JP2001098218A - Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film - Google Patents

Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film

Info

Publication number
JP2001098218A
JP2001098218A JP27412199A JP27412199A JP2001098218A JP 2001098218 A JP2001098218 A JP 2001098218A JP 27412199 A JP27412199 A JP 27412199A JP 27412199 A JP27412199 A JP 27412199A JP 2001098218 A JP2001098218 A JP 2001098218A
Authority
JP
Japan
Prior art keywords
silica
film
forming material
forming
void
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27412199A
Other languages
Japanese (ja)
Inventor
Shigeru Nobe
茂 野部
Kazuhiro Enomoto
和宏 榎本
Haruaki Sakurai
治彰 桜井
Nobuko Terada
信子 寺田
Takenori Narita
武憲 成田
Hiroyuki Morishima
浩之 森嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP27412199A priority Critical patent/JP2001098218A/en
Publication of JP2001098218A publication Critical patent/JP2001098218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silica-base coating film applicable as an interlayer insulting film capable of exhibiting sufficient operation performance in a semiconductor element having a fine design rule of smaller than 0.15 μm, a method of forming a silica-base coating film applicable as an interlayer insulating film of a semiconductor device such as LSI or the like and a multilayer wiring board which is capable of exhibiting sufficient operation performance in a semiconductor element having a fine design rule of smaller than 0.15 μm, simply and with a high yield, and an electronic component of a semiconductor device such as LSI or the like, a multilayer wiring board or the like having the silica-base coating film with less signal delay and with a high quality and a high reliability. SOLUTION: A silica-base coating film has a film stress of not greater than 40 (MPa). A method of forming a silica-base coating film having a film stress of not greater than 40 (MPa) comprises coating a substrate with a composition prepared by uniformly dissolving (a) a void forming material and (b) a siloxane oligomer in (c) an organic solvent to form a composite film of the void forming material and the siloxane oligomer uniformly compatible with each other and thereafter conducting the condensation reaction of the siloxane oligomer and the removal of the void forming material. An electronic component has the aforementioned silica-base coating film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリカ系被膜、シ
リカ系被膜の形成方法及びシリカ系被膜を有する電子部
品に関する。より詳しくは、半導体素子用の層間絶縁膜
等として有用なシリカ系被膜、シリカ系被膜の形成方法
及びシリカ系被膜を有する半導体装置、多層配線板等の
電子部品に関する。
The present invention relates to a silica-based coating, a method for forming a silica-based coating, and an electronic component having a silica-based coating. More specifically, the present invention relates to a silica-based coating useful as an interlayer insulating film for a semiconductor element, a method for forming a silica-based coating, a semiconductor device having the silica-based coating, and an electronic component such as a multilayer wiring board.

【0002】[0002]

【従来技術】LSIの高集積化による配線の微細化にと
もない、配線間容量の増大による信号遅延時間の増大が
問題となってきている。従来から、比誘電率4.2程度
のCVD法によるSiO2膜が層間絶縁膜として用いら
れてきたが、デバイスの配線間容量を低減し、LSIの
動作速度を向上するため、より低誘電率な膜が求められ
ている。シリカ系被膜としては、比誘電率3.5程度の
SiOF膜(CVD法)、比誘電率2.5〜3.0の有
機SOG(Spin On Glass)、有機ポリマー等が現在実
用化の段階にきている。それに対し、今後必要とされる
比誘電率2.5以下の材料については、フッ素樹脂、多
孔質膜等が提案されているが、LSIの層間絶縁膜とし
て十分な特性を有する材料は開発されていないのが現状
である。
2. Description of the Related Art Along with the miniaturization of wiring due to the high integration of LSIs, an increase in signal delay time due to an increase in capacitance between wirings has become a problem. Conventionally, a SiO 2 film formed by a CVD method with a relative dielectric constant of about 4.2 has been used as an interlayer insulating film. However, in order to reduce the capacitance between device wirings and improve the operation speed of the LSI, a lower dielectric constant is used. There is a need for a suitable film. As silica-based coatings, SiOF films with a relative dielectric constant of about 3.5 (CVD method), organic SOGs (Spin On Glass) with a relative dielectric constant of 2.5 to 3.0, organic polymers, etc. are currently in the stage of practical use. coming. On the other hand, fluororesins, porous films, and the like have been proposed for materials having a relative dielectric constant of 2.5 or less which will be required in the future, but materials having sufficient characteristics as interlayer insulating films of LSIs have been developed. There is no present.

【0003】フッ素樹脂は、2程度の比誘電率を有する
ことから、低誘電率材料として期待されているが、Tg
が300℃以下であるため、そのままではLSIの層間
絶縁膜への適用は困難である。この問題を解決する方法
として、特開平9−143420号公報に示される様な
フッ素樹脂とポリシロキサンの複合膜が提案されてい
る。この方法では比誘電率2.5以下の絶縁膜を得る事
が可能であるが、フッ素樹脂の熱分解開始温度が400
℃以下であるため、将来LSIのプロセス温度が低温化
しても十分なマージンがないという問題が有る。
[0003] Fluororesins are expected as low dielectric constant materials because they have a relative dielectric constant of about 2, but Tg
Is not more than 300 ° C., it is difficult to apply it to the interlayer insulating film of the LSI as it is. As a method for solving this problem, there has been proposed a composite film of a fluororesin and polysiloxane as disclosed in JP-A-9-144420. With this method, it is possible to obtain an insulating film having a relative dielectric constant of 2.5 or less, but the thermal decomposition onset temperature of the fluororesin is 400
Since the temperature is below ℃, there is a problem that there is no sufficient margin even if the process temperature of the LSI is lowered in the future.

【0004】多孔質膜は、比誘電率2.5以下を達成可
能な技術として注目されている。多孔質膜の形成方法と
しては、特公平6−12790号公報に示されるような
ポリスチレンまたはポリエチレン等の有機ポリマーを含
む有機ポリシロキサン系塗布溶液を塗布し熱処理する方
法や、特開平10−25359号公報に示されるよう
な、ポリシロキサン前駆体中にポリマー粒子を分散させ
る方法が提案されている。しかし、これらの方法は、多
孔質膜を形成するためにポリマー粒子をポリシロキサン
の膜中に分散させ、その後ポリマー粒子を加熱により除
去しているため、得られる多孔質膜の孔の大きさを0.
1μm以下に制御するのは困難である。今後の微細化し
たLSIでは配線幅は0.1〜0.5μm程度になると
予想されるため、0.1μm以上の大きさの孔を有する
多孔質膜は層間絶縁膜としては用いることができない。
[0004] Porous films are attracting attention as a technology capable of achieving a dielectric constant of 2.5 or less. Examples of the method for forming the porous film include a method of applying an organic polysiloxane-based coating solution containing an organic polymer such as polystyrene or polyethylene as disclosed in JP-B-6-12790 and heat-treating the same. A method for dispersing polymer particles in a polysiloxane precursor has been proposed as disclosed in the gazette. However, these methods disperse polymer particles in a polysiloxane film to form a porous film, and then remove the polymer particles by heating, so that the pore size of the obtained porous film is reduced. 0.
It is difficult to control the thickness to 1 μm or less. In a future miniaturized LSI, the wiring width is expected to be about 0.1 to 0.5 μm. Therefore, a porous film having holes having a size of 0.1 μm or more cannot be used as an interlayer insulating film.

【0005】この問題を解決するため、有機ポリマーと
ポリシロキサンがともに溶剤に溶解した組成物から多孔
質膜を形成する方法が特開平10−158012号公
報、特開平11−217458号公報に示されている。
しかし、特開平10−158012号公報に示されてい
る方法では、有機ポリマーとポリシロキサンの溶液を基
材に塗布した後、低温で塩基触媒を用いてゲル化させる
工程を必要とするため、工程数が増え、膜質の制御も難
しいという問題がある。また、特開平11−21745
8号公報に示されている方法は、有機ポリマーとして耐
熱性の高いフッ素樹脂を用いているため、有機ポリマー
を完全に分解するためには、高温(450℃程度)で長
時間の熱処理が必要となる。
In order to solve this problem, Japanese Patent Application Laid-Open Nos. 10-158012 and 11-217458 disclose a method of forming a porous film from a composition in which an organic polymer and polysiloxane are both dissolved in a solvent. ing.
However, the method disclosed in Japanese Patent Application Laid-Open No. H10-158012 requires a step of applying a solution of an organic polymer and a polysiloxane to a base material and then gelling at a low temperature using a base catalyst. There is a problem that the number increases and it is difficult to control the film quality. Also, JP-A-11-21745
In the method disclosed in Japanese Patent Publication No. 8 (1999), a fluororesin having high heat resistance is used as an organic polymer, and a long-time heat treatment at a high temperature (about 450 ° C.) is required to completely decompose the organic polymer. Becomes

【0006】配線材料として、従来から用いられている
Al配線を用いた場合には、450℃の処理温度は許容
範囲であるが、長時間の熱処理は、生産性を低下させ
る。また、最近は、配線材料としてCuが適用されはじ
めているが、Cu配線を用いた場合には、許容される処
理温度が低下(400℃程度)するため、この方法は適
用が難しい。結局、比誘電率が2.5以下で、400℃
程度で形成可能でかつ、微細な配線を有するLSI等の
半導体装置や多層配線板の層間絶縁膜として適用可能な
低誘電率膜の形成方法は、現在のところ見出されていな
い。したがって、デザインルールが0.15μmより微
細化される半導体素子においてその動作性能を十分に得
るために必要な誘電率の低いシリカ系被膜は今だ得られ
ていないのが実情である。
When a conventionally used Al wiring is used as a wiring material, a processing temperature of 450 ° C. is within an allowable range, but a long-time heat treatment lowers productivity. Recently, Cu has begun to be applied as a wiring material. However, when Cu wiring is used, the permissible processing temperature is reduced (about 400 ° C.), so that this method is difficult to apply. After all, if the relative dielectric constant is 2.5 or less,
At present, a method of forming a low dielectric constant film that can be formed to a small degree and that can be applied as a semiconductor device such as an LSI having fine wiring or an interlayer insulating film of a multilayer wiring board has not been found. Therefore, a silica-based coating having a low dielectric constant, which is necessary for obtaining sufficient operation performance in a semiconductor device having a design rule finer than 0.15 μm, has not yet been obtained.

