JP2001280669A - Refrigerating cycle device - Google Patents

Refrigerating cycle device

Info

Publication number
JP2001280669A
JP2001280669A JP2000092850A JP2000092850A JP2001280669A JP 2001280669 A JP2001280669 A JP 2001280669A JP 2000092850 A JP2000092850 A JP 2000092850A JP 2000092850 A JP2000092850 A JP 2000092850A JP 2001280669 A JP2001280669 A JP 2001280669A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
detecting
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000092850A
Other languages
Japanese (ja)
Inventor
茂生 ▲高▼田
Shigeo Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000092850A priority Critical patent/JP2001280669A/en
Publication of JP2001280669A publication Critical patent/JP2001280669A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of such a case that the stable supply, etc., of a refrigerating capacity is not secured, the number of starting and stopping times of the thermostat of a compressor increases, or the temperature fluctuation in a room increases due to an increase in number of defrosting operations. SOLUTION: A refrigerating cycle device is provided with a first control means 14a which uses a detecting means 11 for detecting the discharge temperature of a compressor, detecting means 10 and 12 for detecting the suction superheat of the compressor, and detecting means 9 and 13 for detecting the subcooling at the outlet of a condenser as sensors and a changing means 6 for changing the heat-exchanging amount of the condenser, a gas by-passing means 7, and a liquid by-passing means 8 as actuators and controls the actuators in a linked state so that the detected values of the sensors may respectively fall within prescribed desired ranges preset at every sensor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍機や空調機に
用いられる冷凍サイクル装置に係り、特に、圧縮機の保
護と各室内機における適正な冷媒温度の確保に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle device used for a refrigerator or an air conditioner, and more particularly to protection of a compressor and securing an appropriate refrigerant temperature in each indoor unit.

【0002】[0002]

【従来の技術】従来の冷凍サイクル装置は、一般的に、
図9に示すような構成がとられている。図において、1
は圧縮機、2は凝縮器、3は絞り装置、4は蒸発器であ
り、これらは環状配置に連通して主冷媒回路を形成して
いる。そして、圧縮機1、凝縮器2等により熱源機Aが
構成され、絞り装置3、蒸発器4等により室内機Bが構
成されている。5は冷媒配管であり、熱源機Aと、1台
ないし複数台の室内機Bとを連通している。熱源機Aに
は、上記のほかに、凝縮器熱交換量調整手段としてのフ
ァン6、ガスバイパス手段7、液バイパス手段8等のア
クチュエータが配備されている。また、圧縮機吐出圧力
検出手段9、圧縮機吸入圧力検出手段10、圧縮機吐出
温度検知手段11等のセンサも配備されている。そし
て、制御手段14Aは、各センサの検出値がそれぞれの
許容範囲を逸脱しないよう、各アクチュエータを個々に
制御している。例えば、圧縮機吐出圧力検出手段9によ
り検出された冷媒吐出圧力に基づいて凝縮器2へのファ
ン6の風量が制御され、圧縮機吸入圧力検出手段10に
より検出された冷媒吸入圧力に基づいてガスバイパス手
段7が開閉制御され、圧縮機吐出温度検知手段11によ
り検出された冷媒吐出温度に基づいて液バイパス手段8
が開閉制御されていた。また、室内機Bにおいては、熱
源機Aの冷媒吸入圧力に相当する圧力に基づいて蒸発器
4の蒸発圧力が一意に決まる運転が行なわれている。従
来の冷凍サイクル装置は、このように構成されており、
圧縮機1の適正な運転範囲を保つ保護制御を行ないつ
つ、室内機Bが設置されている環境を冷凍したり空調し
たりするようになっていた。
2. Description of the Related Art A conventional refrigeration cycle apparatus generally comprises
The configuration as shown in FIG. 9 is adopted. In the figure, 1
Is a compressor, 2 is a condenser, 3 is a throttle device, and 4 is an evaporator, which communicates with the annular arrangement to form a main refrigerant circuit. The heat source unit A is configured by the compressor 1, the condenser 2, and the like, and the indoor unit B is configured by the expansion device 3, the evaporator 4, and the like. Reference numeral 5 denotes a refrigerant pipe, which communicates the heat source unit A with one or more indoor units B. In addition to the above, the heat source unit A is provided with actuators such as a fan 6, a gas bypass unit 7, and a liquid bypass unit 8 as a condenser heat exchange amount adjusting unit. Further, sensors such as a compressor discharge pressure detecting means 9, a compressor suction pressure detecting means 10, and a compressor discharge temperature detecting means 11 are also provided. Then, the control means 14A individually controls each actuator so that the detection value of each sensor does not deviate from the respective allowable range. For example, the flow rate of the fan 6 to the condenser 2 is controlled based on the refrigerant discharge pressure detected by the compressor discharge pressure detecting means 9, and the gas flow is controlled based on the refrigerant suction pressure detected by the compressor suction pressure detecting means 10. The opening and closing of the bypass means 7 is controlled, and the liquid bypass means 8 is controlled based on the refrigerant discharge temperature detected by the compressor discharge temperature detecting means 11.
Was controlled to open and close. Further, in the indoor unit B, an operation is performed in which the evaporation pressure of the evaporator 4 is uniquely determined based on the pressure corresponding to the refrigerant suction pressure of the heat source unit A. The conventional refrigeration cycle device is configured as described above,
The environment in which the indoor unit B is installed is refrigerated or air-conditioned while performing protection control for maintaining an appropriate operating range of the compressor 1.

【0003】[0003]

【発明が解決しようとする課題】従来の冷凍サイクル装
置は上記のように構成されていたので、以下のような課
題があった。特に、熱源機Aと、蒸発器4および絞り手
段3とが個別に自律分散制御される上記の冷凍サイクル
装置においては、蒸発能力の変化に伴って圧縮機1の運
転状態が大幅に変化することがある。かかる場合には、
冷凍能力の安定供給や圧縮機1の安全運転範囲の確保が
できなくなったり、保護制御による圧縮機1のサーモ発
停頻度の増加をまねいたり、あるいは、蒸発温度低下に
起因したデフロスト運転頻度の増加による室内温度変化
の増大をまねいたりすることがあった。また、冷媒配管
5での圧力損失等により、室内側熱交換器4で要求され
る凝縮能力または蒸発能力が不足することがあった。あ
るいは、複数台の室内側熱交換器4で要求される凝縮温
度または蒸発温度が異なる場合に、例えば最高の凝縮温
度、最低の蒸発温度に設定したことによる暖め過ぎや冷
え過ぎ、あるいは、それに伴うサーモ発停頻度の増大や
デフロスト運転頻度の増大等による室内温度変化の増大
をまねくことがあった。また、インバータ等を用いた容
量制御による複雑な冷凍能力制御ではなく、簡便な冷凍
能力制御手段が求められていた。
Since the conventional refrigeration cycle apparatus is configured as described above, there are the following problems. In particular, in the above-described refrigeration cycle device in which the heat source unit A, the evaporator 4, and the throttle unit 3 are individually and autonomously distributedly controlled, the operating state of the compressor 1 greatly changes with a change in evaporation capacity. There is. In such cases,
A stable supply of refrigeration capacity and a safe operation range of the compressor 1 cannot be ensured, or the frequency of the thermostat of the compressor 1 due to protection control increases, or the frequency of defrost operation due to a decrease in evaporation temperature increases. This may lead to an increase in room temperature change due to the In addition, due to pressure loss or the like in the refrigerant pipe 5, the condensing capacity or the evaporating capacity required in the indoor heat exchanger 4 may be insufficient. Alternatively, when the condensing temperature or the evaporating temperature required by the plurality of indoor side heat exchangers 4 is different, for example, too warm or too cold due to the setting of the highest condensing temperature and the lowest evaporating temperature, or accompanying it In some cases, an increase in the temperature of the room due to an increase in the frequency of the start / stop of the thermostat or an increase in the frequency of the defrost operation may be caused. In addition, simple refrigeration capacity control means is required instead of complicated refrigeration capacity control by capacity control using an inverter or the like.

【0004】[0004]

【課題を解決するための手段】本発明に係る冷凍サイク
ル装置は、以上のような課題を解決するためになされた
もので、圧縮機、凝縮器、絞り手段、蒸発器等を環状配
置で連通した冷凍サイクル装置において、圧縮機の吐出
側における冷媒温度を検出する圧縮機吐出温度検知手段
と、圧縮機の吸入側における冷媒スーパーヒート量を検
出する圧縮機吸入スーパーヒート検知手段と、凝縮器の
出側における冷媒サブクール量を検出する凝縮器出口サ
ブクール検知手段とをそれぞれセンサとして用い、凝縮
器における冷媒の熱交換量を変化させる凝縮器熱交換量
変化手段と、圧縮機の吐出側と吸入側間に圧縮機を迂回
して接続されたガスバイパス手段と、凝縮器の出側と圧
縮機の吸入側間に絞り手段および蒸発器を迂回して接続
された液バイパス手段とをそれぞれアクチュエータとし
て用いるとともに、各センサによるそれぞれの検出値が
各センサ毎に予め設定されている所定の目標範囲内に収
まるように各アクチュエータを連係して制御する第1制
御手段を備えているものである。
SUMMARY OF THE INVENTION A refrigeration cycle apparatus according to the present invention has been made in order to solve the above-mentioned problems, and has a compressor, a condenser, a throttle means, an evaporator and the like connected in an annular arrangement. A refrigerating cycle device, a compressor discharge temperature detecting means for detecting a refrigerant temperature on a discharge side of the compressor, a compressor suction superheat detecting means for detecting a refrigerant superheat amount on a suction side of the compressor, A condenser heat exchange amount changing means for changing the heat exchange amount of the refrigerant in the condenser by using a condenser outlet subcool detecting means for detecting the refrigerant subcool amount on the outlet side as a sensor, and a discharge side and a suction side of the compressor. Gas bypass means connected between the outlet side of the condenser and the suction side of the compressor, and a liquid bypass connected bypassing the throttling means and the evaporator. And a first control means for controlling each actuator in cooperation with each other such that each detection value of each sensor falls within a predetermined target range preset for each sensor, while using the step as an actuator. Is what it is.

