JP2001185123A - Whole solid secondary battery - Google Patents

Whole solid secondary battery

Info

Publication number
JP2001185123A
JP2001185123A JP36552999A JP36552999A JP2001185123A JP 2001185123 A JP2001185123 A JP 2001185123A JP 36552999 A JP36552999 A JP 36552999A JP 36552999 A JP36552999 A JP 36552999A JP 2001185123 A JP2001185123 A JP 2001185123A
Authority
JP
Japan
Prior art keywords
electrode
battery
secondary battery
solid
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36552999A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kitahara
暢之 北原
Toshihiko Kamimura
俊彦 上村
Hiromitsu Mishima
洋光 三島
Shinji Umagome
伸二 馬込
Makoto Osaki
誠 大崎
Toru Hara
亨 原
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36552999A priority Critical patent/JP2001185123A/en
Publication of JP2001185123A publication Critical patent/JP2001185123A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve connection with peripheral apparatus such as a board to be mounted and to reduce area required for mounting, to promote effective mounting of whole solid batteries on small size apparatuses, by devicing terminal take-out shape of the whole solid secondary battery. SOLUTION: In a whole solid secondary battery which comprises positive electrodes, solid electrolyte and negative electrodes layered in order, a hole piercing from one of the electrode side of positive electrode and the negative electrode through the electrolyte and another electrode is provided. The inside wall of the hole is covered with insulation material and conductive material is filled in its center. A take-out terminal of one of the electrodes is provided on another electrode of the above.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、全固体二次電池に
関するものである。
TECHNICAL FIELD The present invention relates to an all solid state secondary battery.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従
来、各種電池の電解質としては、一般に、水系あるいは
非水系の電解液が使用されていたが、近年、ビデオ撮影
装置やノートパソコン、携帯電話等の携帯用情報端末機
器に代表される各種電子応用機器の薄型かつ軽量小型化
の要求に伴い、前述のような液状の電解質に代えて、正
負一対の電極間に高分子材料で構成されたゲル状の電解
質を用いた固体電解質電池が注目されている。
2. Description of the Related Art Conventionally, aqueous or non-aqueous electrolytes have been generally used as electrolytes for various types of batteries. Recently, however, video recording devices, notebook computers, mobile phones and the like have been used. In response to the demand for thinner, lighter, and smaller electronic application devices represented by portable information terminal devices, a gel composed of a polymer material between a pair of positive and negative electrodes instead of the liquid electrolyte as described above. Attention has been focused on a solid electrolyte battery using a liquid electrolyte.

【0003】また、電解質として無機固体電解質や高分
子固体電解質を用いる固体電解質電池も各種提案されて
いる。これら電池では固体であるがゆえに塗布積層等の
方法で薄型化が可能になり、携帯機器への積極的な搭載
が図られている。
[0003] Various solid electrolyte batteries using an inorganic solid electrolyte or a polymer solid electrolyte as an electrolyte have also been proposed. Since these batteries are solid, they can be thinned by a method such as coating and laminating, and are actively mounted on portable devices.

【0004】さらに、電極活物質ならびに電解質の何れ
も無機化合物で形成された全固体二次電池も、安全性が
高く、温度使用範囲が広範にとれるといったメリットを
生かせるものとして提案されている。
Further, an all-solid-state secondary battery in which both the electrode active material and the electrolyte are formed of an inorganic compound has been proposed as having high safety and a wide temperature use range.

【0005】しかしながら、これら全固体二次電池にお
いても、正負電極からの取出端子は、従来の電池と同様
に、ケースを正電極あるいは負電極、電池接続用のキャ
ップなどをその対極とすことによって端子を取り出す必
要があった(例えば特開平7−25188号公報参
照)。または特開平6−203826号公報に示された
ポリマー電池や特開平7−220754号公報に示され
た積層型のリチウム二次電池および特開平8−1621
51号公報に示された全固体リチウム電池などは、いず
れも帯状のリード端子で取り出すことが必要で、小型機
器への実装向けの電池には不適であった。すなわち、端
子の接続のために、本来充放電に寄与しない構造を電池
の外部に設けざるを得なかった。
However, in these all-solid-state rechargeable batteries as well, the terminals for taking out the positive and negative electrodes are formed by using a case as a positive electrode or a negative electrode, a battery connection cap, or the like as a counter electrode, as in the conventional battery. It was necessary to take out the terminal (see, for example, JP-A-7-25188). Alternatively, a polymer battery disclosed in JP-A-6-203826, a laminated lithium secondary battery disclosed in JP-A-7-220754, and a polymer battery disclosed in JP-A-8-1621 are disclosed.
The all-solid-state lithium battery and the like disclosed in Japanese Patent Publication No. 51 need to be taken out with a strip-shaped lead terminal, which is not suitable for a battery for mounting on a small device. That is, in order to connect the terminals, a structure that does not originally contribute to charging and discharging has to be provided outside the battery.

【0006】本発明はこのような従来装置の問題点に鑑
みてなされたものであって、その目的は全固体二次電池
の端子の取り出し形状を工夫することにより、小型機器
への全固体電池の効率的な実装を図るため、搭載すべき
基板などの周辺機器との接続性を改善し、必要とする設
置面積を小さくする点にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the conventional apparatus, and an object of the present invention is to improve the shape of the terminals of the all-solid-state secondary battery so that the all-solid-state battery can be used for small-sized equipment. In order to efficiently mount the device, it is necessary to improve connectivity with peripheral devices such as a substrate to be mounted and to reduce a required installation area.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る全固体二次電池では、正電極、固体
電解質、および負電極を順次積層してなる全固体二次電
池において、前記正電極または負電極のうちの一方の電
極側から前記固体電解質と他方の電極を貫通する孔を設
け、この孔の内壁部を絶縁材料で被覆すると共に、中心
部に導電材料を充填して、前記一方の電極の取出端子を
前記他方の電極側に設けたことを特徴とする。
Means for Solving the Problems In order to achieve the above object, an all solid state secondary battery according to the present invention is directed to an all solid state secondary battery in which a positive electrode, a solid electrolyte, and a negative electrode are sequentially laminated. A hole penetrating the solid electrolyte and the other electrode from one electrode side of the positive electrode or the negative electrode, and covering an inner wall portion of the hole with an insulating material, and filling a central portion with a conductive material. The extraction terminal of the one electrode is provided on the other electrode side.

【0008】また、請求項2に係る全固体二次電池で
は、正電極、固体電解質、および負電極を順次積層して
なる全固体二次電池において、前記正電極または負電極
のうちの一方の電極側から前記固体電解質と他方の電極
の端面部に凹状溝を設け、この凹状溝の側壁部を絶縁材
料で被覆すると共に、その外側に導電材料を配設して、
前記一方の電極の取出端子を前記他方の電極側に設けた
ことを特徴とする。
According to a second aspect of the present invention, in the all solid state secondary battery in which a positive electrode, a solid electrolyte, and a negative electrode are sequentially laminated, one of the positive electrode and the negative electrode is provided. A concave groove is provided on the end surface of the solid electrolyte and the other electrode from the electrode side, and the side wall of the concave groove is coated with an insulating material, and a conductive material is provided outside the groove.
The extraction terminal of the one electrode is provided on the other electrode side.

【0009】[0009]

【作用】上記のように構成すると、平板状の全固体二次
電池において、電池の正電極と負電極の両方の端子をい
ずれか一方の電極側にそろえて配置できる。このことに
より、従来の二次電池では、その実装時に必要であった
電池の接続のための機構や、ケースによる保持や、電池
端子周辺部の接続リード線の引回しなどの必要がなくな
る。このことにより、携帯電話機などに代表される小型
機器における二次電池の実装の効率を飛躍的に上げるこ
とができる。
With the above configuration, in a flat plate-shaped all solid state secondary battery, both terminals of the positive electrode and the negative electrode of the battery can be arranged in alignment with one of the electrodes. As a result, in the conventional secondary battery, there is no need for a mechanism for connecting the battery, holding by the case, or laying out the connection lead wires around the battery terminals, which were necessary at the time of mounting. As a result, the efficiency of mounting a secondary battery in a small device such as a mobile phone can be dramatically increased.

【0010】[0010]

【発明の実施の形態】以下、本発明を添付図面に基づい
て詳細に説明する。図1に請求項1の発明に係る全固体
二次電池の電池要素の構成を示し、その拡大図を図2に
示した。図3は請求項2に係る発明の全固体二次電池の
電池要素の構成を示す図である。図4は電極端子を部分
的に拡大して示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows the structure of the battery element of the all-solid-state secondary battery according to the first embodiment of the present invention, and FIG. FIG. 3 is a diagram showing a configuration of a battery element of the all-solid-state secondary battery according to the second aspect of the invention. FIG. 4 is a diagram showing the electrode terminals in a partially enlarged manner.

【0011】全固体二次電池は、正電極1と負電極3で
固体電解質2を挟んだ構造となっている。
The all-solid-state secondary battery has a structure in which a solid electrolyte 2 is sandwiched between a positive electrode 1 and a negative electrode 3.

【0012】この電極1、3の面に垂直すなわち対向す
る電極1、3に垂直な方向に貫通する孔4を設けてい
る。
A hole 4 penetrating in a direction perpendicular to the surfaces of the electrodes 1 and 3, that is, in a direction perpendicular to the electrodes 1 and 3 opposed to each other.

【0013】この孔4の内壁部は絶縁材料5で絶縁さ
れ、中心部には導電材料6が充填されている。この導電
材料6は、正電極1もしくは負電極3の何れか一方の電
極に形成された集電体7、8と接続されている。この図
では負電極集電体7と接続されており、接続された負電
極3と対向する正電極集電体8側に取り出されている。
この正電極集電体8上へ正電極端子9が形成されてい
る。さらに負電極集電体7と接続された導電材料からな
る負電極端子10も正電極集電体8内に形成されてお
り、2つの端子共に電池の正電極1側の面のみに取り出
された形状をとっている。
The inner wall of the hole 4 is insulated by an insulating material 5, and the center is filled with a conductive material 6. The conductive material 6 is connected to current collectors 7 and 8 formed on one of the positive electrode 1 and the negative electrode 3. In this figure, it is connected to the negative electrode current collector 7 and is taken out to the positive electrode current collector 8 side facing the connected negative electrode 3.
A positive electrode terminal 9 is formed on the positive electrode current collector 8. Further, a negative electrode terminal 10 made of a conductive material connected to the negative electrode current collector 7 is also formed in the positive electrode current collector 8, and both terminals are taken out only on the surface on the positive electrode 1 side of the battery. It has a shape.

【0014】正電極1、負電極3、および固体電解質2
はそれぞれ以下に示す材料から構成される。すなわち、
電極材料の活物質としては、遷移金属のカルコゲン化物
や、スピネル構造の遷移金属酸化物があげられる。カル
コゲン化物としてはTiO2、Cr38、V25、Mn
2、CoO2などの酸化物系、TiS2、VS2、FeS
などの硫化物系などがあげられ、スピネル構造としては
LiMn24に代表される各種遷移金属酸化物、あるい
はその一部元素置換型酸化物や、Li4Mn5 12などの
各種遷移金属酸化物やその一部元素置換型酸化物を用い
ることができる。硫化物系では活物質の大気中の水分な
どとの反応性が高いことから、酸化物系の活物質材料が
望ましい。
A positive electrode 1, a negative electrode 3, and a solid electrolyte 2
Are composed of the following materials. That is,
The active material of the electrode material is a transition metal chalcogenide
And transition metal oxides having a spinel structure. Cal
TiO as a cogenideTwo, CrThreeO8, VTwoOFive, Mn
OTwo, CoOTwoOxides such as TiSTwo, VSTwo, FeS
Such as sulfides, and the spinel structure
LiMnTwoOFourTransition metal oxides represented by
Is a partially element-substituted oxide or LiFourMnFiveO 12Such as
Using various transition metal oxides and their partial substitutional oxides
Can be In sulfide systems, the active material
Oxide-based active material is highly reactive
desirable.

【0015】これらの材料を正電極および負電極活物質
として用いる場合、その選択に関しては特に限定される
ものではなく、2種類の遷移金属酸化物あるいは硫化物
の充放電電位を比較してより貴な電位を示すものを正電
極に、より卑な電位を示すものを負電極にそれぞれ用い
ることで任意の電池電圧をもつように形成できる。さら
に、電極1、3における電子電導性補助の目的から、S
nO2あるいはTiO2、ITOあるいはカーボンといっ
た導電性の添加物を添加してもよい。
When these materials are used as a positive electrode active material and a negative electrode active material, their selection is not particularly limited, and the charge and discharge potentials of two types of transition metal oxides or sulfides are compared. A battery having an arbitrary potential can be formed by using a material having a higher potential as a positive electrode and a material having a lower potential as a negative electrode. Further, for the purpose of assisting electron conductivity in the electrodes 1 and 3, S
A conductive additive such as nO 2 or TiO 2 , ITO or carbon may be added.

【0016】また、本発明で用いる無機固体電解質2に
は、例えばLi1.3Al0.3Ti1.7(PO43やLi3.6
Ge0.60.44などの結晶質固体電解質、30LiI
−41Li2O−29P25や40Li2O―30LiI
一35B23−25LiNbO3、10Li2O―25B
23−15SiO2−50ZnOなどの酸化物系非晶質
固体電解質、45LiI−37Li2S−18P25
Li3PO4−63Li2S−36SiS2などの硫化物系
非晶質固体電解質などを用いることができるが、活物質
の安定性の見地からサイクル充放電性能を維持するため
に、酸化物系材料を用いることが好ましい。
The inorganic solid electrolyte 2 used in the present invention includes, for example, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 and Li 3.6
Crystalline solid electrolyte such as Ge 0.6 V 0.4 O 4, 30LiI
-41Li 2 O-29P 2 O 5 and 40Li 2 O-30LiI
One 35B 2 O 3 -25LiNbO 3, 10Li 2 O-25B
2 O 3 -15SiO 2 oxide-based amorphous solid electrolytes such as -50ZnO, 45LiI-37Li 2 S- 18P 2 S 5 and Li 3 PO 4 -63Li 2 sulfide such as S-36SiS 2 amorphous solid Although an electrolyte or the like can be used, it is preferable to use an oxide-based material in order to maintain cycle charge / discharge performance from the viewpoint of stability of the active material.

【0017】孔あるいは溝4の形状に関しては、特に限
定するものではないが、電池のエネルギー密度の観点か
ら、電池の充放電に寄与する活物質である電極材料を除
去する量と直接関連するので、電流値が確保できる範囲
で支障のない量とすべきである。
The shape of the hole or groove 4 is not particularly limited, but is directly related to the amount of electrode material that is an active material that contributes to charging and discharging of the battery, from the viewpoint of the energy density of the battery. The amount should not cause any problem as long as the current value can be secured.

【0018】孔4の中を埋める絶縁材料5としては、絶
縁性の樹脂、無機酸化物、ガラス非晶質材料など絶縁性
が確保でき、孔あるいは溝4に充填可能なものであれ
ば、何れの材質でもよい。
As the insulating material 5 for filling the hole 4, any material can be used as long as the insulating material such as an insulating resin, an inorganic oxide, or a glass amorphous material can secure the insulating property and can fill the hole or the groove 4. May be used.

【0019】また、導電材料6としては主に金属材料が
適するが、電子電導性を確保できれば、酸化物などの半
導体材料でも使用できる。但し、電極集電体7、8との
接続を考慮すると集電体材料と同一の材料を用いること
が望ましい。すなわち集電体7、8を構成する材料とし
ては、Au、Ag、Pd、Pt、Ni、Al、Cu、ま
たはTiから選ばれた何れか一つあるいは二つ以上の金
属もしくはその合金を主成分とする金属材料あるいはそ
の導電性ペーストなどが用いられる。
As the conductive material 6, a metal material is mainly suitable, but a semiconductor material such as an oxide can be used as long as the electronic conductivity can be ensured. However, considering the connection with the electrode current collectors 7 and 8, it is desirable to use the same material as the current collector material. That is, as a material constituting the current collectors 7 and 8, any one or two or more metals selected from Au, Ag, Pd, Pt, Ni, Al, Cu, or Ti or an alloy thereof is used as a main component. Metal material or a conductive paste thereof is used.

【0020】また、電極1、3上への集電体7、8の蒸
着方法は特に限定されないが、真空蒸着、スクリーン印
刷、スパッタリング、CVDやメッキなどの方法で形成
できる。
The method for depositing the current collectors 7 and 8 on the electrodes 1 and 3 is not particularly limited, but can be formed by a method such as vacuum deposition, screen printing, sputtering, CVD or plating.

【0021】電池要素9は、図1に示した絶縁性樹脂の
コーティング外装12で被覆または梱包され、全固体二
次電池13を形成している。この外装の材料としては、
ポリエチレン、ポリプロピレン、ポリエステルおよびポ
リイミドなどの高分子樹脂コーティングで外装被覆され
ている。
The battery element 9 is covered or packed with the insulating resin coating 12 shown in FIG. 1 to form an all-solid secondary battery 13. As the material of this exterior,
It is externally covered with a polymer resin coating such as polyethylene, polypropylene, polyester and polyimide.

【0022】次に、電池要素9の作製方法を説明する。
電池要素9は、上述した材料によって積層形成されてい
る。積層構造は、各電極層、固体電解質層をシート成形
あるいは基板上へのスクリーン印刷した後に乾燥し、基
板を除去することで形成できる。形成された積層体をホ
ットプレス法で加圧加熱して焼成して緻密化することで
電池要素9を形成する。前者のシート成形の場合、まず
各電極ならびに固体電解質のペーストを必要とする厚み
にスクリーン印刷やドクターブレード法で塗布した後、
得られたシートを乾燥し、固体電解質を正負両電極で挟
んで乾燥して脱脂を行ない、ホットプレス法で焼成して
形成できる。また、この電池要素9の形成は正・負電極
1、3、固体電解質2のすべてをスクリーン印刷や不活
性雰囲気下でのスパッタリング法で形成することもでき
る。
Next, a method for manufacturing the battery element 9 will be described.
The battery element 9 is formed by laminating the above-described materials. The laminated structure can be formed by forming each electrode layer and the solid electrolyte layer into a sheet or performing screen printing on the substrate, followed by drying and removing the substrate. The formed laminate is pressurized and heated by a hot press method, fired, and densified to form the battery element 9. In the case of the former sheet forming, first apply each electrode and paste of solid electrolyte to the required thickness by screen printing or doctor blade method,
The obtained sheet is dried, the solid electrolyte is sandwiched between positive and negative electrodes, dried, degreased, and fired by a hot press method. In addition, the battery element 9 can be formed by screen printing or a sputtering method in an inert atmosphere for all of the positive and negative electrodes 1, 3 and the solid electrolyte 2.

【0023】孔あるいは溝4は次のようにして形成す
る。すなわち、焼成前に加工を行なう方法としては、シ
ート成形あるいは積層塗布した後、打ち抜き加工で形
成、もしくは印刷時にマスキングなどを用いて未塗布部
分を形成しながら積層する。また、ホットプレス後に加
工を行なう方法としては、ダイシング、レーザーアブレ
ッション、化学エッチング、プラズマエッチング、イオ
ンエッチング、電子線といった方法のいずれかで加工し
て形成できる。
The holes or grooves 4 are formed as follows. That is, as a method of performing processing before firing, sheet forming or laminating is applied, followed by forming by punching, or laminating while forming an uncoated portion using masking or the like during printing. In addition, as a method of performing processing after hot pressing, it can be formed by processing using any of dicing, laser abrasion, chemical etching, plasma etching, ion etching, and electron beam.

【0024】孔あるいは溝4の内壁を被覆する絶縁材料
5および導電材料6の2層構造は次のようにして形成す
る。予め導電材料6を内部封入したファイバ状の封止材
を絶縁材料6として用い、このファイバ状の封止材を孔
あるいは溝4の形状に加工して用いる。このほか印刷で
形成する方法、或いは樹脂で加熱硬化して形成する方法
など、電池性能を劣化させることなく接合することが可
能なものであれば何れの方法でもよい。このように接合
した後、電極1、3の厚みに合わせて切断し、貫通する
端子部分を形成した後、集電体7あるいは集電体8との
接合を行なう。このとき、一方の電極の側は集電体7あ
るいは集電体8と貫通している端子は接続しているが、
反対の電極側集電体7あるいは集電体8の形成時には端
子部分をマスキングして短絡を避けている。
The two-layer structure of the insulating material 5 and the conductive material 6 covering the inner wall of the hole or groove 4 is formed as follows. A fibrous sealing material in which a conductive material 6 is previously enclosed is used as the insulating material 6, and the fibrous sealing material is processed into a hole or groove 4 for use. In addition, any method, such as a method of forming by printing or a method of forming by heating and curing with a resin, may be used as long as it can be joined without deteriorating battery performance. After joining in this manner, the electrode is cut in accordance with the thickness of the electrodes 1 and 3 to form a penetrating terminal portion, and then joined to the current collector 7 or the current collector 8. At this time, the terminal penetrating the current collector 7 or the current collector 8 is connected to one electrode side,
When the opposite electrode-side current collector 7 or current collector 8 is formed, the terminal portion is masked to avoid a short circuit.

【0025】全固体二次電池の電池要素を用い、最終的
に電極端子を形成したい場所(孔位置は固定、この場合
負電極端子)をマスキングし、樹脂コーティングの外装
をディッピングなどでコーティング硬化した後に、マス
キングを剥離して表面に現れた部分が電池の正負電極端
子10を形成して全固体二次電池とする。
Using the battery element of the all-solid-state secondary battery, the place where the electrode terminal is to be finally formed (the hole position is fixed, in this case the negative electrode terminal) is masked, and the resin coating exterior is hardened by dipping or the like. Later, the masking is peeled off, and the portion that appears on the surface forms the positive and negative electrode terminals 10 of the battery to form an all-solid secondary battery.

【0026】[0026]

【実施例】(実施例1)各電池要素の形成は以下のよう
にして行った。正電極活物質としてLi[Li0 .1Mn
1.9]O4を用いた。出発原料としてMnO2に対してLi
2CO3などの化合物をLi:Mn所定のモル比1.1:
1.9となるように混合し、大気中の450℃〜750
℃で焼成することで合成した。この活物質75重量%に
対して、無機固体電解質として30LiI−41Li2
O−29P25粉体を15重量%、導電助材としてIT
O(In23:SnO2=95:5)を10重量%を秤
量して十分に混合した。この混合粉体に対して成形用バ
インダーとして市販のバインダー(ポリビニルブチラー
ル)を5重量%外添加し、ボールミルを用いてトルエン
を溶剤にペーストの調製を行った。調製したペーストを
100μmの厚みに成形して溶剤を揮散させた後、バイ
ンダーの脱脂を350℃で行って650℃の大気中で焼
成して電極を作製した。
EXAMPLES (Example 1) Each battery element was formed as follows. As the positive electrode active material Li [Li 0 .1 Mn
1.9 ] O 4 was used. Li as a starting material with respect to MnO 2
A compound such as 2 CO 3 is converted to a predetermined molar ratio of Li: Mn 1.1:
1.9 and mixed at 450 ° C. to 750 in air.
It was synthesized by firing at ℃. For this active material 75 wt%, 30LiI-41Li 2 as inorganic solid electrolytes
O-29P 2 O 5 powder 15 wt%, IT as conductive additive
O (In 2 O 3 : SnO 2 = 95: 5) was weighed at 10% by weight and mixed well. To this mixed powder, a commercially available binder (polyvinyl butyral) was added in an amount of 5% by weight as a molding binder, and a paste was prepared using a ball mill with toluene as a solvent. After the prepared paste was molded to a thickness of 100 μm to evaporate the solvent, the binder was degreased at 350 ° C. and fired in the air at 650 ° C. to produce an electrode.

【0027】一方、負電極活物質としてLi[Li1/3
Mn5/3]O4を用いた。出発原料としてTiO2に対し
て、Li2Co3などの化合物をLi:Tiが所定のモル
比4:5になるように混合し、大気中の650〜950
℃で焼成することで合成した。この負電極活物質を用い
て正電極と同様に、活物質85重量%に対して無機固体
電解質30LiI−41Li2O−29P25粉体を1
5重量%の割合で混合して負電極混合粉体を作製した。
この負電極混合粉体に対して成形用バインダーとして正
電極と同様にバインダーを5重量%外添加し、ボールミ
ルを用いてトルエンを溶剤にペーストの調製を行った。
調製したペーストを80μmの厚みに成形し、溶剤を揮
散させた後、バインダーの脱脂、焼成を正電極と同様に
実施して電極を作製した。
On the other hand, as the negative electrode active material, Li [Li 1/3
[Mn 5/3 ] O 4 was used. As a starting material, a compound such as Li 2 Co 3 is mixed with TiO 2 so that a predetermined molar ratio of Li: Ti is 4: 5, and 650 to 950 in the air is mixed.
It was synthesized by firing at ℃. Like the positive electrode using the negative electrode active material, an inorganic solid electrolyte 30LiI-41Li 2 O-29P 2 O 5 powder with respect to the active material of 85 wt% 1
The powder was mixed at a ratio of 5% by weight to prepare a negative electrode mixed powder.
To this negative electrode mixed powder, a binder was added as a molding binder in an amount of 5% by weight in the same manner as the positive electrode, and a paste was prepared using a ball mill with toluene as a solvent.
The prepared paste was formed into a thickness of 80 μm, and after the solvent was volatilized, the binder was degreased and fired in the same manner as the positive electrode to prepare an electrode.

【0028】また、固体電解質10Li2O−25B2
3−15SiO2−50ZnOを上記固体電解質に対して
重量比80:20で混合し、電極と同様にバインダーを
5重量部添加してトルエンを溶剤に用いてペーストを調
製した。調製したペーストを焼成した正電極上に、スク
リーン印刷で20μmの厚みで積層塗布した。塗布した
後、溶剤を乾燥揮散させて大気中の350℃でバインダ
ーの脱脂を行った後、焼成した負電極を重ねて3つの層
を一体にした後、ホットプレスで25〜59MPaの圧
力で450〜700℃にて加圧焼成した。この方法で電
池要素を30mm×30mmに成形加工した。
The solid electrolyte 10Li 2 O-25B 2 O
3 -15SiO the 2 -50ZnO were mixed in a weight ratio of 80:20 with respect to the solid electrolyte, and the binder was added 5 parts by weight of toluene as with the electrodes to prepare a paste using a solvent. The prepared paste was applied on the baked positive electrode by screen printing with a thickness of 20 μm. After the application, the solvent is dried and evaporated to degrease the binder at 350 ° C. in the air, and then the fired negative electrodes are overlapped to integrate the three layers, and then hot-pressed at a pressure of 25 to 59 MPa at a pressure of 25 to 59 MPa. It baked under pressure at ~ 700 ° C. The battery element was formed into a size of 30 mm × 30 mm by this method.

【0029】電池要素への穴あけ加工を炭酸ガスレーザ
ーで行った。パルスレーザーの照射によって、電池要素
の中心部分へ直径2.0mmの貫通孔を開けた。
Drilling was performed on the battery element using a carbon dioxide laser. By irradiating the pulse laser, a through hole having a diameter of 2.0 mm was formed in the center of the battery element.

【0030】この孔部分へ予め加工しておいた封着用ガ
ラスに1.0mmφのAu線を封入したガラスファイバ
を挿入し、大気中350℃にて加熱接合した後、正電極
側と負電極側のそれぞれの電極表面からはみ出している
部分を切断した。その後、負電極側は、Au集電体を全
面に真空蒸着した。一方、正電極側は孔に充填した部分
5、6をマスキングしてから、同じくAu集電体を全面
に蒸着した。蒸着量はいずれも2500Åとなるように
行って素電池を形成した。蒸着した後、改めて正電極端
子に該当する部分にマスキングを施し、素電池全体を樹
脂へのディッピングでコーティング外装を形成し、加熱
硬化させた。その後、マスキングを取り去って全固体二
次電池を完成した。
A glass fiber in which a 1.0 mmφ Au wire is sealed is inserted into a pre-processed sealing glass into the hole portion, and heated and bonded at 350 ° C. in the atmosphere. The portions protruding from the respective electrode surfaces were cut. Thereafter, on the negative electrode side, an Au current collector was vacuum-deposited on the entire surface. On the other hand, on the positive electrode side, after masking the portions 5 and 6 filled in the holes, an Au current collector was also deposited on the entire surface. The deposition was performed at 2500 ° C. to form a unit cell. After the vapor deposition, the portion corresponding to the positive electrode terminal was masked again, and the entire unit cell was coated with resin by dipping into a resin, and cured by heating. Thereafter, the masking was removed to complete the all-solid secondary battery.

【0031】作製した電池をプリント基板上へ半田でフ
ェースダウン接続を行った。接続に要したプリント基板
上の電池の占有面積は、30.2mm×30.2mm
(高さ0.6mm)であった。
The fabricated battery was connected face down on a printed circuit board by soldering. The area occupied by the battery on the printed circuit board required for connection is 30.2 mm x 30.2 mm
(Height: 0.6 mm).

【0032】電池の充放電特性評価は二次電池充放電装
置で行なった。充電条件として50μAの電流で全固体
電池を3.5Vまで充電し、電圧が3.5Vに到達した
後、充電を停止して5分間保持し、その後、1.0Vの
電圧まで50μAの放電電流で放電し、放電を停止して
5分間保持し、再度3.5Vまで充電するという繰り返
しによる充放電サイクル試験を行った。充放電は加速試
験のため80℃で実施した。放電容量のサイクル毎の推
移によって電池性能の評価を5セルについて行った。 (比較例1)孔を開けない以外は、実施例1と同様に3
0mm×30mmの電池要素を作製した。
The charge / discharge characteristics of the battery were evaluated using a secondary battery charge / discharge device. As a charging condition, the all solid state battery was charged to 3.5 V with a current of 50 μA, and after the voltage reached 3.5 V, charging was stopped and held for 5 minutes, and then a discharge current of 50 μA to a voltage of 1.0 V was applied. A charge / discharge cycle test was performed by repeating discharge, stopping the discharge, holding for 5 minutes, and charging again to 3.5V. The charge and discharge were performed at 80 ° C. for the acceleration test. The battery performance was evaluated for five cells based on the transition of the discharge capacity for each cycle. (Comparative Example 1) Except that no hole was formed,
A battery element of 0 mm × 30 mm was produced.

【0033】電池の集電体としてAuを同様に蒸着した
後、Alのリード(4mm×8mm×0.05mmt)
2本を導電性接着剤を用いて正負各電極へ加熱硬化させ
て接合した。その後、実施例1と同様に樹脂でコーティ
ング外装を形成して比較電池とした。
Au was vapor-deposited similarly as a current collector of the battery, and then Al lead (4 mm × 8 mm × 0.05 mmt) was obtained.
The two were bonded by heating and curing each of the positive and negative electrodes using a conductive adhesive. Thereafter, a coating battery was formed with a resin in the same manner as in Example 1 to obtain a comparative battery.

【0034】作製した電池は、実施例1と同様にプリン
ト基板上へ超音波溶接を行った。接続に要したプリント
基板上の電池の占有面積は、30.2mm×34.2m
m(高さ0.7mm)であった。実施例1と同様に80
℃で二次電池充放電装置によってサイクル特性の評価を
行った。サイクル特性の試験結果を表1に示す。
The manufactured battery was subjected to ultrasonic welding on a printed circuit board in the same manner as in Example 1. The area occupied by the battery on the printed circuit board required for connection is 30.2 mm x 34.2 m
m (height 0.7 mm). 80 as in the first embodiment.
The cycle characteristics were evaluated by a secondary battery charging / discharging device at ℃. Table 1 shows the test results of the cycle characteristics.

【0035】[0035]

【表1】 [Table 1]

【0036】比較例では実施例の実装面積に対し、1割
強の実装面積を必要とし、本発明に示す端子を取り出す
形状を導入することで実装の小型化できることが確認で
きた。
In the comparative example, it was confirmed that the mounting area required was slightly more than 10% of the mounting area of the embodiment, and that the size of the mounting can be reduced by introducing the terminal extracting shape according to the present invention.

【0037】比較例に示した端子を折り曲げることで取
り付けも可能であるが、実施例に示す方法では電極の面
上において任意の個所への端子取出ができることから特
に実施例が有効であることは明らかである。
Although the terminal shown in the comparative example can be attached by bending it, the method shown in the example can take out the terminal to an arbitrary position on the surface of the electrode, so that the example is particularly effective. it is obvious.

【0038】また、実施例、比較例共に初期25サイク
ルまでは、ほぼ同じサイクル容量特性を示すことが確認
された。しかし、充放電150サイクルを経過すると、
比較例では容量劣化が急激に進行していくが、実施例1
ではそのような劣化は起こらなかった。
In addition, it was confirmed that the same cycle capacity characteristics were obtained in the examples and the comparative examples up to the initial 25 cycles. However, after 150 cycles of charging and discharging,
In the comparative example, the capacity deterioration rapidly progressed.
No such degradation occurred.

【0039】これは、端子部分の接続に導電性の接着剤
(有機バインダ)を用いたために、長期加熱試験による
導電性の劣化が加速されたためと考えられる。
This is presumably because the use of a conductive adhesive (organic binder) for connection of the terminal portions accelerated the deterioration of conductivity due to a long-term heating test.

【0040】従って、実施例に示した構造をもつ電池構
造が設置面積において小型化が図れると共に、他の接続
方法に比して信頼性の高い接続方法であることが確認で
きた。
Accordingly, it was confirmed that the battery structure having the structure shown in the embodiment can be reduced in installation area and is a connection method having higher reliability than other connection methods.

【0041】なお、本発明においてはスピネル型構造を
持つLi[Li0.1Mn1.9]O4、Li[Li1/3Mn
5/3]O4を活物質として用い、固体電解質として10L
2O−25B23−15SiO2−50ZnOなどを用
いたが、発明の趣旨を逸脱しない範囲であれば活物質材
料および固体電解質は種々変更できる。
In the present invention, Li [Li 0.1 Mn 1.9 ] O 4 and Li [Li 1/3 Mn having a spinel structure are used.
5/3 ] 10 L as solid electrolyte using O 4 as active material
i 2 O-25B 2 O 3 -15SiO 2 was used like -50ZnO, so long as not departing from the gist of the invention the active material and the solid electrolyte can be variously modified.

【0042】また、加工位置などに関しては実装機器に
対応し種々の位置を取れることは明らかである。また、
穴あけ加工に関してもレーザーを用いた加工に限定され
るものでなく、趣旨を逸脱しない範囲であれば種々変更
できる。
It is apparent that various positions can be taken for the processing position and the like in accordance with the mounting device. Also,
Drilling is not limited to laser processing, and various modifications can be made without departing from the spirit of the invention.

【0043】[0043]

【発明の効果】以上のように、請求項1および請求項2
に係る発明によれば、一方の電極側から他方の電極側に
かけて孔もしくは凹状溝を形成し、この孔もしくは凹溝
部分を介して一方の電極の取出端子を他方の電極側に設
けたことから、電池の実装面積および体積が減少し、信
頼性の高い接続が可能な全固体二次電池を形成できる。
As described above, claims 1 and 2 are as described above.
According to the invention according to the invention, a hole or a concave groove is formed from one electrode side to the other electrode side, and an extraction terminal of one electrode is provided on the other electrode side through this hole or concave groove portion. Accordingly, an all-solid secondary battery capable of reducing the mounting area and volume of the battery and enabling highly reliable connection can be formed.

【0044】また、請求項1および請求項2に係る発明
は、捲回式のリチウムイオン電池やゲル電解質電池など
に応用する場合には、その加工位置決め、電解液電解質
の封止などの点から、極めて加工困難であることは自明
であり、積層型の全固体電池に限った。したがって、全
固体二次電池を用いた機器への実装性をより高めるため
の有効な技術であり、機器の小型化、信頼性の向上に寄
与できる。
When the invention according to claims 1 and 2 is applied to a wound type lithium ion battery or a gel electrolyte battery, the processing positioning, sealing of the electrolyte solution, etc. It is obvious that processing is extremely difficult, and the present invention is limited to a stacked type all solid state battery. Therefore, this is an effective technique for further improving the mountability to equipment using an all-solid secondary battery, and can contribute to miniaturization and improvement of reliability of equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】全固体二次電池の電池要素の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of a battery element of an all-solid secondary battery.

【図2】全固体二次電池の構造断面の図である。FIG. 2 is a structural sectional view of an all solid state secondary battery.

【図3】負電極端子側の構造を示す図である。FIG. 3 is a diagram showing a structure on a negative electrode terminal side.

【図4】正電極端子側の構造を示す図である。FIG. 4 is a diagram showing a structure on a positive electrode terminal side.

【符号の説明】[Explanation of symbols]

1:正電極、2:固体電解質、3:負電極、4:孔
(溝)、5:絶縁材料、6:導電材料、7:負電極集電
体、8:正電極集電体、9:電池要素、10:負電極端
子、11:正電極端子、12:コーティング外装、1
3:全固体二次電池
1: positive electrode, 2: solid electrolyte, 3: negative electrode, 4: hole (groove), 5: insulating material, 6: conductive material, 7: negative electrode current collector, 8: positive electrode current collector, 9: Battery element, 10: negative electrode terminal, 11: positive electrode terminal, 12: coating exterior, 1
3: All-solid-state secondary battery

フロントページの続き (72)発明者 馬込 伸二 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 大崎 誠 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 原 亨 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 樋口 永 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 Fターム(参考) 5H022 AA09 CC02 CC03 CC08 CC12 KK03 5H029 AJ14 AK02 AK03 AK05 AL02 AL03 AL04 AM11 BJ04 BJ12 DJ05 DJ14 Continuing on the front page (72) Inventor Shinji Magome 3-5-5 Koudai, Seikacho, Soraku-gun, Kyoto Kyoto Inside the Central Research Laboratory of Cera Corporation (72) Inventor Makoto Osaki 3-5-kokoda Seikacho, Soraku-gun, Kyoto Kyoto Central Research Laboratory, Sera Corporation (72) Inventor Tohru Hara 3-5 Koikodai, Seikacho, Soraku-gun, Kyoto Prefecture Kyoto Central Research Laboratory (72) Inventor Ei Higuchi 3-chome Koikadai, Soraku-gun, Kyoto Prefecture Address Kyocera Corporation Central Research Laboratory F term (reference) 5H022 AA09 CC02 CC03 CC08 CC12 KK03 5H029 AJ14 AK02 AK03 AK05 AL02 AL03 AL04 AM11 BJ04 BJ12 DJ05 DJ14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正電極、固体電解質、および負電極を順
次積層してなる全固体二次電池において、前記正電極ま
たは負電極のうちの一方の電極側から前記固体電解質と
他方の電極を貫通する孔を設け、この孔の内壁部を絶縁
材料で被覆すると共に、中心部に導電材料を充填して、
前記一方の電極の取出端子を前記他方の電極側に設けた
ことを特徴とする全固体二次電池。
1. An all-solid secondary battery in which a positive electrode, a solid electrolyte, and a negative electrode are sequentially laminated, wherein one of the positive electrode and the negative electrode passes through the solid electrolyte and the other electrode. A hole is provided, and the inner wall of the hole is covered with an insulating material, and the center is filled with a conductive material.
An all-solid secondary battery, wherein an extraction terminal for the one electrode is provided on the other electrode side.
【請求項2】 正電極、固体電解質、および負電極を順
次積層してなる全固体二次電池において、前記正電極ま
たは負電極のうちの一方の電極側から前記固体電解質と
他方の電極の端面部に凹状溝を設け、この凹状溝の側壁
部を絶縁材料で被覆すると共に、その外側に導電材料を
配設して、前記一方の電極の取出端子を前記他方の電極
側に設けたことを特徴とする全固体二次電池。
2. In an all-solid secondary battery in which a positive electrode, a solid electrolyte, and a negative electrode are sequentially laminated, an end face of the solid electrolyte and the other electrode from one of the positive electrode and the negative electrode. A concave groove is provided in the portion, a side wall portion of the concave groove is covered with an insulating material, and a conductive material is disposed outside the concave groove, and a takeout terminal of the one electrode is provided on the other electrode side. All-solid rechargeable battery.
JP36552999A 1999-12-22 1999-12-22 Whole solid secondary battery Pending JP2001185123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36552999A JP2001185123A (en) 1999-12-22 1999-12-22 Whole solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36552999A JP2001185123A (en) 1999-12-22 1999-12-22 Whole solid secondary battery

Publications (1)

Publication Number Publication Date
JP2001185123A true JP2001185123A (en) 2001-07-06

Family

ID=18484493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36552999A Pending JP2001185123A (en) 1999-12-22 1999-12-22 Whole solid secondary battery

Country Status (1)

Country Link
JP (1) JP2001185123A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059760A1 (en) * 2002-12-25 2004-07-15 Fuji Jukogyo Kabushiki Kaisha Storage battery
JP2009187879A (en) * 2008-02-08 2009-08-20 Sumitomo Electric Ind Ltd Energy storage device
US7579109B2 (en) 2004-01-19 2009-08-25 Panasonic Corporation Energy device and electronic equipment using the same, and method for producing energy device
JP2010015782A (en) * 2008-07-02 2010-01-21 Kyushu Univ All-solid battery
US20220093909A1 (en) * 2010-01-18 2022-03-24 Enevate Corporation Silicon particles for battery electrodes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059760A1 (en) * 2002-12-25 2004-07-15 Fuji Jukogyo Kabushiki Kaisha Storage battery
CN1331249C (en) * 2002-12-25 2007-08-08 富士重工业株式会社 Storage battery
US7579109B2 (en) 2004-01-19 2009-08-25 Panasonic Corporation Energy device and electronic equipment using the same, and method for producing energy device
JP2009187879A (en) * 2008-02-08 2009-08-20 Sumitomo Electric Ind Ltd Energy storage device
JP2010015782A (en) * 2008-07-02 2010-01-21 Kyushu Univ All-solid battery
US20220093909A1 (en) * 2010-01-18 2022-03-24 Enevate Corporation Silicon particles for battery electrodes

Similar Documents

Publication Publication Date Title
JP4038699B2 (en) Lithium ion battery
JP5069834B2 (en) Electrochemical energy storage device with improved enclosure mechanism
CN111566867B (en) All-solid lithium ion secondary battery
KR100982468B1 (en) High capacity thin film battery module and the method for preparing the same
JP4639376B2 (en) Method for producing lithium micro battery
WO2006118053A1 (en) Cell
JP2002298825A (en) Method of producing electrochemical device and the electrochemical device
JP2001126756A (en) Lithium solid electrolyte battery and manufacturing method therefor
JP5773827B2 (en) Secondary battery
JP2001210304A (en) Sealed type battery and its manufacturing method
JP2001015153A (en) Fully solid secondary battery and its manufacture
JP2012204160A (en) Secondary battery
JP2004127743A (en) Thin film battery
JPWO2020137258A1 (en) battery
JP2001068150A (en) Method of manufacturing whole solid secondary battery
JP2001043893A (en) Whole solid secondary battery and its manufacture
JP4381176B2 (en) Thin film solid secondary battery
JP5164256B2 (en) All solid state secondary battery
JP4138172B2 (en) Electrochemical device and manufacturing method thereof
CN113169374B (en) All-solid battery
JP2020115450A (en) All-solid battery
JP4075234B2 (en) Solid electrolyte battery and manufacturing method thereof
JP2001148234A (en) Electrochemical device
JP2001185123A (en) Whole solid secondary battery
JP3361562B2 (en) Stacked battery