【0007】[0007]

【発明が解決しようとする課題】請求項1記載の発明
は、デザインルールが0.15μmより微細化される半
導体素子においても十分な動作性能が発揮できる層間絶
縁膜として適用可能なシリカ系被膜を提供するものであ
る。請求項2〜11記載の発明は、デザインルールが
0.15μmより微細化される半導体素子においても十
分な動作性能が発揮できるLSI等の半導体装置や多層
配線板の層間絶縁膜として適用可能なシリカ系被膜を歩
留まりよく簡便に得ることができるシリカ系被膜の形成
方法を提供するものである。請求項12記載の発明は、
前記のシリカ系被膜を有してなる信号遅延の少ない、高
品位、高信頼性のLSI等の半導体装置、多層配線板な
どの電子部品を提供するものである。
According to the first aspect of the present invention, there is provided a silica-based film applicable as an interlayer insulating film capable of exhibiting sufficient operation performance even in a semiconductor device having a design rule finer than 0.15 μm. To provide. The invention according to claims 2 to 11 is a silica applicable as an interlayer insulating film of a semiconductor device such as an LSI or a multilayer wiring board capable of exhibiting sufficient operation performance even in a semiconductor element having a design rule finer than 0.15 μm. An object of the present invention is to provide a method for forming a silica-based coating, which can easily obtain a coating with good yield. The invention according to claim 12 is
An object of the present invention is to provide a semiconductor device such as an LSI having high signal quality and a high reliability, which has the above-mentioned silica-based coating and has a small signal delay, and an electronic component such as a multilayer wiring board.

【0008】[0008]

【課題を解決するための手段】本発明は、膜の応力が4
0(MPa)以下であるシリカ系被膜に関する。また、本
発明は、(a)空隙形成材及び(b)シロキサンオリゴ
マーが(c)有機溶剤に均一に溶解してなる組成物を基
材に塗布し、空隙形成材とシロキサンオリゴマーが均一
に相溶した複合膜を形成した後、シロキサンオリゴマー
の縮合反応と空隙形成材の除去を行うことを特徴とする
膜の応力が40(MPa)以下であるシリカ系被膜の形成
方法に関する。
According to the present invention, the film has a stress of 4%.
The present invention relates to a silica-based coating having a pressure of 0 (MPa) or less. Further, the present invention provides a method in which (a) a void-forming material and (b) a composition obtained by uniformly dissolving a siloxane oligomer in an (c) organic solvent are applied to a substrate, and the void-forming material and the siloxane oligomer are uniformly dispersed. The present invention relates to a method for forming a silica-based film having a film stress of 40 (MPa) or less, which comprises performing a condensation reaction of a siloxane oligomer and removing a void-forming material after forming a dissolved composite film.

【0009】また、本発明は、空隙形成材とシロキサン
オリゴマーが均一に相溶した複合膜を形成した後、空隙
形成材が残存する状態でシロキサンオリゴマーを架橋さ
せる第一の加熱工程と、空隙形成材を除去する第二の加
熱工程を行うことを特徴とする前記のシリカ系被膜の形
成方法に関する。また、本発明は、第一の加熱工程の温
度が80〜350℃で、第二の加熱工程の温度が350
〜500℃である前記のシリカ系被膜の形成方法に関す
る。また、本発明は、(c)有機溶剤が、(c1)
(a)と(b)の両方が溶解する有機溶剤を含んでなる
前記のシリカ系被膜の形成方法に関する。
Further, the present invention provides a first heating step of forming a composite film in which a void-forming material and a siloxane oligomer are uniformly mixed and then crosslinking the siloxane oligomer in a state where the void-forming material remains, The present invention relates to the above-mentioned method for forming a silica-based film, wherein a second heating step of removing a material is performed. In the present invention, the temperature of the first heating step is 80 to 350 ° C., and the temperature of the second heating step is 350 ° C.
The present invention relates to a method for forming the above-mentioned silica-based coating film at a temperature of from 500 to 500 ° C. In addition, the present invention provides the method wherein (c) the organic solvent comprises (c1)
The present invention relates to the above-mentioned method for forming a silica-based coating, comprising an organic solvent in which both (a) and (b) are dissolved.

【0010】また、本発明は、(b)シロキサンオリゴ
マーが、非加水分解性の有機基を有する化合物である前
記のシリカ系被膜の形成方法に関する。また、本発明
は、(b)シロキサンオリゴマーが、下記一般式(I)
[0010] The present invention also relates to the method for forming a silica-based coating, wherein the siloxane oligomer (b) is a compound having a non-hydrolyzable organic group. Also, the present invention provides a method for producing a siloxane oligomer according to the following general formula (I):

【化2】 (式中、R1及びR2は同一または相異なる非加水分解性
基を示し、R3は炭素数1〜6のアルキル基を示し、m
及びnは0≦m+n≦3を満たすように選ばれる0〜3
の整数である)で表されるアルコキシシラン類の加水分
解縮合物である前記のシリカ系被膜の形成方法に関す
る。
Embedded image (Wherein, R 1 and R 2 represent the same or different non-hydrolyzable groups, R 3 represents an alkyl group having 1 to 6 carbon atoms, m
And n are 0-3 selected so as to satisfy 0 ≦ m + n ≦ 3.
Which is an integer of the formula (1).

【0011】また、本発明は、(a)空隙形成材が、空
気気流下、30℃以下から昇温速度20℃/minで熱重量
分析を行った時の、150℃の重量に対する250℃に
おける重量減少が5%未満のポリマーである前記のシリ
カ系被膜の形成方法に関する。また、本発明は、(a)
空隙形成材が、空気気流下、30℃以下から昇温速度2
0℃/minで熱重量分析を行った時の、150℃の重量に
対する400℃における重量減少が80%以上であるポ
リマーである前記のシリカ系被膜の形成方法に関する。
また、本発明は、(a)空隙形成材が、フッ素を含まな
いポリマーである前記のシリカ系被膜の形成方法に関す
る。また、本発明は、(a)空隙形成材が、メタクリル
系ポリマー又はアクリル系ポリマーである前記シリカ系
被膜の形成方法に関する。また、本発明は、前記のシリ
カ系被膜を有する電子部品に関する。
[0011] The present invention also provides (a) a method in which the pore-forming material is subjected to thermogravimetric analysis at a temperature rising rate of 20 ° C / min from 30 ° C or less in an air stream at 250 ° C with respect to a weight of 150 ° C. The present invention relates to the method for forming a silica-based coating, wherein the polymer has a weight loss of less than 5%. Further, the present invention provides (a)
The gap forming material is heated from 30 ° C. or lower to a heating rate of 2
The present invention relates to the above-mentioned method for forming a silica-based coating, which is a polymer whose weight loss at 400 ° C. with respect to the weight at 150 ° C. when performing thermogravimetric analysis at 0 ° C./min is 80% or more.
The present invention also relates to the method for forming a silica-based coating, wherein the (a) void-forming material is a polymer containing no fluorine. The present invention also relates to the method for forming a silica-based coating, wherein (a) the void-forming material is a methacrylic polymer or an acrylic polymer. Further, the present invention relates to an electronic component having the silica-based coating.

【0012】[0012]

【発明の実施の形態】本発明のシリカ系被膜は、膜の応
力が40(MPa)以下であることが必要であり30(MP
a)以下がより好ましい。応力の下限は0.4(MPa)程
度である。膜の応力が40(MPa)を超えると界面での
接着力が劣り、重ね塗りによる膜厚増大でクラックが生
じ、デザインルールが0.15μmより微細化される半
導体素子において十分な動作性能が発揮できなくなる。
膜の応力が0.4(MPa)未満のものは、形成が困難と
なる傾向がある。膜の応力は、例えば、装置として、F
LX−2320(KLA−tencor社製)を使用し、測定
温度23±2℃、測定相対湿度40〜50%で、5〜8
インチウエハ上に前記シリカ系被膜の形成用の組成物を
スピンコートし、150℃+250℃+400(〜45
0)℃の条件で硬化させ膜厚0.5〜0.6μmの膜を
作製し、この被膜の応力を測定することにより確認でき
る(なにもコートしていない5〜8インチウエハをリフ
ァレンスとし、膜を作成したウエハとの反りの差違(レ
ーザーを使用して光学的に検出)から応力を算出)。
BEST MODE FOR CARRYING OUT THE INVENTION The silica-based coating film of the present invention needs to have a film stress of 40 (MPa) or less and 30 (MPa).
a) The following is more preferable. The lower limit of the stress is about 0.4 (MPa). When the stress of the film exceeds 40 (MPa), the adhesive force at the interface is poor, cracks occur due to an increase in the film thickness due to overcoating, and sufficient operation performance is exhibited in a semiconductor element whose design rule is reduced to 0.15 μm or less. become unable.
If the stress of the film is less than 0.4 (MPa), it tends to be difficult to form. The stress of the film is, for example, F
Using LX-2320 (manufactured by KLA-tencor), at a measurement temperature of 23 ± 2 ° C. and a relative humidity of 40 to 50%, 5 to 8%.
The composition for forming a silica-based coating is spin-coated on an inch wafer, and the composition is formed at 150 ° C. + 250 ° C. + 400 (〜45 ° C.).
0) A film having a thickness of 0.5 to 0.6 μm is formed by curing at a temperature of 0 ° C., and the stress of this film can be confirmed by measuring the stress of the film (a 5 to 8 inch uncoated wafer is used as a reference). Calculate the stress from the difference in warpage from the wafer on which the film was formed (optically detected using a laser).

【0013】また、シリカ系被膜の誘電率は、2.5以
下であることが好ましい。また、シリカ系被膜の脱ガス
量は半導体素子への適用性の点から1×1021個分子/
cm3以下が好ましく、リーク電流特性は5×10-9A/cm2
以下が好ましい。また、本発明のシリカ系被膜は、構造
としてSi−O、Si−CH3を含むことが好ましい。
The dielectric constant of the silica-based coating is preferably 2.5 or less. In addition, the degassing amount of the silica-based coating is 1 × 10 21 molecules / mol from the viewpoint of applicability to a semiconductor device.
cm 3 or less, and the leakage current characteristic is 5 × 10 −9 A / cm 2
The following is preferred. Further, the silica-based coating of the present invention preferably contains Si—O and Si—CH 3 as a structure.