【0005】また、本発明に係る冷凍サイクル装置は、
圧縮機、第1四方弁、室外側熱交換器等を接続して成る
熱源機と、絞り手段、室内側熱交換器等を接続して成る
1または複数台の室内機とを、冷媒配管で連通した冷凍
サイクル装置において、室内側熱交換器のガス冷媒側
に、ガス冷媒を加圧する冷媒加圧手段を設けたものであ
る。
[0005] A refrigeration cycle apparatus according to the present invention comprises:
A refrigerant pipe connects a heat source unit formed by connecting a compressor, a first four-way valve, an outdoor heat exchanger, and the like, and one or more indoor units formed by connecting a throttle unit, an indoor heat exchanger, and the like. In the refrigerating cycle device, the refrigerant pressurizing means for pressurizing the gas refrigerant is provided on the gas refrigerant side of the indoor heat exchanger.

【0006】そして、本発明に係る冷凍サイクル装置
は、圧縮機、第1四方弁、室外側熱交換器等を接続して
成る熱源機と、絞り手段、室内側熱交換器等を接続して
成る1または複数台の室内機とを、冷媒配管で連通した
冷凍サイクル装置において、室内側熱交換器のガス冷媒
側に、ガス冷媒を減圧する冷媒減圧手段を設けたもので
ある。
The refrigeration cycle apparatus according to the present invention connects a heat source unit including a compressor, a first four-way valve, an outdoor heat exchanger, and the like, and a throttle unit, an indoor heat exchanger, and the like. In a refrigeration cycle apparatus in which one or a plurality of indoor units are connected by a refrigerant pipe, a refrigerant pressure reducing means for reducing the pressure of the gas refrigerant is provided on the gas refrigerant side of the indoor heat exchanger.

【0007】更に、請求項2の冷凍サイクル装置におい
て、冷媒加圧手段と並列に、冷媒加圧手段の未使用時に
低圧損経路を形成する第1バイパス手段を設けたもので
ある。
Further, in the refrigeration cycle apparatus according to claim 2, a first bypass means for forming a low pressure loss path when the refrigerant pressurizing means is not used is provided in parallel with the refrigerant pressurizing means.

【0008】また、請求項2の冷凍サイクル装置におい
て、冷媒を加圧して単方向に流通させる冷媒加圧手段
と、第2四方弁とを第1四方弁と室内側熱交換器の間に
配備し、冷媒加圧手段の吐出側を第2四方弁の高圧側入
口に接続するとともに、冷媒加圧手段の吸入側を第2四
方弁の低圧側出口に接続し、第2四方弁の流路切替えに
より冷媒を双方向に切替えて流通させる構成としたもの
である。
In the refrigeration cycle apparatus according to the present invention, a refrigerant pressurizing means for pressurizing the refrigerant to flow in one direction and a second four-way valve are provided between the first four-way valve and the indoor heat exchanger. The discharge side of the refrigerant pressurizing means is connected to the high-pressure side inlet of the second four-way valve, and the suction side of the refrigerant pressurizing means is connected to the low-pressure side outlet of the second four-way valve. In this configuration, the refrigerant is bidirectionally switched to flow by switching.

【0009】そして、請求項3の冷凍サイクル装置にお
いて、冷媒減圧手段と並列に、冷媒減圧手段の未使用時
に低圧損経路を形成する第2バイパス手段を設けたもの
である。
Further, in the refrigeration cycle apparatus according to the third aspect, a second bypass means for forming a low pressure loss path when the refrigerant pressure reducing means is not used is provided in parallel with the refrigerant pressure reducing means.

【0010】更に、請求項2の冷凍サイクル装置におい
て、冷媒加圧手段の室内側熱交換器側における冷媒圧力
に対応した圧力相当値を検出する第1圧力検出手段と、
第1圧力検出手段の検出値を、室内環境温度の設定温度
に基づく目標圧力値および/または実際の室内環境温度
に基づく目標圧力値に近づけるように冷媒加圧手段の制
御量を変化させる第2制御手段とを備えているものであ
る。
Further, in the refrigeration cycle apparatus according to claim 2, first pressure detecting means for detecting a pressure equivalent value corresponding to the refrigerant pressure on the indoor heat exchanger side of the refrigerant pressurizing means,
The control amount of the refrigerant pressurizing means is changed so that the detection value of the first pressure detecting means approaches the target pressure value based on the set temperature of the indoor environment temperature and / or the target pressure value based on the actual indoor environment temperature. Control means.

【0011】また、請求項2の冷凍サイクル装置におい
て、冷媒加圧手段の熱源機側における冷媒圧力に対応し
た圧力相当値を検出する第2圧力検出手段と、第2圧力
検出手段の検出値を、室内機による冷凍・冷房運転時は
圧縮機吸入側の冷媒圧力に対応する目標圧力値に近づけ
るように冷媒加圧手段の制御量を変化させる第3制御手
段とを備えているものである。
[0011] In the refrigeration cycle apparatus according to the second aspect, the second pressure detecting means for detecting a pressure equivalent value corresponding to the refrigerant pressure on the heat source device side of the refrigerant pressurizing means, and the detected value of the second pressure detecting means. And a third control means for changing the control amount of the refrigerant pressurizing means so as to approach a target pressure value corresponding to the refrigerant pressure on the compressor suction side during the refrigeration / cooling operation by the indoor unit.

【0012】そして、請求項3の冷凍サイクル装置にお
いて、冷媒減圧手段の室内側熱交換器側における冷媒圧
力に対応した圧力相当値を検出する第3圧力検出手段
と、第3圧力検出手段の検出値を、室内環境温度の設定
温度に基づく目標圧力値および/または実際の室内環境
温度に基づく目標圧力値に近づけるように冷媒減圧手段
の制御量を変化させる第4制御手段とを備えているもの
である。
In the refrigeration cycle apparatus according to the third aspect, the third pressure detecting means for detecting a pressure equivalent value corresponding to the refrigerant pressure on the indoor side heat exchanger side of the refrigerant pressure reducing means, and the detection by the third pressure detecting means. And a fourth control means for changing the control amount of the refrigerant pressure reducing means so that the value approaches a target pressure value based on the set temperature of the indoor environment temperature and / or a target pressure value based on the actual indoor environment temperature. It is.

【0013】更に、請求項3の冷凍サイクル装置におい
て、冷媒減圧手段の熱源機側における冷媒圧力に対応し
た圧力相当値を検出する第4圧力検出手段と、第4圧力
検出手段の検出値を、室内機による冷凍・冷房運転時は
圧縮機吸入側の冷媒圧力に対応する目標圧力値に近づけ
るように冷媒減圧手段の制御量を変化させる第5制御手
段とを備えているものである。
Further, in the refrigeration cycle apparatus according to the third aspect, the fourth pressure detecting means for detecting a pressure equivalent value corresponding to the refrigerant pressure on the heat source unit side of the refrigerant pressure reducing means, and the detected value of the fourth pressure detecting means, A fifth control means for changing the control amount of the refrigerant pressure reducing means so as to approach a target pressure value corresponding to the refrigerant pressure on the compressor suction side during the refrigeration / cooling operation by the indoor unit.

【0014】[0014]

