JP3836270B2 - Method for shutting down supercritical water reactor - Google Patents

Method for shutting down supercritical water reactor Download PDF

Info

Publication number
JP3836270B2
JP3836270B2 JP09063299A JP9063299A JP3836270B2 JP 3836270 B2 JP3836270 B2 JP 3836270B2 JP 09063299 A JP09063299 A JP 09063299A JP 9063299 A JP9063299 A JP 9063299A JP 3836270 B2 JP3836270 B2 JP 3836270B2
Authority
JP
Japan
Prior art keywords
reactor
supercritical water
oxygen
liquid
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09063299A
Other languages
Japanese (ja)
Other versions
JP2000279790A (en
JP2000279790A5 (en
Inventor
慎一朗 川崎
太郎 大江
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP09063299A priority Critical patent/JP3836270B2/en
Publication of JP2000279790A publication Critical patent/JP2000279790A/en
Publication of JP2000279790A5 publication Critical patent/JP2000279790A5/ja
Application granted granted Critical
Publication of JP3836270B2 publication Critical patent/JP3836270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、相互に連通する圧力容器と反応カートリッジとからなる圧力バランス型反応器を反応器として備えた超臨界水反応装置の運転停止方法に関し、更に詳細には、圧力バランス型反応器の圧力容器を腐食させないようにして、超臨界水反応装置の運転を停止する方法に関するものである。
【0002】
【従来の技術】
環境問題に対する認識の高まりと共に、有機物の酸化、分解能力の高い超臨界水反応を利用して、環境汚染物質を分解、無害化する試みが注目されている。すなわち、超臨界水の高い反応性を利用した超臨界水反応により、従来技術では分解することが難しかった有害な難分解性の有機物、例えば、PCB(ポリ塩素化ビフェニル)、ダイオキシン、有機塩素系溶剤等を分解して、二酸化炭素、窒素、水、無機塩などの無害な生成物に転化する試みである。
【0003】
超臨界水反応装置とは、超臨界水の高い反応性を利用して有機物を分解する装置であって、例えば、難分解性の有害な有機物を分解して無害な二酸化炭素と水に転化したり、難分解性の高分子化合物を分解して有用な低分子化合物に転化したりするために、現在、その実用化が盛んに研究されている。
超臨界水とは、超臨界状態にある水、即ち、水の臨界点を越えた状態にある水を言い、詳しくは、374.1℃以上の温度で、かつ22.04MPa以上の圧力下にある状態の水を言う。超臨界水は、有機物を溶解する溶解能が高く、有機化合物に多い非極性物質をも完全に溶解することができる一方、逆に、金属、塩等の無機物に対する溶解能は著しく低い。また、超臨界水は、酸素や窒素などの気体と任意の割合で混合して単一相を構成することができる。
【0004】
ここで、図1及び図2を参照して、超臨界水反応装置の基本的な構成を説明する。図1は超臨界水反応装置の基本的構成を示すフローシートである。図2は圧力バランス型反応器の構成を示す断面図である。
超臨界水反応装置10は、有機物を含む被処理液を超臨界水の存在下で超臨界水反応により処理する装置であって、図1に示すように、超臨界水反応を行う反応器として、縦型の耐圧密閉型反応器12を備え、反応器12から処理液を流出させる処理液管14に、順次、処理液を冷却する冷却器16、反応器12内の圧力を制御する圧力制御弁18、及び、処理液をガスと液体とに気液分離する気液分離器20を備えている。
尚、縦型反応容器は、通常、固形物の含有率が低い被処理液を処理する際に適しており、固形物の含有率が高い被処理液を処理する際には、パイプ状のチューブラー反応器を使用することもある。
【0005】
超臨界水反応装置10は、超臨界水反応に供する反応物を反応器12に供給する供給系統として、被処理液管22を介して反応器12に有機物を含む被処理液を送入する被処理液ポンプ24と、空気送入管26を介して反応器12に酸化剤として空気を送入する空気圧縮機28とを備えている。
更に、超臨界水反応装置10は、必要に応じて、反応器12での超臨界水反応を維持するのに必要な熱エネルギー源として補助燃料を反応器12に送入する補助燃料管30、及び反応器12で超臨界水反応により処理液中の有機物から発生した塩素等を中和するアルカリ剤を反応器12に送入するアルカリ剤送入管31を被処理液管22に合流させている。なお、被処理液中の水分で超臨界水状態を維持できない場合は、被処理液管22に補給水管(図示せず)を接続し、補給水を補給することもある。
【0006】
被処理液管22と空気送入管26とは、二流体ノズル34を介して反応器12に接続されている。
また、超臨界水反応装置10は、装置を緊急停止する際に反応器12を緊急遮断するために、反応器12周りの配管に、例えば被処理液管22、空気送入管26、処理液管14等に、それぞれ、緊急遮断弁(図示せず)を備えている。
【0007】
なお、被処理液と処理液とを熱交換させて処理液を冷却するとともに被処理液を昇温して熱回収を図る熱交換器(図示せず)を冷却器16の上流の処理液管14に、又は被処理液を予熱する予熱器を反応器12の上流の被処理液管22に設けることもある。
更には、反応器12の下部に亜臨界水領域を設け、反応器12内で生じた無機塩類を亜臨界水領域に沈降させ、除去する機構を設けることもある。