【0014】応力が40(MPa)以下であるシリカ系被
膜は、例えば、(a)空隙形成材及び(b)シロキサン
オリゴマーが(c)有機溶剤に均一に溶解してなる組成
物を基材に塗布し、空隙形成材とシロキサンオリゴマー
が均一に相溶した複合膜を形成した後、シロキサンオリ
ゴマーの縮合反応と空隙形成材の除去を行うことにより
形成することができる。組成物の組成、加熱条件等の調
整により、40(MPa)以下の範囲において得られるシ
リカ系被膜の応力を容易に調整しうる。
A silica-based coating having a stress of 40 (MPa) or less is prepared by, for example, using a composition in which (a) a void-forming material and (b) a siloxane oligomer are uniformly dissolved in (c) an organic solvent as a base material. It can be formed by coating and forming a composite film in which the void-forming material and the siloxane oligomer are uniformly dissolved, and then performing a condensation reaction of the siloxane oligomer and removing the void-forming material. By adjusting the composition of the composition, heating conditions, and the like, the stress of the silica-based coating obtained in the range of 40 (MPa) or less can be easily adjusted.

【0015】本発明における(a)空隙形成材は、最終
的に得られるシリカ系被膜に空隙を形成しうる機能を有
していれば他に制限はなく、電磁波等の照射によって消
失する材料、薬液によって溶出・分解する材料、熱によ
って分解する材料等が挙げられる。取り扱い性、作業性
の点から、熱によって分解する材料、中でも熱分解性ポ
リマーが好ましく、例えば、アクリル系ポリマー、メタ
クリル系ポリマー、ポリエステル系ポリマー、ポリエー
テル系ポリマー、ビニル系ポリマー、ポリイミド系ポリ
マー、フッ化ビニリデン系ポリマー、含フッ素ビニル系
ポリマー、溶媒可溶性パーフルオロポリマー等が挙げら
れる。これらは、単独で又は2種以上を組み合わせて使
用される。
The (a) void-forming material in the present invention is not particularly limited as long as it has a function of forming voids in the silica-based coating finally obtained, and the material disappears by irradiation with electromagnetic waves or the like. Materials that are eluted and decomposed by a chemical solution, materials that are decomposed by heat, and the like are included. From the viewpoint of handling properties and workability, materials which decompose by heat, among them, thermally decomposable polymers are preferable.For example, acrylic polymers, methacrylic polymers, polyester polymers, polyether polymers, vinyl polymers, polyimide polymers, Examples thereof include vinylidene fluoride-based polymers, fluorine-containing vinyl-based polymers, and solvent-soluble perfluoropolymers. These are used alone or in combination of two or more.

【0016】(a)空隙形成材の分解温度は、熱重量分
析を用いて確認できる。分解温度は、以下の装置、条件
を用いて、(a)空隙形成材の熱重量分析を行い、確認
できる。 装置:TG−DTA6200(セイコー電子製) 昇温開始温度:30℃以下 昇温速度:20℃/min サンプル量:10mg 雰囲気:空気 200ml/min なお、(a)空隙形成材分解開始前の基準とする重量
は、昇温途中の150℃での重量とした。150℃以下
での重量減少は、吸着した水分等の除去により起こり、
(a)空隙形成材の分解以外の要因によるものとした。
(A) The decomposition temperature of the void-forming material can be confirmed using thermogravimetric analysis. The decomposition temperature can be confirmed by performing (a) thermogravimetric analysis of the void-forming material using the following apparatus and conditions. Apparatus: TG-DTA6200 (manufactured by Seiko Denshi) Temperature rising start temperature: 30 ° C. or less Temperature rising rate: 20 ° C./min Sample amount: 10 mg Atmosphere: Air 200 ml / min (a) The standard before the decomposition of the void forming material The weight used was the weight at 150 ° C. during the temperature rise. Weight loss at 150 ° C or lower occurs due to removal of adsorbed moisture and the like.
(A) It was caused by factors other than the decomposition of the void forming material.

【0017】250℃での重量減少が5%以上の(a)
空隙形成材の例としては、テトラメチレンオキシド、ポ
リエチレングリコール等のポリエーテル系ポリマーが挙
げられる。250℃での重量減少が5%未満の(a)空
隙形成材の例としては、ポリ酢酸ビニルのようなビニル
エステル系ポリマー、ポリメチルメタクリレートのよう
なメタクリル酸エステル系ポリマー、ポリメチルアクリ
レートのようなアリル酸エステル系ポリマー、ポリビニ
ルアルコール、ポリエチレンイミン、フッ素樹脂等が挙
げられる。
(A) a weight loss at 250 ° C. of 5% or more
Examples of the void-forming material include polyether polymers such as tetramethylene oxide and polyethylene glycol. Examples of the (a) void-forming material whose weight loss at 250 ° C. is less than 5% include vinyl ester-based polymers such as polyvinyl acetate, methacrylate-based polymers such as polymethyl methacrylate, and polymethyl acrylate. Allylic acid ester-based polymers, polyvinyl alcohol, polyethylene imine, fluororesins and the like.

【0018】250℃での重量減少が5%未満で、40
0℃における重量減少が80%以上の(a)空隙形成材
としては、ポリメチルメタクリレートのようなメタクリ
ル酸エステル系ポリマー、ポリメチルアクリレートのよ
うなアクリル酸エステル系ポリマー、ポリエチレンイミ
ン等が挙げられる。中でも、ポリメチルメタクリレー
ト、ポリメチルアクリレートのようなメタクリル酸エス
テル系ポリマー、アクリル酸エステル系ポリマーでは、
250℃での重量減少は2%未満で、400℃における
重量減少が90%以上であり、本発明の組成物に用いる
(a)空隙形成材として特に優れている。
If the weight loss at 250 ° C. is less than 5%,
Examples of the (a) void-forming material whose weight loss at 0 ° C. is 80% or more include methacrylate-based polymers such as polymethyl methacrylate, acrylate-based polymers such as polymethyl acrylate, and polyethyleneimine. Among them, polymethyl methacrylate, methacrylate polymer such as polymethyl acrylate, acrylate polymer,
The weight loss at 250 ° C. is less than 2%, and the weight loss at 400 ° C. is 90% or more, which is particularly excellent as the (a) void-forming material used in the composition of the present invention.

【0019】フッ素樹脂は400℃程度の耐熱性を有す
るため、加熱温度400℃程度ではポリマーの除去に長
時間の加熱が必要となり、実用性が劣る傾向がある。従
って(a)空隙形成材としてフッ素を含まないポリマー
が好ましい。
Since a fluororesin has a heat resistance of about 400 ° C., a heating temperature of about 400 ° C. requires long-time heating to remove the polymer, and the practicability tends to be poor. Therefore, (a) a polymer containing no fluorine is preferable as the void forming material.

【0020】本発明における(b)ポリシロキサンオリ
ゴマーとしては、例えば、下記一般式(I)
As the polysiloxane oligomer (b) in the present invention, for example, the following general formula (I)

【化3】 (式中、R1及びR2は同一または相異なる非加水分解性
基を示し、R3は炭素数1〜6のアルキル基を示し、m
及びnは0≦m+n≦3を満たすように選ばれる0〜3
の整数である)で表されるアルコキシシラン類の加水分
解縮合物等が挙げられる。加水分解縮合物は、部分的に
加水分解縮合したものでもよく、全部が加水分解縮合し
たものでもよい。
Embedded image (Wherein, R 1 and R 2 represent the same or different non-hydrolyzable groups, R 3 represents an alkyl group having 1 to 6 carbon atoms, m
And n are 0-3 selected so as to satisfy 0 ≦ m + n ≦ 3.
And a hydrolyzed condensate of an alkoxysilane represented by the formula: The hydrolyzed condensate may be partially hydrolyzed and condensed, or may be entirely hydrolyzed and condensed.

【0021】上記非加水分解性基としては、入手容易性
から炭素数1〜14の非加水分解性基が好ましい。非加
水分解性基としては、γ−グリシドキシプロピル基、γ
−アミノプロピル基、アミノフェニル基、N−フェニル
−γ−アミノプロピル基等の反応性基を有する有機基、
メチル基、エチル基、プロピル基、ブチル基等のアルキ
ル基、ビニル基等のアルケニル基、フェニル基、トリル
基等のアリール基、トリフルオロメチル基、トリフルオ
ロプロピル基、ペンタフルオロブチル基、ノナフルオロ
ヘキシル基、トリデカフルオロオクチル基、ヘプタデカ
フルオロデシル基、ヘプタデカフルオロウンデシル基等
の含フッ素アルキル基などが挙げられる。上記の非加水
分解性基の中でもアルキル基および、アリール基は特に
好ましい。アルキル基及びアリール基は耐熱性が高く疎
水性であるため、これらを用いることにより高耐熱性で
低吸湿性のシリカ系被膜が得られる。
The above non-hydrolyzable group is preferably a non-hydrolyzable group having 1 to 14 carbon atoms from the viewpoint of availability. Non-hydrolyzable groups include γ-glycidoxypropyl group, γ
An organic group having a reactive group such as -aminopropyl group, aminophenyl group, N-phenyl-γ-aminopropyl group,
Alkyl group such as methyl group, ethyl group, propyl group and butyl group, alkenyl group such as vinyl group, aryl group such as phenyl group and tolyl group, trifluoromethyl group, trifluoropropyl group, pentafluorobutyl group and nonafluoro group And a fluorinated alkyl group such as a hexyl group, a tridecafluorooctyl group, a heptadecafluorodecyl group, and a heptadecafluoroundecyl group. Among the non-hydrolyzable groups, an alkyl group and an aryl group are particularly preferable. Since the alkyl group and the aryl group have high heat resistance and are hydrophobic, a silica-based film having high heat resistance and low moisture absorption can be obtained by using them.

【0022】本発明における加水分解縮合物は、一般式
(I)でm=n=0の加水分解縮合物、m+n=1の加
水分解縮合、m+n=2の加水分解縮合及びm+n=3
の加水分解縮合よりなる群から選ばれる1種又は2種以
上を組み合わせたものとできる。ただし、当然ながらm
+n=3であるアルコキシシラン類は、分子内に加水分
解基を1つしか有しておらず、これ単独では加水分解縮
合物を形成しえないので、m+n=3であるアルコキシ
シラン類は、溶液中でのアルコキシシラン類の加水分解
縮合物の過剰な反応を抑制するなどの目的で、m=n=
0のアルコキシシラン類、m+n=1のアルコキシシラ
ン類又はm+n=2のアルコキシシラン類と併用され
る。m+n=3であるアルコキシシラン類は、全アルコ
キシシラン類に対して10モル%以下であることが好ま
しい。
In the present invention, the hydrolyzed condensate includes a hydrolyzed condensate of general formula (I) where m = n = 0, a hydrolytic condensation of m + n = 1, a hydrolytic condensation of m + n = 2 and a m + n = 3
Or a combination of two or more selected from the group consisting of hydrolytic condensation of However, naturally m
Since the alkoxysilanes with + n = 3 have only one hydrolyzable group in the molecule and cannot form a hydrolyzed condensate by themselves, the alkoxysilanes with m + n = 3 are For the purpose of suppressing an excessive reaction of a hydrolysis-condensation product of alkoxysilanes in a solution, m = n =
0 alkoxysilanes, m + n = 1 alkoxysilanes or m + n = 2 alkoxysilanes. Alkoxysilanes with m + n = 3 are preferably 10 mol% or less based on all alkoxysilanes.

【0023】また、非加水分解性基を有さないm=n=
0のアルコキシシラン類を適当に加えることで、得られ
るシリカ系被膜の機械強度が向上できる。しかし、m=
n=0のアルコキシシラン類の割合が多くなると、得ら
れる膜の誘電率が高くなり、吸湿も増大する。従って、
m=n=0のアルコキシシラン類の添加量は、膜の機械
強度と誘電率、吸湿のバランスから決定するのが好まし
い。好ましい添加量としては、非加水分解性基を有する
アルコキシシラン1モルに対し、m=n=0のアルコキ
シシラン類0.1〜0.7モルである。
Further, m = n = having no non-hydrolyzable group
By appropriately adding 0 alkoxysilanes, the mechanical strength of the resulting silica-based coating can be improved. However, m =
When the ratio of the alkoxysilanes with n = 0 increases, the dielectric constant of the obtained film increases, and the moisture absorption also increases. Therefore,
It is preferable that the amount of the alkoxysilanes in which m = n = 0 is determined from the balance between the mechanical strength of the film, the dielectric constant, and the moisture absorption. A preferable addition amount is 0.1 to 0.7 mol of alkoxysilanes with m = n = 0 based on 1 mol of the alkoxysilane having a non-hydrolyzable group.

【0024】これらのアルコキシシラン類の具体例を以
下に示す。テトラメトキシシラン、テトラエトキシシラ
ン、テトラプロポキシシラン等のテトラアルコキシシラ
ン類、メチルトリメトキシシラン、メチルトリエトキシ
シラン等のモノアルキルトリアルコキシシラン類、フェ
ニルトリメトキシシラン、フェニルトリエトキシシラン
等のモノアリールトリアルコキシシラン類、ビニルトリ
メトキシシラン、ビニルトリエトキシシラン等のモノア
ルケニルトリアルコキシシラン類、トリフルオロメチル
トリメトキシシラン、トリフルオロプロピルトリメトキ
シシラン、ペンタフルオロブチルトリメトキシシラン、
ノナフルオロヘキシルトリメトキシシラン、トリデカフ
ルオロオクチルトリメトキシシラン、ヘプタデカフルオ
ロデシルトリメトキシシラン、ヘプタデカフルオロデシ
ルメチルジメトキシシラン、ヘプタデカフルオロウンデ
シルトリメトキシシラン、(4−ペルフルオロブチルフ
ェニル)トリメトキシシラン、(4−ペルフルオロヘキ
シルフェニル)トリメトキシシラン、(4−ペルフルオ
ロオクチルフェニル)トリメトキシシラン等の含フッ素
アルコキシシラン類、γ−グリシドキシプロピルトリメ
トキシシラン、γ−グリシドキシプロピルトリエトキシ
シラン等のエポキシシラン類、γ−アミノプロピルメチ
ルジエトキシシラン、γ−アミノプロピルトリエトキシ
シラン等の脂肪族アミノシラン類、アミノフェニルトリ
メトキシシラン、アミノフェニルトリエトキシシラン、
N−フェニル−γ−アミノプロピルトリメトキシシラン
等の含芳香環アミノシラン類などが挙げられる。これら
は、単独で又は2種以上を組み合わせて使用される。
Specific examples of these alkoxysilanes are shown below. Tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane and tetrapropoxysilane, monoalkyl trialkoxysilanes such as methyltrimethoxysilane and methyltriethoxysilane, and monoaryltrialkanes such as phenyltrimethoxysilane and phenyltriethoxysilane Alkoxysilanes, vinyltrimethoxysilane, monoalkenyl trialkoxysilanes such as vinyltriethoxysilane, trifluoromethyltrimethoxysilane, trifluoropropyltrimethoxysilane, pentafluorobutyltrimethoxysilane,
Nonafluorohexyltrimethoxysilane, tridecafluorooctyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecylmethyldimethoxysilane, heptadecafluoroundecyltrimethoxysilane, (4-perfluorobutylphenyl) trimethoxysilane , Fluorine-containing alkoxysilanes such as (4-perfluorohexylphenyl) trimethoxysilane, (4-perfluorooctylphenyl) trimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, etc. Epoxysilanes, aliphatic aminosilanes such as γ-aminopropylmethyldiethoxysilane, γ-aminopropyltriethoxysilane, aminophenyltrimethoxysilane, Roh phenyltriethoxysilane,
And aromatic ring-containing aminosilanes such as N-phenyl-γ-aminopropyltrimethoxysilane. These are used alone or in combination of two or more.

【0025】アルコキシシラン類の縮合反応は、常法に
より行うことができ、例えば、アルコキシシラン類を、
溶剤及び触媒の存在下に、水を添加して加水分解縮合反
応させる方法がある。この場合、必要に応じて加熱を行
ってもよい。触媒としては塩酸、硝酸、硫酸等の無機
酸、ギ酸、シュウ酸、酢酸等の有機酸が使用できる。通
常、加水分解縮合物の重量平均分子量(ゲルパーミエー
ションクロマトグラフィ(GPC)により求め標準ポリ
スチレン換算した値)が500〜10000の範囲であ
ることが、空隙形成材との相溶性、溶剤への溶解性の観
点から好ましい。ついで必要に応じて系内に存在する水
を蒸留などにより除去し、さらに触媒をイオン交換樹脂
などで除去してもよい。
The condensation reaction of the alkoxysilanes can be carried out by a conventional method.
There is a method in which water is added to cause a hydrolytic condensation reaction in the presence of a solvent and a catalyst. In this case, heating may be performed if necessary. As the catalyst, inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, and organic acids such as formic acid, oxalic acid and acetic acid can be used. Usually, the weight-average molecular weight of the hydrolyzed condensate (value determined by gel permeation chromatography (GPC) and converted to standard polystyrene) is in the range of 500 to 10000, which indicates compatibility with the pore-forming material and solubility in the solvent. It is preferable from the viewpoint of. Then, if necessary, water present in the system may be removed by distillation or the like, and the catalyst may be removed with an ion exchange resin or the like.

【0026】(a)空隙形成材と(b)シロキサンオリ
ゴマーの混合溶液の調製方法は、結果として均一な溶液
が作成できれば特に限定されず、次の(1)〜(3)の
方法が例示される。 (1)(a)空隙形成材の溶液と、(b)シロキサンオ
リゴマーの溶液とをあらかじめ別途調製し、両者を混合
する方法。この場合、(b)シロキサンオリゴマーの溶
液は、(a)空隙形成材の溶液と相溶する溶剤中で直接
作製する場合と、(a)空隙形成材の溶液と相溶しない
溶剤中で合成した後に、公知の溶剤置換法により相溶性
のある溶剤の溶液とする場合がある。後者は、(a)空
隙形成材の溶液と相溶する溶剤中ではアルコキシシラン
類の加水分解縮合反応が充分に進行しない場合、または
縮合物の重合度を制御しにくい場合などに用いられる。 (2)アルコキシシラン類を、あらかじめ調製した
(a)空隙形成材の溶液に溶解させ、その溶液中で加水
分解縮合反応を行う方法。 (3)(b)シロキサンオリゴマーの溶液をあらかじめ
調製し、そこに(a)空隙形成材を添加して溶解する方
法。
The method for preparing the mixed solution of (a) the void-forming material and (b) the siloxane oligomer is not particularly limited as long as a uniform solution can be prepared as a result, and the following methods (1) to (3) are exemplified. You. (1) A method in which (a) a solution of the void-forming material and (b) a solution of the siloxane oligomer are separately prepared in advance, and both are mixed. In this case, the solution of the (b) siloxane oligomer was directly prepared in a solvent compatible with the solution of the void-forming material, and the solution was synthesized in a solvent incompatible with the solution of the void-forming material. Later, a solution of a compatible solvent may be obtained by a known solvent replacement method. The latter is used, for example, when the hydrolysis-condensation reaction of alkoxysilanes does not proceed sufficiently in a solvent compatible with the solution of the pore-forming material (a), or when it is difficult to control the degree of polymerization of the condensate. (2) A method in which alkoxysilanes are dissolved in a solution of the pore-forming material (a) prepared in advance, and a hydrolytic condensation reaction is performed in the solution. (3) A method in which a (b) siloxane oligomer solution is prepared in advance, and (a) a void-forming material is added thereto and dissolved.

【0027】(a)空隙形成材と、(b)シロキサンオ
リゴマーの使用量の比率は、目的に合わせて任意の割合
に設定でき、通常、(a)空隙形成材100重量部に対
して(b)シロキサンオリゴマーを10〜1000重量
部配合するのが好ましく、60〜450重量部配合する
のがより好ましい。ただし、ここでの(b)シロキサン
オリゴマーの重量は、加水分解性基が全て縮合してSi
−O−Siの結合を形成したと仮定して計算した値であ
る。(b)シロキサンオリゴマーの割合が少なすぎる
と、得られるシリカ系被膜の機械強度が低下する傾向が
あり、多すぎると得られる膜の比誘電率が増大する傾向
がある。
The ratio of the amount of the (a) void-forming material to the amount of the (b) siloxane oligomer used can be set to an arbitrary ratio according to the purpose. ) The siloxane oligomer is preferably added in an amount of 10 to 1000 parts by weight, more preferably 60 to 450 parts by weight. However, the weight of the siloxane oligomer (b) is determined by the fact that all hydrolyzable groups are condensed and Si
This is a value calculated assuming that a bond of —O—Si is formed. (B) If the proportion of the siloxane oligomer is too small, the mechanical strength of the resulting silica-based coating tends to decrease, and if it is too large, the relative dielectric constant of the resulting film tends to increase.

【0028】(a)空隙形成材は官能基を有してもよい
が、官能基が(b)シロキサンオリゴマーの加水分解性
基及び加水分解により生成するシラノール基と架橋反応
するのは好ましくない。(a)空隙形成材と、(b)シ
ロキサンオリゴマーの架橋が起きると、加熱により
(a)空隙形成材を除去した後にシラノール基が生成
し、膜の低誘電性、低吸湿性が損なわれる。(a)空隙
形成材の官能基が、(b)シロキサンオリゴマーの加水
分解性基及び加水分解により生成するシラノール基と架
橋反応しないで、官能基の極性による相互作用のみが起
こる場合には、(a)空隙形成材と、(b)シロキサン
オリゴマーの相溶性が良くなり、より均質なシリカ系被
膜が得られる。
The (a) void-forming material may have a functional group, but it is not preferable that the functional group cross-links with the (b) hydrolyzable group of the siloxane oligomer and the silanol group generated by hydrolysis. When the (a) void-forming material and the (b) siloxane oligomer crosslink, a silanol group is generated after the (a) void-forming material is removed by heating, and the low dielectric property and low hygroscopicity of the film are impaired. In the case where the functional group of the (a) void-forming material does not undergo a cross-linking reaction with the (b) hydrolyzable group of the siloxane oligomer and the silanol group generated by the hydrolysis, and only interaction due to the polarity of the functional group occurs, The compatibility between a) the void-forming material and (b) the siloxane oligomer is improved, and a more uniform silica-based coating is obtained.

【0029】本発明における(c)有機溶剤としては、
例えば、メタノール、エタノールプロパノール、ブタノ
ール等のアルコール系、CF3CH2OH、CF3CF2
2OH、CF3(CF2)3CH2CH2OH等の含フッ素ア
ルコール、酢酸メチル、酢酸エチル、酢酸プロピル、酢
酸ブチル等の酢酸エステル系、γ−ブチロラクトン等の
ラクトン系、エチレングリコールモノメチルアセテー
ト、エチレングリコールジアセテート等のグリコールア
セテート系溶媒、N−メチル−2−ピロリドン等のアミ
ド系溶剤、グリコールエーテル系溶剤などが挙げられ
る。これらは、単独で又は2種以上を組み合わせて使用
される。これらの(c)有機溶剤のうちで、(a)空隙
形成材及び(b)シロキサンオリゴマーの両方を溶解す
る有機溶剤(c1)を用いることが好ましい。
In the present invention, (c) the organic solvent includes
For example, alcohols such as methanol, ethanol propanol and butanol, CF 3 CH 2 OH, CF 3 CF 2 C
H 2 OH, fluorinated alcohols such as CF 3 (CF 2 ) 3 CH 2 CH 2 OH, acetates such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate, lactones such as γ-butyrolactone, ethylene glycol monomethyl Examples thereof include glycol acetate solvents such as acetate and ethylene glycol diacetate, amide solvents such as N-methyl-2-pyrrolidone, and glycol ether solvents. These are used alone or in combination of two or more. Among these (c) organic solvents, it is preferable to use an organic solvent (c1) that dissolves both (a) the void-forming material and (b) the siloxane oligomer.

【0030】(c)有機溶剤の使用量は、所望の溶液粘
度またはコーティング膜の膜厚などの観点から適宜選択
すればよいが、例えば、膜厚0.1〜5μmのコーティ
ング膜をスピンコート法にて得ようとする場合、組成物
の固形分濃度が1〜20重量%となるような量を使用す
ることが好ましい。
(C) The amount of the organic solvent to be used may be appropriately selected from the viewpoint of a desired solution viscosity or a coating film thickness. For example, a coating film having a thickness of 0.1 to 5 μm is spin-coated. When it is intended to obtain the above, it is preferable to use an amount such that the solid content concentration of the composition is 1 to 20% by weight.

【0031】シリカ系被膜の形成は、例えば、組成物を
基材に塗布し、(a)空隙形成材と(b)シロキサンオ
リゴマーが均一に相溶した複合膜を形成した後、加熱に
より、(b)シロキサンオリゴマーの縮合反応と(a)
空隙形成材の除去する方法により行うことができる。こ
の方法では、塗布後の加熱工程において、(a)空隙形
成材が膜中に存在した状態で、(b)シロキサンオリゴ
マーの縮合が起き、ポリシロキサンのネットワークが形
成されることが重要である。ポリシロキサンのネットワ
ーク形成前に、(a)空隙形成材の分解が開始する場合
には、(a)空隙形成材の分解により膜の収縮が起こ
り、得られる膜の低誘電性が損なわれる可能性がある。
The silica-based coating is formed, for example, by applying the composition to a substrate, forming a composite film in which (a) a void-forming material and (b) a siloxane oligomer are uniformly dissolved, and then heating the composite film by (H). b) Condensation reaction of siloxane oligomer and (a)
It can be performed by a method of removing the void forming material. In this method, it is important that in the heating step after the application, (a) condensation of the siloxane oligomer occurs in a state where the void forming material is present in the film, and a polysiloxane network is formed. In the case where the decomposition of the (a) void-forming material starts before the formation of the polysiloxane network, (a) the film may shrink due to the decomposition of the void-forming material, and the low dielectric property of the resulting film may be impaired. There is.

【0032】高耐熱で低吸湿なシリカ系被膜を得るため
には、(b)シロキサンオリゴマーとして非加水分解性
基を有するものを用いるのが好ましい。このような
(b)シロキサンオリゴマーを塩基性触媒を用いずに加
熱した場合、縮合が始まるのは150℃以上である。ま
た、縮合が進み、ポリシロキサンのネットワークが形成
されて膜の構造がほぼ決定するのは250℃以上であ
る。従って、本発明において高耐熱で低吸湿なシリカ系
被膜を得るためには、(a)空隙形成材は、その分解開
始温度は150℃以上のものが好ましく、250℃以上
のものがより好ましい。かかる観点から(a)空隙形成
材が、空気気流下、30℃以下から昇温速度20℃/min
で熱重量分析を行った時、150℃の重量に対する25
0℃における重量減少が5%未満のポリマーであること
が好ましく、また、150℃の重量に対する400℃に
おける重量減少が80%以上であるポリマーであること
が好ましい。
In order to obtain a silica-based film having high heat resistance and low moisture absorption, it is preferable to use (b) a siloxane oligomer having a non-hydrolyzable group. When the (b) siloxane oligomer is heated without using a basic catalyst, condensation starts at 150 ° C. or higher. It is at 250 ° C. or higher that the condensation proceeds and a polysiloxane network is formed to substantially determine the structure of the film. Accordingly, in order to obtain a silica-based coating having high heat resistance and low moisture absorption in the present invention, the (a) void-forming material preferably has a decomposition initiation temperature of 150 ° C or higher, more preferably 250 ° C or higher. From this point of view, (a) the air gap forming material is heated at a rate of 20 ° C./min from 30 ° C. or less under an air stream.
When a thermogravimetric analysis was performed at 25 ° C., 25
It is preferable that the polymer has a weight loss of less than 5% at 0 ° C., and that the weight loss at 400 ° C. relative to the weight of 150 ° C. is 80% or more.

【0033】また、本発明の方法によりシリカ系被膜を
得るためには、(a)空隙形成材を充分に除去すること
が好ましい。(a)空隙形成材の除去が不完全な場合に
は、得られる膜の低誘電性が損なわれやすい。
In order to obtain a silica-based coating by the method of the present invention, it is preferable to sufficiently remove (a) the void-forming material. (A) If the removal of the void-forming material is incomplete, the low dielectric property of the resulting film is likely to be impaired.

【0034】本発明をLSIの層間絶縁膜の形成に適用
する場合、適用される加熱温度は配線材料によって異な
る。従来のAl配線を用いた場合の加熱温度は400℃
〜450℃で、将来、Cu配線を用いた場合の加熱温度
は380〜430℃程度と予想される。従って、Cu配
線を用いるLSIに本発明を適用する場合、400℃以
下で(a)空隙形成材が充分除去されることが好まし
い。また、Al配線を用いた場合も、400℃以下で
(a)空隙形成材が除去されることが、加熱温度による
誘電率の変化が小さくなるため好ましい。
When the present invention is applied to the formation of an interlayer insulating film of an LSI, the applied heating temperature differs depending on the wiring material. The heating temperature when using the conventional Al wiring is 400 ° C.
The heating temperature when using Cu wiring is expected to be about 380 to 430 ° C. in the future. Therefore, when the present invention is applied to an LSI using Cu wiring, it is preferable that (a) the void forming material be sufficiently removed at 400 ° C. or lower. Also, when an Al wiring is used, it is preferable that the (a) void-forming material be removed at a temperature of 400 ° C. or lower because a change in the dielectric constant due to the heating temperature is reduced.

【0035】本発明の組成物の塗布方法としては、スピ
ンコート法、ディッピング法、ポッティング法、ダイコ
ート法、スプレーコート法等が挙げられ、コーティング
対象である物品の形状、必要膜厚などから適宜選択すれ
ばよい。本発明の組成物を、半導体素子層間絶縁膜に適
用する場合、膜厚の面内分布の均一性からスピンコート
法が好ましい。多層配線板層間絶縁膜に適用する場合、
スピンコート法とともに、より高い液歩留りである方法
として、ダイコート法が好ましい。
The method of applying the composition of the present invention includes spin coating, dipping, potting, die coating, spray coating, etc., and is appropriately selected from the shape of the article to be coated, the required film thickness, and the like. do it. When the composition of the present invention is applied to a semiconductor element interlayer insulating film, a spin coating method is preferred from the viewpoint of uniformity of in-plane distribution of film thickness. When applied to the multilayer wiring board interlayer insulation film,
A die coating method is preferable as a method for achieving a higher liquid yield together with the spin coating method.

【0036】塗膜を形成するためには、(c)有機溶剤
を揮発させるため及び(a)空隙形成材が膜中に存在し
た状態で(b)シロキサンオリゴマーを縮合させるため
に、塗布後のベークを実施するのが好ましい。ベーク条
件は、塗布膜厚などにより適宜選択すればよいが、溶剤
の乾燥のためには、80〜200℃、(b)シロキサン
オリゴマーの縮合反応のためには200〜350℃のベ
ークを行うのが好ましい。また、ベークにはホットプレ
ートを用いるのが好ましい。
In order to form a coating film, (c) to volatilize an organic solvent and (a) to condense a siloxane oligomer in a state where a void forming material is present in the film, and (b) to condense a siloxane oligomer. Preferably, baking is performed. The baking conditions may be appropriately selected depending on the thickness of the coating film, etc., and baking is performed at 80 to 200 ° C. for drying the solvent and at 200 to 350 ° C. for the condensation reaction of the (b) siloxane oligomer. Is preferred. It is preferable to use a hot plate for baking.

【0037】(b)シロキサンオリゴマーを充分縮合さ
せ、未反応のアルコキシ基またはシラノール基が残存し
ないようにし、かつ、(a)空隙形成材を充分除去する
ためには、350〜500℃の最終硬化が好ましい。未
反応のアルコキシ基またはシラノール基は、それ自体が
塗膜の比誘電率を上昇させる原因となり、さらには吸水
部位となりうることで水による比誘電率の上昇の原因と
なるために、塗膜中に残存しないことが望ましい。最終
硬化は、ホットプレート又は炉を用いて行うのが好まし
い。
(B) In order to sufficiently condense the siloxane oligomer so that unreacted alkoxy groups or silanol groups do not remain and (a) sufficiently remove the void-forming material, final curing at 350 to 500 ° C. Is preferred. Unreacted alkoxy groups or silanol groups themselves cause an increase in the dielectric constant of the coating film, and furthermore, can cause water absorption sites to increase the dielectric constant of the coating film. Desirably does not remain. The final curing is preferably performed using a hot plate or a furnace.

【0038】本組成物より形成したシリカ系被膜を半導
体素子及び多層配線板の層間絶縁膜として適用すること
により、低誘電率、高絶縁耐圧といった優れた電気特
性、信号伝搬遅延時間の低減などの高性能化を達成でき
る。また、本発明は、半導体素子にCu配線を用いるこ
とでプロセス温度が低温化した場合にも適用可能であ
る。
By applying the silica-based coating formed from the composition as an interlayer insulating film of a semiconductor device and a multilayer wiring board, excellent electrical characteristics such as a low dielectric constant and a high dielectric strength, a reduction in signal propagation delay time, and the like can be obtained. High performance can be achieved. The present invention is also applicable to a case where the process temperature is lowered by using Cu wiring for a semiconductor element.

【0039】本発明における半導体素子とは、ダイオー
ド、トランジスタ、化合物半導体、サーミスタ、バリス
タ、サイリスタなどの個別半導体、DRAM(ダイナミ
ック・ランダム・アクセス・メモリ)、SRAM(スタ
ティック・ランダム・アクセス・メモリ)、EPROM
(イレイザブル・プログラマブル・リード・オンリー・
メモリ)、マスクROM(マスク・リード・オンリー・
メモリ)、EEPROM(エレクトリカル・イレイザブ
ル・プログラマブル・リード・オンリー・メモリ)、フ
ラッシュメモリなどの記憶素子、マイクロプロセッサ、
DSP、ASICなどの理論回路素子、MMIC(モノ
リシック・マイクロウェーブ集積回路)に代表される化
合物半導体などの集積回路素子、混成集積回路(ハイブ
リッドIC)、発光ダイオード、電荷結合素子などの光
電変換素子などを意味する。
The semiconductor element according to the present invention includes diodes, transistors, compound semiconductors, individual semiconductors such as thermistors, varistors, thyristors, DRAMs (Dynamic Random Access Memory), SRAMs (Static Random Access Memory), EPROM
(Erasable programmable read only
Memory), mask ROM (mask read only)
Memory), EEPROM (electrically erasable programmable read only memory), storage elements such as flash memory, microprocessors,
Theoretical circuit elements such as DSPs and ASICs, integrated circuit elements such as compound semiconductors represented by MMICs (monolithic microwave integrated circuits), hybrid integrated circuits (hybrid ICs), photoelectric conversion elements such as light-emitting diodes, charge-coupled devices, etc. Means

【0040】本発明における多層配線板とは、MCMな
どの高応力配線板を含む。本発明の組成物より形成した
塗膜を層間絶縁膜として適用することにより、上記と同
じく信号伝搬遅延時間の低減などの高性能化と同時に高
信頼性化を達成できる。
The multilayer wiring board in the present invention includes a high stress wiring board such as an MCM. By applying a coating film formed from the composition of the present invention as an interlayer insulating film, it is possible to attain high performance such as reduction of signal propagation delay time and high reliability as described above.

【0041】[0041]

【実施例】以下、実施例により本発明を説明する。The present invention will be described below with reference to examples.

【0042】実施例1 CH3Si(OCH3)3 140gをγ−ブチロラクトン
130gに溶解し、これに水60gと硝酸0.5gの混
合液を1時間で滴下した後、さらに室温で24時間反応
させた。これにポリメチルメタクリレートのγ−ブチロ
ラクトン10重量%溶液400gを24時間室温で混合
した液をシリカ系被膜形成用塗布液とした。この塗布液
をスピナーを用いて2000min-1で6インチシリコン
ウエハー上に塗布した後、150℃さらに250℃に制
御されたホットプレートで各1分間乾燥し、ついで電気
炉で450℃窒素中1時間焼成したところ、無色透明で
クラックのない被膜が得られた。該被膜の膜厚を測定し
たところ0.55μmであり、膜の応力は20(Mpa)
であった。
Example 1 140 g of CH 3 Si (OCH 3 ) 3 was dissolved in 130 g of γ-butyrolactone, and a mixed solution of 60 g of water and 0.5 g of nitric acid was added dropwise over 1 hour, followed by further reaction at room temperature for 24 hours. I let it. A solution prepared by mixing 400 g of a 10% by weight solution of polymethyl methacrylate with γ-butyrolactone at room temperature for 24 hours was used as a coating solution for forming a silica-based film. This coating solution was applied on a 6-inch silicon wafer at 2000 min -1 using a spinner, dried on a hot plate controlled at 150 ° C. and then at 250 ° C. for 1 minute, and then placed in an electric furnace at 450 ° C. for 1 hour in nitrogen. Upon firing, a colorless, transparent and crack-free coating was obtained. The thickness of the film was measured to be 0.55 μm, and the stress of the film was 20 (Mpa).
Met.

【0043】さらに該被膜上に上記と同様な操作を繰り
返して被膜を形成することにより膜厚2.3μmのシリ
カ系被膜を得たが、クラックの発生は認められなかっ
た。この被膜上にアルミニウム被膜1μmをスパッタ法
で形成し、試料の誘電率をLFインピーダンスメータを
用いて周波数10kHzで測定したところ2.1であっ
た。さらに、該被膜の脱ガス量を昇温脱離ガス分析装
置:TDS(電子科学製EMD−1000K)で求めた
ところ3×1019個分子/cm3であり、また該被膜のリ
ーク電流を水銀プローブI−V測定装置(日本エス・エ
ス・エム製 SSM495型)を用いて測定したところ
3×10−10A/cm2であった。
Further, a silica-based coating having a thickness of 2.3 μm was obtained by forming a coating on the coating by repeating the same operation as described above, but no crack was observed. An aluminum film of 1 μm was formed on this film by a sputtering method, and the dielectric constant of the sample was measured at a frequency of 10 kHz using an LF impedance meter, and was 2.1. Further, the degassing amount of the coating was determined by a temperature-programmed desorption gas analyzer: TDS (EMD-1000K, manufactured by Denshi Kagaku) and found to be 3 × 10 19 molecules / cm 3. It was 3 * 10 <-10> A / cm < 2 > when it measured using the probe IV measuring device (SSM495 type made by Japan S.M.).

【0044】実施例2 CH3Si(OCH3)3140gをプロピレングリコール
モノプロピルエーテル130gに溶解し、これに水60
gと硝酸0.5gの混合液を1時間で滴下した後、さら
に室温で24時間反応させた。これにポリ酢酸ビニルの
プロピレングリコールモノプロピルエーテル10重量%
溶液400gを24時間室温で混合した液をシリカ系被
膜形成用塗布液とした。この塗布液をスピナーを用いて
2000min-1で6インチシリコンウエハー上に塗布し
た後、150℃さらに250℃に制御されたホットプレ
ートで各1分間乾燥し、ついで電気炉で450℃窒素中
1時間焼成したところ、無色透明でクラックのない被膜
が得られた。該被膜の膜厚及び膜応力を測定したところ
膜厚は0.50μmであり、膜応力は26MPaであっ
た。
Example 2 140 g of CH 3 Si (OCH 3 ) 3 was dissolved in 130 g of propylene glycol monopropyl ether.
g and 0.5 g of nitric acid were added dropwise over 1 hour, and the mixture was further reacted at room temperature for 24 hours. 10% by weight of propylene glycol monopropyl ether of polyvinyl acetate
A solution obtained by mixing 400 g of the solution at room temperature for 24 hours was used as a coating solution for forming a silica-based film. This coating solution was applied on a 6-inch silicon wafer at 2000 min -1 using a spinner, dried on a hot plate controlled at 150 ° C. and then at 250 ° C. for 1 minute, and then placed in an electric furnace at 450 ° C. for 1 hour in nitrogen. Upon firing, a colorless, transparent and crack-free coating was obtained. When the film thickness and the film stress of the film were measured, the film thickness was 0.50 μm and the film stress was 26 MPa.

【0045】さらに該被膜上に上記と同様な操作を繰り
返して被膜を形成することにより膜厚2.0μmのシリ
カ系被膜を得たが、クラックの発生は認められなかっ
た。この被膜上にアルミニウム被膜1μmをスパッタ法
で形成し、試料の誘電率をLFインピーダンスメータを
用いて周波数10kHzで測定したところ2.5であっ
た。さらに、該被膜の脱ガス量を昇温脱離ガス分析装
置:TDS(電子科学製EMD−1000K)で求めた
ところ4×1019個分子/cm3であり、また該被膜のリ
ーク電流を水銀プローブI−V測定装置(日本エス・エ
ス・エム製SSM 495型)を用いて測定したところ
3×10−10A/cm2であった。
Further, a film was formed on the film by repeating the same operation as described above to obtain a silica-based film having a thickness of 2.0 μm, but no crack was observed. An aluminum film of 1 μm was formed on this film by a sputtering method, and the dielectric constant of the sample was measured at a frequency of 10 kHz using an LF impedance meter, and was 2.5. Further, the degassing amount of the coating was determined by a temperature-programmed desorption gas analyzer: TDS (EMD-1000K, manufactured by Denshi Kagaku) and found to be 4 × 10 19 molecules / cm 3. It was 3 * 10 <-10> A / cm < 2 > when it measured using the probe IV measuring device (SSM 495 made by Japan S.M.).

【0046】比較例1 CH3Si(OCH3)3 140gをγ−ブチロラクトン
300gに溶解し、これに水60gと硝酸0.5gの混
合液を1時間で滴下した後、さらに室温で24時間反応
させシリカ系被膜形成用塗布液とした。この塗布液をス
ピナーを用いて2000min-1で6インチシリコンウエ
ハー上に塗布した後、150℃さらに250℃に制御さ
れたホットプレートで各1分間乾燥し、ついで電気炉で
450℃窒素中1時間焼成したところ、無色透明でクラ
ックのない被膜が得られた。該被膜の膜厚を測定したと
ころ0.50μmであり、膜の応力は47(Mpa)であ
った。
Comparative Example 1 140 g of CH 3 Si (OCH 3 ) 3 was dissolved in 300 g of γ-butyrolactone, a mixture of 60 g of water and 0.5 g of nitric acid was added dropwise over 1 hour, and the mixture was further reacted at room temperature for 24 hours. This was used as a coating solution for forming a silica-based film. This coating solution was applied on a 6-inch silicon wafer at 2000 min -1 using a spinner, dried on a hot plate controlled at 150 ° C. and then at 250 ° C. for 1 minute, and then placed in an electric furnace at 450 ° C. for 1 hour in nitrogen. Upon firing, a colorless, transparent and crack-free coating was obtained. The thickness of the film was measured to be 0.50 μm, and the stress of the film was 47 (Mpa).

【0047】さらに該被膜上に上記と同様な操作を繰り
返して被膜を形成することにより膜厚2.0μmのシリ
カ系被膜を得たが、膜の一部にクラックが認められた。
この、被膜上にアルミニウム被膜1μmをスパッタ法で
形成し、この試料の誘電率をLFインピーダンスメータ
を用いて周波数10kHzで測定したところ2.8であっ
た。
Furthermore, a 2.0 μm-thick silica-based coating was obtained by forming a coating on the coating by repeating the same operation as described above. Cracks were observed in a part of the coating.
An aluminum film of 1 μm was formed on the film by sputtering, and the dielectric constant of this sample was measured at a frequency of 10 kHz using an LF impedance meter, and was 2.8.

【0048】[0048]

【発明の効果】請求項1記載のシリカ系被膜は、デザイ
ンルールが0.15μmより微細化される半導体素子に
おいても十分な動作性能が発揮できる層間絶縁膜として
適用可能なシリカ系被膜を提供するものである。請求項
2〜11記載のシリカ系被膜の形成方法は、デザインル
ールが0.15μmより微細化される半導体素子におい
ても十分な動作性能が発揮できるLSI等の半導体装置
や多層配線板の層間絶縁膜として適用可能なシリカ系被
膜を歩留まりよく簡便に得ることができるものである。
請求項12記載の電子部品は、前記のシリカ系被膜を有
してなる信号遅延の少ない、高品位、高信頼性のLSI
等の半導体装置、多層配線板などである。
According to the first aspect of the present invention, there is provided a silica-based film applicable as an interlayer insulating film capable of exhibiting sufficient operation performance even in a semiconductor device having a design rule finer than 0.15 μm. Things. The method for forming a silica-based coating according to claim 2, wherein the interlayer insulating film of a semiconductor device such as an LSI or a multilayer wiring board capable of exhibiting sufficient operation performance even in a semiconductor element having a design rule finer than 0.15 μm. It is possible to easily obtain a silica-based coating which can be applied as a high yield.
13. An electronic component according to claim 12, wherein said LSI-based coating has a low signal delay, a high quality and a high reliability.
And a multilayer wiring board.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/312 H01L 21/312 C 5F033 21/768 H05K 3/46 T 5F058 H05K 3/46 H01L 21/90 S (72)発明者 桜井 治彰 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社山崎事業所内 (72)発明者 寺田 信子 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社山崎事業所内 (72)発明者 成田 武憲 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社山崎事業所内 (72)発明者 森嶋 浩之 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社山崎事業所内 Fターム(参考) 4D075 BB21Z BB26Z DC21 EB42 4F074 AA41 AA46 AA90 CB06 CB17 CC04X CC04Y CC06X CC10X CC22X CC32X CC32Y CE02 CE74 CE93 DA23 DA24 DA47 4J002 BD00X BD12X BD13X BD14X BG00X CF00X CH00X CM04X CP03W EC036 ED026 EH036 EH056 EL066 EU026 FD20X GH00 GQ05 HA05 4J038 CG141 DL032 KA06 5E346 AA12 BB01 CC18 DD02 HH05 5F033 RR23 SS22 WW00 WW03 WW04 XX24 XX27 5F058 AA04 AA10 AC03 AC10 AF04 AG01 AH02 BA07 BA20 BD07 BF46 BH01 BJ02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/312 H01L 21/312 C 5F033 21/768 H05K 3/46 T 5F058 H05K 3/46 H01L 21/90 S (72) Inventor Haruaki Sakurai 4-3-1 Higashicho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Chemical Co., Ltd.Yamazaki Plant (72) Inventor Nobuko Terada 4-3-1-1, Higashicho, Hitachi City, Ibaraki Prefecture Hitachi Chemical Inside the Yamazaki Plant of Industrial Co., Ltd. (72) Takenori Narita 4-3-1-1, Higashicho, Hitachi City, Ibaraki Prefecture Inside the Yamazaki Plant of Hitachi Chemical Co., Ltd. (72) Hiroyuki Morishima 4-3-1-1, Higashicho, Hitachi City, Ibaraki No. Hitachi Chemical Co., Ltd. Yamazaki Plant F-term (reference) 4D075 BB21Z BB26Z DC21 EB42 4F074 AA41 AA46 AA90 CB06 CB17 CC04X CC04Y CC06X CC10X CC22X CC32X CC32Y CE02 CE74 CE93 DA23 DA24 DA47 4J002 BD00X BD12X BD13X BD14X BG00X CF00X CH00X CM04X CP03W EC036 ED026 EH036 EH056 EL066 EU026 FD20X GH00 GQ05 HA05 4J038 FF141 BB141 A035 AC03 AC10 AF04 AG01 AH02 BA07 BA20 BD07 BF46 BH01 BJ02

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 膜の応力が40(MPa)以下であるシリ
カ系被膜。
1. A silica-based film having a film stress of 40 (MPa) or less.
【請求項2】 (a)空隙形成材及び(b)シロキサン
オリゴマーが(c)有機溶剤に均一に溶解してなる組成
物を基材に塗布し、空隙形成材とシロキサンオリゴマー
が均一に相溶した複合膜を形成した後、シロキサンオリ
ゴマーの縮合反応と空隙形成材の除去を行うことを特徴
とする膜の応力が40(MPa)以下であるシリカ系被膜
の形成方法。
2. A composition comprising (a) a void-forming material and (b) a siloxane oligomer uniformly dissolved in (c) an organic solvent is applied to a substrate, and the void-forming material and the siloxane oligomer are uniformly compatible. A method for forming a silica-based film having a film stress of 40 (MPa) or less, comprising performing a condensation reaction of a siloxane oligomer and removing a void-forming material after forming the composite film.
【請求項3】 空隙形成材とシロキサンオリゴマーが均
一に相溶した複合膜を形成した後、空隙形成材が残存す
る状態でシロキサンオリゴマーを架橋させる第一の加熱
工程と、空隙形成材を除去する第二の加熱工程を行うこ
とを特徴とする請求項2記載のシリカ系被膜の形成方
法。
3. A first heating step of forming a composite film in which the void-forming material and the siloxane oligomer are uniformly dissolved and then crosslinking the siloxane oligomer in a state where the void-forming material remains, and removing the void-forming material. 3. The method according to claim 2, wherein a second heating step is performed.
【請求項4】 第一の加熱工程の温度が80〜350℃
で、第二の加熱工程の温度が350〜500℃である請
求項3記載のシリカ系被膜の形成方法。
4. The temperature of the first heating step is 80 to 350 ° C.
The method according to claim 3, wherein the temperature of the second heating step is 350 to 500C.
【請求項5】 (c)有機溶剤が、(c1)(a)と
(b)の両方が溶解する有機溶剤を含んでなる請求項
2、3又は4記載のシリカ系被膜の形成方法。
5. The method according to claim 2, wherein (c) the organic solvent comprises an organic solvent in which both (c1) (a) and (b) are soluble.
【請求項6】 (b)シロキサンオリゴマーが、非加水
分解性の有機基を有する化合物である請求項2、3、4
又は5記載のシリカ系被膜の形成方法。
6. The compound according to claim 2, wherein (b) the siloxane oligomer is a compound having a non-hydrolyzable organic group.
Or the method for forming a silica-based coating according to 5.
【請求項7】 (b)シロキサンオリゴマーが、下記一
般式(I) 【化1】 (式中、R1及びR2は同一または相異なる非加水分解性
基を示し、R3は炭素数1〜6のアルキル基を示し、m
及びnは0≦m+n≦3を満たすように選ばれる0〜3
の整数である)で表されるアルコキシシラン類の加水分
解縮合物である請求項2、3、4、5又は6記載のシリ
カ系被膜の形成方法。
(B) the siloxane oligomer is represented by the following general formula (I): (Wherein, R 1 and R 2 represent the same or different non-hydrolyzable groups, R 3 represents an alkyl group having 1 to 6 carbon atoms, m
And n are 0-3 selected so as to satisfy 0 ≦ m + n ≦ 3.
7. The method for forming a silica-based coating according to claim 2, which is a hydrolyzed condensate of an alkoxysilane represented by the following formula:
【請求項8】 (a)空隙形成材が、空気気流下、30
℃以下から昇温速度20℃/minで熱重量分析を行った時
の、150℃の重量に対する250℃における重量減少
が5%未満のポリマーである請求項2、3、4、5、
6、7又は8記載のシリカ系被膜の形成方法。
8. The method according to claim 8, wherein (a) the gap-forming material is placed in an air stream at 30 ° C.
A polymer which has a weight loss of less than 5% at 250 ° C. with respect to the weight of 150 ° C. when thermogravimetric analysis is performed at a temperature rising rate of 20 ° C./min from a temperature of not more than 5 ° C.
9. The method for forming a silica-based coating according to 6, 7, or 8.
【請求項9】 (a)空隙形成材が、空気気流下、30
℃以下から昇温速度20℃/minで熱重量分析を行った時
の、150℃の重量に対する400℃における重量減少
が80%以上であるポリマーである請求項2、3、4、
5、6、7又は8記載のシリカ系被膜の形成方法。
9. The method according to claim 9, wherein (a) the gap-forming material is placed under an air stream.
A polymer whose weight loss at 400 ° C. with respect to the weight at 150 ° C. is 80% or more when subjected to thermogravimetric analysis at a temperature rising rate of 20 ° C./min from below 100 ° C.
9. The method for forming a silica-based coating according to 5, 6, 7, or 8.
【請求項10】 (a)空隙形成材が、フッ素を含まな
いポリマーである請求項2、3、4、5、6、7、8又
は9記載のシリカ系被膜の形成方法。
10. The method according to claim 2, wherein (a) the void-forming material is a polymer containing no fluorine.
【請求項11】 (a)空隙形成材が、メタクリル系ポ
リマー又はアクリル系ポリマーである請求項2、3、
4、5、6、7、8、9又は10記載のシリカ系被膜の
形成方法。
11. The method according to claim 2, wherein (a) the void-forming material is a methacrylic polymer or an acrylic polymer.
The method for forming a silica-based coating according to 4, 5, 6, 7, 8, 9, or 10.
【請求項12】 請求項1記載のシリカ系被膜を有する
電子部品。
12. An electronic component having the silica-based coating according to claim 1.
JP27412199A 1999-09-28 1999-09-28 Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film Pending JP2001098218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27412199A JP2001098218A (en) 1999-09-28 1999-09-28 Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27412199A JP2001098218A (en) 1999-09-28 1999-09-28 Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film

Publications (1)

Publication Number Publication Date
JP2001098218A true JP2001098218A (en) 2001-04-10

Family

ID=17537323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27412199A Pending JP2001098218A (en) 1999-09-28 1999-09-28 Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film

Country Status (1)

Country Link
JP (1) JP2001098218A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277502A (en) * 2003-03-13 2004-10-07 Hitachi Chem Co Ltd Silica film-forming composition, silica film, its forming method and electronic part having silica film
WO2006068181A1 (en) * 2004-12-21 2006-06-29 Hitachi Chemical Company, Ltd. Film, silica film and method of forming the same, composition for forming silica film, and electronic part
JP2006213908A (en) * 2004-12-21 2006-08-17 Hitachi Chem Co Ltd Composition for forming silica-based film, method for forming silica-based film, silica-based film and electronic part
US7119354B2 (en) 2003-04-09 2006-10-10 Shin-Etsu Chemical Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film
US7126208B2 (en) 2002-11-13 2006-10-24 Matsushita Electric Industrial Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
US7132473B2 (en) 2002-11-13 2006-11-07 Matsushita Electric Industrial Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
US7205030B2 (en) * 2003-04-02 2007-04-17 Sanyo Electric Co., Ltd. Method for forming porous film
US7205338B2 (en) 2003-03-10 2007-04-17 Shin-Etsu Chemical Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
US7239018B2 (en) 2003-03-10 2007-07-03 Shin-Etsu Chemical Co., Ltd. Composition for forming a porous film prepared by hydrolysis and condensation of an alkoxysilane using a trialkylmethylammonium hydroxide catalyst
US7332446B2 (en) 2003-03-27 2008-02-19 Shin-Etsu Chemical Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film and semiconductor device
US7341775B2 (en) 2002-11-13 2008-03-11 Matsushita Electric Industrial Co. Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
US7357961B2 (en) 2003-04-09 2008-04-15 Matsushita Electric Industrial Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
JP2008527757A (en) * 2005-01-13 2008-07-24 インターナショナル・ビジネス・マシーンズ・コーポレーション Ultra-low dielectric constant film having controlled biaxial stress and method for producing the same
JP2008297550A (en) * 2002-02-27 2008-12-11 Hitachi Chem Co Ltd Composition for forming silica-based coating film, silica-based coating film and method for producing the same, and electronic parts
US8466229B2 (en) 2004-09-02 2013-06-18 Hitachi Chemical Co., Ltd. Composition for forming silica-based film, method of forming silica-based film, and electronic component provided with silica-based film
JP2015143292A (en) * 2014-01-31 2015-08-06 住友化学株式会社 Polysilsesquioxane encapsulating material composition for uv-led and use of solvent therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025359A (en) * 1996-04-08 1998-01-27 Internatl Business Mach Corp <Ibm> Production of cellular polymer
WO1999003926A1 (en) * 1997-07-15 1999-01-28 Asahi Kasei Kogyo Kabushiki Kaisha Alkoxysilane/organic polymer composition for thin insulating film production and use thereof
JP2001002993A (en) * 1999-06-24 2001-01-09 Jsr Corp Composition for forming film, formation of film and low- density film
JP2001049179A (en) * 1999-06-01 2001-02-20 Jsr Corp Film-forming composition, formation of film and low- density film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025359A (en) * 1996-04-08 1998-01-27 Internatl Business Mach Corp <Ibm> Production of cellular polymer
WO1999003926A1 (en) * 1997-07-15 1999-01-28 Asahi Kasei Kogyo Kabushiki Kaisha Alkoxysilane/organic polymer composition for thin insulating film production and use thereof
JP2001049179A (en) * 1999-06-01 2001-02-20 Jsr Corp Film-forming composition, formation of film and low- density film
JP2001002993A (en) * 1999-06-24 2001-01-09 Jsr Corp Composition for forming film, formation of film and low- density film

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297550A (en) * 2002-02-27 2008-12-11 Hitachi Chem Co Ltd Composition for forming silica-based coating film, silica-based coating film and method for producing the same, and electronic parts
US7126208B2 (en) 2002-11-13 2006-10-24 Matsushita Electric Industrial Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
US7341775B2 (en) 2002-11-13 2008-03-11 Matsushita Electric Industrial Co. Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
US7132473B2 (en) 2002-11-13 2006-11-07 Matsushita Electric Industrial Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
US7239018B2 (en) 2003-03-10 2007-07-03 Shin-Etsu Chemical Co., Ltd. Composition for forming a porous film prepared by hydrolysis and condensation of an alkoxysilane using a trialkylmethylammonium hydroxide catalyst
US7205338B2 (en) 2003-03-10 2007-04-17 Shin-Etsu Chemical Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
JP2004277502A (en) * 2003-03-13 2004-10-07 Hitachi Chem Co Ltd Silica film-forming composition, silica film, its forming method and electronic part having silica film
US7332446B2 (en) 2003-03-27 2008-02-19 Shin-Etsu Chemical Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film and semiconductor device
US7205030B2 (en) * 2003-04-02 2007-04-17 Sanyo Electric Co., Ltd. Method for forming porous film
US7119354B2 (en) 2003-04-09 2006-10-10 Shin-Etsu Chemical Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film
US7357961B2 (en) 2003-04-09 2008-04-15 Matsushita Electric Industrial Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
US8466229B2 (en) 2004-09-02 2013-06-18 Hitachi Chemical Co., Ltd. Composition for forming silica-based film, method of forming silica-based film, and electronic component provided with silica-based film
JP2006213908A (en) * 2004-12-21 2006-08-17 Hitachi Chem Co Ltd Composition for forming silica-based film, method for forming silica-based film, silica-based film and electronic part
JPWO2006068181A1 (en) * 2004-12-21 2008-06-12 日立化成工業株式会社 Coating, silica-based coating and method for forming the same, composition for forming silica-based coating, and electronic component
WO2006068181A1 (en) * 2004-12-21 2006-06-29 Hitachi Chemical Company, Ltd. Film, silica film and method of forming the same, composition for forming silica film, and electronic part
JP2008527757A (en) * 2005-01-13 2008-07-24 インターナショナル・ビジネス・マシーンズ・コーポレーション Ultra-low dielectric constant film having controlled biaxial stress and method for producing the same
JP2015143292A (en) * 2014-01-31 2015-08-06 住友化学株式会社 Polysilsesquioxane encapsulating material composition for uv-led and use of solvent therefor

Similar Documents

Publication Publication Date Title
US5152834A (en) Spin-on glass composition
JP2001098224A (en) Silica-based film, method of forming silica-based film, and electronic component having silica-based film
US5472488A (en) Coating solution for forming glassy layers
US5302198A (en) Coating solution for forming glassy layers
KR101203225B1 (en) Composition For Forming Film, Process For Preparing the Same, Material For Forming Insulating Film, Process For Forming Film and Silica Film
KR100613682B1 (en) Compositions for preparing low dielectric materials containing solvents
JP2001098218A (en) Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film
JP4894153B2 (en) Precursor composition of porous film and preparation method thereof, porous film and preparation method thereof, and semiconductor device
JP4049775B2 (en) Organosilicate polymer and insulating film containing the same
JPWO2015146524A1 (en) Pattern formation method
JP4180417B2 (en) Composition for forming porous film, method for producing porous film, porous film, interlayer insulating film, and semiconductor device
US20060199021A1 (en) Composition, methods for forming low-permittivity film using the composition, low-permittivity film, and electronic part having the low-permittivity film
US4868096A (en) Surface treatment of silicone-based coating films
JP2000340651A (en) Manufacture of film having low dielectric constant
JP4734815B2 (en) Composition, method of forming low dielectric constant film using the composition, low dielectric constant film, and electronic component having the low dielectric constant film
JP2004307693A (en) Composition for forming porous film, method for producing porous film, porous film, interlayer dielectric film and semiconductor device
JP2003115482A (en) Insulation film forming composition
JP3062040B2 (en) Heat stable composition
JP2005314711A (en) Porous membrane, article and composite material
JP2000058540A (en) Composition for forming low-permittivity insulating film and formation thereof
JP4344903B2 (en) Materials for forming interlayer insulation film for semiconductor elements
JPH06181201A (en) Insulating film for semiconductor device and liquid applied for growing that insulating film
US7091287B2 (en) Nanopore forming material for forming insulating film for semiconductors and low dielectric insulating film comprising the same
JP2000228399A (en) Coating liquid for formation of silica-based film, manufacture of the same and silica-based film and semiconductor device
JP2000021872A (en) Low-dielectric const. resin compsn., method of forming low-dielectric const. insulation film and manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060908

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100720

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100722

A02 Decision of refusal

Effective date: 20101118

Free format text: JAPANESE INTERMEDIATE CODE: A02