【発明の実施の形態】本発明の実施形態を図に基づいて
詳しく説明する。発明の実施の形態1.図1は本発明の
実施の形態1に係る冷凍サイクル装置の冷媒回路を示す
構成図である。図1において、1は圧縮機、2は室外側
熱交換器(冷房時は凝縮器)、3は絞り装置、4は室内
側熱交換器(冷房時は蒸発器)であり、これらは環状配
置に連通して主冷媒回路を形成している。ここでは、圧
縮機1、凝縮器2等より熱源機Aが構成され、絞り装置
3、蒸発器4等より室内機Bが構成される。5は冷媒配
管であり、熱源機Aと1台ないし複数台の室内機Bとを
連通している。熱源機Aには、上記のほかに、凝縮器熱
交換量調整手段としてのファン6、圧縮機1の吐出側と
吸入側間の冷媒回路に圧縮機1を迂回して接続されたガ
スバイパス手段7、室外側熱交換器2の出側と圧縮機1
の吸入側間の冷媒回路に絞り手段3および室内側熱交換
器4を迂回して接続された液バイパス手段8等といった
アクチュエータが配備されている。また、熱源機Aに
は、圧縮機1の吐出側における冷媒吐出圧力を検出する
圧縮機吐出圧力検出手段9、圧縮機1の吸入側における
冷媒圧力を検出する圧縮機吸入圧力検出手段10、圧縮
機1の吐出側における冷媒温度を検出する圧縮機吐出温
度検知手段11、圧縮機1の吸入側における冷媒温度を
検出する圧縮機吸入温度検知手段12、室内側熱交換器
4の冷媒出側における冷媒温度を検出する凝縮器出口温
度検知手段13等といったセンサも配備されている。そ
して、制御装置14により、各センサの検出値に基づい
て各アクチュエータが連係制御されるようになってい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the drawings. Embodiment 1 of the Invention FIG. 1 is a configuration diagram illustrating a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. In FIG. 1, 1 is a compressor, 2 is an outdoor heat exchanger (condenser during cooling), 3 is a throttle device, and 4 is an indoor heat exchanger (evaporator during cooling), and these are arranged in a ring. To form a main refrigerant circuit. Here, a heat source unit A is configured by the compressor 1, the condenser 2, and the like, and an indoor unit B is configured by the expansion device 3, the evaporator 4, and the like. Reference numeral 5 denotes a refrigerant pipe, which communicates the heat source unit A with one or more indoor units B. In addition to the above, the heat source unit A includes a fan 6 as a condenser heat exchange amount adjusting unit, and a gas bypass unit connected to the refrigerant circuit between the discharge side and the suction side of the compressor 1 so as to bypass the compressor 1. 7. The outlet side of the outdoor heat exchanger 2 and the compressor 1
An actuator such as a liquid bypass unit 8 connected to the refrigerant circuit between the suction side and the bypass unit 3 and the indoor heat exchanger 4 is provided. The heat source device A includes a compressor discharge pressure detecting means 9 for detecting a refrigerant discharge pressure on a discharge side of the compressor 1, a compressor suction pressure detecting means 10 for detecting a refrigerant pressure on a suction side of the compressor 1, A compressor discharge temperature detecting means 11 for detecting a refrigerant temperature on a discharge side of the compressor 1, a compressor suction temperature detecting means 12 for detecting a refrigerant temperature on a suction side of the compressor 1, and a refrigerant discharge side of the indoor heat exchanger 4; Sensors such as condenser outlet temperature detecting means 13 for detecting the refrigerant temperature are also provided. The actuators are controlled by the control device 14 in association with each other based on the detection values of the sensors.

【0015】ここで、制御装置14による連係制御につ
いて説明する。まず、圧縮機1を含む熱源機Aの適正な
運転範囲のパラメータとして、圧縮機吐出温度、凝縮器
出口サブクール、および、圧縮機吸入スーパーヒートを
とる。ここで、凝縮機出口サブクールは凝縮器出口温度
検知手段13の検出温度と圧縮機吐出圧力検出手段9の
検出圧力に対応する冷媒飽和温度との差より求められ、
圧縮機吸入スーパーヒートは圧縮機吸入温度検知手段1
2の検出温度と圧縮機吸入圧力検出手段10の検出圧力
に対応する冷媒飽和温度との差より求められる。すなわ
ち、凝縮器出口温度検知手段13と圧縮機吐出圧力検出
手段9と制御装置14との組み合わせ構成が、室外側熱
交換器(凝縮器)2の出側における冷媒サブクール量を
検出する凝縮器出口サブクール検知手段の一例となる。
また、圧縮機吸入温度検知手段12と圧縮機吸入圧力検
出手段10と制御装置14との組み合わせ構成が、圧縮
機1の吸入側における冷媒スーパーヒート量を検出する
圧縮機吸入スーパーヒート検知手段の一例となる。
Here, the cooperative control by the control device 14 will be described. First, compressor discharge temperature, condenser outlet subcool, and compressor suction superheat are taken as parameters of an appropriate operation range of the heat source machine A including the compressor 1. Here, the condenser outlet subcool is obtained from the difference between the detected temperature of the condenser outlet temperature detecting means 13 and the refrigerant saturation temperature corresponding to the detected pressure of the compressor discharge pressure detecting means 9,
Compressor suction superheat is compressor suction temperature detection means 1
2 and the refrigerant saturation temperature corresponding to the pressure detected by the compressor suction pressure detecting means 10. That is, the combination of the condenser outlet temperature detecting means 13, the compressor discharge pressure detecting means 9, and the control device 14 provides a condenser outlet for detecting the refrigerant subcooling amount at the outlet side of the outdoor heat exchanger (condenser) 2. This is an example of a subcool detection unit.
Further, the combination of the compressor suction temperature detecting means 12, the compressor suction pressure detecting means 10, and the control device 14 is an example of a compressor suction superheat detecting means for detecting a refrigerant superheat amount on the suction side of the compressor 1. Becomes

【0016】また、各アクチュエータの動作による冷凍
サイクルのモリエル線図上の変化を示すと、運転状況お
よび制御量にもよるが、図2に示すようになる。ガスバ
イパス手段7の動作では、同図(a)に示すように、弁
の開方向動作にて、圧縮機吐出温度低下、凝縮器出口サ
ブクール減少、圧縮機吸入スーパーヒート増加、の方向
に制御される。液バイパス手段8の動作では、同図
(b)に示すように、弁の開方向動作にて、圧縮機吐出
温度低下、凝縮記出口サブクール増加、圧縮機吸入スー
パーヒート減少、の方向に制御される。凝縮器熱交換量
制御手段であるファン6の動作では、同図(c)に示す
ように、ファン6の増速方向動作にて、圧縮機吐出温度
低下、凝縮器出口サブクール増加、圧縮機吸入スーパー
ヒート減少、の方向に制御される。この場合、制御装置
4によりファン6の風量を制御する構成が、室外側熱交
換器2における冷媒の熱交換量を変化させる凝縮器熱交
換量変化手段の一例となる。このように、各アクチュエ
ータの制御動作により、上記3つのパラメータはすべて
変動する。したがって、1つのパラメータに一つのアク
チュエータを対応させる従来の考え方では、制御変数が
目標値に向けて収束せず揺れるといった振動的な制御に
なる可能性がある。そこで、下式を導入し、下式に基づ
く連係制御を実現する。
FIG. 2 shows a change in the Mollier diagram of the refrigeration cycle due to the operation of each actuator, depending on the operating conditions and the control amount. In the operation of the gas bypass means 7, as shown in FIG. 7A, the operation in the opening direction of the valve is controlled so as to decrease the compressor discharge temperature, decrease the condenser subcool, and increase the compressor suction superheat. You. In the operation of the liquid bypass means 8, as shown in FIG. 3B, the operation in the opening direction of the valve is controlled such that the compressor discharge temperature decreases, the condensation sub-cool increases, and the compressor suction superheat decreases. You. In the operation of the fan 6 as the condenser heat exchange amount control means, as shown in FIG. 3C, the operation of the fan 6 in the speed increasing direction causes a decrease in the compressor discharge temperature, an increase in the condenser outlet subcool, and an inhalation of the compressor. Controlled in the direction of super heat reduction. In this case, the configuration in which the control device 4 controls the air volume of the fan 6 is an example of a condenser heat exchange amount changing unit that changes the heat exchange amount of the refrigerant in the outdoor heat exchanger 2. As described above, the above three parameters all change due to the control operation of each actuator. Therefore, according to the conventional concept of associating one actuator with one parameter, there is a possibility that the control variable may be oscillating such that it swings without converging toward a target value. Therefore, the following equation is introduced to realize the linkage control based on the following equation.

【0017】[0017]

【数1】 (Equation 1)

【0018】ここで、式中のaないしiは実験等で予め
求めた関数である。また、目標値―検出値としては最大
値を規定することにより急激な制御量の変化を抑制する
とともに、上式による制御を周期的に繰り返す。また、
目標値としては許容できる範囲で幅を持たせ、制御動作
の振動を抑制するようにした。
Here, a to i in the equations are functions obtained in advance through experiments and the like. Further, by defining a maximum value as the target value-detection value, a sudden change in the control amount is suppressed, and the control based on the above equation is periodically repeated. Also,
The target value has a width within an allowable range to suppress the vibration of the control operation.

【0019】このように、制御装置14の第1制御手段
14aにより、各センサによるそれぞれの検出値が各セ
ンサ毎に予め設定されている所定の目標範囲内に収まる
ように、各アクチュエータを連係して制御することがで
きる。すなわち、熱源機Aと、蒸発器4および絞り手段
3とが完全に自律分散制御される冷凍サイクルであって
も、熱源機A内で閉じたアクチュエータとセンサによる
連係制御によって、蒸発能力の変化に伴い圧縮機1の運
転状態が大幅に変化したり、冷凍能力の安定供給および
圧縮機1の安全な運転範囲の確保ができなくなったり、
保護制御により圧縮機1のサーモ発停頻度が増加した
り、あるいは、蒸発温度低下によるデフロスト運転頻度
が増加することに起因して室内温度変化が増大したりと
いった不具合を解消することができる。また、インバー
タ等の容量制御による複雑な冷凍能力制御ではなく、ガ
スバイパスおよび液バイパスといった簡便な冷凍能力制
御を実現することができる。なお、ここでは圧縮機吐出
圧力検出手段9の検出圧力を制御に用いたが、凝縮器2
の中間部等で検出した高圧冷媒飽和温度を用いても、同
様の制御ができることは言うまでもない。
As described above, the actuators are linked by the first control means 14a of the control device 14 so that the respective detection values of the sensors fall within a predetermined target range preset for each sensor. Can be controlled. That is, even in a refrigeration cycle in which the heat source unit A, the evaporator 4 and the throttle unit 3 are completely autonomously and decentralized, the change in the evaporation capacity is caused by the joint control by the actuator and the sensor closed in the heat source unit A. As a result, the operating state of the compressor 1 changes significantly, and it becomes impossible to ensure a stable supply of refrigeration capacity and a safe operating range of the compressor 1,
The protection control can solve such a problem that the frequency of starting and stopping thermostat of the compressor 1 increases, or that the indoor temperature change increases due to an increase in the frequency of defrost operation due to a decrease in evaporation temperature. Further, it is possible to realize simple refrigeration capacity control such as gas bypass and liquid bypass instead of complicated refrigeration capacity control by capacity control of an inverter or the like. Here, the detected pressure of the compressor discharge pressure detecting means 9 is used for the control,
It is needless to say that the same control can be performed by using the high-pressure refrigerant saturation temperature detected at the intermediate portion or the like.

【0020】発明の実施の形態2.図3ないし図5を用
いて、請求項2,4,5,7,8の発明に対応する実施
の形態を説明する。図3において、1は圧縮機、2は室
外側熱交換器、3は絞り装置、4は室内側熱交換器であ
り、これらは環状配置に連通して主冷媒回路を形成して
いる。そして、圧縮機1、室外側熱交換器2等により熱
源機Aが構成され、絞り装置3、室内側熱交換器4等に
より室内機Bが構成される。5は冷媒配管であり、熱源
機Aと1台ないし複数台の室内機Bとを連通している。
熱源機Aは、上記のほかに、弁流路の切替えにより冷媒
回路における冷媒の流れ方向を切替える第1四方弁15
を備えている。室内機Bは、上記のほかに、室内側熱交
換器4のガス冷媒側の冷媒回路に設けられてガス冷媒を
加圧し単方向に流通させるガスポンプ等の冷媒加圧手段
16、冷媒加圧手段16と並列に冷媒回路に配備されて
冷媒加圧手段16の未使用時に低圧損経路を形成する第
1バイパス手段18、弁流路の切替えにより冷媒回路に
おける冷媒流れ方向を双方向に切替えて流通させる第2
四方弁17を備えている。冷媒加圧手段16と第2四方
弁17は、第1四方弁15と室内側熱交換器4の間の冷
媒回路に配備されている。冷媒加圧手段16の吐出側は
第2四方弁17の高圧側入口17aに接続されている。
冷媒加圧手段16の吸入側は第2四方弁17の低圧側出
口17bに接続されている。室内機Bには、さらに、冷
媒加圧手段16の室内側熱交換器4側の冷媒圧力に対応
した圧力相当値を検出する第1圧力検出手段19、冷媒
加圧手段16の熱源機A側の冷媒圧力に対応した圧力相
当値を検出する第2圧力検出手段20、および、室内環
境温度の目標温度を設定するための室内環境温度設定手
段(図示せず。以下同じ)がそれぞれ配備されている。
Embodiment 2 of the Invention Embodiments corresponding to the inventions of claims 2, 4, 5, 7, and 8 will be described with reference to FIGS. In FIG. 3, reference numeral 1 denotes a compressor, 2 denotes an outdoor heat exchanger, 3 denotes a throttle device, and 4 denotes an indoor heat exchanger, which communicate with an annular arrangement to form a main refrigerant circuit. The heat source unit A is configured by the compressor 1, the outdoor heat exchanger 2, and the like, and the indoor unit B is configured by the expansion device 3, the indoor heat exchanger 4, and the like. Reference numeral 5 denotes a refrigerant pipe, which communicates the heat source unit A with one or more indoor units B.
In addition to the above, the heat source unit A is a first four-way valve 15 that switches the flow direction of the refrigerant in the refrigerant circuit by switching the valve flow path.
It has. In addition to the above, the indoor unit B is provided in a refrigerant circuit on the gas refrigerant side of the indoor heat exchanger 4, and is a refrigerant pressurizing means 16 such as a gas pump that pressurizes the gas refrigerant and allows the gas refrigerant to flow in one direction. The first bypass means 18, which is provided in the refrigerant circuit in parallel with the refrigerant circuit 16 and forms a low pressure loss path when the refrigerant pressurizing means 16 is not in use, switches the flow direction of the refrigerant in the refrigerant circuit in both directions by switching the valve flow path to distribute the refrigerant. Second
A four-way valve 17 is provided. The refrigerant pressurizing means 16 and the second four-way valve 17 are provided in a refrigerant circuit between the first four-way valve 15 and the indoor heat exchanger 4. The discharge side of the refrigerant pressurizing means 16 is connected to the high pressure side inlet 17 a of the second four-way valve 17.
The suction side of the refrigerant pressurizing means 16 is connected to the low pressure side outlet 17b of the second four-way valve 17. The indoor unit B further includes a first pressure detecting unit 19 that detects a pressure equivalent value corresponding to the refrigerant pressure of the refrigerant pressurizing unit 16 on the indoor side heat exchanger 4 side, and a heat source unit A side of the refrigerant pressurizing unit 16. A second pressure detecting means 20 for detecting a pressure equivalent value corresponding to the refrigerant pressure of the refrigerant, and an indoor environment temperature setting means (not shown; the same applies hereinafter) for setting a target indoor environment temperature. I have.

【0021】このように構成したことで、室内機Bにお
ける冷媒の流れ方向に応じて第2四方弁17の流路を切
替え制御することにより、冷媒加圧手段16を常に加圧
方向で働かせることができる。また、冷媒加圧手段16
が不要な場合には、第1バイパス手段18を全開とする
ことで、圧力損失なしに、従来どおりの室内機Bとして
動作させることができる。
With this configuration, the flow path of the second four-way valve 17 is switched and controlled according to the flow direction of the refrigerant in the indoor unit B, so that the refrigerant pressurizing means 16 always operates in the pressurizing direction. Can be. Also, the refrigerant pressurizing means 16
Is unnecessary, the first bypass means 18 is fully opened, so that the conventional indoor unit B can be operated without pressure loss.

【0022】請求項7の実施形態に係る制御動作に付
き、図4に基づいて説明する。図4(a)は冷房運転の
場合を示している。図において、制御装置14の第2制
御手段14bは、各々の室内機Bにおける室内環境温度
設定手段の設定温度に基づく目標圧力値または実際の室
内環境温度に基づく目標圧力値に向けて、第1圧力検出
手段19の検出圧力を近づけるように、冷媒加圧手段1
6の加圧制御量を変化させる。このように構成したこと
で、熱源機Aにおける圧縮機1の吸入圧力に対応した冷
媒飽和温度よりも低い蒸発温度を室内機B毎に実現で
き、高い蒸発温度で良い室内機Bに合わせた熱源機Aの
動作により、その室内機Bでの冷え過ぎに起因するサー
モ発停頻度の増大、室内デフロスト運転頻度の増大を抑
制することができる。
The control operation according to the seventh embodiment will be described with reference to FIG. FIG. 4A shows the case of the cooling operation. In the figure, the second control means 14b of the control device 14 adjusts the first pressure toward the target pressure value based on the set temperature of the indoor environment temperature setting means in each indoor unit B or the target pressure value based on the actual indoor environment temperature. The refrigerant pressurizing means 1 is set so that the pressure detected by the pressure detecting means 19 is approximated.
6 is changed. With such a configuration, an evaporation temperature lower than the refrigerant saturation temperature corresponding to the suction pressure of the compressor 1 in the heat source unit A can be realized for each indoor unit B, and the heat source adapted to the indoor unit B having a high evaporation temperature can be achieved. By the operation of the unit A, it is possible to suppress an increase in the frequency of thermo start / stop and an increase in the frequency of the indoor defrost operation due to the excessive cooling in the indoor unit B.

【0023】図4(b)は暖房運転の場合を示してい
る。図において、制御装置14の第2制御手段14b
は、各々の室内機Bにおける室内環境温度設定手段の設
定温度値に基づく目標圧力値または実際の室内環境温度
に基づく目標圧力値に向けて、第1圧力検出手段19の
検出圧力を近づけるように、冷媒加圧手段16の加圧制
御量を変化させる。このように構成したことで、熱源機
Aにおける圧縮機1の吐出圧力に対応した冷媒飽和温度
よりも高い凝縮温度を室内機B毎に実現でき、低い蒸発
温度で良い室内機Bに合わせた熱源機Aの動作により、
その室内機Bでの暖め過ぎに起因するサーモ発停頻度の
増大を抑制することができる。
FIG. 4B shows the case of the heating operation. In the figure, the second control means 14b of the control device 14
Is set so that the detected pressure of the first pressure detecting means 19 approaches the target pressure value based on the set temperature value of the indoor environment temperature setting means or the target pressure value based on the actual indoor environment temperature in each indoor unit B. Then, the pressure control amount of the refrigerant pressurizing means 16 is changed. With this configuration, a condensation temperature higher than the refrigerant saturation temperature corresponding to the discharge pressure of the compressor 1 in the heat source unit A can be realized for each of the indoor units B, and the heat source adapted to the indoor unit B can have a low evaporation temperature. By the operation of the machine A,
It is possible to suppress an increase in the frequency of thermo start / stop caused by excessive heating in the indoor unit B.