【0008】
ところで、超臨界水中で塩素等のハロゲンを含む有機物、例えばPCB類を処理すると、PCBに含まれている塩素原子から塩酸等が生じ、処理液が極めて高い腐食性を有するという問題があった。
そこで、反応器12として、次に説明する圧力バランス型反応器が使用されている。
【0009】
圧力バランス型反応器12は、図2に示すように、外筒として設けられた圧力容器40と、圧力容器40内に内筒として設けられた反応カートリッジ42との2重筒体として形成され、反応カートリッジ42の内部43は、超臨界水反応の反応域として構成されている。また、圧力容器40と反応カートリッジ42との間に、連通孔44を介して反応カートリッジ42の内部と連通する環状部46が形成されており、環状部46と反応カートリッジ42内とは、圧力がバランスしている。換言すれば、反応カートリッジ42は、反応器12の内圧力を受けないようにして反応域を区画する耐腐食性の隔壁として機能している。
圧力容器40は、反応器12の内圧力に対抗するために、厚肉の高強度鋼製耐圧円筒型容器として形成され、一方、反応カートリッジ42は、耐腐食性の高い薄肉の有蓋円筒体として形成され、下端を圧力容器40の底部に密着固定させている。なお、反応カートリッジ42にも底部を設け、圧力容器40の底部に反応カートリッジ42の底部を近接して設けてもよい。
【0010】
反応器12は、圧力容器40と反応カートリッジ42とを貫通させて反応カートリッジ42の内部に突出させた二流体ノズル34と、反応カートリッジ42の内部から反応カートリッジ42及び圧力容器40を貫通する処理液導管48と、環状部46に空気を送入する空気送入ノズル50とを備えている。環状部46と反応カートリッジ42内とを連通させる連通孔44は、本例では、二流体ノズル34の周りに形成されている。
二流体ノズル34は、内管52及び外管54が、それぞれ、被処理液管22及び空気送入管26に接続され、空気によって被処理液をアトマジングして噴霧状で反応カートリッジ42内に導入している。
処理液導管48は処理液管14に接続されている。また、空気送入ノズル50は空気送入管26から分岐した空気送入枝管56(図1参照)に接続され、空気を環状部46に導入し、次いで連通孔44を介して反応カートリッジ42内部に流入させ、酸化剤の一部とする。
【0011】
圧力バランス型反応器12では、二流体ノズル34を経て反応カートリッジ42に流入した空気と同じ圧力の空気が環状部46に導入されているので、反応カートリッジ42の内外では圧力差が殆ど生じない。また、環状部46に空気を導入するのは、空気が非腐食性流体であるからである。
尚、本例では、圧力バランス型反応器12に被処理液及び空気を流入させるために、二流体ノズルを使用しているが、二流体ノズルに代えて、それぞれ、圧力容器40及び反応カートリッジ42を貫通する別個の流入ノズルを設けてもよい。
【0012】
【発明が解決しようとする課題】
しかし、上述の圧力バランス型反応器を反応器として使用している超臨界水反応装置を運転している間に、圧力バランス型反応器の圧力容器40の内壁に腐食が発生していることが判った。特に、図3に示すように、圧力容器40の上部壁に腐食が著しいことが確認された。
超臨界水反応装置は、高圧高温下で反応を進行させているので、万一反応器の壁に極めて小さな腐食孔が発生しても、応力集中等により、予期しない危険な事態を招くおそれがある。
【0013】
そこで、本発明の目的は、圧力バランス型反応器の圧力容器の内壁に腐食を発生させないようにする対策を提供することである。
【0014】
【課題を解決するための手段】
本発明者は、圧力容器の内壁に腐食が発生する原因を追求した結果、次のことを見い出した。
超臨界水反応装置を緊急停止した際には、反応器周りの配管、例えば被処理液管、空気送入管、処理液管等に設けた緊急遮断弁が閉止するので、反応器は周りから遮断され、被処理液、空気は流入せず、処理液は流出しないものの、反応カートリッジ内の反応流体は、暫時の間、温度が高いため、対流現象によって反応カートリッジの上部に向かって流れ、連通孔44を通って環状部46に流入する。
圧力容器は比較的耐腐食性の低い材質の鋼板で製作されているので、環状部46に流入した反応流体中の塩酸等の酸物質によって、圧力容器の上部壁が腐食される。
【0015】
上述の現象は、超臨界水反応装置の緊急停止時のみならず、通常の運転停止時にも、大なり小なり、程度の差こそあれ、生じる現象であって、従って、圧力バランス型反応器を使用する際には、上述の腐食に留意することが重要である。
そこで、本発明者は、(1)装置の停止時にも反応器の圧力バランスを維持して、反応カートリッジ内の反応流体を環状部に流出させないようにすることが必須であること、(2)反応器内の被処理液の有機物が全て酸化されてしまえば、更に、空気を送入しても、超臨界水反応が進行して異常な状態になるようなことがないことを考慮し、通常の装置停止時は、当然として、緊急停止時にも、空気を反応器の反応カートリッジ内と環状部とに送入して、圧力バランスを保持することを着想し、研究の末、本発明を完成するに到った。
【0016】
上記目的を達成するために、上述の知見に基づいて、本発明は、下記(1)〜(3)に示す超臨界水反応装置の運転停止方法を提供する。
(1)相互に連通する圧力容器と反応カートリッジとからなる2重筒体として形成され、超臨界水を収容する圧力バランス型反応器を備え、被処理液と、酸化剤としての酸素含有ガスとを反応カートリッジ内に供給し、かつ、圧力容器と反応カートリッジとの間に圧力バランス用ガスとしての酸素含有ガスを供給して、超臨界水の存在下で被処理液中の有機物と酸素との超臨界水反応を行う超臨界水反応装置の運転を停止する方法であって、運転を停止する際、
酸素含有ガスを供給しながら、被処理液の供給を停止するステップと、
反応器の温度が所定温度以下に降温した時点で、酸素含有ガスの供給を停止するステップとを有することを特徴とする超臨界水反応装置の運転停止方法。
(2)反応器に供給する流体として、被処理液、酸化剤としての酸素含有ガス及び圧力バランス用ガスとしての酸素含有ガスに加え、補助燃料、超臨界水、中和剤及び亜臨界水のうちの少なくとも1つを反応カートリッジ内に供給し、運転を停止する際、
酸素含有ガスを供給しながら、反応器に供給する流体のうち酸素含有ガスを除く流体の供給を順次に又は一度に停止するステップと、
反応器の温度が所定温度以下に降温した時点で、酸素含有ガスの供給を停止するステップとを有することを特徴とする(1)の超臨界水反応装置の運転停止方法。
(3)被処理液及び酸化剤としての酸素含有ガスを混合流体として反応カートリッジ内に流入させることを特徴とする(1)又は(2)の超臨界水反応装置の運転停止方法。
【0017】
反応器に供給する流体とは、例えば被処理液、補助燃料、超臨界水、中和剤、亜臨界水等を言う。反応器から流出する流体とは、例えば処理液、亜臨界排水等を言う。酸素含有ガスとして、通常、空気を使用する。
本発明方法で、運転停止とは、緊急運転停止、及びそれ以外の通常の運転停止を含む概念である。
圧力バランス型反応器の反応カートリッジ内に被処理液と酸素含有ガスとを流入させる方式には、制約はなく、二流体ノズルでも良く、又は個別の流入ノズルを使っても良く、また、被処理液と酸素含有ガスとの混合流体を流入させても良い。
本発明方法で所定温度とは、臨界温度、好ましくは300℃である。
【0018】
【発明の実施の形態】
以下に、実施形態例を挙げ、添付図面の図1、図2を参照して、本発明の実施の形態を具体的かつ詳細に説明する。
実施形態例1
本実施形態例は、本発明に係る超臨界水反応装置の運転停止方法を前述した超臨界水反応装置10の通常運転停止に適用した実施形態の一例である。
超臨界水反応装置10の運転を通常停止する際には、通常運転時と同様に、空気圧縮機28を動かし続けながら、空気送入管26を経由して二流体ノズル34から空気を反応器12の反応カートリッジ42内に、また、空気送入管26及び空気送入枝管56を経由して空気送入ノズル50から空気を環状部46に供給しつつ、被処理液管22、アルカリ送入管31、及び補助燃料管30に設けた開閉弁(図示せず)を閉止し、かつ、処理液管14に設けた開閉弁(図示せず)は開口したままとする。
【0019】
次いで、反応器12の温度が所定温度、例えば臨界温度以下、好ましくは300℃以下に降温した時点で、空気送入管26に設けた開閉弁(図示せず)を閉止して、空気の供給を停止する。
【0020】
実施形態例2
本実施形態例は、本発明に係る超臨界水反応装置の運転停止方法を前述した超臨界水反応装置10の緊急運転停止に適用した実施形態の一例である。
超臨界水反応装置10の運転を継続している際に、例えば反応器12内の温度が設定温度より高くなり、緊急停止する際には、通常運転時と同様に、空気圧縮機28を動かし続けながら、空気送入管26を経由して二流体ノズル34から空気を反応器12の反応カートリッジ42内に、また、空気送入管26及び空気送入枝管56を経由して空気送入ノズル50から空気を環状部46に供給しつつ、被処理液管22、アルカリ送入管31、及び補助燃料管30に設けた緊急遮断弁(図示せず)を閉止し、かつ、処理液管14に設けた開閉弁(図示せず)は開口したままとする。
【0021】
次いで、反応器12の温度が所定温度、例えば臨界温度以下、好ましくは300℃以下に降温した時点で、空気送入管26に設けた開閉弁(図示せず)を閉止して、空気の供給を停止する。
【0022】
【発明の効果】
本発明方法によれば、超臨界水反応装置の運転停止の際、酸素含有ガス以外の流体の供給を停止し、かつ、圧力バランス型反応器の反応カートリッジ内と環状部とに酸素含有ガスを供給し続けるので、反応カートリッジ内と環状部との圧力バランスを維持することができ、従来のように、超臨界水反応装置の運転停止に際して、腐食性反応流体が反応カートリッジから環状部に流出し、圧力容器の内壁を腐食するような事態は、生じない。
【図面の簡単な説明】
【図1】圧力バランス型反応器を反応器として備えた超臨界水反応装置の構成を示すフローシートである。
【図2】圧力バランス型反応器の構成を示す断面図である。
【図3】圧力バランス型反応器の腐食領域を示す断面図である。
【符号の説明】
10 超臨界水反応装置
12 反応器
14 処理液管
16 冷却器
18 圧力制御弁
20 気液分離器
22 被処理液管
24 被処理液ポンプ
26 空気送入管
28 空気圧縮機
30 補助燃料管
31 アルカリ剤送入管
34 二流体ノズル
40 圧力容器
42 反応カートリッジ
44 連通孔
46 環状部
48 処理液導管
50 空気送入ノズル
52 二流体ノズルの内管
54 二流体ノズルの外管
56 空気送入枝管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for shutting down a supercritical water reactor equipped with a pressure balance type reactor comprising a pressure vessel and a reaction cartridge communicating with each other as a reactor, and more particularly, the pressure of the pressure balance type reactor. The present invention relates to a method for stopping the operation of a supercritical water reactor without corroding the vessel.
[0002]
[Prior art]
With increasing awareness of environmental issues, attention has been paid to attempts to decompose and detoxify environmental pollutants using supercritical water reactions with high oxidation and decomposition capabilities of organic matter. That is, due to the supercritical water reaction utilizing the high reactivity of supercritical water, harmful and hardly decomposable organic substances that have been difficult to be decomposed by the prior art, such as PCB (polychlorinated biphenyl), dioxin, and organic chlorine It is an attempt to decompose solvents and convert them into harmless products such as carbon dioxide, nitrogen, water and inorganic salts.
[0003]
A supercritical water reactor is a device that decomposes organic substances using the high reactivity of supercritical water. For example, it decomposes harmful organic substances that are difficult to decompose and converts them into harmless carbon dioxide and water. In order to decompose difficult-to-decompose high-molecular compounds and convert them into useful low-molecular compounds, their practical application is currently being actively studied.
Supercritical water refers to water in a supercritical state, that is, water in a state exceeding the critical point of water, and more specifically, at a temperature of 374.1 ° C. or higher and a pressure of 22.04 MPa or higher. Says water in a certain state. Supercritical water has a high ability to dissolve organic substances, and can completely dissolve non-polar substances that are abundant in organic compounds. Conversely, the ability to dissolve inorganic substances such as metals and salts is extremely low. Supercritical water can be mixed with a gas such as oxygen or nitrogen at an arbitrary ratio to form a single phase.
[0004]
Here, with reference to FIG.1 and FIG.2, the basic structure of a supercritical water reaction apparatus is demonstrated. FIG. 1 is a flow sheet showing the basic configuration of a supercritical water reactor. FIG. 2 is a cross-sectional view showing the configuration of the pressure balance reactor.
The supercritical water reaction apparatus 10 is an apparatus for treating a liquid to be treated containing an organic substance by a supercritical water reaction in the presence of supercritical water, and as shown in FIG. 1, a reactor that performs a supercritical water reaction. , A vertical pressure-resistant sealed reactor 12, a processing liquid pipe 14 for flowing the processing liquid out of the reactor 12, a cooler 16 for cooling the processing liquid, and a pressure control for controlling the pressure in the reactor 12. A valve 18 and a gas-liquid separator 20 for separating the processing liquid into gas and liquid are provided.
The vertical reaction vessel is usually suitable for processing a liquid to be processed having a low solid content, and a pipe-shaped tube for processing a liquid to be processed having a high solid content. Rahler reactors may be used.
[0005]
The supercritical water reactor 10 serves as a supply system for supplying a reactant to be subjected to a supercritical water reaction to the reactor 12, and is supplied with a liquid to be treated containing an organic substance to the reactor 12 via a liquid pipe 22 to be treated. A treatment liquid pump 24 and an air compressor 28 for feeding air as an oxidant into the reactor 12 via an air feed pipe 26 are provided.
Further, the supercritical water reaction apparatus 10 includes an auxiliary fuel pipe 30 for sending auxiliary fuel to the reactor 12 as a heat energy source necessary for maintaining the supercritical water reaction in the reactor 12 as necessary. In addition, an alkaline agent feed pipe 31 that feeds into the reactor 12 an alkaline agent that neutralizes chlorine generated from organic substances in the treatment liquid by supercritical water reaction in the reactor 12 is joined to the liquid pipe 22 to be treated. Yes. When the supercritical water state cannot be maintained with the water in the liquid to be treated, a make-up water pipe (not shown) may be connected to the liquid pipe 22 to be treated to replenish the make-up water.
[0006]
The liquid tube 22 to be treated and the air inlet tube 26 are connected to the reactor 12 via a two-fluid nozzle 34.
In addition, the supercritical water reactor 10 includes, for example, a liquid pipe 22 to be treated, an air inlet pipe 26, a treatment liquid, and a pipe around the reactor 12 in order to urgently shut off the reactor 12 when the apparatus is urgently stopped. Each of the pipes 14 and the like is provided with an emergency shut-off valve (not shown).
[0007]
In addition, a heat exchanger (not shown) that heat-recovers the process liquid by heat-exchanging the process liquid and the process liquid and raising the temperature of the process liquid to recover the heat is disposed upstream of the cooler 16. 14 or a preheater for preheating the liquid to be treated may be provided in the liquid pipe 22 to be treated upstream of the reactor 12.
Furthermore, a subcritical water region may be provided in the lower part of the reactor 12, and a mechanism may be provided for causing the inorganic salts generated in the reactor 12 to settle and remove in the subcritical water region.
[0008]
By the way, when an organic substance containing halogen such as chlorine, for example, PCBs, is treated in supercritical water, hydrochloric acid or the like is generated from chlorine atoms contained in the PCB, and the treatment liquid has a very high corrosivity.
Therefore, as the reactor 12, a pressure balance type reactor described below is used.
[0009]
As shown in FIG. 2, the pressure balance type reactor 12 is formed as a double cylinder of a pressure vessel 40 provided as an outer cylinder and a reaction cartridge 42 provided as an inner cylinder in the pressure vessel 40, The inside 43 of the reaction cartridge 42 is configured as a reaction zone for supercritical water reaction. In addition, an annular portion 46 that communicates with the inside of the reaction cartridge 42 is formed between the pressure vessel 40 and the reaction cartridge 42 via the communication hole 44, and the pressure between the annular portion 46 and the reaction cartridge 42 is maintained. Balanced. In other words, the reaction cartridge 42 functions as a corrosion-resistant partition wall that partitions the reaction zone so as not to receive the internal pressure of the reactor 12.
The pressure vessel 40 is formed as a thick-walled high-strength steel pressure-resistant cylindrical vessel to counter the internal pressure of the reactor 12, while the reaction cartridge 42 is formed as a thin-walled covered cylinder with high corrosion resistance. The lower end of the pressure vessel 40 is tightly fixed to the bottom of the pressure vessel 40. Note that the reaction cartridge 42 may also be provided with a bottom, and the bottom of the pressure vessel 40 may be provided close to the bottom of the reaction cartridge 42.
[0010]
The reactor 12 includes a two-fluid nozzle 34 that passes through the pressure vessel 40 and the reaction cartridge 42 and protrudes into the reaction cartridge 42, and a treatment liquid that passes through the reaction cartridge 42 and the pressure vessel 40 from the inside of the reaction cartridge 42. A conduit 48 and an air feed nozzle 50 for feeding air into the annular portion 46 are provided. In this example, a communication hole 44 for communicating the annular portion 46 with the inside of the reaction cartridge 42 is formed around the two-fluid nozzle 34.
Two-fluid nozzle 34, the inner tube 52 and outer tube 54, respectively, are connected to the treated liquid pipe 22 and the air inlet tube 26, the liquid to be treated the atomizing Lee ing to the reaction cartridge 42 in atomized by the air Has been introduced.
The processing liquid conduit 48 is connected to the processing liquid pipe 14. The air inlet nozzle 50 is connected to an air inlet branch pipe 56 (see FIG. 1) branched from the air inlet pipe 26, introduces air into the annular portion 46, and then passes through the communication hole 44 to the reaction cartridge 42. Let it flow into the interior and become part of the oxidant.
[0011]
In the pressure balance type reactor 12, air having the same pressure as the air flowing into the reaction cartridge 42 through the two-fluid nozzle 34 is introduced into the annular portion 46, so that there is almost no pressure difference inside and outside the reaction cartridge 42. The reason why air is introduced into the annular portion 46 is that air is a non-corrosive fluid.
In this example, a two-fluid nozzle is used to allow the liquid to be processed and air to flow into the pressure balance type reactor 12, but instead of the two-fluid nozzle, the pressure vessel 40 and the reaction cartridge 42 are used. There may be a separate inflow nozzle that passes through the.
[0012]
[Problems to be solved by the invention]
However, during operation of the supercritical water reactor using the above-described pressure balanced reactor as a reactor, corrosion has occurred on the inner wall of the pressure vessel 40 of the pressure balanced reactor. understood. In particular, as shown in FIG. 3, it was confirmed that the upper wall of the pressure vessel 40 was significantly corroded.
Since the supercritical water reactor proceeds under high pressure and high temperature, even if extremely small corrosion holes are generated in the reactor wall, it may lead to an unexpected dangerous situation due to stress concentration. is there.
[0013]
Therefore, an object of the present invention is to provide a measure for preventing corrosion from occurring on the inner wall of the pressure vessel of the pressure balanced reactor.
[0014]
[Means for Solving the Problems]
As a result of pursuing the cause of corrosion on the inner wall of the pressure vessel, the present inventor has found the following.
When the supercritical water reactor is shut down urgently, the piping around the reactor, for example, the emergency shut-off valve provided in the liquid pipe to be treated, the air inlet pipe, the processing liquid pipe, etc. is closed. Although the liquid to be processed and air do not flow in and the processing liquid does not flow out, the reaction fluid in the reaction cartridge is hot for a while, so it flows toward the upper part of the reaction cartridge due to the convection phenomenon and communicates. It flows into the annular part 46 through the hole 44.
Since the pressure vessel is made of a steel plate having a relatively low corrosion resistance, the upper wall of the pressure vessel is corroded by an acid substance such as hydrochloric acid in the reaction fluid flowing into the annular portion 46.
[0015]
The phenomenon described above occurs not only when the supercritical water reactor is stopped urgently but also when it is normally shut down. In use, it is important to note the above-mentioned corrosion.
Therefore, the inventor must (1) maintain the pressure balance of the reactor even when the apparatus is stopped so that the reaction fluid in the reaction cartridge does not flow out to the annular portion, (2) If all the organic substances in the liquid to be treated in the reactor are oxidized, even if air is fed in, the supercritical water reaction will not proceed and become abnormal. At the time of normal equipment stop, of course, even during an emergency stop, the idea was to keep the pressure balance by sending air into the reaction cartridge and the annular part of the reactor. It came to completion.
[0016]
In order to achieve the above object, based on the above knowledge, the present invention provides a method for shutting down the supercritical water reactor shown in the following (1) to (3).
(1) It is formed as a double cylinder composed of a pressure vessel and a reaction cartridge communicating with each other, and includes a pressure balance type reactor containing supercritical water, and a liquid to be treated and an oxygen-containing gas as an oxidant Is supplied into the reaction cartridge, and an oxygen-containing gas as a pressure balancing gas is supplied between the pressure vessel and the reaction cartridge, so that the organic substance and oxygen in the liquid to be treated are present in the presence of supercritical water. A method for stopping the operation of a supercritical water reactor that performs a supercritical water reaction.
Stopping the supply of the liquid to be processed while supplying the oxygen-containing gas;
And a step of stopping the supply of the oxygen-containing gas when the temperature of the reactor falls below a predetermined temperature.
(2) As a fluid to be supplied to the reactor, in addition to the liquid to be treated, an oxygen-containing gas as an oxidizing agent, and an oxygen-containing gas as a pressure balance gas, auxiliary fuel, supercritical water, neutralizing agent, and subcritical water When at least one of them is supplied into the reaction cartridge and the operation is stopped,
Stopping the supply of fluids excluding the oxygen-containing gas among the fluids supplied to the reactor sequentially or at a time while supplying the oxygen-containing gas;
And (2) stopping the operation of the supercritical water reactor, wherein the supply of the oxygen-containing gas is stopped when the temperature of the reactor falls below a predetermined temperature.
(3) The method for shutting down the supercritical water reactor according to (1) or (2), wherein the liquid to be treated and an oxygen-containing gas as an oxidant are allowed to flow into the reaction cartridge as a mixed fluid.
[0017]
The fluid supplied to the reactor means, for example, a liquid to be treated, auxiliary fuel, supercritical water, neutralizing agent, subcritical water and the like. The fluid flowing out from the reactor means, for example, a treatment liquid, subcritical waste water, or the like. Normally, air is used as the oxygen-containing gas.
In the method of the present invention, the operation stop is a concept including an emergency operation stop and other normal operation stop.
There are no restrictions on the method of flowing the liquid to be processed and the oxygen-containing gas into the reaction cartridge of the pressure balance type reactor, and a two-fluid nozzle or a separate inflow nozzle may be used. A mixed fluid of liquid and oxygen-containing gas may be allowed to flow.
In the method of the present invention, the predetermined temperature is a critical temperature, preferably 300 ° C.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to FIGS. 1 and 2 of the accompanying drawings.
Embodiment 1
The present embodiment is an example of an embodiment in which the method for stopping the operation of the supercritical water reactor according to the present invention is applied to the normal operation stop of the supercritical water reactor 10 described above.
When the operation of the supercritical water reactor 10 is normally stopped, as in the normal operation, the air is supplied from the two-fluid nozzle 34 through the air inlet pipe 26 while the air compressor 28 is kept moving. 12 reaction cartridge 42 of, also, while through the air inlet tube 26 and the air feed Nyueda pipe 56 is supplied from the air infeed nozzles 50 air annulus 46, the treated liquid pipe 22, an alkaline agent The on-off valve (not shown) provided on the feed pipe 31 and the auxiliary fuel pipe 30 is closed, and the on-off valve (not shown) provided on the processing liquid pipe 14 remains open.
[0019]
Then, the temperature is the predetermined temperature of the reactor 12, for example, below the critical temperature, preferably at the time when the temperature was lowered under 300 ° C. or less, and closed-off valve provided in the air inlet tube 26 (not shown), the air Stop supplying.
[0020]
Embodiment 2
The present embodiment is an example of an embodiment in which the method for shutting down the supercritical water reactor according to the present invention is applied to the emergency shutdown of the supercritical water reactor 10 described above.
When the operation of the supercritical water reactor 10 is continued, for example, when the temperature in the reactor 12 becomes higher than the set temperature and the emergency stop is performed, the air compressor 28 is moved as in the normal operation. While continuing, air is supplied from the two-fluid nozzle 34 through the air inlet pipe 26 into the reaction cartridge 42 of the reactor 12, and also through the air inlet pipe 26 and the air inlet branch pipe 56. While supplying air from the nozzle 50 to the annular portion 46, the emergency shutoff valve (not shown) provided in the liquid pipe 22 to be processed, the alkaline agent inlet pipe 31, and the auxiliary fuel pipe 30 is closed, and the processing liquid The on-off valve (not shown) provided in the pipe 14 remains open.
[0021]
Next, when the temperature of the reactor 12 falls to a predetermined temperature, for example, a critical temperature or lower, preferably 300 ° C. or lower, an on-off valve (not shown) provided in the air inlet pipe 26 is closed to supply air. To stop.
[0022]
【The invention's effect】
According to the method of the present invention, during the operation stop of the supercritical water reactor, it stops supply of the fluids other than the oxygen-containing gas, and oxygen-containing gas and the reaction cartridge of the pressure balance reactor and the annular portion since continue to supply, Ki out to maintain the pressure balance between the reaction cartridge and the annular portion, as in the prior art, upon shutdown of the supercritical water reactor, corrosive reaction fluid in the annulus from the reaction cartridge There will be no situation of spilling and corroding the inner wall of the pressure vessel.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing the configuration of a supercritical water reactor equipped with a pressure balance type reactor as a reactor.
FIG. 2 is a cross-sectional view showing a configuration of a pressure balance type reactor.
FIG. 3 is a cross-sectional view showing a corrosion region of a pressure balanced reactor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Supercritical water reactor 12 Reactor 14 Process liquid pipe 16 Cooler 18 Pressure control valve 20 Gas-liquid separator 22 Process liquid pipe 24 Process liquid pump 26 Air inlet pipe 28 Air compressor 30 Auxiliary fuel pipe 31 Alkali Agent feeding pipe 34 Two-fluid nozzle 40 Pressure vessel 42 Reaction cartridge 44 Communication hole 46 Annular portion 48 Treatment liquid conduit 50 Air feeding nozzle 52 Two-fluid nozzle inner pipe 54 Two-fluid nozzle outer pipe 56 Air feeding branch pipe

Claims (3)

相互に連通する圧力容器と反応カートリッジとからなる2重筒体として形成され、超臨界水を収容する圧力バランス型反応器を備え、被処理液と、酸化剤として酸素含有ガスとを反応カートリッジ内に供給し、かつ、圧力容器と反応カートリッジとの間に圧力バランス用ガスとして酸素含有ガスを供給して、超臨界水の存在下で被処理液中の有機物と酸素との超臨界水反応を行う超臨界水反応装置の運転を停止する方法であって、運転を停止する際、
酸素含有ガスを供給しながら、被処理液の供給を停止するステップと、
反応器の温度が所定温度以下に降温した時点で、酸素含有ガスの供給を停止するステップとを有することを特徴とする超臨界水反応装置の運転停止方法。
A reaction cartridge that is formed as a double cylinder composed of a pressure vessel and a reaction cartridge that communicate with each other, includes a pressure balance type reactor that contains supercritical water, and contains a liquid to be treated and an oxygen-containing gas as an oxidizing agent. And supplying an oxygen-containing gas as a pressure balancing gas between the pressure vessel and the reaction cartridge, and supercritical water of organic matter and oxygen in the liquid to be treated in the presence of supercritical water. It is a method of stopping the operation of the supercritical water reactor that performs the reaction, and when stopping the operation,
Stopping the supply of the liquid to be processed while supplying the oxygen-containing gas;
And a step of stopping the supply of the oxygen-containing gas when the temperature of the reactor falls below a predetermined temperature.
反応器に供給する流体として、被処理液、酸化剤としての酸素含有ガス及び圧力バランス用ガスとしての酸素含有ガスに加え、補助燃料、超臨界水、中和剤及び亜臨界水のうちの少なくとも1つを反応カートリッジ内に供給し、運転を停止する際、As a fluid to be supplied to the reactor, in addition to the liquid to be treated, an oxygen-containing gas as an oxidant, and an oxygen-containing gas as a pressure balance gas, at least one of auxiliary fuel, supercritical water, neutralizing agent, and subcritical water When one is supplied into the reaction cartridge and the operation is stopped,
酸素含有ガスを供給しながら、反応器に供給する流体のうち酸素含有ガスを除く流体の供給を順次に又は一度に停止するステップと、  Stopping the supply of fluids excluding the oxygen-containing gas among the fluids supplied to the reactor sequentially or at a time while supplying the oxygen-containing gas;
反応器の温度が所定温度以下に降温した時点で、酸素含有ガスの供給を停止するステップとを有することを特徴とする請求項1に記載の超臨界水反応装置の運転停止方法。  The method of stopping the operation of the supercritical water reactor according to claim 1, further comprising the step of stopping the supply of the oxygen-containing gas when the temperature of the reactor falls below a predetermined temperature.
被処理液及び酸化剤としての酸素含有ガスを混合流体として反応カートリッジ内に流入させることを特徴とする請求項1又は2に記載の超臨界水反応装置の運転停止方法。The method for stopping operation of a supercritical water reactor according to claim 1 or 2, wherein the liquid to be treated and an oxygen-containing gas as an oxidant are allowed to flow into the reaction cartridge as a mixed fluid.
JP09063299A 1999-03-31 1999-03-31 Method for shutting down supercritical water reactor Expired - Fee Related JP3836270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09063299A JP3836270B2 (en) 1999-03-31 1999-03-31 Method for shutting down supercritical water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09063299A JP3836270B2 (en) 1999-03-31 1999-03-31 Method for shutting down supercritical water reactor

Publications (3)

Publication Number Publication Date
JP2000279790A JP2000279790A (en) 2000-10-10
JP2000279790A5 JP2000279790A5 (en) 2005-03-17
JP3836270B2 true JP3836270B2 (en) 2006-10-25

Family

ID=14003877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09063299A Expired - Fee Related JP3836270B2 (en) 1999-03-31 1999-03-31 Method for shutting down supercritical water reactor

Country Status (1)

Country Link
JP (1) JP3836270B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545417B2 (en) * 2003-11-04 2010-09-15 オルガノ株式会社 Supercritical water reactor
JP4508766B2 (en) * 2004-08-03 2010-07-21 オルガノ株式会社 Hydrothermal reactor shutdown method
CN102674712A (en) * 2012-05-07 2012-09-19 绥中滨海经济区乐威科技发展有限公司 Cooling device of photovoltaic glass gluing curing kettle
JP6048793B2 (en) * 2012-07-24 2016-12-21 株式会社リコー Fluid purification device
CN115007066A (en) * 2022-08-05 2022-09-06 山西阳煤化工机械(集团)有限公司 Cold hydrogenation reactor

Also Published As

Publication number Publication date
JP2000279790A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP3297680B2 (en) Supercritical reactor and method
JPH0134115B2 (en)
JPH07313987A (en) High pressure reaction container apparatus
JP3836270B2 (en) Method for shutting down supercritical water reactor
JP4455703B2 (en) Supercritical water reactor
JP3345285B2 (en) How to start and stop supercritical water oxidation equipment
JP4156761B2 (en) Batch supercritical water reactor
JP3801807B2 (en) Supercritical water reactor
JP2001232382A (en) Supercritical water reacting apparatus
JP4107637B2 (en) Hydrothermal reactor
JP3686778B2 (en) Operation method of supercritical water reactor
JP2001170664A (en) Supercritical water treating device
JP4267791B2 (en) Supercritical water treatment equipment
JP2003340262A (en) Method and apparatus for treating hydrothermal reaction
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JP2003236594A (en) Apparatus for treating sludge
US20240034655A1 (en) A treatment process for waste streams
JP2001269566A (en) Supercritical water reaction apparatus
JP4508766B2 (en) Hydrothermal reactor shutdown method
JP2002361069A (en) Supercritical hydroreaction apparatus and vessel
JP2002355696A (en) Supercritical water oxidative decomposition apparatus
JP3801803B2 (en) Descale removal method for supercritical water oxidation equipment
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
JP3464897B2 (en) Supercritical water oxidation method and apparatus
JP2008272619A (en) Wastes treatment device and method used for the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees