JP2001232381A - Supercritical water treating apparatus - Google Patents

Supercritical water treating apparatus

Info

Publication number
JP2001232381A
JP2001232381A JP2000042947A JP2000042947A JP2001232381A JP 2001232381 A JP2001232381 A JP 2001232381A JP 2000042947 A JP2000042947 A JP 2000042947A JP 2000042947 A JP2000042947 A JP 2000042947A JP 2001232381 A JP2001232381 A JP 2001232381A
Authority
JP
Japan
Prior art keywords
supercritical water
reaction cartridge
reactor
water treatment
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000042947A
Other languages
Japanese (ja)
Other versions
JP2001232381A5 (en
JP4267791B2 (en
Inventor
Shinichirou Kawasaki
慎一朗 川崎
Akira Suzuki
明 鈴木
Katsuo Yoda
勝男 依田
Tokuyuki Anjo
徳幸 安生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2000042947A priority Critical patent/JP4267791B2/en
Publication of JP2001232381A publication Critical patent/JP2001232381A/en
Publication of JP2001232381A5 publication Critical patent/JP2001232381A5/ja
Application granted granted Critical
Publication of JP4267791B2 publication Critical patent/JP4267791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a supercritical water treating apparatus for supercritically water-treating the liquid to be treated containing PCB and the like in high concentration, capable of stable operation for a long period. SOLUTION: The supercritical water treating apparatus has a reactor 12 provided with an outer cylindrical body 12a consisting of a vertically cylindrical pressure vessel bearing the pressure necessary for supercritical water treatment and a reaction cartridge 12b made of titanium or a titanium alloy and provided within the outer cylindrical body 12a as an inner cylindrical body mutually communicating with the inner part of the outer cylindrical body and introducing pressure balancing air from a pressure balancing air introducing tube 30 into an annular part 12c between the outer cylindrical body 12a and the reaction cartridge 12b. The reactor is provided with a tube-shaped electric resistance heat generating body 36 capable of holding the temperature of the reaction cartridge at 380 deg.C and a cable 38 connected to an emergency power source (not illustrated) capable of supplying power at all times and energizing the electric resistance heat generating body 36 as a heating means 35 for heating the reaction cartridge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、PCB等の有機塩
素化合物を処理する超臨界水処理装置に関し、更に詳細
には、超臨界水処理に際して高濃度塩酸を生成するPC
B等の有機塩素化合物であっても、装置の腐食を引き起
こすことなく長期間にわたり安定して、有機塩素化合物
を超臨界水処理できる超臨界水処理装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical water treatment apparatus for treating an organic chlorine compound such as PCB, and more particularly, to a PC for producing high-concentration hydrochloric acid during supercritical water treatment.
The present invention relates to a supercritical water treatment apparatus capable of stably treating an organic chlorine compound with supercritical water without causing corrosion of the apparatus even if the organic chlorine compound such as B is used.

【0002】[0002]

【従来の技術】環境問題に対する認識の高まりと共に、
超臨界水処理装置の適用分野の一つとして、環境汚染物
質の分解、無害化が、注目されている。超臨界水処理装
置とは、超臨界水の反応媒体的性質を利用した超臨界水
反応により、従来技術では分解することが難しかった有
害な難分解性の有機物、例えば、PCB(ポリ塩素化ビ
フェニル)、ダイオキシン、有機塩素系溶剤等を分解し
て、二酸化炭素、水、無機塩などの無害な生成物に転化
する装置であって、その実用化が試みられている。
2. Description of the Related Art With increasing awareness of environmental issues,
As one of application fields of a supercritical water treatment apparatus, attention has been paid to decomposition and detoxification of environmental pollutants. A supercritical water treatment device is a harmful hard-to-decompose organic substance, such as PCB (polychlorinated biphenyl), which is difficult to decompose in the prior art by a supercritical water reaction utilizing the properties of a reaction medium of supercritical water. ), A device that decomposes dioxins, organic chlorinated solvents, and the like and converts them into harmless products such as carbon dioxide, water, and inorganic salts.

【0003】超臨界水とは、超臨界状態にある水、即
ち、水の臨界点を越えた状態にある水を言い、詳しく
は、臨界温度、即ち374.1℃以上の温度で、かつ水
の臨界圧力、即ち22.04MPa以上の圧力下にある
状態の水を言う。超臨界水は、有機物を溶解する溶解能
が高く、有機化合物に多い非極性物質をも完全に溶解す
ることができる一方、逆に、金属、塩等の無機物に対す
る溶解能は著しく低い。また、超臨界水は、酸素や窒素
などの気体と任意の割合で混合して単一相を構成するこ
とができる。
[0003] Supercritical water refers to water that is in a supercritical state, that is, water that is beyond the critical point of water, and more specifically, has a critical temperature, that is, a temperature of 374.1 ° C or higher, and Of water under a critical pressure of 22.04 MPa or more. Supercritical water has a high ability to dissolve organic substances and can completely dissolve non-polar substances, which are abundant in organic compounds, but has a very low ability to dissolve inorganic substances such as metals and salts. The supercritical water can be mixed with a gas such as oxygen or nitrogen at an arbitrary ratio to form a single phase.

【0004】ここで、図8を参照して、有機塩素系の化
合物を含む被処理液を超臨界水反応により処理する、従
来の超臨界水処理装置の基本的な構成を説明する。図8
は従来の超臨界水処理装置の構成を示すフローシートで
ある。超臨界水処理装置80は、従来、超臨界水処理中
に塩が析出するような、有機塩素化合物系の難分解性有
機物の酸化分解に最適な装置と言われていて、耐圧密閉
型の縦型反応器81を備え、超臨界水中に固形物として
析出する塩を反応容器下部に沈降、分離させる、いわゆ
るモダープロセス方式の装置である。
Referring to FIG. 8, a basic configuration of a conventional supercritical water treatment apparatus for treating a liquid to be treated containing an organic chlorine compound by a supercritical water reaction will be described. FIG.
Is a flow sheet showing the configuration of a conventional supercritical water treatment apparatus. Conventionally, the supercritical water treatment apparatus 80 is said to be the most suitable apparatus for oxidative decomposition of organic chlorine compound-based hardly decomposable organic substances such as salts that precipitate during supercritical water treatment. This is a so-called moder process type apparatus that includes a mold reactor 81 and sediments and separates salts that precipitate as solids in supercritical water at the lower part of the reaction vessel.

【0005】図8に示すように、反応器81の上部で
は、水の臨界点以上の条件、即ち超臨界条件が維持さ
れ、超臨界水を滞留させる超臨界水域82が形成され、
超臨界水域82との仮想的界面83を介して反応器81
の下部には、水の臨界温度より低い温度に維持され、亜
臨界水を滞留させる亜臨界水域84が形成されている。
反応器81の上部には、超臨界水処理する被処理液及び
酸化剤を超臨界水域82に流入させる流入管85が接続
されている。流入管85には、超臨界水反応により処理
すべき有機塩素系化合物を有する被処理液を送入する被
処理液ライン86、有機物を酸化させる酸化剤として空
気を送入する空気ライン87、及び、超臨界水又は超臨
界水生成用の補給水を送入する超臨界水ライン88が合
流している。
[0005] As shown in FIG. 8, a condition above the critical point of water, that is, a supercritical condition is maintained in the upper part of the reactor 81, and a supercritical water area 82 for retaining supercritical water is formed.
Reactor 81 via virtual interface 83 with supercritical water area 82
A subcritical water area 84 that is maintained at a temperature lower than the critical temperature of water and retains the subcritical water is formed at a lower part of the water.
An inflow pipe 85 is connected to the upper part of the reactor 81 so that the liquid to be treated and the oxidizing agent to be subjected to the supercritical water treatment flow into the supercritical water area 82. The inflow pipe 85 has a liquid to be treated line 86 for supplying a liquid to be treated having an organochlorine compound to be treated by the supercritical water reaction, an air line 87 for supplying air as an oxidizing agent for oxidizing organic substances, and , A supercritical water line 88 for feeding supercritical water or makeup water for generating supercritical water.

【0006】また、被処理液中の有機塩素化合物によっ
て生成する塩酸を中和するためにアルカリ中和剤を供給
する中和剤ライン89が、被処理液ライン86に接続さ
れている。被処理液及び中和剤は、流入管85を通って
反応器81に供給され、酸化剤である空気により下方に
向けてアトマイジングされて、反応器81内の超臨界水
域82内に噴霧される。噴霧された被処理液中の有機塩
素化合物及びその他の有機物は、超臨界水域82内で瞬
時に酸化分解される。超臨界水反応の過程で、被処理液
に含有された有機塩素化合物の塩素は、アルカリ中和剤
と中和して塩となり、超臨界水域から亜臨界水域に移行
する。
A neutralizing agent line 89 for supplying an alkali neutralizing agent for neutralizing hydrochloric acid generated by an organic chlorine compound in the liquid to be treated is connected to the liquid line 86 to be treated. The liquid to be treated and the neutralizing agent are supplied to the reactor 81 through the inflow pipe 85, atomized downward by air as the oxidizing agent, and sprayed into the supercritical water area 82 in the reactor 81. You. Organochlorine compounds and other organic substances in the sprayed liquid to be treated are instantaneously oxidized and decomposed in the supercritical water area 82. In the process of the supercritical water reaction, the chlorine of the organic chlorine compound contained in the liquid to be treated is neutralized with the alkali neutralizer to form a salt, and shifts from the supercritical water region to the subcritical water region.

【0007】反応器81の上部には、更に、処理液ライ
ン90が接続され、被処理液中の有機物は、超臨界水反
応により、主として水と二酸化炭素になって処理液と共
に超臨界水域82から処理液ライン90を通って流出す
る。処理液ライン90には、図示しないが、処理液を冷
却する冷却器、及び反応器81内の圧力を制御する圧力
制御弁、気液分離器等が設けてある。尚、必要に応じ
て、超臨界水域に補助燃料を供給する補助燃料ラインを
流入管85に接続することもある。
A treatment liquid line 90 is further connected to the upper part of the reactor 81, and organic substances in the liquid to be treated are mainly converted into water and carbon dioxide by a supercritical water reaction, and a supercritical water area 82 is formed together with the treatment liquid. From the processing solution line 90. Although not shown, the processing liquid line 90 is provided with a cooler for cooling the processing liquid, a pressure control valve for controlling the pressure in the reactor 81, a gas-liquid separator, and the like. Note that, if necessary, an auxiliary fuel line for supplying auxiliary fuel to the supercritical water area may be connected to the inflow pipe 85.

