1モルに対
し、テトラアルコキシシラン0〜0.5モルを添加した
組成とし、1気圧での沸点が250℃以上のアルコール
又はジオールを、有機ポリシロキサン塗布液の不揮発分
1.0重量部に対し、好ましくは0.4〜0.7重量部
添加する場合に、比誘電率が1.9〜2.4で硬度が
0.45GPa以上の低誘電率膜が得られる。
An alcohol or diol having a composition in which 0 to 0.5 mol of tetraalkoxysilane is added to 1 mol of methyltrialkoxysilane and having a boiling point of 250 ° C. or more at 1 atm is added to the nonvolatile component of the organic polysiloxane coating solution. When 0.4 to 0.7 part by weight is added to 1.0 part by weight, a low dielectric constant film having a relative dielectric constant of 1.9 to 2.4 and a hardness of 0.45 GPa or more can be obtained. .

【0023】1MHzで測定した比誘電率が2.5未満
の有機基を有するポリシロキサンからなる低誘電率膜と
しては、比誘電率が1.9〜2.4で、シリコンウエハ
ー上に膜厚0.5〜0.6μmの膜を形成し、荷重10
mgで測定した時の硬さDHT115 が、0.45〜0.
88GPaである膜が、LSIの層間絶縁膜として優れ
ている。
The low dielectric constant film made of a polysiloxane having an organic group having a relative dielectric constant of less than 2.5 measured at 1 MHz has a relative dielectric constant of 1.9 to 2.4 and a film thickness on a silicon wafer. A film having a thickness of 0.5 to 0.6 μm is formed, and a load of 10
The hardness DHT 115 , measured in mg, is between 0.45 and 0.5.
A film of 88 GPa is excellent as an interlayer insulating film of LSI.

【0024】[0024]

【実施例】実施例1〜5 モノメチルトリエトキシシラン1モルに対し、テトラエ
トキシシランを0,0.1,0.2,0.4,0.5モ
ルの比率で用いて、加水分解縮合反応によりポリシロキ
サン塗布液1〜5を得た。フラスコ内でモノメチルトリ
エトキシシラン、テトラエトキシシランと溶媒のプロピ
レングリコールモノプロピルエーテルを混合し、撹拌を
行いながら水で希釈した酢酸を滴下し、反応を行った。
この時の実験室の気温は23℃で、フラスコの温度制御
は行わなかった。添加した水の量は、用いたアルコキシ
シランのアルコキシ基と等モルで、酢酸はアルコキシシ
ラン1.0モルに対し、0.01モルとした。塗布液の
不揮発分濃度は、必要な膜厚が得られるよう10〜20
重量%の範囲で調整した。水と触媒の滴下終了後、2時
間程度撹拌を行った後、密閉容器に移して23℃で2日
間放置した。その時のシロキサンオリゴマーの分子量を
GPCで測定した結果、分子量はサンプルによらずほぼ
同じで、ポリスチレン換算の数平均分子量は1000程
度、重量平均分子量は1500程度であった。その後は
冷凍庫(−18℃)で保管を行った。
EXAMPLES Examples 1 to 5 Hydrolytic condensation reaction using tetraethoxysilane in a ratio of 0, 0.1, 0.2, 0.4, 0.5 mol per mol of monomethyltriethoxysilane Thus, polysiloxane coating liquids 1 to 5 were obtained. Monomethyltriethoxysilane and tetraethoxysilane were mixed in a flask with propylene glycol monopropyl ether as a solvent, and acetic acid diluted with water was added dropwise with stirring to carry out a reaction.
At this time, the temperature of the laboratory was 23 ° C., and the temperature of the flask was not controlled. The amount of water added was equimolar to the alkoxy group of the alkoxysilane used, and acetic acid was 0.01 mol per 1.0 mol of alkoxysilane. The non-volatile content of the coating solution is 10 to 20 so that a required film thickness can be obtained.
It was adjusted in the range of weight%. After completion of the dropwise addition of water and the catalyst, the mixture was stirred for about 2 hours, then transferred to a sealed container and left at 23 ° C. for 2 days. As a result of measuring the molecular weight of the siloxane oligomer at that time by GPC, the molecular weight was almost the same regardless of the sample, and the number average molecular weight in terms of polystyrene was about 1,000 and the weight average molecular weight was about 1500. Thereafter, it was stored in a freezer (−18 ° C.).

【0025】ポリシロキサン塗布液1〜5に1,2−テ
トラデカンジオールをポリシロキサン塗布液の不揮発分
1重量部に対し、0.7又は0.4重量部を添加し溶解
させ、計10種類の塗布液を作製した。この塗布液を用
いてスピンコート法により塗布膜の形成を行った。基板
はベアのシリコンウエハーを用いた。塗布回転数は、最
終硬化後(425℃)の膜厚が、0.5〜0.6μmに
なるように各塗布液ごとに調整した。スピンコート後
は、ホットプレートで80℃/90sec、150℃/
90sec、250℃/90secのベークを連続して
行った。最終硬化は、縦型炉を用いて窒素雰囲気中で、
425℃/30minの処理を行った。
To the polysiloxane coating liquids 1 to 5, 0.7 or 0.4 parts by weight of 1,2-tetradecanediol was added to 1 part by weight of the non-volatile content of the polysiloxane coating liquid and dissolved. A coating solution was prepared. Using this coating solution, a coating film was formed by a spin coating method. The substrate used was a bare silicon wafer. The coating rotation speed was adjusted for each coating liquid so that the film thickness after final curing (425 ° C.) was 0.5 to 0.6 μm. After spin coating, 80 ° C / 90sec, 150 ° C /
The baking was performed continuously for 90 sec at 250 ° C./90 sec. Final curing is performed in a nitrogen atmosphere using a vertical furnace.
The treatment was performed at 425 ° C./30 min.

【0026】得られた膜の硬度と比誘電率の測定を行っ
た。硬度はエリオニクス社製のナノ・インデンテーショ
ン・テスターENT−1100を用い、最大荷重10m
g、負荷速度1mg/secで測定した。測定は1サン
プルにつき5回測定し、平均値を求めた。比誘電率は、
直径2mmのAl電極を膜上に形成し、Al電極とシリ
コンウエハーで形成されるキャパシターの容量を測定
し、膜厚とAl電極の面積から計算した。容量測定はイ
ンピーダンスアナライザを用いて1MHzで行った。ま
た、膜厚は、エリプソメトリーを用いて測定した。
The hardness and relative permittivity of the obtained film were measured. Hardness was measured using a nano indentation tester ENT-1100 manufactured by Elionix, with a maximum load of 10 m.
g at a loading rate of 1 mg / sec. The measurement was performed five times per sample, and the average value was obtained. The relative permittivity is
An Al electrode having a diameter of 2 mm was formed on the film, the capacitance of the capacitor formed of the Al electrode and the silicon wafer was measured, and calculated from the film thickness and the area of the Al electrode. The capacitance was measured at 1 MHz using an impedance analyzer. The film thickness was measured using ellipsometry.

【0027】硬度と比誘電率の測定結果を表1に示す。
硬度0.45GPa以上で、比誘電率1.9〜2.4の
低誘電率膜が得られることが分かる。さらに低誘電率化
した膜を得ようとして、1,2−テトラデカンジオール
の添加量を0.7重量部より増加させた場合には、膜の
低密度化率が大きくなることにより、膜の吸湿が増大
し、比誘電率の急激な上昇が起こる。また、さらに硬度
の高い膜を得ようとして塗布液5よりテトラエトキシシ
ランの添加量を増加させた場合には、無機成分が増加す
るため、膜の吸湿が増大し、比誘電率の上昇が起こる。
従って、表1の配合の範囲内において、比誘電率が2.
5未満の低誘電率膜である比誘電率1.9〜2.4、硬
度0.45〜0.88GPaの良好な膜を得ることがで
きる。
Table 1 shows the measurement results of the hardness and the relative permittivity.
It can be seen that a low dielectric constant film having a relative dielectric constant of 1.9 to 2.4 with a hardness of 0.45 GPa or more can be obtained. If the addition amount of 1,2-tetradecanediol is increased from 0.7 parts by weight in order to obtain a film having a lower dielectric constant, the density of the film is increased and the moisture absorption of the film is increased. Increases, and a sharp increase in the relative dielectric constant occurs. Further, when the addition amount of tetraethoxysilane is increased from the coating solution 5 in order to obtain a film having higher hardness, the inorganic component increases, so that the moisture absorption of the film increases and the relative dielectric constant increases. .
Therefore, within the range of the formulation in Table 1, the relative dielectric constant is 2.
A good film having a relative dielectric constant of 1.9 to 2.4 and a hardness of 0.45 to 0.88 GPa, which is a low dielectric constant film of less than 5, can be obtained.

【0028】LSIの層間絶縁膜として特に優れるの
は、ポリシロキサン塗布液の不揮発分1重量部に対する
アルコール、ジオールの添加量が0.4〜0.7重量部
で、ポリシロキサン塗布液として2〜5を用いた場合で
ある。この時、膜硬度は0.52〜0.88GPaで、
比誘電率2.0〜2.4の機械強度に優れた比誘電率膜
が得られる。
Particularly excellent as an interlayer insulating film of LSI is that the addition amount of alcohol and diol is 0.4 to 0.7 parts by weight with respect to 1 part by weight of the non-volatile content of the polysiloxane coating solution. 5 is used. At this time, the film hardness is 0.52 to 0.88 GPa,
A relative dielectric constant film having a relative dielectric constant of 2.0 to 2.4 and excellent in mechanical strength can be obtained.

【0029】塗布液1〜5においてテトラエトキシシラ
ンの代わりに、トリアルコキシシランHSi(OR)3
(Rは炭素数1〜5のアルキル基)を用いても同様の結
果が得られた。その場合膜の耐熱性はやや低下するが、
LSIの層間膜として適用可能な範囲である。
In the coating solutions 1 to 5, instead of tetraethoxysilane, trialkoxysilane HSi (OR) 3
Similar results were obtained when (R is an alkyl group having 1 to 5 carbon atoms). In that case, the heat resistance of the film is slightly reduced,
This is a range applicable as an interlayer film of an LSI.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明の低誘電率膜は、高い機械強度を
有するため、半導体素子の層間絶縁膜として適用するこ
とにより、CMP耐性が向上し、広いプロセスマージン
を確保でき、LSIの高性能化と、高信頼性、高歩留り
が達成される。
Since the low dielectric constant film of the present invention has a high mechanical strength, it can be applied as an interlayer insulating film of a semiconductor device, thereby improving the CMP resistance, securing a wide process margin, and improving the performance of an LSI. And high reliability and high yield are achieved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺田 信子 茨城県日立市東町四丁目3番1号 日立化 成工業株式会社山崎事業所内 Fターム(参考) 5F033 QQ48 RR23 RR25 SS21 WW02 WW09 XX35 5F058 AA08 AC03 AD05 AF04 AG01 ──────────────────────────────────────────────────続 き Continued from the front page (72) Inventor Nobuko Terada 4-3-1 Higashicho, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Yamazaki Office F-term (reference) 5F033 QQ48 RR23 RR25 SS21 WW02 WW09 XX35 5F058 AA08 AC03 AD05 AF04 AG01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコンウエハー上に膜厚0.5〜0.
6μmの膜を形成し、荷重10mgで測定した時の膜の
硬度DHT115 が0.45GPa以上で、1MHzで測
定した比誘電率が1.9〜2.4である低誘電率膜。
1. The method according to claim 1, wherein the thickness of the silicon wafer is 0.5 to 0.5.
A low dielectric constant film having a film thickness of 6 μm, a hardness DHT 115 of 0.45 GPa or more when measured at a load of 10 mg, and a relative dielectric constant of 1.9 to 2.4 measured at 1 MHz.
【請求項2】 有機基を有するポリシロキサンからなる
膜である請求項1記載の低誘電率膜。
2. The low dielectric constant film according to claim 1, which is a film made of polysiloxane having an organic group.
【請求項3】 1気圧での沸点が250℃以上の1価ア
ルコール又は2価アルコールを含む有機ポリシロキサン
塗布液を用いたスピンコート法によって形成された請求
項1又は2記載の低誘電率膜。
3. The low dielectric constant film according to claim 1, wherein the low dielectric constant film is formed by a spin coating method using an organic polysiloxane coating solution containing a monohydric alcohol or a dihydric alcohol having a boiling point of 250 ° C. or more at 1 atm. .
【請求項4】 請求項1,2又は3記載の低誘電率膜を
多層配線の層間絶縁膜として用いた半導体素子。
4. A semiconductor device using the low dielectric constant film according to claim 1, 2 or 3 as an interlayer insulating film of a multilayer wiring.
JP2000123505A 2000-04-25 2000-04-25 Low-permittivity film and semiconductor element having the same Pending JP2001308089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000123505A JP2001308089A (en) 2000-04-25 2000-04-25 Low-permittivity film and semiconductor element having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000123505A JP2001308089A (en) 2000-04-25 2000-04-25 Low-permittivity film and semiconductor element having the same

Publications (1)

Publication Number Publication Date
JP2001308089A true JP2001308089A (en) 2001-11-02

Family

ID=18633798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000123505A Pending JP2001308089A (en) 2000-04-25 2000-04-25 Low-permittivity film and semiconductor element having the same

Country Status (1)

Country Link
JP (1) JP2001308089A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259026B2 (en) 2003-04-25 2007-08-21 Tokyo Electron Limited Method and apparatus for processing organosiloxane film
WO2007116770A1 (en) 2006-04-03 2007-10-18 Jsr Corporation Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing
US7345351B2 (en) 2003-04-09 2008-03-18 Lg Chem, Ltd. Coating composition for insulating film production, preparation method of insulation film by using the same, insulation film for semi-conductor device prepared therefrom, and semi-conductor device comprising the same
US7465682B2 (en) 2003-04-25 2008-12-16 Tokyo Electron Limited Method and apparatus for processing organosiloxane film
US7491651B2 (en) 2001-04-24 2009-02-17 Nissan Chemical Industries, Ltd. Method of forming thick silica-based film
US8506359B2 (en) 2008-02-06 2013-08-13 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP2021022609A (en) * 2019-07-25 2021-02-18 セイコーエプソン株式会社 Magnetic powder, manufacturing method thereof, dust core, and coil component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491651B2 (en) 2001-04-24 2009-02-17 Nissan Chemical Industries, Ltd. Method of forming thick silica-based film
US7345351B2 (en) 2003-04-09 2008-03-18 Lg Chem, Ltd. Coating composition for insulating film production, preparation method of insulation film by using the same, insulation film for semi-conductor device prepared therefrom, and semi-conductor device comprising the same
US7648894B2 (en) 2003-04-09 2010-01-19 Lg Chem, Ltd. Coating composition for insulating film production, preparation method of insulation film by using the same, insulation film for semi-conductor device prepared therefrom, and semi-conductor device comprising the same
US7259026B2 (en) 2003-04-25 2007-08-21 Tokyo Electron Limited Method and apparatus for processing organosiloxane film
US7465682B2 (en) 2003-04-25 2008-12-16 Tokyo Electron Limited Method and apparatus for processing organosiloxane film
WO2007116770A1 (en) 2006-04-03 2007-10-18 Jsr Corporation Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing
US8506359B2 (en) 2008-02-06 2013-08-13 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP2021022609A (en) * 2019-07-25 2021-02-18 セイコーエプソン株式会社 Magnetic powder, manufacturing method thereof, dust core, and coil component
JP7268520B2 (en) 2019-07-25 2023-05-08 セイコーエプソン株式会社 Magnetic powder, manufacturing method of magnetic powder, dust core and coil parts

Similar Documents

Publication Publication Date Title
JP4169088B2 (en) Composition for forming silica-based film, silica-based film, method for producing the same, and electronic component
US6318124B1 (en) Nanoporous silica treated with siloxane polymers for ULSI applications
KR100613682B1 (en) Compositions for preparing low dielectric materials containing solvents
JP2002284998A (en) Silicon-based composition, low dielectric constant film, semiconductor apparatus and method for low dielectric constant film production
EP1559761A1 (en) Porous-film-forming composition, preparation method of the composition, porous film and semiconductor device
US20110076416A1 (en) Method of making porous materials and porous materials prepared thereof
WO2005082976A1 (en) Polymer and process for producing the same, composition for forming insulating film, and insulating film and method of forming the same
JP3674041B2 (en) Composition for forming silica-based film, silica-based film and method for forming the same, and electronic component including silica-based film
JP2001098224A (en) Silica-based film, method of forming silica-based film, and electronic component having silica-based film
JP2001098218A (en) Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film
JP2001308089A (en) Low-permittivity film and semiconductor element having the same
JP4110797B2 (en) Composition for forming silica-based film, method for producing silica-based film, and electronic component
JP4139710B2 (en) Composition for forming porous film, method for producing porous film, porous film, interlayer insulating film, and semiconductor device
JP2003171616A (en) Silica-based film forming composition, method of manufacturing silica-based film, and electronic part
JP2000340651A (en) Manufacture of film having low dielectric constant
JP2002201415A (en) Application liquid for silica-based coating film formation, method for manufacturing silica-based coating film, and semiconductor device
JP2002201416A (en) Coating liquid for forming semiconductor silica coating film, semiconductor silica coating film, and semiconductor device
JP2004307693A (en) Composition for forming porous film, method for producing porous film, porous film, interlayer dielectric film and semiconductor device
JPH06181201A (en) Insulating film for semiconductor device and liquid applied for growing that insulating film
TWI293972B (en) Material for forming silica based film
JP5143335B2 (en) Composition for forming silica-based film, silica-based film and method for forming the same, and electronic component provided with silica-based film
JP2001237240A (en) Low dielectric constant film and semiconductor element with low dielectric constant film
JP5143334B2 (en) Composition for forming silica-based film, silica-based film and method for forming the same, and electronic component provided with silica-based film
JP2003253206A (en) Siliceous film-forming composition, method for producing siliceous film and electronic part
JP2008050610A (en) Silicaceous film forming composition, silicaceous film, method for producing the same, and electronic component