【0024】請求項8の実施形態に係る制御動作につ
き、図5に基づいて説明する。図5(a)は冷房(冷
凍)運転の場合を示す。図において、制御装置14の第
3制御手段14cは、熱源機Aの圧縮機吸入圧力の目標
値に各々の室内機Bに接続される冷媒配管5での圧力損
失相当分を加えた目標圧力値に向けて、第2圧力検出手
段20の検出圧力を近づけるように、冷媒加圧手段16
の加圧制御量を変化させる。このように構成したこと
で、熱源機Aにおける圧縮機吸入圧力が低下して適正運
転範囲を逸脱したり、冷媒回路の冷媒循環量が低下した
り、あるいは、熱源機A側から逆算して室内機Bでの蒸
発圧力が上昇し室内側熱交換器4での空気と冷媒の温度
差が減少したりするといったことがなく、室内側熱交換
器4で要求される蒸発能力の不足を抑制できる。
The control operation according to the eighth embodiment will be described with reference to FIG. FIG. 5A shows a case of a cooling (freezing) operation. In the figure, a third control unit 14c of the control device 14 calculates a target pressure value obtained by adding a target value of the compressor suction pressure of the heat source unit A to a pressure loss corresponding to the refrigerant pipe 5 connected to each indoor unit B. , So that the pressure detected by the second pressure detecting means 20 is made closer.
Is changed. With such a configuration, the compressor suction pressure in the heat source unit A decreases to deviate from the proper operation range, the amount of circulating refrigerant in the refrigerant circuit decreases, or the indoor amount calculated backward from the heat source unit A side. The evaporation pressure in the machine B does not rise and the temperature difference between the air and the refrigerant in the indoor heat exchanger 4 does not decrease, and the shortage of the evaporation ability required in the indoor heat exchanger 4 can be suppressed. .

【0025】図5(b)は暖房運転の場合を示す。図に
おいて、制御装置14の第3制御手段14cは、熱源機
Aの圧縮機吐出圧力の目標値に各々の室内機Bに接続さ
れる冷媒配管5での圧力損失相当分を減算した目標圧力
値に向けて、第2圧力検出手段20の検出圧力を近づけ
るように、冷媒加圧手段16の加圧制御量を変化させ
る。このように構成したことで、熱源機Aにおける圧縮
機吐出圧力の上昇や圧縮機吐出温度の上昇によって適正
運転範囲を逸脱したり、あるいは、熱源機A側から逆算
して室内機Bでの凝縮温度が低下して室内側熱交換器4
での空気と冷媒の温度差が減少するといったことがな
く、室内側熱交換器4で要求される凝縮能力が不足する
ことを抑制できる。
FIG. 5B shows the case of the heating operation. In the figure, the third control means 14c of the control device 14 calculates a target pressure value obtained by subtracting a pressure loss corresponding to the refrigerant pipe 5 connected to each indoor unit B from a target value of the compressor discharge pressure of the heat source unit A. , The pressure control amount of the refrigerant pressurizing means 16 is changed so that the detected pressure of the second pressure detecting means 20 approaches. With this configuration, the proper operation range is deviated due to an increase in the compressor discharge pressure or the compressor discharge temperature in the heat source unit A, or the condensation in the indoor unit B is calculated backward from the heat source unit A side. The temperature drops and the indoor heat exchanger 4
In this case, the temperature difference between the air and the refrigerant does not decrease, and the shortage of the condensation capacity required by the indoor heat exchanger 4 can be suppressed.

【0026】発明の実施の形態3.図6ないし図8を用
いて、請求項3,6,9,10の発明に対応する実施の
形態を説明する。図6において、1は圧縮機、2は室外
側熱交換器、3は絞り装置、4は室内側熱交換器であ
り、これらは環状配置に連通して主冷媒回路を形成して
いる。そして、圧縮機1、室外側熱交換器2等より熱源
機Aが構成され、絞り装置3、室内側熱交換器4等より
室内機Bが構成される。5は冷媒配管であり、熱源機A
と1台ないし複数台の室内機Bとを連通している。熱源
機Aは、上記のほかに、第1四方弁15を備えている。
室内機Bは、上記のほかに、室内側熱交換器4のガス冷
媒側における冷媒回路に配備されてガス冷媒を減圧する
冷媒減圧手段21と、冷媒減圧手段21と並列に冷媒回
路に配備されて冷媒減圧手段21の未使用時に低圧損経
路を形成する第2バイパス手段22を備えている。さら
に、室内機Bは、冷媒減圧手段21の室内側熱交換器4
側における冷媒圧力に対応した圧力相当値を検出する第
3圧力検出手段23、冷媒減圧手段21の熱源機A側の
冷媒回路における冷媒圧力を検出する第2圧力検出手段
24、室内環境温度を検出する室内環境温度検知手段2
5、室内環境温度設定手段を備えている。
Embodiment 3 of the Invention Embodiments corresponding to the third, sixth, ninth, and tenth aspects of the present invention will be described with reference to FIGS. In FIG. 6, 1 is a compressor, 2 is an outdoor heat exchanger, 3 is a throttling device, and 4 is an indoor heat exchanger, which communicate with an annular arrangement to form a main refrigerant circuit. The heat source unit A is configured by the compressor 1, the outdoor heat exchanger 2, and the like, and the indoor unit B is configured by the expansion device 3, the indoor heat exchanger 4, and the like. 5 is a refrigerant pipe, which is a heat source unit A
And one or more indoor units B. The heat source device A includes a first four-way valve 15 in addition to the above.
In addition to the above, the indoor unit B is provided in the refrigerant circuit on the gas refrigerant side of the indoor heat exchanger 4, and is provided in the refrigerant circuit in parallel with the refrigerant decompression means 21 and the refrigerant decompression means 21 for decompressing the gas refrigerant. And a second bypass means 22 for forming a low pressure loss path when the refrigerant pressure reducing means 21 is not used. Further, the indoor unit B is connected to the indoor heat exchanger 4 of the refrigerant pressure reducing means 21.
Pressure detecting means 23 for detecting a pressure equivalent value corresponding to the refrigerant pressure on the refrigerant side, second pressure detecting means 24 for detecting the refrigerant pressure in the refrigerant circuit on the heat source device A side of the refrigerant pressure reducing means 21, and detecting the indoor environment temperature Indoor environment temperature detecting means 2
5. It has an indoor environment temperature setting means.

【0027】このように構成したことにより,室内機B
において、冷媒減圧手段21が不要な場合に、第2バイ
パス手段22を全開とすることで、圧力損失なしに、従
来どおりの室内機として動作することができる。
With this configuration, the indoor unit B
In the above, when the refrigerant pressure reducing means 21 is unnecessary, by fully opening the second bypass means 22, it is possible to operate as a conventional indoor unit without pressure loss.

【0028】請求項9の実施形態に係る制御動作に付
き、図7に基づいて説明する。図7(a)は冷房運転の
場合を示している。図において、制御装置14の第4制
御手段14dは、各々の室内機Bにおける室内環境温度
設定手段の設定温度に基づく目標圧力値または実際の室
内環境温度に基づく目標圧力値に向けて、第3圧力検出
手段23の検出圧力を近づけるように、冷媒減圧手段2
1の減圧制御量を変化させる。このように構成したこと
で、熱源機Aにおける圧縮機1の吸入圧力に対応した冷
媒飽和温度よりも高い蒸発温度を各々の室内機B毎に実
現でき、低い蒸発温度の室内機Bに合わせた熱源機Aの
動作により、高い蒸発温度で良い室内機Bにおける冷え
過ぎに起因したサーモ発停頻度の増大や室内デフロスト
運転頻度の増大を抑制できる。
The control operation according to the ninth embodiment will be described with reference to FIG. FIG. 7A shows the case of the cooling operation. In the figure, the fourth control means 14d of the control device 14 sets the third pressure toward the target pressure value based on the set temperature of the indoor environment temperature setting means in each indoor unit B or the target pressure value based on the actual indoor environment temperature. Refrigerant pressure reducing means 2 so that the pressure detected by pressure detecting means
The pressure reduction control amount of 1 is changed. With such a configuration, an evaporation temperature higher than the refrigerant saturation temperature corresponding to the suction pressure of the compressor 1 in the heat source unit A can be realized for each of the indoor units B, and is adjusted to the indoor unit B having a low evaporation temperature. By the operation of the heat source unit A, it is possible to suppress an increase in the frequency of thermo start / stop and an increase in the frequency of the indoor defrost operation due to excessive cooling in the indoor unit B having a high evaporation temperature.

【0029】図7(b)は暖房運転の場合を示す。図に
おいて、制御装置14の第4制御手段14dは、各々の
室内機Bにおける室内環境温度設定手段の設定温度に基
づく目標圧力値または実際の室内環境温度に基づく目標
圧力値に向けて、第3圧力検出手段23の検出圧力を近
づけるように、冷媒減圧手段21の減圧制御量を変化さ
せる。このように構成したことで、熱源機Aにおける圧
縮機吐出圧力に対応した冷媒飽和温度よりも低い凝縮圧
力を各々の室内機B毎に実現でき、高い蒸発温度の室内
機Bに合わせた熱源機Aの動作により、低い凝縮温度で
良い室内機Bにおける暖め過ぎに起因するサーモ発停頻
度の増大を抑制できる。
FIG. 7B shows the case of the heating operation. In the figure, the fourth control means 14d of the control device 14 sets the third pressure toward the target pressure value based on the set temperature of the indoor environment temperature setting means in each indoor unit B or the target pressure value based on the actual indoor environment temperature. The pressure reduction control amount of the refrigerant pressure reducing means 21 is changed so that the pressure detected by the pressure detecting means 23 approaches. With such a configuration, a condensation pressure lower than the refrigerant saturation temperature corresponding to the compressor discharge pressure in the heat source unit A can be realized for each indoor unit B, and the heat source unit adapted to the indoor unit B having a high evaporation temperature By the operation of A, it is possible to suppress an increase in the frequency of thermo start / stop caused by excessive heating in the indoor unit B, which is good at a low condensation temperature.

【0030】請求項10の実施形態に係る制御動作に付
き、図8に基づいて説明する。図8は冷房(冷凍)運転
の場合を示す。図において、各々の室内機Bにおける室
内環境温度設定手段の設定値と室内環境温度検知手段2
5の検出値との差が小さくなった場合に、制御装置14
の第5制御手段14eは、室内機Bの蒸発能力を抑制す
るため、熱源機Aにおける圧縮機吸入圧力に対応する目
標圧力値を低下させる。さらに、第5制御手段14eは
第4圧力検出手段24の検出圧力をその目標値に近づけ
るように、冷媒減圧手段21の減圧制御量を変化させ
る。このように構成したことで、熱源機Aにおける圧縮
機1の吸入圧力が低下して冷媒回路の冷媒循環量が抑制
される。これにより、冷凍能力を抑制することができ
る。そして、室内機Bでの冷え過ぎに起因するサーモ発
停頻度の増大や、室内デフロスト運転頻度の増大を抑制
できる。
The control operation according to the tenth embodiment will be described with reference to FIG. FIG. 8 shows a case of a cooling (freezing) operation. In the figure, the set value of the indoor environment temperature setting means in each indoor unit B and the indoor environment temperature detection means 2
5 when the difference from the detection value of the control unit 5 becomes small.
The fifth control means 14e reduces the target pressure value corresponding to the compressor suction pressure in the heat source unit A in order to suppress the evaporation capacity of the indoor unit B. Further, the fifth control unit 14e changes the pressure reduction control amount of the refrigerant pressure reduction unit 21 so that the pressure detected by the fourth pressure detection unit 24 approaches the target value. With this configuration, the suction pressure of the compressor 1 in the heat source device A decreases, and the amount of circulating refrigerant in the refrigerant circuit is suppressed. Thereby, the refrigerating capacity can be suppressed. In addition, it is possible to suppress an increase in the frequency of thermo start / stop caused by excessive cooling in the indoor unit B and an increase in the frequency of the indoor defrost operation.

【0031】[0031]

【発明の効果】本発明は以上のように構成されているこ
とにより、以下のような効果を奏する。すなわち、請求
項1に係る発明によれば、各センサの検出値に基づいて
各アクチュエータによる連係制御をするようにしてある
ので、蒸発能力の変化に伴って圧縮機の運転状態が大幅
に変化したために冷凍能力の安定供給および圧縮機の安
全な運転範囲の確保ができなくなることや、保護制御に
よる圧縮機発停頻度の増加や蒸発温度低下によるデフロ
スト運転頻度の増加によって室内温度変化が増大するこ
とを抑制できる。
According to the present invention having the above-described structure, the following effects can be obtained. That is, according to the first aspect of the present invention, since the cooperative control by each actuator is performed based on the detection value of each sensor, the operating state of the compressor greatly changes with the change of the evaporation capacity. Inability to ensure a stable supply of refrigeration capacity and a safe operating range for the compressor, and increase in indoor temperature change due to an increase in compressor start / stop frequency due to protection control and an increase in defrost operation frequency due to a decrease in evaporation temperature. Can be suppressed.

【0032】また、請求項2,4,5,7,8に係る発
明のように、室内側熱交換器のガス冷媒側に冷媒加圧手
段を設けたことにより、接続配管での圧損等により室内
側熱交換器で要求される凝縮能力や蒸発能力が不足する
ことを抑制できる。そのうえ、複数台の室内機で要求さ
れる室内側熱交換器の凝縮温度または蒸発温度が異なる
場合でも、目標温度を最高の凝縮温度や最低の蒸発温度
に設定したことによる暖め過ぎや冷え過ぎ、あるいはそ
れらに伴うサーモ発停頻度の増加やデフロスト運転頻度
の増加等による室内温度変化の増大を抑制することがで
きる。
In addition, the refrigerant pressurizing means is provided on the gas refrigerant side of the indoor heat exchanger as in the invention according to the second, fourth, fifth, seventh and eighth aspects. Insufficient condensing capacity and evaporating capacity required in the indoor heat exchanger can be suppressed. In addition, even if the condensing temperature or evaporating temperature of the indoor heat exchanger required by a plurality of indoor units is different, the target temperature is set to the highest condensing temperature or the lowest evaporating temperature. Alternatively, it is possible to suppress an increase in room temperature change due to an increase in the frequency of thermo start / stop and an increase in the frequency of defrost operation accompanying the change.

【0033】そして、請求項3,6,9,10に係る発
明のように、室内側熱交換器のガス冷媒側に冷媒減圧手
段を設けたことにより、複数台の室内機で要求される室
内側熱交換器の凝縮温度または蒸発温度が異なる場合で
も、目標温度を最高の凝縮温度や最低の蒸発温度に設定
したことによる暖め過ぎや冷え過ぎ、あるいはそれらに
伴うサーモ発停頻度の増加やデフロスト運転頻度の増加
等による室内温度変化の増大を抑制することができる。
Further, by providing the refrigerant pressure reducing means on the gas refrigerant side of the indoor heat exchanger as in the invention according to claims 3, 6, 9 and 10, the room required by a plurality of indoor units is provided. Even if the condensing temperature or evaporating temperature of the inner heat exchanger is different, setting the target temperature to the highest condensing temperature or the lowest evaporating temperature results in overheating or overcooling, or the accompanying increase or decrease in the frequency of thermostats or defrost. It is possible to suppress an increase in indoor temperature change due to an increase in operation frequency or the like.

【0034】更に、本発明は、ガスバイパス手段および
液バイパス手段の連係制御、あるいは室内機の冷媒減圧
手段の制御により、インバータ等の容量制御といった複
雑な能力制御に依ることなく、簡便な冷凍能力制御手段
を実現することができる。
Further, according to the present invention, the simple refrigerating capacity can be easily obtained by the cooperative control of the gas bypass means and the liquid bypass means, or the control of the refrigerant pressure reducing means of the indoor unit, without depending on complicated capacity control such as capacity control of an inverter or the like. Control means can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1に係る冷凍サイクル装
置の冷媒回路を示す構成図である。
FIG. 1 is a configuration diagram illustrating a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.

【図2】 実施の形態1の冷凍サイクル装置の動作を説
明するためのものであって、(a)はガスバイパス手段
を制御する場合のp−h線図、(b)は液バイパス手段
を制御する場合のp−h線図、(c)は凝縮器熱交換量
変化手段を制御する場合のp−h線図である。
FIGS. 2A and 2B are diagrams for explaining the operation of the refrigeration cycle apparatus according to the first embodiment, in which FIG. 2A is a ph diagram for controlling a gas bypass unit, and FIG. FIG. 3C is a ph diagram when controlling, and FIG. 3C is a ph diagram when controlling the condenser heat exchange amount changing means.

【図3】 本発明の実施の形態2に係る冷凍サイクル装
置の冷媒回路を示す構成図である。
FIG. 3 is a configuration diagram illustrating a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.

【図4】 実施の形態2の冷凍サイクル装置の動作を説
明するためのものであって、(a)は冷房運転時のp−
h線図、(b)は暖房運転時のp−h線図である。
4A and 4B are diagrams for explaining the operation of the refrigeration cycle apparatus according to Embodiment 2; FIG.
An h diagram, (b) is a ph diagram at the time of a heating operation.

【図5】 実施の形態2の冷凍サイクル装置の別の動作
を説明するためのものであって、(a)は冷房運転時の
p−h線図、(b)は暖房運転時のp−h線図である。
5A and 5B are diagrams for explaining another operation of the refrigeration cycle device according to the second embodiment, where FIG. 5A is a ph diagram during a cooling operation, and FIG. FIG.

【図6】 本発明の実施の形態3に係る冷凍サイクル装
置の冷媒回路を示す構成図である。
FIG. 6 is a configuration diagram illustrating a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.

【図7】 実施の形態3の冷凍サイクル装置の動作を説
明するためのものであって、(a)は冷房運転時のp−
h線図、(b)は暖房運転時のp−h線図である。
FIGS. 7A and 7B are diagrams for explaining the operation of the refrigeration cycle apparatus according to Embodiment 3; FIG.
An h diagram, (b) is a ph diagram at the time of a heating operation.

【図8】 実施の形態3の冷凍サイクル装置における冷
房運転時の別の動作を説明するためのp−h線図であ
る。
FIG. 8 is a ph diagram for explaining another operation during the cooling operation in the refrigeration cycle apparatus of the third embodiment.

【図9】 従来例の冷媒回路を示す構成図である。FIG. 9 is a configuration diagram showing a conventional refrigerant circuit.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 室外側熱交換器(凝縮器)、3 絞り
装置、4 室内側熱交換器(蒸発器)、5 冷媒配管、
6 ファン、7 ガスバイパス手段、8 液バイパス手
段、9 圧縮機吐出圧力検出手段、10 圧縮機吸入圧
力検出手段、11 圧縮機吐出温度検知手段、12 圧
縮機吸入温度検知手段、13 凝縮器出口温度検知手
段、14 制御装置、14a 第1制御手段、14b
第2制御手段、14c 第3制御手段、14d 第4制
御手段、14e 第5制御手段、15 第1四方弁、1
6 冷媒加圧手段、17 第2四方弁、17a 高圧側
入口、17b 低圧側出口、18 第1バイパス手段、
19 第1圧力検出手段、20 第2圧力検出手段、2
1 冷媒減圧手段、22 第2バイパス手段、23第3
圧力検出手段、24 第4圧力検出手段、25 室内環
境温度検知手段、A熱源機、B 室内機。
1 compressor, 2 outdoor heat exchanger (condenser), 3 expansion device, 4 indoor heat exchanger (evaporator), 5 refrigerant piping,
Reference Signs List 6 fan, 7 gas bypass means, 8 liquid bypass means, 9 compressor discharge pressure detecting means, 10 compressor suction pressure detecting means, 11 compressor discharge temperature detecting means, 12 compressor suction temperature detecting means, 13 condenser outlet temperature Detection means, 14 control device, 14a first control means, 14b
Second control means, 14c Third control means, 14d Fourth control means, 14e Fifth control means, 15 First four-way valve, 1
6 refrigerant pressurizing means, 17 second four-way valve, 17a high pressure side inlet, 17b low pressure side outlet, 18 first bypass means,
19 first pressure detecting means, 20 second pressure detecting means, 2
1 refrigerant decompression means, 22 second bypass means, 23 third
Pressure detecting means, 24 Fourth pressure detecting means, 25 Indoor environment temperature detecting means, A heat source unit, B Indoor unit.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、絞り手段、蒸発器等を
環状配置で連通した冷凍サイクル装置において、前記圧
縮機の吐出側における冷媒温度を検出する圧縮機吐出温
度検知手段と、前記圧縮機の吸入側における冷媒スーパ
ーヒート量を検出する圧縮機吸入スーパーヒート検知手
段と、前記凝縮器の出側における冷媒サブクール量を検
出する凝縮器出口サブクール検知手段とをそれぞれセン
サとして用い、前記凝縮器における冷媒の熱交換量を変
化させる凝縮器熱交換量変化手段と、前記圧縮機の吐出
側と吸入側間に前記圧縮機を迂回して接続されたガスバ
イパス手段と、前記凝縮器の出側と前記圧縮機の吸入側
間に前記絞り手段および前記蒸発器を迂回して接続され
た液バイパス手段とをそれぞれアクチュエータとして用
いるとともに、各センサによるそれぞれの検出値が前記
各センサ毎に予め設定されている所定の目標範囲内に収
まるように各アクチュエータを連係して制御する第1制
御手段を備えていることを特徴とする冷凍サイクル装
置。
In a refrigeration cycle apparatus in which a compressor, a condenser, a throttle means, an evaporator, and the like are connected in an annular arrangement, a compressor discharge temperature detecting means for detecting a refrigerant temperature on a discharge side of the compressor; The compressor suction superheat detecting means for detecting the refrigerant superheat amount on the suction side of the compressor, and the condenser outlet subcool detection means for detecting the refrigerant subcool amount on the outlet side of the condenser, respectively, as the sensors, Condenser heat exchange amount changing means for changing the heat exchange amount of the refrigerant in the compressor, gas bypass means connected around the compressor between a discharge side and a suction side of the compressor, and an outlet side of the condenser. And a liquid bypass means connected between the suction side of the compressor and the bypass means bypassing the evaporator, respectively, as actuators. A refrigeration cycle apparatus comprising: first control means for controlling each of the actuators in cooperation with each other such that respective detection values of the sensors fall within a predetermined target range preset for each of the sensors. .
【請求項2】 圧縮機、第1四方弁、室外側熱交換器等
を接続して成る熱源機と、絞り手段、室内側熱交換器等
を接続して成る1または複数台の室内機とを、冷媒配管
で連通した冷凍サイクル装置において、前記室内側熱交
換器のガス冷媒側に、ガス冷媒を加圧する冷媒加圧手段
を設けたことを特徴とする冷凍サイクル装置。
2. A heat source unit connected to a compressor, a first four-way valve, an outdoor heat exchanger and the like, and one or more indoor units connected to a throttle unit, an indoor heat exchanger and the like. Refrigeration cycle apparatus, wherein a refrigerant pressure means for pressurizing the gas refrigerant is provided on the gas refrigerant side of the indoor heat exchanger.
【請求項3】 圧縮機、第1四方弁、室外側熱交換器等
を接続して成る熱源機と、絞り手段、室内側熱交換器等
を接続して成る1または複数台の室内機とを、冷媒配管
で連通した冷凍サイクル装置において、前記室内側熱交
換器のガス冷媒側に、ガス冷媒を減圧する冷媒減圧手段
を設けたことを特徴とする冷凍サイクル装置。
3. A heat source unit connected to a compressor, a first four-way valve, an outdoor heat exchanger and the like, and one or more indoor units connected to a throttle means, an indoor heat exchanger and the like. Refrigeration cycle device, wherein refrigerant decompression means for decompressing the gas refrigerant is provided on the gas refrigerant side of the indoor heat exchanger.
【請求項4】 冷媒加圧手段と並列に、前記冷媒加圧手
段の未使用時に低圧損経路を形成する第1バイパス手段
を設けたことを特徴とする請求項第2項に記載の冷凍サ
イクル装置。
4. The refrigeration cycle according to claim 2, further comprising a first bypass unit that forms a low pressure loss path when the refrigerant pressurization unit is not used, in parallel with the refrigerant pressurization unit. apparatus.
【請求項5】 冷媒を加圧して単方向に流通させる冷媒
加圧手段と、第2四方弁とを第1四方弁と室内側熱交換
器の間に配備し、前記冷媒加圧手段の吐出側を前記第2
四方弁の高圧側入口に接続するとともに、前記冷媒加圧
手段の吸入側を前記第2四方弁の低圧側出口に接続し、
前記第2四方弁の流路切替えにより冷媒を双方向に切替
えて流通させる構成としたことを特徴とする請求項第2
項に記載の冷凍サイクル装置。
5. A refrigerant pressurizing means for pressurizing a refrigerant to flow in a unidirectional manner, and a second four-way valve are provided between the first four-way valve and the indoor heat exchanger. Side the second
While connected to the high pressure side inlet of the four-way valve, the suction side of the refrigerant pressurizing means is connected to the low pressure side outlet of the second four-way valve,
3. A structure in which the refrigerant is bidirectionally switched and circulated by switching the flow path of the second four-way valve.
A refrigeration cycle apparatus according to the paragraph.
【請求項6】 冷媒減圧手段と並列に、前記冷媒減圧手
段の未使用時に低圧損経路を形成する第2バイパス手段
を設けたことを特徴とする請求項第3項に記載の冷凍サ
イクル装置。
6. The refrigeration cycle apparatus according to claim 3, further comprising a second bypass unit that forms a low pressure loss path when the refrigerant decompression unit is not used, in parallel with the refrigerant decompression unit.
【請求項7】 冷媒加圧手段の室内側熱交換器側におけ
る冷媒圧力に対応した圧力相当値を検出する第1圧力検
出手段と、前記第1圧力検出手段の検出値を、室内環境
温度の設定温度に基づく目標圧力値および/または実際
の室内環境温度に基づく目標圧力値に近づけるように前
記冷媒加圧手段の制御量を変化させる第2制御手段とを
備えていることを特徴とする請求項第2項に記載の冷凍
サイクル装置。
7. A first pressure detecting means for detecting a pressure equivalent value corresponding to the refrigerant pressure on the indoor heat exchanger side of the refrigerant pressurizing means, and detecting the detected value of the first pressure detecting means as an indoor environment temperature. A second control means for changing a control amount of the refrigerant pressurizing means so as to approach a target pressure value based on a set temperature and / or a target pressure value based on an actual indoor environment temperature. Item 3. A refrigeration cycle apparatus according to Item 2.
【請求項8】 冷媒加圧手段の熱源機側における冷媒圧
力に対応した圧力相当値を検出する第2圧力検出手段
と、前記第2圧力検出手段の検出値を、室内機による冷
凍・冷房運転時は圧縮機吸入側の冷媒圧力に対応する目
標圧力値に近づけるように前記冷媒加圧手段の制御量を
変化させる第3制御手段とを備えていることを特徴とす
る請求項第2項に記載の冷凍サイクル装置。
8. A second pressure detecting means for detecting a pressure equivalent value corresponding to a refrigerant pressure on a heat source unit side of the refrigerant pressurizing means, and a refrigeration / cooling operation by an indoor unit based on the detected value of the second pressure detecting means. 3. The apparatus according to claim 2, further comprising: third control means for changing a control amount of the refrigerant pressurizing means so as to approach a target pressure value corresponding to the refrigerant pressure on the compressor suction side at the time. A refrigeration cycle apparatus as described in the above.
【請求項9】 冷媒減圧手段の室内側熱交換器側におけ
る冷媒圧力に対応した圧力相当値を検出する第3圧力検
出手段と、前記第3圧力検出手段の検出値を、室内環境
温度の設定温度に基づく目標圧力値および/または実際
の室内環境温度に基づく目標圧力値に近づけるように前
記冷媒減圧手段の制御量を変化させる第4制御手段とを
備えていることを特徴とする請求項第3項に記載の冷凍
サイクル装置。
9. A third pressure detecting means for detecting a pressure equivalent value corresponding to a refrigerant pressure on the indoor heat exchanger side of the refrigerant depressurizing means, and a detection value of the third pressure detecting means is set to an indoor environment temperature. A fourth control means for changing a control amount of the refrigerant pressure reducing means so as to approach a target pressure value based on a temperature and / or a target pressure value based on an actual indoor environment temperature. Item 4. The refrigeration cycle device according to item 3.
【請求項10】 冷媒減圧手段の熱源機側における冷媒
圧力に対応した圧力相当値を検出する第4圧力検出手段
と、前記第4圧力検出手段の検出値を、室内機による冷
凍・冷房運転時は圧縮機吸入側の冷媒圧力に対応する目
標圧力値に近づけるように前記冷媒減圧手段の制御量を
変化させる第5制御手段とを備えていることを特徴とす
る請求項第3項に記載の冷凍サイクル装置。
10. A fourth pressure detecting means for detecting a pressure equivalent value corresponding to the refrigerant pressure on the heat source side of the refrigerant pressure reducing means, and detecting the detected value of the fourth pressure detecting means during a refrigeration / cooling operation by an indoor unit. 5. The apparatus according to claim 3, further comprising: fifth control means for changing a control amount of the refrigerant pressure reducing means so as to approach a target pressure value corresponding to the refrigerant pressure on the compressor suction side. Refrigeration cycle device.
JP2000092850A 2000-03-30 2000-03-30 Refrigerating cycle device Pending JP2001280669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000092850A JP2001280669A (en) 2000-03-30 2000-03-30 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000092850A JP2001280669A (en) 2000-03-30 2000-03-30 Refrigerating cycle device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002209107A Division JP3705251B2 (en) 2002-07-18 2002-07-18 Refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
JP2001280669A true JP2001280669A (en) 2001-10-10

Family

ID=18608116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000092850A Pending JP2001280669A (en) 2000-03-30 2000-03-30 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2001280669A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121359A (en) * 2003-10-16 2005-05-12 Lg Electronics Inc Method of controlling air conditioner
JP2006046726A (en) * 2004-08-02 2006-02-16 Mitsubishi Electric Corp Air conditioning control system, air conditioner, and remote monitoring device
CN100339656C (en) * 2004-08-11 2007-09-26 三星电子株式会社 Air conditioning system and control method thereof
JP2008249286A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioner
JP2009299914A (en) * 2008-06-10 2009-12-24 Panasonic Corp Multiroom air conditioner
JP2012229838A (en) * 2011-04-25 2012-11-22 Taikisha Ltd Fluid cooling means and fluid cooling device
JP2013053818A (en) * 2011-09-05 2013-03-21 Panasonic Corp Air conditioner
WO2016071999A1 (en) * 2014-11-06 2016-05-12 日立アプライアンス株式会社 Air conditioning apparatus
WO2016113899A1 (en) * 2015-01-16 2016-07-21 三菱電機株式会社 Refrigeration cycle device
CN106595158A (en) * 2016-12-22 2017-04-26 重庆美的通用制冷设备有限公司 Low-pressure control method, system and air conditioner for unit refrigeration system
CN107218705A (en) * 2017-06-23 2017-09-29 广东美的暖通设备有限公司 Control method, air conditioner and the storage medium of outdoor motor
WO2018016058A1 (en) * 2016-07-21 2018-01-25 三菱電機株式会社 Refrigeration cycle device
JP2020063905A (en) * 2020-02-03 2020-04-23 伸和コントロールズ株式会社 Temperature control device
CN111059715A (en) * 2019-12-31 2020-04-24 Tcl空调器(中山)有限公司 Air conditioner heating control method, air conditioner and computer readable storage medium
CN111219859A (en) * 2018-11-23 2020-06-02 奥克斯空调股份有限公司 Air conditioner operation frequency protection method and air conditioner
WO2021238215A1 (en) * 2020-05-29 2021-12-02 广东美的制冷设备有限公司 Control method and device for air conditioner outdoor unit, air conditioner outdoor unit, and air conditioner
CN114659238A (en) * 2022-03-11 2022-06-24 深圳市英威腾网能技术有限公司 Air conditioning system and low-temperature starting control method thereof
WO2022163793A1 (en) * 2021-01-29 2022-08-04 伸和コントロールズ株式会社 Refrigeration device, control method for refrigeration device, and temperature control system
CN114963634A (en) * 2022-04-27 2022-08-30 西安华为数字能源技术有限公司 Refrigerating system, control method and electric equipment

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121359A (en) * 2003-10-16 2005-05-12 Lg Electronics Inc Method of controlling air conditioner
JP2006046726A (en) * 2004-08-02 2006-02-16 Mitsubishi Electric Corp Air conditioning control system, air conditioner, and remote monitoring device
CN100339656C (en) * 2004-08-11 2007-09-26 三星电子株式会社 Air conditioning system and control method thereof
JP2008249286A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioner
JP2009299914A (en) * 2008-06-10 2009-12-24 Panasonic Corp Multiroom air conditioner
JP2012229838A (en) * 2011-04-25 2012-11-22 Taikisha Ltd Fluid cooling means and fluid cooling device
JP2013053818A (en) * 2011-09-05 2013-03-21 Panasonic Corp Air conditioner
WO2016071999A1 (en) * 2014-11-06 2016-05-12 日立アプライアンス株式会社 Air conditioning apparatus
WO2016113899A1 (en) * 2015-01-16 2016-07-21 三菱電機株式会社 Refrigeration cycle device
EP3246637A4 (en) * 2015-01-16 2018-12-26 Mitsubishi Electric Corporation Refrigeration cycle device
JPWO2016113899A1 (en) * 2015-01-16 2017-07-13 三菱電機株式会社 Refrigeration cycle equipment
WO2018016058A1 (en) * 2016-07-21 2018-01-25 三菱電機株式会社 Refrigeration cycle device
CN106595158A (en) * 2016-12-22 2017-04-26 重庆美的通用制冷设备有限公司 Low-pressure control method, system and air conditioner for unit refrigeration system
CN107218705B (en) * 2017-06-23 2020-01-14 广东美的暖通设备有限公司 Control method of outdoor motor, air conditioner and storage medium
CN107218705A (en) * 2017-06-23 2017-09-29 广东美的暖通设备有限公司 Control method, air conditioner and the storage medium of outdoor motor
CN111219859A (en) * 2018-11-23 2020-06-02 奥克斯空调股份有限公司 Air conditioner operation frequency protection method and air conditioner
CN111219859B (en) * 2018-11-23 2021-07-06 奥克斯空调股份有限公司 Air conditioner operation frequency protection method and air conditioner
CN111059715B (en) * 2019-12-31 2022-05-06 Tcl空调器(中山)有限公司 Air conditioner heating control method, air conditioner and computer readable storage medium
CN111059715A (en) * 2019-12-31 2020-04-24 Tcl空调器(中山)有限公司 Air conditioner heating control method, air conditioner and computer readable storage medium
JP2020063905A (en) * 2020-02-03 2020-04-23 伸和コントロールズ株式会社 Temperature control device
WO2021238215A1 (en) * 2020-05-29 2021-12-02 广东美的制冷设备有限公司 Control method and device for air conditioner outdoor unit, air conditioner outdoor unit, and air conditioner
WO2022163793A1 (en) * 2021-01-29 2022-08-04 伸和コントロールズ株式会社 Refrigeration device, control method for refrigeration device, and temperature control system
CN114659238A (en) * 2022-03-11 2022-06-24 深圳市英威腾网能技术有限公司 Air conditioning system and low-temperature starting control method thereof
CN114659238B (en) * 2022-03-11 2024-04-02 深圳市英威腾网能技术有限公司 Air conditioning system and low-temperature starting control method thereof
CN114963634A (en) * 2022-04-27 2022-08-30 西安华为数字能源技术有限公司 Refrigerating system, control method and electric equipment

Similar Documents

Publication Publication Date Title
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
EP2719966B1 (en) Refrigeration air-conditioning device
US20180156505A1 (en) Methods and systems for controlling integrated air conditioning systems
JP2001280669A (en) Refrigerating cycle device
WO2016171052A1 (en) Refrigeration cycle device
WO2013145006A1 (en) Air conditioning device
WO2006013938A1 (en) Freezing apparatus
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
CN107490090B (en) Air conditioner
JP2002081767A (en) Air conditioner
WO2021014640A1 (en) Refrigeration cycle device
WO2019053876A1 (en) Air conditioning device
JP2007232265A (en) Refrigeration unit
EP1696125A1 (en) Capacity-variable air conditioner
JP2004170023A (en) Control method for multicellular air-conditioner
KR102229436B1 (en) Refrigeration cycle device
JP7063940B2 (en) Refrigeration equipment
JP2021103081A (en) Heat source unit and refrigeration unit
JP4720641B2 (en) Refrigeration equipment
JP5517891B2 (en) Air conditioner
KR101392316B1 (en) Air conditioning system
JP3705251B2 (en) Refrigeration cycle equipment
WO2021010130A1 (en) Refrigeration device
JPH10185343A (en) Refrigerating equipment
KR101450545B1 (en) Air conditioning system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20010404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020718

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929