【0008】一方、反応器81の下部には、亜臨界水ラ
イン91及び亜臨界排水ライン92が接続され、亜臨界
水ライン91は亜臨界水域84に亜臨界水を供給し、ま
た亜臨界排水ライン92は超臨界水反応及び中和反応に
より生成した塩を溶解している亜臨界水を排水として亜
臨界水域84から排出する。図示しないが、亜臨界排水
ライン92には、亜臨界排水を所定温度に降温する冷却
器、所定圧力に減圧する減圧装置、更には気液分離/固
液分離装置が設けてある。
On the other hand, a subcritical water line 91 and a subcritical drainage line 92 are connected to a lower portion of the reactor 81, and the subcritical water line 91 supplies subcritical water to a subcritical water area 84, The line 92 discharges the subcritical water in which the salt generated by the supercritical water reaction and the neutralization reaction is dissolved from the subcritical water area 84 as wastewater. Although not shown, the subcritical drain line 92 is provided with a cooler for lowering the temperature of the subcritical wastewater to a predetermined temperature, a decompression device for reducing the pressure to a predetermined pressure, and a gas-liquid separation / solid-liquid separation device.

【0009】[0009]

【発明が解決しようとする課題】しかし、上述した従来
の超臨界水処理装置によって、高濃度のPCBを含む被
処理液を超臨界水処理しようとすると、次のような問題
が生じていた。第1には、従来のように、水の臨界温度
(374.1℃)に近い反応温度、即ち450℃から5
00℃の範囲の温度では、処理液のPCB含量を排出基
準で許容されている3ppb以下にすることが極めて難
しかった。逆に言えば、更に高い反応温度を必要とする
ことが予想されることである。
However, the following problems have been encountered when attempting to treat a liquid to be treated containing high-concentration PCB with supercritical water using the above-described conventional supercritical water treatment apparatus. First, as before, a reaction temperature close to the critical temperature of water (374.1 ° C.), ie, 450 ° C. to 5 ° C.
At a temperature in the range of 00 ° C., it was extremely difficult to reduce the PCB content of the processing solution to 3 ppb or less, which is allowed by the discharge standard. Conversely, it is expected that higher reaction temperatures will be required.

【0010】第2には、超臨界水域と亜臨界水域とを反
応器内に形成する2ゾーン方式に起因する二つの問題で
ある。その一は、反応器壁の腐食、特に両域の境界近傍
での腐食が著しいという問題であった。通常は、超臨界
水反応と同時並行的に中和反応が進行するので、腐食問
題は起きないのであるが、場合によって中和が不完全で
あると、腐食が問題となる。従来の方法では、反応器内
に高温の超臨界水域と低温の亜臨界水域とが存在するた
めに、腐食の厳しい領域が必ず存在し、PCBの超臨界
水処理の実用化を図る上で障害となっていた。その二
は、従来法では被処理液の噴霧状態が良くないと、PC
B等が完全に分解せずに、亜臨界水域84に入ってしま
うことがある。この場合、亜臨界水域の温度が低いため
に、亜臨界水域に混入した未分解物が、分解されること
なくそのまま残留し、亜臨界水域から排水として排出さ
れるので、亜臨界排水中のPCB含量が排出基準を超え
るという問題があった。
Second, there are two problems caused by a two-zone system in which a supercritical water area and a subcritical water area are formed in a reactor. One problem is that corrosion of the reactor wall, particularly near the boundary between the two regions, is remarkable. Normally, the neutralization reaction proceeds concurrently with the supercritical water reaction, so that no corrosion problem occurs. However, if the neutralization is incomplete, corrosion becomes a problem. In the conventional method, since a high-temperature supercritical water area and a low-temperature subcritical water area exist in the reactor, a severely corrosive area always exists, which is an obstacle to the practical use of PCB supercritical water treatment. Had become. Second, if the spraying of the liquid to be treated is not good in the conventional method, the PC
B or the like may enter the subcritical water area 84 without being completely decomposed. In this case, since the temperature of the subcritical water area is low, undecomposed substances mixed in the subcritical water area remain without being decomposed and are discharged as wastewater from the subcritical water area. There was a problem that the content exceeded the emission standard.

【0011】第3には、PCBを処理する際のように被
処理液中の有機塩素濃度が高い場合には、中和反応及び
塩生成分離のメカニズムに不明な点が多く、PCBの超
臨界水処理ではPCBの有機塩素に由来して生成した塩
酸を従来のように反応器内で完全に中和させる処理は、
実際には難しく、確実性に乏しいという問題があった。
Third, when the concentration of organic chlorine in the liquid to be treated is high, as in the case of treating PCB, there are many unclear points in the mechanism of the neutralization reaction and salt formation separation, and the supercritical In the water treatment, the hydrochloric acid generated from the organic chlorine in the PCB is completely neutralized in the reactor as in the conventional method.
In practice, it was difficult and lacked certainty.

【0012】そこで、処理液にアルカリ水溶液を注入し
て急冷中和する中和急冷部を反応器出口又は下流に設
け、反応器外でアルカリ水溶液を注入して処理液を中和
急冷することが試みられている。しかし、この方法で
は、処理液が反応器から流出して中和急冷部に入って始
めて中和されるので、超臨界水反応により生成した多量
の塩酸が反応器内に存在することになる。そのために、
従来から耐食材として反応器の内壁に使用されてきたイ
ンコネル625等のニッケル合金は、塩酸による腐食が
著しく、使用に耐えないという問題があった。また、急
冷中和部でも、アルカリ水溶液と処理液との中和反応が
終了する地点までの配管の腐食が著しく、同じくニッケ
ル合金を配管に使用しても、長期の使用が難しいという
問題がある。
Therefore, a neutralization and quenching section for injecting an alkali aqueous solution into the treatment liquid and quenching and neutralizing the treatment liquid is provided at the outlet or downstream of the reactor, and an alkaline aqueous solution is injected outside the reactor to neutralize and quench the treatment liquid. Attempted. However, in this method, since the processing liquid flows out of the reactor and enters the neutralization quenching section, it is neutralized only after the process, and a large amount of hydrochloric acid generated by the supercritical water reaction is present in the reactor. for that reason,
Nickel alloys such as Inconel 625, which have been conventionally used as a corrosion-resistant material on the inner wall of a reactor, have a problem in that they are significantly corroded by hydrochloric acid and cannot be used. Further, even in the quenching neutralization section, there is a problem that the corrosion of the pipe is remarkable up to the point where the neutralization reaction between the alkaline aqueous solution and the processing solution is completed, and it is difficult to use the nickel alloy for the pipe for a long time. .

【0013】更には、中和急冷部と併用して、圧力バラ
ンス型反応器を採用する試みも行われている。圧力バラ
ンス型反応器100は、図9に示すように、圧力容器と
して形成された外円筒体101と、外円筒体101内に
相互に連通する内円筒体として設けられた反応カートリ
ッジ102との2重円筒体でとして形成されている。流
入管85(図8参照)に接続された入口ノズル103か
ら、被処理液と、酸化剤として酸素含有ガス、例えば空
気とを反応カートリッジ102内の反応域104に流入
させ、かつ、圧力バランス用空気送入口105から外円
筒体101と反応カートリッジ102との間の環状部1
06に、圧力バランス用ガスとして、例えば空気を供給
する。圧力バランス用空気は、圧力容器101と反応カ
ートリッジ102との上部間隙107を介して環状部1
06から反応域104に流入し、酸化剤の一部として消
費される。
Further, attempts have been made to employ a pressure balanced reactor in combination with a neutralization and quenching section. As shown in FIG. 9, the pressure-balanced reactor 100 has an outer cylinder 101 formed as a pressure vessel and a reaction cartridge 102 provided as an inner cylinder communicating with each other inside the outer cylinder 101. It is formed as a heavy cylinder. From the inlet nozzle 103 connected to the inflow pipe 85 (see FIG. 8), the liquid to be treated and an oxygen-containing gas such as air as an oxidizing agent are caused to flow into the reaction zone 104 in the reaction cartridge 102, and are used for pressure balancing. Annular part 1 between outer cylinder 101 and reaction cartridge 102 from air inlet 105
At 06, for example, air is supplied as a pressure balancing gas. The pressure balancing air is supplied to the annular portion 1 through the upper gap 107 between the pressure vessel 101 and the reaction cartridge 102.
06 flows into the reaction zone 104 and is consumed as a part of the oxidizing agent.

【0014】反応カートリッジ102内の反応域104
に流入した被処理液は、超臨界水中で空気中の酸素によ
り酸化分解され、反応器流出管108から流出する。中
和急冷部は、反応カートリッジ102の下流で、圧力容
器102の内側又は外側に設けられる。従来の圧力バラ
ンス型反応器では、内外の圧力差は殆ど無いので、反応
カートリッジ102を非圧力容器として薄い肉厚で形成
できるので、反応カートリッジ102を高価な耐食性金
属、例えばインコネル625等のニッケル合金で形成し
ていても、コストが嵩まないという利点がある。また、
環状部106は腐食性が強い雰囲気ではないので、外円
筒体101は必ずしも反応カートリッジ102と同じ材
質で形成する必要はなく、通常、耐熱性炭素鋼、或いは
ステンレス鋼で形成される。しかし、高価なニッケル合
金で形成した反応カートリッジであっても、塩酸による
腐食が著しく、短期間で交換せざるを得ないと言う問題
があった。
The reaction zone 104 in the reaction cartridge 102
Is oxidized and decomposed by oxygen in the air in the supercritical water and flows out of the reactor outlet pipe 108. The neutralization quenching unit is provided on the inside or outside of the pressure vessel 102 downstream of the reaction cartridge 102. In the conventional pressure balanced type reactor, there is almost no pressure difference between the inside and the outside, so that the reaction cartridge 102 can be formed with a small thickness as a non-pressure vessel, so that the reaction cartridge 102 can be made of an expensive corrosion-resistant metal, for example, a nickel alloy such as Inconel 625. There is an advantage that the cost is not increased even if it is formed by using Also,
Since the annular portion 106 is not in a highly corrosive atmosphere, the outer cylinder 101 does not necessarily need to be formed of the same material as the reaction cartridge 102, and is usually formed of heat-resistant carbon steel or stainless steel. However, there is a problem that even a reaction cartridge formed of an expensive nickel alloy is significantly corroded by hydrochloric acid and must be replaced in a short time.

【0015】そこで、本発明の目的は、PCB等を高濃
度で含有する被処理液を排出基準で許容される3ppb
以下のPCB濃度に超臨界水処理する装置であって、長
期間にわたり安定して運転できる超臨界水処理装置を提
供することである。
Accordingly, an object of the present invention is to provide a liquid to be treated containing a high concentration of PCB or the like at a discharge standard of 3 ppb.
An object of the present invention is to provide a supercritical water treatment apparatus having the following PCB concentration, which can be operated stably for a long period of time.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明者は、(1)PCB等の高有機塩素濃度の被
処理液を排出基準で許容される3ppbのPCB濃度に
超臨界水処理できる反応温度を確立すること、(2)そ
の温度で使用できる反応器の材料を確立することが必要
であると考えた。
In order to achieve the above object, the present inventor has set forth the following object. (1) The present inventors have determined that a liquid to be treated having a high organic chlorine concentration such as PCB is supercritical to a PCB concentration of 3 ppb, which is allowed on a discharge standard. It was considered necessary to establish a reaction temperature at which water treatment was possible, and (2) to establish a reactor material that could be used at that temperature.

【0017】そこで、先ず、PCBの超臨界水処理によ
り生成する処理液のPCB含量を3ppb以下にするた
めに、PCBの分解率と超臨界水反応の反応温度との関
係を調べた。その結果、23MPaの反応圧力、及び2
分間以上4分間以下の反応時間の条件では、反応温度が
500℃のときには、PCB濃度は3ppb以上であっ
て、排出基準である3ppbを満足させることはできな
いこと、そして反応温度を550℃及び650℃にする
ことにより、PCB濃度を3ppb以下にすることがで
きることが判った。尚、反応温度が500℃のときに
は、反応時間を4分間以上にしても、PCB濃度を3p
pb以下にすることができないことも判った。
[0017] First, the relationship between the decomposition rate of PCB and the reaction temperature of the supercritical water reaction was investigated in order to reduce the PCB content of the treatment liquid produced by treating PCB with supercritical water to 3 ppb or less. As a result, a reaction pressure of 23 MPa, and 2
Under the conditions of a reaction time of not less than 1 minute and not more than 4 minutes, when the reaction temperature is 500 ° C., the PCB concentration is not less than 3 ppb and cannot satisfy the discharge standard of 3 ppb, and the reaction temperature is 550 ° C. and 650 ° C. It was found that by setting the temperature to ° C, the PCB concentration could be reduced to 3 ppb or less. When the reaction temperature is 500 ° C., even if the reaction time is 4 minutes or longer, the PCB concentration is 3 p.
It was also found that it could not be less than pb.

【0018】すなわち、反応温度を550℃以上650
℃以下の範囲の温度に設定することにより、処理液中の
PCB濃度が3ppb以下になるように、PCB又はP
CB類似化合物からなる有機塩素化合物を含む被処理液
を超臨界水反応により酸化分解することができる。PC
B類似化合物とは、PCBとほぼ同じような化学構造を
有する化合物であって、例えばダイオキシン類、クロロ
ベンゼン系化合物、クロロフェノール類等である。
That is, the reaction temperature is 550 ° C. or higher and 650 ° C.
By setting the temperature within the range of not more than 3 ° C., the PCB or P is adjusted so that the PCB concentration in the processing solution becomes 3 ppb or less.
A liquid to be treated containing an organic chlorine compound comprising a CB-like compound can be oxidatively decomposed by a supercritical water reaction. PC
The B-like compound is a compound having a chemical structure substantially similar to that of PCB, such as dioxins, chlorobenzene compounds, chlorophenols, and the like.

【0019】次いで、550℃以上の温度で高濃度塩酸
に対して耐食性を有する材料を選定のために、種々の材
料で反応器を作製し、実際にPCBを超臨界水処理する
ことにより材料の耐食性評価を行うという腐食試験を行
った。ところで、例えば純度100%の三塩素化物から
五塩素化物までのPCBを超臨界水反応処理すると、生
成する塩酸の濃度は、約10質量%〜15質量%程度と
なる。そこで、第1の腐食試験では、PCBの超臨界水
処理条件として、圧力を22MPa、及び反応温度を6
00℃に設定し、塩酸濃度20質量%の塩酸水溶液によ
る各種材料の腐食速度を以下のようにして測定した。
Next, in order to select a material having corrosion resistance to high-concentration hydrochloric acid at a temperature of 550 ° C. or higher, reactors are made of various materials, and the PCB is actually treated with supercritical water to obtain a material. A corrosion test was performed to evaluate the corrosion resistance. By the way, for example, when a PCB having a purity of 100% from trichloride to pentachloride is subjected to a supercritical water reaction treatment, the concentration of the generated hydrochloric acid is about 10% to 15% by mass. Therefore, in the first corrosion test, the conditions for treating the PCB with supercritical water were a pressure of 22 MPa and a reaction temperature of 6 MPa.
The rate of corrosion of various materials by an aqueous solution of hydrochloric acid having a hydrochloric acid concentration of 20% by mass was set at 00 ° C., and measured as follows.

【0020】先ず、表1に示す材料でオートクレーブ状
の反応器をそれぞれ作製し、塩酸濃度20質量%の塩酸
水溶液を各反応器内に収容し、反応器内の塩酸水溶液を
圧力22MPaで温度600℃に昇温し、500時間か
ら600時間その温度に維持して、各反応器の容器壁の
腐食速度を測定した。容器壁の腐食速度が1mm/年未
満のときには、最適材料とし、腐食速度が1mm/年以
上5mm/年のときには、適用可材料とし、腐食速度が
5mm/年を越えるときには適用不可材料とする、腐食
試験の判定基準に従い、容器壁の腐食速度に基づいて、
次の表1に示す結果を得た。
First, autoclave-shaped reactors were prepared from the materials shown in Table 1, respectively, and an aqueous hydrochloric acid solution having a hydrochloric acid concentration of 20% by mass was accommodated in each reactor. C. and maintained at that temperature for 500 to 600 hours, and the corrosion rate of the vessel wall of each reactor was measured. When the corrosion rate of the vessel wall is less than 1 mm / year, the material is optimum, when the corrosion rate is 1 mm / year or more and 5 mm / year, the material is applicable, and when the corrosion rate exceeds 5 mm / year, the material is not applicable. According to the corrosion test criteria, based on the corrosion rate of the container wall,
The results shown in Table 1 below were obtained.

【0021】 表1 材質 判定 インコネル625 適用不可 ハステロイ276 適用不可 白金 適用不可 チタン 最適 タンタル 適用不可 アルミナ 適用不可(腐食速度が小さいが、割れ発生) Table 1 Material Judgment Inconel 625 Not applicable Hastelloy 276 Not applicable Platinum Not applicable Titanium Optimum Tantalum Not applicable Alumina Not applicable (slow corrosion rate, but cracking)

【0022】次いで、第2の腐食試験では、圧力が同じ
22MPaで、温度が第1の腐食試験の条件より低い4
00℃に設定し、塩酸濃度20質量%の塩酸水溶液によ
る腐食速度を測定した。第1の腐食試験と同じ材料でオ
ートクレーブ状の反応器をそれぞれ作製し、塩酸濃度2
0質量%の塩酸水溶液を各反応器内に収容し、反応器内
の塩酸水溶液を圧力22MPaで温度400℃に昇温
し、500時間から600時間その温度に維持して、各
反応器の容器壁の腐食速度を測定した。第1の腐食試験
と同じ腐食試験の判定基準に従い、容器壁の腐食速度に
基づいて、次の表2に示す結果を得た。
Next, in the second corrosion test, the pressure was 22 MPa, and the temperature was lower than the condition of the first corrosion test.
The temperature was set to 00 ° C., and the corrosion rate by a hydrochloric acid aqueous solution having a hydrochloric acid concentration of 20% by mass was measured. Autoclave-shaped reactors were made from the same materials as in the first corrosion test, and the hydrochloric acid concentration was 2
A 0% by mass aqueous hydrochloric acid solution is accommodated in each reactor, and the aqueous hydrochloric acid solution in the reactor is heated to a temperature of 400 ° C. at a pressure of 22 MPa and maintained at that temperature for 500 to 600 hours. The corrosion rate of the wall was measured. According to the same corrosion test criteria as the first corrosion test, the results shown in the following Table 2 were obtained based on the corrosion rate of the container wall.

【0023】 表2 材質 判定 インコネル625 適用不可 ハステロイ276 適用不可 白金 適用不可 チタン 適用可 タンタル 最適 アルミナ 適用不可(腐食速度が小さいが、割れ発生) Table 2 Materials Judgment Inconel 625 Not applicable Hastelloy 276 Not applicable Platinum Not applicable Titanium Applicable Tantalum Optimum Alumina Not applicable (slow corrosion rate, but cracking)

【0024】更に、第3の腐食試験では、第2の腐食試
験の条件より圧力及び温度がそれぞれ低い圧力18MP
a、及び温度350℃での塩酸濃度20質量%の塩酸水
溶液による腐食速度を測定した。第1の腐食試験と同じ
材料でオートクレーブ状の反応器をそれぞれ作製し、塩
酸濃度20質量%の塩酸水溶液を各反応器内に収容し、
反応器内の塩酸水溶液を圧力18MPaで温度350℃
に昇温し、500時間から600時間その温度に維持し
て、各反応器の容器壁の腐食速度を測定した。第1の腐
食試験と同じ腐食試験の判定基準に従い、容器壁の腐食
速度に基づいて、次の表3に示す結果を得た。
Further, in the third corrosion test, the pressure and the temperature are each lower than the condition of the second corrosion test by 18 MPa.
a, and the corrosion rate with a hydrochloric acid aqueous solution having a hydrochloric acid concentration of 20% by mass at a temperature of 350 ° C. was measured. Autoclave-shaped reactors were each made of the same material as in the first corrosion test, and a hydrochloric acid aqueous solution having a hydrochloric acid concentration of 20% by mass was accommodated in each reactor.
The hydrochloric acid aqueous solution in the reactor is heated to 350 ° C. at a pressure of 18 MPa.
And the temperature was maintained for 500 to 600 hours, and the corrosion rate of the vessel wall of each reactor was measured. According to the same corrosion test criteria as the first corrosion test, the results shown in the following Table 3 were obtained based on the corrosion rate of the container wall.

【0025】 表3 材質 判定 インコネル625 適用不可 ハステロイ276 適用不可 白金 適用不可 チタン 適用不可 タンタル 最適 アルミナ 適用不可(腐食速度が小さいが、割れ発生) 更に詳細に検討するため、第4の腐食試験として、38
0℃、450℃、500℃の温度で、第1ないし第3の
腐食試験と同じ要領で腐食試験を行ったところ、表4の
結果を得た。 尚、チタンに代えてチタン合金で、タンタルに代えてタ
ンタル合金で作製した反応器を作製し、同じ第1から第
4の腐食試験を行ったところ、それぞれ、チタン及びタ
ンタルと同じ結果を得ることができた。
Table 3 Materials Judgment Inconel 625 Not applicable Hastelloy 276 Not applicable Platinum Not applicable Titanium Not applicable Tantalum Optimum Alumina Not applicable (slow corrosion rate, but cracking) In order to examine in more detail, as a fourth corrosion test, 38
When the corrosion test was performed at 0 ° C., 450 ° C., and 500 ° C. in the same manner as the first to third corrosion tests, the results shown in Table 4 were obtained. In addition, a reactor made of a titanium alloy instead of titanium and a tantalum alloy instead of tantalum was manufactured, and the same first to fourth corrosion tests were performed. As a result, the same results as those of titanium and tantalum were obtained, respectively. Was completed.

【0026】以上の第1から第4の腐食試験の結果か
ら、次のような結論を得ることができる。 (1)チタンは、温度380℃以上の濃塩酸水溶液に接
触する容器壁に適用でき、特に500℃以上ではチタン
しか適用できる材料はない。しかし、350℃以下で
は、チタンの腐食速度が大きく、適用できない。チタン
は、酸化皮膜を形成し、それが保護膜となるので、耐食
性が高い。特に380℃以上の温度では酸化皮膜の形成
が良好であって、耐食性が一層高くなる。よって、温度
が380℃以上になる反応器壁、例えば反応温度が55
0℃になるPCB処理用の反応器の反応器壁にチタンを
好適に適用できる。 (2)反応カートリッジをチタンで形成するときには、
反応カートリッジの温度が380℃未満になると、塩酸
等の腐食性流体によって腐食される恐れがあるので、常
時、反応カートリッジの温度が380℃以下に低下しな
いように、運転中、特に、装置の運転を停止する際、或
いは装置の運転を緊急停止する際であっても、反応カー
トリッジを少なくとも380℃に維持することが必要で
ある。
The following conclusions can be obtained from the results of the first to fourth corrosion tests. (1) Titanium can be applied to a container wall that comes into contact with a concentrated hydrochloric acid aqueous solution having a temperature of 380 ° C. or higher, and there is no material which can be applied only to titanium at 500 ° C. or higher. However, at a temperature of 350 ° C. or less, the corrosion rate of titanium is so high that it cannot be applied. Titanium forms an oxide film, which serves as a protective film, and therefore has high corrosion resistance. In particular, at a temperature of 380 ° C. or more, the formation of an oxide film is good, and the corrosion resistance is further enhanced. Therefore, a reactor wall having a temperature of 380 ° C. or higher, for example, a reaction temperature of 55 ° C.
Titanium can be suitably applied to the reactor wall of the PCB treatment reactor at 0 ° C. (2) When forming the reaction cartridge from titanium,
When the temperature of the reaction cartridge is lower than 380 ° C., there is a possibility that the reaction cartridge is corroded by a corrosive fluid such as hydrochloric acid. It is necessary to maintain the reaction cartridge at least at 380 ° C. even when the reaction is stopped or when the operation of the apparatus is urgently stopped.

【0027】上記目的を達成するために、上述の知見に
基づいて、本発明に係る超臨界水処理装置は、圧力容器
として形成された外殻体と、外殻体内に配置され、相互
に連通する内殻体からなる反応カートリッジとの2重筒
体として形成された圧力バランス型反応器を備え、有機
塩素化合物を含有する被処理液を反応カートリッジ内の
超臨界水中に導入し、550℃以上650℃以下の温度
で酸化剤により酸化分解し、被処理液より有機塩素化合
物濃度の低い処理液を反応器から流出させる超臨界水処
理装置において、反応カートリッジの少なくとも内表層
が、チタン層又はチタン合金層で形成され、反応カート
リッジの外側から反応カートリッジを加熱して380℃
以上に維持する加熱手段を備えていることを特徴として
いる。
In order to achieve the above object, based on the above-mentioned findings, a supercritical water treatment apparatus according to the present invention is provided with an outer shell formed as a pressure vessel, and disposed in the outer shell to communicate with each other. A pressure-balanced reactor formed as a double cylinder with a reaction cartridge consisting of an inner shell, and a liquid to be treated containing an organochlorine compound is introduced into supercritical water in the reaction cartridge, and the temperature is 550 ° C. or higher. In a supercritical water treatment apparatus that oxidizes and decomposes with an oxidizing agent at a temperature of 650 ° C. or less and causes a treatment liquid having a lower concentration of an organic chlorine compound than a liquid to be treated to flow out of a reactor, at least the inner surface layer of the reaction cartridge has a titanium layer or a titanium layer. Formed of an alloy layer, and heated to 380 ° C. from outside the reaction cartridge
It is characterized by having a heating means for maintaining the above.

【0028】本発明で、反応カートリッジは、少なくと
も、塩酸等の腐食性流体と接触する内表層が、チタン層
又はチタン合金層で形成されておれば良い。勿論、反応
カートリッジ全体をチタン層又はチタン合金層で形成し
ても良い。本発明では、反応カートリッジの加熱温度
は、380℃以上であれば良いが、経済性を考慮すれば
380℃でも良く、380℃を超えて高すぎる温度、例
えば500℃にする必要はない。ただし、熱交換により
カートリッジ内壁の温度が380℃未満にならないこと
が必要である。加熱手段には、制約はなく、例えば既知
の構成の電気加熱方式の加熱手段、熱媒体を用いる加熱
方式を使用することができる。また、反応カートリッジ
とバランス空気が流れる環状部(カートリッジと外部圧
力容器のすきま)を縁切りすることも可能である。縁切
りした場合には、装置が緊急停止した際も、カートリッ
ジ内部の腐食流体(図示しない)がカートリッジ外部の
環状部に流出しないので、加熱コイルなどの加熱器を保
護することができる。
In the present invention, at least the inner surface layer of the reaction cartridge which comes into contact with a corrosive fluid such as hydrochloric acid may be formed of a titanium layer or a titanium alloy layer. Of course, the entire reaction cartridge may be formed of a titanium layer or a titanium alloy layer. In the present invention, the heating temperature of the reaction cartridge may be 380 ° C. or higher, but may be 380 ° C. in consideration of economy, and it is not necessary to exceed 380 ° C., for example, 500 ° C., which is too high. However, it is necessary that the temperature of the inner wall of the cartridge does not become lower than 380 ° C. due to heat exchange. There is no limitation on the heating means, and for example, a heating means of a known configuration using an electric heating method or a heating method using a heat medium can be used. It is also possible to cut off the annular portion (gap between the cartridge and the external pressure vessel) through which the reaction cartridge and the balance air flow. If the device is cut off, the corrosive fluid (not shown) inside the cartridge does not flow out to the annular portion outside the cartridge even when the device is stopped in an emergency, so that a heater such as a heating coil can be protected.

【0029】例えば、本発明の好適な実施態様では、加
熱手段が、反応カートリッジの外周壁に沿って設けられ
た電気抵抗発熱体と電気抵抗発熱体に電流を供給する電
流供給手段とを備えている。電気抵抗発熱体で発生した
熱を反応カートリッジに伝達し、これにより、反応カー
トリッジを常時380℃以上に維持する。電気抵抗発熱
体は、例えばNi・Cr電気抵抗線等の電気抵抗発熱線
の周りをMgO等の電気絶縁層で被覆し、更にその周り
を金属チューブ等の保護管で囲んだ電気抵抗発熱体、或
いは実質的に同じ構造の帯状、面状の電気抵抗発熱体を
使用することができる。
For example, in a preferred embodiment of the present invention, the heating means includes an electric resistance heating element provided along the outer peripheral wall of the reaction cartridge and a current supply means for supplying a current to the electric resistance heating element. I have. The heat generated by the electric resistance heating element is transferred to the reaction cartridge, whereby the reaction cartridge is constantly maintained at 380 ° C. or higher. The electric resistance heating element is, for example, an electric resistance heating element in which an electric resistance heating wire such as a Ni-Cr electric resistance wire is covered with an electric insulating layer such as MgO and further surrounded by a protective tube such as a metal tube. Alternatively, a strip-shaped or sheet-shaped electric resistance heating element having substantially the same structure can be used.

【0030】また、加熱手段が、反応カートリッジの外
周壁に沿って巻回された誘導コイルと誘導コイルに電流
を供給する電流供給手段とを備えているか、または反応
カートリッジ自体に電流を供給する電流供給手段を備え
ている。反応カートリッジの外周壁に沿って誘導コイル
を巻回し、その誘導コイルに通電して、反応カートリッ
ジに誘導電流を惹起させ、その誘導電流によって生じる
抵抗発熱によって加熱する誘導加熱方式を適用しても良
く、更には、反応カートリッジ自体に通電し、反応カー
トリッジ自体の電気抵抗によって熱を発生させて、加熱
する直接加熱方式でも良い。
The heating means includes an induction coil wound along the outer peripheral wall of the reaction cartridge and a current supply means for supplying current to the induction coil, or a current supply means for supplying current to the reaction cartridge itself. A supply means is provided. An induction heating method may be applied in which an induction coil is wound along the outer peripheral wall of the reaction cartridge, an electric current is applied to the induction coil, an induction current is induced in the reaction cartridge, and heating is performed by resistance heating generated by the induction current. Further, a direct heating system may be used in which the reaction cartridge itself is energized, heat is generated by the electric resistance of the reaction cartridge itself, and the reaction cartridge is heated.

【0031】また、本発明に係る別の好適な実施態様で
は、加熱手段が、反応カートリッジの外側に設けられた
ジャケット又は反応カートリッジの外側に巻回された蛇
管と、ジャケット又は蛇管に熱媒体を供給する熱媒体供
給手段とを備え、ジャケット又は蛇管に380℃を超え
る温度の熱媒体を供給して、熱媒体の熱によって反応カ
ートリッジを380℃以上に加熱する。熱媒体の種類に
は、制約はなく、例えば380℃を超える温度の超臨界
水でも、380℃を超える高温の空気でも良い。更に
は、加熱手段として、空気を加熱する加熱器を備え、加
熱して得た380℃を超える高温の空気を圧力バランス
用空気として外殻体と反応カートリッジとの間に送入す
るようにしても良い。
In another preferred embodiment of the present invention, the heating means includes a jacket provided outside the reaction cartridge or a coiled tube wound outside the reaction cartridge, and a heating medium supplied to the jacket or the tube. A heating medium supply means for supplying a heating medium having a temperature exceeding 380 ° C. to a jacket or a flexible tube, and heating the reaction cartridge to 380 ° C. or more by the heat of the heating medium. There is no limitation on the type of the heat medium, and for example, supercritical water having a temperature exceeding 380 ° C. or high-temperature air having a temperature exceeding 380 ° C. may be used. Further, as a heating means, a heater for heating air is provided, and high-temperature air exceeding 380 ° C. obtained by heating is supplied between the outer shell and the reaction cartridge as pressure balancing air. Is also good.

【0032】本発明の更に好適な実施態様では、中和手
段が、反応器から処理液を流出させる処理液管と反応器
との接続部の直ぐ下流の処理液管に設けてある。これに
より、塩酸等の酸性化合物による反応器の下流の機器及
び配管の腐食を防止することができる。
In a further preferred embodiment of the present invention, the neutralizing means is provided in the processing liquid pipe immediately downstream of the connection between the processing liquid pipe for discharging the processing liquid from the reactor and the reactor. This can prevent corrosion of equipment and piping downstream of the reactor due to an acidic compound such as hydrochloric acid.

【0033】[0033]

【発明の実施の形態】以下に、添付図面を参照し、実施
形態例を挙げて本発明の実施の形態を具体的かつ詳細に
説明する。実施形態例1 本実施形態例は、本発明に係る超臨界水処理装置の実施
形態の一例であって、図1は本実施形態例の超臨界水処
理装置の構成を示すフローシート、及び図2は反応器の
構成を示す断面図である。本実施形態例の超臨界水処理
装置10は、超臨界水の存在下で超臨界水反応によりP
CBを高濃度で含む被処理液を処理する装置であって、
図1に示すように、超臨界水反応を行う反応器として、
縦型の耐圧密閉型反応器12を備え、更に、反応器12
から処理液を流出させる処理液管14に、順次、中和混
合器15、処理液を所定温度に冷却する冷却器16、反
応器12内の圧力を制御する圧力制御弁18、及び、処
理液をガスと液体とに気液分離する気液分離器20を備
えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Embodiment 1 This embodiment is an example of an embodiment of a supercritical water treatment apparatus according to the present invention, and FIG. 1 is a flow sheet showing a configuration of a supercritical water treatment apparatus of this embodiment, and FIG. 2 is a cross-sectional view showing the configuration of the reactor. The supercritical water treatment apparatus 10 according to the present embodiment performs P
An apparatus for processing a liquid to be processed containing CB at a high concentration,
As shown in FIG. 1, as a reactor for performing a supercritical water reaction,
A vertical pressure-resistant closed type reactor 12 is provided.
A processing liquid pipe 14 for allowing the processing liquid to flow out of the processing liquid, a neutralization mixer 15, a cooler 16 for cooling the processing liquid to a predetermined temperature, a pressure control valve 18 for controlling the pressure in the reactor 12, and a processing liquid. Is provided with a gas-liquid separator 20 for separating gas into liquid and gas.

【0034】超臨界水処理装置10は、超臨界水反応に
供する反応物を反応器12に供給する供給系統として、
インバータ制御あるいはストローク制御によって吐出量
の調節が可能な被処理液ポンプ22と、空気圧縮機24
とを備え、被処理液管26を介してPCBを含む被処理
液を反応器12に送入し、かつ、空気送入管28及び被
処理液管26を介して酸化剤として空気を被処理液と共
に反応器12に送入する。また、空気圧縮機24は、空
気送入管28から分岐した圧力バランス用空気送入管3
0を通して圧力バランス用空気を反応器12に送入す
る。中和混合器15は、通常のライン混合方式の混合器
であって、アルカリ水溶液供給系統31から供給された
NaOH水溶液を処理液に注入、混合して、処理液を中
和する。なお、図示しないが、必要に応じて超臨界水又
は超臨界水生成用の補給水を反応器12に補充するよう
にしてもよく、また、補給水を所望の温度に加熱する加
熱器を設けることもできる。
The supercritical water treatment apparatus 10 has a supply system for supplying a reactant to be used for the supercritical water reaction to the reactor 12.
A liquid pump 22 whose discharge amount can be adjusted by inverter control or stroke control;
The processing liquid containing PCB is fed into the reactor 12 through the liquid pipe 26 to be processed, and the air is processed as an oxidant through the air inlet pipe 28 and the liquid pipe 26. The solution is fed into the reactor 12. Further, the air compressor 24 is provided with a pressure-balancing air inlet pipe 3 branched from the air inlet pipe 28.
The pressure balancing air is fed into the reactor 12 through 0. The neutralization mixer 15 is a normal line mixing type mixer, and injects and mixes the NaOH aqueous solution supplied from the alkaline aqueous solution supply system 31 into the processing liquid to neutralize the processing liquid. Although not shown, supercritical water or make-up water for generating supercritical water may be replenished to the reactor 12 as necessary, and a heater for heating the make-up water to a desired temperature is provided. You can also.

【0035】また、超臨界水処理装置10は、被処理液
の送入流量を調整することにより、反応器12内の反応
温度を例えば550℃に制御する温度制御装置32を備
えている。温度制御装置32は、反応器12内、正確に
は反応カートリッジ12a内の温度を計測する温度計3
4を有し、温度計34の温度に基づいて被処理液ポンプ
22の吐出量を調節して被処理液の流量を調整すること
により、反応温度を550℃以上650℃以下の範囲の
設定温度、例えば550℃に制御する。温度制御装置3
2の構成は、これに限らず、例えば超臨界水の送入流量
を調整することにより、或いは超臨界水生成用の補給水
の送入流量を調整することにより、更には補給水の送入
温度を調整することにより、反応器12内の反応温度を
550℃以上650℃以下の範囲に制御することができ
る。
The supercritical water treatment apparatus 10 includes a temperature control device 32 for controlling the reaction temperature in the reactor 12 to, for example, 550 ° C. by adjusting the flow rate of the liquid to be treated. The temperature control device 32 includes a thermometer 3 that measures the temperature inside the reactor 12, more precisely, inside the reaction cartridge 12a.
The reaction temperature is set within a range from 550 ° C. to 650 ° C. by adjusting the discharge rate of the liquid to be treated 22 based on the temperature of the thermometer 34 to adjust the flow rate of the liquid to be treated. , For example, at 550 ° C. Temperature control device 3
The configuration of 2 is not limited to this. For example, by adjusting the supply flow rate of supercritical water, or by adjusting the supply flow rate of make-up water for generating supercritical water, furthermore, the supply of make-up water By adjusting the temperature, the reaction temperature in the reactor 12 can be controlled in the range of 550 ° C. or more and 650 ° C. or less.

【0036】反応器12は、反応カートリッジ12bの
加熱手段を備えていることを除いて、図9に示す従来の
圧力バランス型反応器と同じ構成を備えている(但し、
便宜上から、反応器の部位の符号は図9とは異なる)。
即ち、反応器12は、図2に示すように、超臨界水処理
時の圧力、例えば23MPaに抗する機械的強度を有す
る、耐熱性炭素鋼又はステンレス鋼製の縦型筒状圧力容
器からなる外円筒体12aと、外円筒体12a内に相互
に連通する内円筒体として設けられた、チタン製又はチ
タン合金製の反応カートリッジ12bとを備え、外円筒
体12aと反応カートリッジ12bとの間の環状部12
cに圧力バランス用空気送入管30から圧力バランス用
空気を導入する。
The reactor 12 has the same configuration as the conventional pressure-balanced reactor shown in FIG. 9 except that the reactor 12 is provided with a heating means for the reaction cartridge 12b (however,
For convenience, the reference numerals of the parts of the reactor are different from those in FIG. 9).
That is, as shown in FIG. 2, the reactor 12 is formed of a heat-resistant carbon steel or stainless steel vertical cylindrical pressure vessel having a pressure at the time of supercritical water treatment, for example, having a mechanical strength against 23 MPa. An outer cylindrical body 12a, and a reaction cartridge 12b made of titanium or a titanium alloy provided as an inner cylindrical body communicating with each other inside the outer cylindrical body 12a, and provided between the outer cylindrical body 12a and the reaction cartridge 12b. Annular part 12
Air for pressure balancing is introduced from c into the air supply pipe 30 for pressure balancing.

【0037】更に、本実施形態例の反応器12は、反応
カートリッジ12bを加熱する加熱手段35として、反
応カートリッジ12bを380℃以上に保持できるチュ
ーブ状の電気抵抗発熱体36と、常時、電力供給可能状
態にある非常電源(図示せず)に接続され、電気抵抗発
熱体36に通電するケーブル38とを備えている。ケー
ブル38はコネクタ40を介して電気抵抗発熱体36に
接続され、電気抵抗発熱体36が外円筒体12aを貫通
する貫通部は、シール部品42でシールされている。
Further, the reactor 12 of the present embodiment comprises a tubular electric resistance heating element 36 capable of holding the reaction cartridge 12b at 380 ° C. or higher as a heating means 35 for heating the reaction cartridge 12b, A cable 38 connected to an emergency power supply (not shown) in an enabled state and energizing the electric resistance heating element 36; The cable 38 is connected to the electric resistance heating element 36 via the connector 40, and a penetrating portion through which the electric resistance heating element 36 penetrates the outer cylindrical body 12 a is sealed with a seal component 42.

【0038】チューブ状の電気抵抗発熱体36は、Ni
・Cr電気抵抗線等の電気抵抗発熱線の周りをMgO等
の電気絶縁層で囲み、更にその周りを金属チューブ等の
保護管で囲んだ電気抵抗発熱体であって、例えば助川電
機製の商品名マイクロヒーターを使用することができ
る。尚、電気抵抗発熱体36と反応カートリッジ12b
との間の隙間に例えば米国サーモン・マニュファクチャ
リング社製の商品名サーモンセメントの伝熱セメントを
埋め込んで、電気抵抗発熱体36と反応カートリッジ1
2bとの間の伝熱性を高めるようにすることもできる。
また、チューブ状の電気抵抗発熱体36に代えて、例え
ば既知の構成の帯状又は面状の電気抵抗発熱体を使用す
ることもできる。
The tubular electric resistance heating element 36 is made of Ni.
An electric resistance heating element in which the electric resistance heating wire such as a Cr electric resistance wire is surrounded by an electric insulating layer such as MgO and further surrounded by a protective tube such as a metal tube, for example, a product made by Sukekawa Electric Name micro heater can be used. The electric resistance heating element 36 and the reaction cartridge 12b
A heat transfer cement, such as Salmon Cement (trade name) manufactured by US Salmon Manufacturing Co., Ltd., is embedded in the gap between the electric resistance heating element 36 and the reaction cartridge 1.
2b can be improved.
Further, instead of the tubular electric resistance heating element 36, for example, a band-shaped or planar electric resistance heating element having a known configuration can be used.

【0039】以上の構成によって、電気抵抗発熱体36
は、発生した熱を反応カートリッジ12bに伝熱し、反
応カートリッジ12bを、常時、380℃以上に保持す
る。よって、装置の運転を停止した時、及び装置の運転
を緊急停止した時であっても、反応カートリッジ12b
の温度が380℃以下に低下することはない。従って、
チタン製の反応カートリッジ12bが、塩酸等の腐食性
流体によって腐食するようなことは生じない。
With the above configuration, the electric resistance heating element 36
Transfers the generated heat to the reaction cartridge 12b, and always keeps the reaction cartridge 12b at 380 ° C. or higher. Therefore, even when the operation of the apparatus is stopped and the operation of the apparatus is stopped urgently, the reaction cartridge 12b
Does not drop below 380 ° C. Therefore,
The reaction cartridge 12b made of titanium does not corrode by corrosive fluid such as hydrochloric acid.

【0040】実施形態例1の変形例 実施形態例1の変形例では、チューブ状の電気抵抗発熱
体36に代えて、図3(a)及び(b)に示すように、
加熱手段44が、反応カートリッジ12bの外周壁に被
覆した耐熱性断熱材層46内に、絶縁層で被覆していな
い裸のNi・Cr電気抵抗線48を埋設したものとして
構成されている。更に別の変形例では、加熱手段50
は、図3(b)に示すように、反応カートリッジ12b
の外周壁を耐熱性の電気絶縁膜52で被覆し、次いで電
気絶縁層で被覆していない裸のNi・Cr電気抵抗線5
4を巻回し、更にその外側を耐熱性断熱材層56で被覆
したもので構成されている。
Modification of Embodiment 1 In a modification of Embodiment 1, as shown in FIGS. 3A and 3B, a tubular electric resistance heating element 36 is used instead.
The heating means 44 is configured such that a bare Ni.Cr electric resistance wire 48 not covered with an insulating layer is embedded in a heat-resistant heat insulating material layer 46 covering the outer peripheral wall of the reaction cartridge 12b. In yet another variant, the heating means 50
As shown in FIG. 3B, the reaction cartridge 12b
Is covered with a heat-resistant electric insulating film 52, and then the bare Ni.Cr electric resistance wire 5 not covered with the electric insulating layer.
4 and the outside thereof is further covered with a heat-resistant heat insulating material layer 56.

【0041】実施形態例1の改変例 本改変例の加熱手段58は、チューブ状の電気抵抗発熱
体36に代えて、図4に示すように、反応カートリッジ
12bの外周壁に沿って絶縁層で被覆された誘導コイル
60を巻回し、ケーブル38を介して非常電源から誘導
コイル60に通電し、反応カートリッジ12bに誘導電
流を惹起させ、その誘導電流に対する電気抵抗によって
反応カートリッジ12b内で熱を発生させ、加熱するこ
ともできる。更には、反応カートリッジ12bに直接通
電して、反応カートリッジ自体の電気抵抗によって熱を
発生させ、加熱することもできる。
Modification of Embodiment 1 As shown in FIG. 4, the heating means 58 of this modification is an insulating layer along the outer peripheral wall of the reaction cartridge 12b instead of the tubular electric resistance heating element 36. The coated induction coil 60 is wound, an electric current is applied to the induction coil 60 from an emergency power supply via the cable 38, an induced current is induced in the reaction cartridge 12b, and heat is generated in the reaction cartridge 12b by an electric resistance to the induced current. And heat it. Furthermore, it is also possible to directly heat the reaction cartridge 12b, generate heat by the electric resistance of the reaction cartridge itself, and heat the reaction cartridge.

【0042】実施形態例2 本実施形態例は、本発明に係る超臨界水処理装置の実施
形態の別の例であって、図5は反応器の構成を示す断面
図である。本実施形態例の超臨界水処理装置は、反応カ
ートリッジ12bの加熱手段が異なることを除いて実施
形態例1の超臨界水処理装置10と同じ構成を備えてい
る。本実施形態例の反応カートリッジ12bの加熱手段
62は、図5に示すように、反応カートリッジ12bの
外周壁に沿って巻回され、超臨界水を通水する蛇管64
と、蛇管64に380℃を超える温度の超臨界水を常時
供給する超臨界水供給源(図示せず)とを備えている。
尚、蛇管64と反応カートリッジ12bとの間の隙間に
例えば米国サーモン・マニュファクチャリング社製の商
品名サーモンセメントの伝熱セメントを埋め込んで、蛇
管64と反応カートリッジ12bとの間の伝熱性を高め
るようにすることもできる。
Embodiment 2 This embodiment is another example of the embodiment of the supercritical water treatment apparatus according to the present invention, and FIG. 5 is a sectional view showing the structure of a reactor. The supercritical water treatment apparatus of the present embodiment has the same configuration as the supercritical water treatment apparatus 10 of the first embodiment except that the heating means of the reaction cartridge 12b is different. As shown in FIG. 5, the heating means 62 of the reaction cartridge 12b of the present embodiment is wound around the outer peripheral wall of the reaction cartridge 12b, and is a coiled pipe 64 through which supercritical water flows.
And a supercritical water supply source (not shown) that constantly supplies supercritical water having a temperature exceeding 380 ° C. to the flexible tube 64.
A heat transfer cement such as Salmon Cement (trade name, manufactured by Salmon Manufacturing Co., Ltd., USA) is embedded in the gap between the flexible tube 64 and the reaction cartridge 12b to enhance the heat transfer between the flexible tube 64 and the reaction cartridge 12b. You can also do so.

【0043】以上の構成によって、蛇管64は、超臨界
水の熱を反応カートリッジ12bに伝熱し、反応カート
リッジ12bを、常時、380℃に保持する。よって、
装置の運転を停止した時、及び装置の運転を緊急停止し
た時であっても、反応カートリッジ12bの温度が38
0℃以下に低下することはない。従って、チタン製の反
応カートリッジ12bが、塩酸等の腐食性流体によって
腐食するようなことは生じない。
With the above configuration, the flexible tube 64 transfers the heat of the supercritical water to the reaction cartridge 12b, and keeps the reaction cartridge 12b at 380 ° C. at all times. Therefore,
Even when the operation of the apparatus is stopped and the operation of the apparatus is stopped urgently, the temperature of the reaction cartridge
It does not drop below 0 ° C. Therefore, the reaction cartridge 12b made of titanium does not corrode by corrosive fluid such as hydrochloric acid.

【0044】実施形態例2の改変例 本改変例の加熱手段66は、実施形態例2の反応カート
リッジ12bの加熱手段として設けた蛇管64に代え
て、図6に示すように、反応カートリッジ12bの外周
壁に沿って設けられたジャケット68と、超臨界水供給
源(図示せず)からジャケット68に380℃を超える
温度の超臨界水を常時供給する供給管70と、超臨界水
を排出させる排出管72とを備え、ジャケット68内に
380℃を超える温度の超臨界水を常時流すことによ
り、反応カートリッジ12bを380℃以上に保持す
る。尚、図6は実施形態例2の改変例の反応器の断面図
である。
Modification of Embodiment 2 The heating means 66 of this modification is different from that of the reaction cartridge 12b of Embodiment 2 in that, as shown in FIG. A jacket 68 provided along the outer peripheral wall, a supply pipe 70 for constantly supplying supercritical water having a temperature exceeding 380 ° C. to the jacket 68 from a supercritical water supply source (not shown), and discharging the supercritical water. The reaction cartridge 12b is maintained at a temperature of 380 ° C. or higher by always providing supercritical water having a temperature exceeding 380 ° C. in the jacket 68. FIG. 6 is a sectional view of a reactor according to a modification of the second embodiment.

【0045】また、実施形態例2及びその改変例では、
超臨界水に代えて380℃を超える温度に加熱された空
気を使用することもできる。その際には、空気を加熱す
る加熱炉の前に、空気中の油等の不純物を除去するフィ
ルタを設けることが好ましい。
In Embodiment 2 and its modifications,
Air heated to a temperature exceeding 380 ° C. can be used instead of supercritical water. In that case, it is preferable to provide a filter for removing impurities such as oil in the air before the heating furnace for heating the air.

【0046】実施形態例3 本実施形態例は、本発明に係る超臨界水処理装置の実施
形態の更に別の例であって、図7は本実施形態例の超臨
界水処理装置の構成を示すフローシートである。本実施
形態例の超臨界水処理装置74は、反応カートリッジ1
2bの加熱手段が異なることを除いて実施形態例1の超
臨界水処理装置10と同じ構成を備えている。即ち、超
臨界水処理装置74は、反応カートリッジ12bの加熱
手段として、圧力バランス用空気送入管30に空気加熱
器76を備え、空気加熱器76で380℃を超える温度
に加熱した空気を圧力バランス用空気として反応器12
の環状部12c(図2参照)に送入し、圧力バランス用
空気によって反応カートリッジ12bを380℃以上に
加熱する。
Embodiment 3 This embodiment is still another example of the embodiment of the supercritical water treatment apparatus according to the present invention. FIG. 7 shows the configuration of the supercritical water treatment apparatus of this embodiment. It is a flow sheet shown. The supercritical water treatment device 74 according to the present embodiment is provided with the reaction cartridge 1
It has the same configuration as the supercritical water treatment apparatus 10 of Embodiment 1 except that the heating means 2b is different. That is, the supercritical water treatment device 74 includes an air heater 76 in the pressure-balancing air inlet pipe 30 as a heating means of the reaction cartridge 12b, and pressurizes air heated to a temperature exceeding 380 ° C. by the air heater 76. Reactor 12 as air for balance
The reaction cartridge 12b is heated to 380 ° C. or higher by air for pressure balancing.

【0047】実施形態例1から実施形態例3、それらの
変形例、及び改変例では、反応カートリッジ12aの温
度制御について、言及していないが、反応カートリッジ
12aに温度計を設け、温度計の指示に基づいて、反応
カートリッジ12aの温度が380℃未満にならないよ
うに、電気抵抗発熱体36、誘導コイル60等に供給す
る電流、又は蛇管64、ジャケット68に供給する超臨
界水、空気の流量を調整する温度制御装置を設けても良
い。更には、熱エネルギーの消費量を節減するために、
電気抵抗発熱体36、誘導コイル60、蛇管64、ジャ
ケット68等の外側を耐熱性断熱材で断熱保温するよう
にしても良い。
Although the first to third embodiments and their modifications and modifications do not refer to the temperature control of the reaction cartridge 12a, the reaction cartridge 12a is provided with a thermometer and the thermometer indicates the temperature. The current supplied to the electric resistance heating element 36, the induction coil 60, or the like, or the flow rates of supercritical water and air supplied to the flexible tube 64 and the jacket 68 are controlled so that the temperature of the reaction cartridge 12a does not become lower than 380 ° C. A temperature controller for adjustment may be provided. Furthermore, in order to reduce heat energy consumption,
The outside of the electric resistance heating element 36, the induction coil 60, the flexible tube 64, the jacket 68 and the like may be insulated and kept warm with a heat-resistant heat insulating material.

【0048】[0048]

【発明の効果】本発明によれば、反応域の温度を550
℃以上650℃以下に維持し、かつ圧力バランス型反応
器の反応カートリッジの少なくとも内表層をチタン層又
はチタン合金層で形成し、加熱手段で反応カートリッジ
の外側から反応カートリッジを加熱して380℃以上に
維持することにより、PCB等の高濃度有機塩素化合物
を含む被処理液を処理する超臨界水処理装置の腐食の問
題を解決することができる。従って、本発明は、PCB
等の高濃度有機塩素化合物を含む被処理液の処理を長期
にわたり安定して行い、しかも3ppb以下の排出基準
を満足するように処理できる超臨界水処理装置を実現し
ている。
According to the present invention, the temperature of the reaction zone is set to 550.
C. or more and 650.degree. C. or less, and at least the inner surface layer of the reaction cartridge of the pressure balanced reactor is formed of a titanium layer or a titanium alloy layer, and the heating cartridge is heated from the outside of the reaction cartridge to 380.degree. , The problem of corrosion of the supercritical water treatment apparatus for treating the liquid to be treated containing a high-concentration organic chlorine compound such as PCB can be solved. Therefore, the present invention provides a PCB
Thus, a supercritical water treatment apparatus capable of stably treating a liquid to be treated containing a high-concentration organic chlorine compound such as that described above for a long time and satisfying a discharge standard of 3 ppb or less has been realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1の超臨界水処理装置の構成を示す
フローシートである。
FIG. 1 is a flow sheet showing a configuration of a supercritical water treatment apparatus of a first embodiment.

【図2】実施形態例1の超臨界水処理装置の反応器の構
成を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a configuration of a reactor of the supercritical water treatment apparatus according to the first embodiment.

【図3】図3(a)及び(b)は、それぞれ、実施形態
例1の変形例の反応カートリッジの加熱手段の構成を示
す概念図である。
FIGS. 3A and 3B are conceptual diagrams each showing a configuration of a heating unit of a reaction cartridge according to a modified example of the first embodiment.

【図4】実施形態例1の改変例の反応器の断面図であ
る。
FIG. 4 is a sectional view of a reactor according to a modification of the first embodiment.

【図5】実施形態例2の超臨界水処理装置の反応器の断
面図である。
FIG. 5 is a cross-sectional view of a reactor of a supercritical water treatment apparatus according to a second embodiment.

【図6】実施形態例2の超臨界水処理装置の改変例の反
応器の断面図である。
FIG. 6 is a cross-sectional view of a reactor as a modified example of the supercritical water treatment apparatus of the second embodiment.

【図7】実施形態例3の超臨界水処理装置の構成を示す
フローシートである。
FIG. 7 is a flow sheet showing a configuration of a supercritical water treatment apparatus of a third embodiment.

【図8】従来の超臨界水処理装置の構成を示すフローシ
ートである。
FIG. 8 is a flow sheet showing a configuration of a conventional supercritical water treatment apparatus.

【図9】従来の圧力バランス型反応器の構成を示す断面
図である。
FIG. 9 is a cross-sectional view showing a configuration of a conventional pressure balanced reactor.

【符号の説明】[Explanation of symbols]

10 実施形態例1の超臨界水処理装置 12 耐圧密閉型反応器 12a 外円筒体 12b 反応カートリッジ 14 処理液管 15 中和混合器 16 冷却器 18 圧力制御弁 20 気液分離器 22 被処理液ポンプ 24 空気圧縮機 26 被処理液管 28 空気送入管 30 圧力バランス用空気送入管 31 アルカリ水溶液供給系統 32 温度制御装置 34 温度計 35 実施形態例1の反応器の反応カートリッジに設け
た加熱手段 36 電気抵抗発熱体 38 ケーブル 40 コネクタ 42 シール部品 44 実施形態例1の変形例の加熱手段 46 耐熱性断熱材層 48 Ni・Cr電気抵抗線 50 実施形態例1の別の変形例の加熱手段 52 耐熱性の電気絶縁膜 54 Ni・Cr電気抵抗線 56 耐熱性断熱材層 58 実施形態例1の変形例の加熱手段 60 誘導コイル 62 実施形態例2の加熱手段 64 蛇管 66 実施形態例2の改変例の加熱手段 68 ジャケット 70 供給管 72 排出管 74 実施形態例3の超臨界水処理装置 76 空気加熱器 80 従来の超臨界水処理装置 81 耐圧密閉型の縦型反応器 82 超臨界水域 83 仮想的界面 84 亜臨界水域 85 流入管 86 被処理液ライン 87 空気ライン 88 超臨界水ライン 89 中和剤ライン 90 処理液ライン 91 亜臨界水ライン 92 亜臨界排水ライン 100 従来の圧力バランス型反応器 101 外円筒体 102 反応カートリッジ 103 入口ノズル 104 反応域 105 圧力バランス用空気送入口 106 環状部 107 上部間隙 108 反応器流出管
Reference Signs List 10 supercritical water treatment apparatus of first embodiment 12 pressure-resistant sealed reactor 12a outer cylinder 12b reaction cartridge 14 treatment liquid tube 15 neutralization mixer 16 cooler 18 pressure control valve 20 gas-liquid separator 22 liquid-to-be-treated pump Reference Signs List 24 Air compressor 26 Liquid pipe to be treated 28 Air inlet pipe 30 Air inlet pipe for pressure balance 31 Alkaline aqueous solution supply system 32 Temperature controller 34 Thermometer 35 Heating means provided in the reaction cartridge of the reactor of the first embodiment 36 Electric Resistance Heating Element 38 Cable 40 Connector 42 Sealing Part 44 Heating Means of Modification of First Embodiment 46 Heat Resistant Insulating Material Layer 48 Ni / Cr Electric Resistance Wire 50 Heating Means of Another Modification of First Embodiment 52 Heat-resistant electric insulating film 54 Ni / Cr electric resistance wire 56 Heat-resistant heat insulating material layer 58 Heating means 60 as a modification of the first embodiment 60 Conducting coil 62 Heating means of the second embodiment 64 Serpentine pipe 66 Heating means of a modification of the second embodiment 68 Jacket 70 Supply pipe 72 Discharge pipe 74 Supercritical water treatment apparatus of the third embodiment 76 Air heater 80 Conventional super Critical water treatment apparatus 81 Pressure-resistant closed vertical reactor 82 Supercritical water area 83 Virtual interface 84 Subcritical water area 85 Inflow pipe 86 Liquid line to be treated 87 Air line 88 Supercritical water line 89 Neutralizer line 90 Treatment liquid line Reference Signs List 91 Subcritical water line 92 Subcritical drainage line 100 Conventional pressure balance type reactor 101 Outer cylinder 102 Reaction cartridge 103 Inlet nozzle 104 Reaction zone 105 Pressure balance air inlet 106 Annular part 107 Upper gap 108 Reactor outflow pipe

フロントページの続き (72)発明者 依田 勝男 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 (72)発明者 安生 徳幸 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 4D038 AA08 AB14 BA02 BA04 BA06 BB01 BB13 BB16 BB20 4D050 AA13 AB19 BB01 BC01 BC02 BD02 BD06 BD08 CA13 CA20Continuation of the front page (72) Inventor Katsuo Yoda 1-8-2 Shinsuna, Koto-ku, Tokyo Organo Co., Ltd. (72) Inventor Noriyuki Yasou 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Co., Ltd. F term (reference) 4D038 AA08 AB14 BA02 BA04 BA06 BB01 BB13 BB16 BB20 4D050 AA13 AB19 BB01 BC01 BC02 BD02 BD06 BD08 CA13 CA20

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧力容器として形成された外殻体と、外
殻体内に配置され、相互に連通する内殻体からなる反応
カートリッジとの2重筒体として形成された圧力バラン
ス型反応器を備え、有機塩素化合物を含有する被処理液
を反応カートリッジ内の超臨界水中に導入し、550℃
以上650℃以下の温度で酸化剤により酸化分解し、被
処理液より有機塩素化合物濃度の低い処理液を反応器か
ら流出させる超臨界水処理装置において、 反応カートリッジの少なくとも内表層が、チタン層又は
チタン合金層で形成され、 反応カートリッジの外側から反応カートリッジを加熱し
て380℃以上に維持する加熱手段を備えていることを
特徴とする超臨界水処理装置。
A pressure-balanced reactor formed as a double cylinder comprising an outer shell formed as a pressure vessel and a reaction cartridge disposed in the outer shell and comprising an inner shell communicating with each other. A liquid to be treated containing an organic chlorine compound is introduced into supercritical water in a reaction cartridge,
In a supercritical water treatment apparatus that oxidizes and decomposes with an oxidizing agent at a temperature of not less than 650 ° C. and causes a treatment liquid having a lower concentration of an organic chlorine compound than the liquid to be treated to flow out of the reactor, at least the inner surface layer of the reaction cartridge has a titanium layer or A supercritical water treatment apparatus comprising a heating means formed of a titanium alloy layer and heating the reaction cartridge from outside the reaction cartridge to maintain the temperature at 380 ° C. or higher.
【請求項2】 加熱手段が、反応カートリッジの外周壁
に沿って設けられた電気抵抗発熱体と電気抵抗発熱体に
電流を供給する電流供給手段とを備えていることを特徴
とする請求項1に記載の超臨界水処理装置。
2. The heating means comprises an electric resistance heating element provided along the outer peripheral wall of the reaction cartridge and a current supply means for supplying electric current to the electric resistance heating element. 3. The supercritical water treatment apparatus according to item 1.
【請求項3】 加熱手段が、反応カートリッジの外周壁
に沿って巻回された誘導コイルと誘導コイルに電流を供
給する電流供給手段とを備えているか、または反応カー
トリッジ自体に電流を供給する電流供給手段を備えてい
ることを特徴とする請求項1に記載の超臨界水処理装
置。
3. The heating means includes an induction coil wound along the outer peripheral wall of the reaction cartridge and a current supply means for supplying current to the induction coil, or a current for supplying current to the reaction cartridge itself. The supercritical water treatment apparatus according to claim 1, further comprising a supply unit.
【請求項4】 加熱手段が、反応カートリッジの外側に
設けられたジャケット又は反応カートリッジの外側に巻
回された蛇管と、ジャケット又は蛇管に380℃を超え
る温度の熱媒体を供給する熱媒体供給手段とを備えてい
ることを特徴とする請求項1に記載の超臨界水処理装
置。
4. A heating means comprising: a jacket provided outside the reaction cartridge or a coiled tube wound around the reaction cartridge; and a heating medium supply means for supplying a heating medium having a temperature exceeding 380 ° C. to the jacket or the tube. The supercritical water treatment apparatus according to claim 1, comprising:
【請求項5】 熱媒体が、380℃を超える温度の超臨
界水又は空気であることを特徴とする請求項4に記載の
超臨界水処理装置。
5. The supercritical water treatment apparatus according to claim 4, wherein the heat medium is supercritical water or air at a temperature exceeding 380 ° C.
【請求項6】 加熱手段として、空気を加熱する加熱器
を備え、380℃を超える温度の空気を圧力バランス用
空気として外殻体と反応カートリッジとの間に送入する
ことを特徴とする請求項1に記載の超臨界水処理装置。
6. A heating means comprising a heater for heating air, wherein air having a temperature exceeding 380 ° C. is fed as pressure balancing air between the outer shell and the reaction cartridge. Item 2. A supercritical water treatment apparatus according to item 1.
【請求項7】 中和手段が、反応器から処理液を流出さ
せる処理液管と反応器との接続部の直ぐ下流の処理液管
に設けてあることを特徴とする請求項1から7のうちの
いずれか1項に記載の超臨界水処理装置。
7. The processing liquid pipe according to claim 1, wherein the neutralizing means is provided in a processing liquid pipe immediately downstream of a connecting portion between the processing liquid pipe for discharging the processing liquid from the reactor and the reactor. The supercritical water treatment apparatus according to any one of the preceding claims.
JP2000042947A 2000-02-21 2000-02-21 Supercritical water treatment equipment Expired - Fee Related JP4267791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000042947A JP4267791B2 (en) 2000-02-21 2000-02-21 Supercritical water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000042947A JP4267791B2 (en) 2000-02-21 2000-02-21 Supercritical water treatment equipment

Publications (3)

Publication Number Publication Date
JP2001232381A true JP2001232381A (en) 2001-08-28
JP2001232381A5 JP2001232381A5 (en) 2006-12-21
JP4267791B2 JP4267791B2 (en) 2009-05-27

Family

ID=18565945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000042947A Expired - Fee Related JP4267791B2 (en) 2000-02-21 2000-02-21 Supercritical water treatment equipment

Country Status (1)

Country Link
JP (1) JP4267791B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061903A (en) * 2004-07-26 2006-03-09 National Institute Of Advanced Industrial & Technology High-temperature, high-pressure microreactor/micro heat exchanger
KR100836006B1 (en) * 2007-03-30 2008-06-09 한국기계연구원 Supercritical water oxidation device and protection against corrosion method of the same
JP2010227880A (en) * 2009-03-27 2010-10-14 Furukawa Electric Co Ltd:The Tube-type reaction apparatus
JP2013169515A (en) * 2012-02-21 2013-09-02 Ricoh Co Ltd Fluid purifying apparatus
CN109184646A (en) * 2018-10-29 2019-01-11 邓晓亮 Electromagnetic wave heating realizes overcritical hot composite powerful displacement of reservoir oil device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061903A (en) * 2004-07-26 2006-03-09 National Institute Of Advanced Industrial & Technology High-temperature, high-pressure microreactor/micro heat exchanger
KR100836006B1 (en) * 2007-03-30 2008-06-09 한국기계연구원 Supercritical water oxidation device and protection against corrosion method of the same
JP2010227880A (en) * 2009-03-27 2010-10-14 Furukawa Electric Co Ltd:The Tube-type reaction apparatus
JP2013169515A (en) * 2012-02-21 2013-09-02 Ricoh Co Ltd Fluid purifying apparatus
CN109184646A (en) * 2018-10-29 2019-01-11 邓晓亮 Electromagnetic wave heating realizes overcritical hot composite powerful displacement of reservoir oil device and method
CN109184646B (en) * 2018-10-29 2023-11-17 邓晓亮 Device and method for realizing supercritical thermal compound powerful oil displacement through electromagnetic wave heating

Also Published As

Publication number Publication date
JP4267791B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US6878290B2 (en) Method for oxidizing materials in supercritical water
US4823711A (en) Thermal decomposition processor and system
AU692254B2 (en) Reactor for high temperature, elevated pressure, corrosive reactions
JP5988155B2 (en) Waste liquid treatment equipment
JP4267791B2 (en) Supercritical water treatment equipment
JP3274280B2 (en) High pressure reaction vessel equipment
KR100249496B1 (en) Process for oxidizing liquid wastes containing organic compounds using supercritical water and catalytic oxidation
Lee et al. An anti-corrosive reactor for the decomposition of halogenated hydrocarbons with supercritical water oxidation
JP4455703B2 (en) Supercritical water reactor
JP2001170664A (en) Supercritical water treating device
EP1085927A1 (en) Method and apparatus for treating salt streams
JP4334162B2 (en) Reaction vessel
JP2002361069A (en) Supercritical hydroreaction apparatus and vessel
JP2001170664A5 (en)
JP4107637B2 (en) Hydrothermal reactor
JP3836270B2 (en) Method for shutting down supercritical water reactor
JP2001232381A5 (en)
JP2001269566A (en) Supercritical water reaction apparatus
JP2002001089A (en) Supercritical water reaction apparatus and container
JP2001300290A (en) Supercritical water reaction apparatus and container
Son et al. Effect of NaOH on the decomposition of halogenated hydrocarbon by supercritical water oxidation
JPH10314768A (en) Method for oxidation of supercritical water
JP2002273459A (en) Method and equipment for hydrothermal oxidation reaction
JP3464897B2 (en) Supercritical water oxidation method and apparatus
JP3816218B2 (en) Method and apparatus for decomposing organic compounds containing halogen atoms and / or sulfur atoms

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees